
Supplementary Information for

Active Efficient Coding Explains the Development of Binocular Vision and its Failure in
Amblyopia

Samuel Eckmann*, Lukas Klimmasch, Bertram Shi, Jochen Triesch*

*Correspondence: ec.sam@outlook.com, triesch@fias.uni-frankfurt.de

This PDF file includes:

Supplementary text
Figs. S1 to S13
References for SI reference citations

Samuel Eckmann*, Lukas Klimmasch, Bertram Shi, Jochen Triesch* 1 of 21

www.pnas.org/cgi/doi/10.1073/pnas.1908100117



Supporting Information Text

Input Rendering. For every unit of distance between the vergence and the object plane, a retinal disparity of 2 px was introduced.
This results in a 2 px shift between the left and right eye input. For example, if the object plane lies in front of the vergence
plane, the left eye’s field of view was shifted one pixel to the left and the right eye’s field of view was shifted one pixel to the
right (see Main text, Fig. 3). Here, we implicitly assumed that the brain operates in units of disparity on the retina and not in
units of physical distance between vergence and object plane. This justifies our crude approximation of a linear relationship
between plane distance and disparity that only holds for small vergence errors.

To model defocus blur, a gaussian blur filter was applied to the respective eye’s input. Its standard deviation was set to
0.8 px times the units of distance between the accommodation plane and the object plane (compare Fig. S11A). Accordingly,
the filter diameter per unit of distance is approximately 2 px.

In the real visual system the relationship between disparity and defocus blur is not arbitrary but depends on the interocular
distance and the pupil size. The average pupile size in humans is approximately p = 0.3 cm (1). The average interocular
distance (IOD) is roughly 6 cm (2). Then, the ratio between disparity and defocus blur per distance unit of focus or fixation
error (compare Main text Fig. 3) is IOD/p = 20 (see Fig. S12). This is larger than in our model, were the ratio is approximately
1, with 2 px of disparity shift corresponding to defocus blur that averages over approximately 2 px (compare Fig. S12: s1 − s2
corresponds to one distance unit of error, δ′d = 2 px disparity shift and δb ≈ 2 px defocus blur).

Originally, we chose the ratio such that the differential repercussions of anisometropia on high and low-resolution visual
processing becomes apparent. In our model, an anisometropic case elicits suppression in the fovea while the lower-resolution
periphery is unaffected (Fig. S9), as multiple experimental studies suggest (3–6). This requires that the defocus blur is large
enough to affect the high-resolution foveal scale. Due to rasterization in our input rendering model, the standard deviation
of defocus blur cannot be much smaller than one pixel per unit error before the gaussian blur filter becomes too localized
to have any noticeable blurring effect. At the same time, defocus blur must be small enough to not affect input processing
in the low-resolution peripheral scale. This depends critically on the choice of the resolution for the different scales. The
size of receptive fields in the visual cortex increases continuously with eccentricity; by factors > 100 between the fovea and
the far periphery (7–9). Therefore, our choice for the resolutions of the two different scales (compare Fig. S13) is to some
degree arbitrary and the ratio between disparity and defocus is not meaningfully constrained, since the input textures are
uncalibrated. For example, we could reinterpret the 2 px of disparity shift per unit error as a 20 px shift of a 20 times larger
input texture, but processed on a 20 times lower-resolution scale. In this interpretation, the required ratio is matched to the
biological values. We demonstrated in previous work that earlier Active Efficient Coding models can operate in more realistic
simulated environments (10, 11) and even on real-world robotic platforms (12, 13). In summary, the chosen parameters allow
us to demonstrate a qualitative difference between foveal and peripheral processing but do not allow a quantitative comparison
to biological data.

Whitening. The receptive field shape of retinal ganglion cells has been interpreted as the result of maximizing coding efficiency
(14, 15). With their center-surround shape, they reduce the redundancy of natural images (see (16), p.137 for a detailed
tutorial). The optimal receptive field transforms the input such that the amplitude spectrum of the Fourier transformation
becomes flat (Fig. S6), similar to the frequency spectrum of white noise. Therefore, the receptive field resembles a whitening
filter (14).

As in (15), we model the retinal ganglion cell population activity as the image pixel intensities after convolving the sensory
input I with a whitening filter W . The convolution is performed as a multiplication in Fourier space:

R∗ = F−1[F(W )F(I)],

where (F−1)F is the (inverse) Fourier transform and R∗ is the whitened retinal response before contrast adjustment. We define
the whitening filter W in Fourier space as (15):

F(W )(ωx, ωy) = ρa exp[−(ρ/ρ0)κ], ρ =
√
ω2
x + ω2

y,

where ρ is the absolute frequency and a is the decay exponent of the input spectrum (compare Fig. S6). ρ0 = 0.4 c/px (cycles
per pixel) defines the cut-off frequency to prevent amplification of high frequency noise (14, 15), while κ = 4 sets the decay
speed for frequencies larger than the cut-off. These are the same parameters as in (15), except that we set a = 1.27 to achieve
a flat frequency spectrum for our image data set (Fig. S6). However, our model is robust with respect to the exact choice of
the whitening filter (compare Main text, Fig. 4C ).

Suppression Mechanism. The suppression mechanism introduces competition between the two eyes mediated by neurons with
predominantly monocular receptive fields. In essence, we postulate that each neuron tries to maximize its firing by enhancing
input for which it is selective while suppressing competing activity. This is motivated by the connectivity of pyramidal cells in
the visual cortex. These cells preferentially excite other pyramidal cells with similar tuning properties (17, 18). Combined with
a normalization operation (19, 20), the net effect is the suppression of incongruent information and enhancement of congruent
information. This is also a common mechanism in models of binocular rivalry (21, 22).

In our model, we apply this principle by enhancing input from one or the other eye depending on the activities and receptive
field binocularities of all cortical neurons. If one neuron with a left dominant receptive field is active, in the next iteration, the
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contrast of the left image is increased and the contrast in the right image is decreased. This bears a suppressive impact on
neurons tuned to a different eye while responses of neurons tuned to the same eye are enhanced.

In a first step, we quantify the binocularity of each neuron i via the monocular dominances d(i,k) of the receptive subfield
b(i,k) of the left (k = l) and right (k = r) eye:

d(i,k) =
||b(i,k)||

||b(i,k)||+ ||b(i,k̄)||
, k ∈ {l, r} . [1]

Note that dominance levels lie between 0 and 1, where the two extremes describe monocular neurons tuned to opposite eyes.
For d(i,k) = 0.5 the neuron is assumed to be perfectly binocular and should suppress neither of the two eyes. In a simplified
scenario, the patch averaged activity of a single neuron 〈c2i 〉p affects the left eye’s whitened retinal response R∗l based on its
monocular dominance d(i,k) as follows:

Rl = R∗l
(
1 + 〈c2i 〉p[d(i,l) − d(i,r)]

)
,

where Rl is the contrast adjusted retinal response of the left eye. 〈c2i 〉p can be understood as a model for the response of a
complex cell in visual cortex (23, 24), as its activity is spatially invariant, due to averaging over patches (see Methods section
of the main manuscript). For better readability, we omit the notation for averaging over all patches in the following. We
model suppression and enhancement as multiplicative effects that effectively decrease or increase the contrast of the left or
right whitened retinal responses R∗l and R∗r . Here, (d(1,l) − d(1,r)) can be thought of as a binocularity index between −1
for right monocular receptive fields and 1 for left monocular receptive fields. For balanced, binocular receptive fields we
get d(i,l) − d(i,r) = 0 and, therefore, no contrast adjustment of the input. The magnitude of suppression or enhancement is
determined by the activation of each neuron ci. In the case of multiple neurons, we take a normalized weighted average:

R∗l

(
1 +

∑
i

(
c2i∑
j
c2j

)
d(i,l) −

∑
i

(
c2i∑
j
c2j

)
d(i,r)

)
≡ R∗l (1 + xl − xr), [2]

where we split up the suppression and the enhancement term and defined the left and right contrast measure xl and xr. Due
to the normalization via 1/

∑
j
c2j , (xl − xr) is the activity weighted average binocularity with values between −1 and 1. This

can be interpreted as a contrast measure that is not based on the input representation but the cortical encoding (compare
Fig. S9). As such, it represents the percept of the agent based on the activation of its receptive fields. For example, when there
are almost exclusively left monocular receptive fields, i.e., d(i, r) ≈ 0 for all neurons i, the contrast for the right eye is perceived
to be very low, independent of the actual input R∗r . As a result, the right eye’s input R∗r gets suppressed and is not encoded
at the cortical stage. Due to this suppression, receptive fields adapt towards a left-dominated sensory input and become
left-dominated themselves. This leads to even stronger suppression (compare suppressive feedback loop in Main text, Fig. 5B).

In the case of exclusively binocular bases, i.e., d(i, k) = 0.5 ∀ i, k, this feedback loop can be initiated for small contrast
imbalances between the left and the right eye: When slightly left monocular input is encoded, the right eye becomes slightly
suppressed which results in slightly more left monocular receptive fields and, therefore, slightly more right eye suppression in
the future (Main text, Fig. 5B). This means the system is unstable and can not maintain binocular vision unless the input is
perfectly balanced. To make it more robust, we extended the model as follows.

First, we set the suppression for small imbalances to zero. We recast Eq. 2 as:

R∗l (1 + xl − xr) =
{
R∗l (1 + 2(xl − 0.5)), if xl > 0.5
R∗l (1− 2(xr − 0.5)), if xr < 0.5

= R∗l
(
1 + 2[xl − 0.5]+ − 2[xr − 0.5]+

)
,

where we used xr = 1− xl and therefore xl > 0.5⇔ xr < 0.5. Now each term can be interpreted as the output of a rectified
linear “contrast unit” y with throshold θ = 0.5, saturation m = 1 and non-linearity [·]+ ≡ max(0, ·). Then, the final suppression
mechanism can be expressed as:

Rl(t) = R∗l (t) (1 + y(xl(t− 1))− y(xr(t− 1))) , y(x) = m

1− θ [x− θ]+.

Suppression starts as soon as xl > θ. We allow for some deviation from perfect balance at x = 0.5 by choosing the threshold
as θ = 0.6. This leaves some margin for imbalance between left and right eye input before suppression sets in. The saturation
m defines the maximum suppression. When all activity is concentrated at neurons with maximal left dominant receptive fields,
i.e., xl = 1, then the contrast of the right eye can be suppressed to a fraction 1− y(xl) = 1−m of its original level. If, due to
some impairment, the right eye is at a disadvantage and the maximal suppression m = 1, then, due to the suppressive feedback
loop (Main text, Fig. 5B), the right eye input can become completely suppressed and receptive fields adjust such that the right
subfield approaches zero. Then, even when the initial impairment is removed, visual input is encoded with exclusively left
monocular neurons (compare Eq. 1) and input from the right eye is ignored. In contrast, many neurons in the monocular
regions of the visual cortex in cats remain responsive after monocular deprivation (25). In macaques, even in the most severe
cases of monocular deprivation, one finds neurons that are sensitive for binocular input (26). Therefore, we limit the maximal
suppression level by setting the saturation of the contrast units to m = 0.8.
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To further increase stability, we assumed that the contrast adjustments due to suppression last longer than it takes to
process one stimulus. This means, if a suppressive stimulus is removed, it takes a few iterations for the suppression to be lifted.
Therefore, instead of a contrast estimate based on the current input, we take the average x̄k over multiple previous contrast
measures. This reduces the impact of contrast imbalances, as they get smoothed out over time and are less likely to cross the
suppression threshold θ. We make use of the exponential moving average 〈·〉t,τ :

x̄k(t) ≡ 〈xk〉t,τ (t) =
(

1− 1
τ

)t
xk(0) + 1

τ

t∑
j=1

((
1− 1

τ

)t−j
xk(j)

)
.

This means each previous contrast meassure xk(j) is weighted with a factor (1− 1/τ)t−j that decays exponentially for measures
further in the past, i.e., for smaller j, since (1− 1/τ) < 1 for τ > 1. Then, x̄k(t) can be computed recursively, i.e., by a weighted
average of the most recent measure xk(t) and the moving average of the previous timestep x̄k(t− 1):

x̄k(t) =
(

1− 1
τ

)
x̄k(t− 1) + 1

τ
xk(t).

Here, τ sets the timescale how fast the weighting of previous measures decreases. We choose the timescale to be on the order
of one fixation, i.e., τ = 10 iterations in our model. However, this does not mean that the amblyopia-like state our model
develops in the anisometropic case can be lifted rapidly, i.e., on the timescale of one fixation. We find that the exact choice of
τ does not matter for the development of the amblyopia-like state. In the anisometropic case, the suppression is due to a lack
of neurons that are tuned to the suppressed eye (compare Fig. S1, center top, and Main text, Fig. 6C, bottom). This leads to
strong suppression, even when balanced input is provided. The receptive fields are adjusted on a much slower timescale, such
that only prolonged binocular input can lift suppression. In contrast, in the monovision case, there are mostly monocular
neurons tuned to one or the other eye (Fig. S1, top, right), such that suppression can switch between the eyes within just one
fixation (Fig. S10).

In our model, there are two separate suppression mechanisms, one for the foveal and one the peripheral scale. This enables
the foveal scale to become suppressed while the peripheral scale remains binocular. For example, in anisometropia, high
spatial frequencies may be attenuated in one eye. Therefore, on the foveal scale, left and right eye input are vastly different
and suppression sets in (compare Main text, Fig. 5B), while the lack of high frequencies may be unrecognizable at the
lower-resolution peripheral scale, where higher frequencies are not detected (compare Fig. S9A). This is in accordance with
experimental evidence that reports functional stereopsis for lower spatial frequencies or in the peripheral visual field of patients
with anisometropic amblyopia (3, 4, 6).

Energy Conservation Property of the Matching Pursuit Algorithm. The n-th encoding step of the matching pursuit algorithm
(27) can be expressed as (compare Methods section):

Sn = R−
n∑
k=1

cikbik , cjk = 〈bj , Sk−1〉, ik = argmax
j

|cjk |,

where bik is the receptive field of the neuron with index ik that was selected in step k and Sn is the residual after n encoding
steps. In each encoding step, the new residual Sn is equal to the old residual Sn−1 minus the information that is encoded in
the new base activation cin . That is,

Sn = Sn−1 − cinbin
cinbin + Sn = Sn−1

〈bin , Sn−1〉bin + Sn = Sn−1,

where the terms on the left are orthogonal, since bin is orthogonal to Sn:

〈bin , Sn〉 = 〈bin , Sn−1 − cinbin〉
= 〈bin , Sn−1〉 − 〈bin , cinbin〉

= cin − cin ||bin ||
2 = 0

Note that the receptive fields bj have unit norm ||bj || = 1. Then, the energy before and after encoding is conserved as:

||Sn−1||2 = ||Sn||2 + ||cinbin ||
2 = ||Sn||2 + |cin |

2. [3]

By applying Eq.3 recursively, we can decompose the energy of the retinal response ||R||2 ≡ ||S0||2 as:

||S0||2 = ||SN ||2 +
N∑
k=1

|cik |
2,

||R||2 = ||S||2 + ||C||2. [4]

This constitutes the energy conservation property of the matching pursuit algorithm that is employed to compute the reward
for the vergence reinforcement learner (see Methods section).
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Accommodation Reward. To better understand why maximizing the squared response of the retinal representation maximizes
its entropy, we employ Plancherel’s theorem:

||R||2 = ||x̃||2,

where x̃ is the Fourier transform of the retinal response. We can now rewrite x̃ as the successive convolution of the original
image with a blur filter followed by the whitening filter. The blur filter can be thought of as an approximation of the point
spread function due to image defocus, while the whitening filter can be associated with the processing of the retinal input by
ganglion cells (see Whitening section):

||x̃||2 = ||W̃
(
G̃Ĩ
)
||2 = ||G̃(W̃ Ĩ)||2.

Here, Ĩ is the Fourier transform of the original image, G̃ is the Fourier transform of the Gaussian blur filter, and W̃ is the
Fourier transform of the whitening filter. The last equality holds since the convolution is commutative so we can first apply the
whitening operation of the retina followed by the blur filter due to optical defocus. In our model, we assumed the whitening
filter to be independent of the level of input blur. This is motivated by the fact that the shape of retinal ganglion cell receptive
fields does not change in response to visual deprivation (30–32).

It is further assumed that the retinal ganglion cell response whitens the input images, in that its frequency spectrum
becomes flat for lower frequencies before it gets cut off at higher frequencies to minimize noise (14, 15) (compare Whitening
section and Fig. S6). Then we can write

||G̃(W̃ Ĩ)||2 ≈ ||G̃c||2 = c2||G̃||2,

where c is a constant due to the whitening of the frequency spectrum. After reversing Plancherel’s theorem we can now
calculate the reward as:

c2||G̃||2 = c2||G||2 = c2
∫ ∞
−∞

(
1√

2πσ2
exp
(
− x2

2σ2

))2

dx

= c2

2πσ2

∫ ∞
−∞

exp
(
−x

2

σ2

)
dx

= c2

2πσ2 σ
√
π

= c2

2
√
π

1
σ
.

This demonstrates that the accommodation reward is inversely proportional to the standard deviation of the gaussian filter,
i.e., decreases for increasing blur levels.

Vergence Reward. The vergence reinforcement learning agent aims to minimize the conditional entropy of the retinal repre-
sentation given the information encoded at the cortical stage by maximizing it’s negative: −H(R|C). Here, we show that by
minimizing the patch averaged difference between the squared retinal response ||R||2 and the squared cortical response ||C||2
we maximize a lower bound of the conditional entropy.

We take the input to the sparse coding module as a sample of a multivariate random variable R. Then, for an estimator R̂
the mean squared error is bounded from below by (compare (33), Ch. 8):

E
[
||R− R̂||2

]
≥ E

[
||R− E[R] ||2

]
= E

[
k∑
j

(Rj − E[Rj ])2

]

=
k∑
j

E
[
(Rj − E[Rj ])2]

=
k∑
j

σ2
j ,

where || · || is the Euclidean norm. The inequality follows from the fact that the mean of R is the best estimator for R. Then,
σ2
j is the response variance of the retinal ganglion cell with index j and k is the dimensionality of the system, i.e., the number

of ganglion cells that encode the image.
Next, we introduce a multivariate Gaussian random variable G with covariance matrix Σ and entropy H(G). Further, its

components gj are pairwise independent with variances σ2
j . Then, the covariance matrix is diagonal and σ2

j are its eigenvalues.
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It follows:
k∑
j

σ2
j ≥

k∑
j

ln
(
σ2
j

)
= ln(det(Σ))
= 2H(G)− k ln(2πe),

where the first inequality holds, since x > log(x) ∀x > 0. As the Gaussian distribution is the maximum entropy distribution for
a given covariance matrix (33), it bounds the entropy of the retinal representation H(R), i.e.,

H(G) ≥ H(R).

For an estimator with side information Y it follows (33):

E
[
||R− R̂(Y ) ||2

]
≥ 2H(R|Y )− k ln(2πe). [5]

For our model, we define an estimator of the original input image as the reconstruction R̂B(C) based on the cortical activities
C and the receptive fields B,

R̂(Y ) ≡ R̂B(C) =
∑
j

cjbj ,

where bj are receptive fields of cortical encoding neurons and cj is the respective activation after encoding. In principle,
R̂B(C) depends on both, the cortical activity vector C and the matrix of receptive fields B, such that we would have to define
Y ≡ (C,B). However, we assume that the receptive fields adjust slowly compared to the neural activity. Then, the change in
H(R|C,B) is dominated by the change of neural activity C and we can simplify the left side of Eq. 5:

E
[
||R− R̂B(C) ||2

]
≡ E[||S||2] [6]

= E[||R||2 − ||C||2],

where we defined the residual image S that is not represented at the cortical stage. The last equality holds due to the
energy conservation property of the matching pursuit algorithm (see above), where R is the retinal image before encoding
and C is the vector of cortical activities cj . In every iteration, the vergence reward is the negative reconstruction error, i.e.,
−||S||2 = ||C||2 − ||R||2, averaged over all 300× 2 patches of the two scales. Therefore, over multiple iterations, an empirical
estimate of the reconstruction error E

[
||R− R̂B(C) ||2

]
is minimized, i.e., according to Eq. 5, we minimize an upper bound on

a function that is monotonic in the conditional entropy H(R|C).

Physiological Substrates for Reward Calculation. In our model, the reward for the vergence learner is the negative difference
between the retinal response and the average response of cortical neurons: −(||R||2 − ||C||2) = ||C||2 − ||R||2. The receptive
fields of the cortical neurons in our model are similar to those of simple-cells that are found in the primary visual cortex
(15, 34) (compare Fig. S1). The difference between cortical and retinal response can be interpreted as a prediction error, where
the activity of the lateral geniculate nucleus in the thalamus is predicted by cortical activity. There are multiple suggestions,
how such a prediction error could be computed in the cortical microcircuit (35–38). Yet, interactions between the thalamus
and primary visual cortex may already be sufficient to compute the vergence reward. In the lateral geniculate nucleus, the
minority of synapses stem from retinal axons, while there is an abundance of cortico-thalamic feedback connections integrated
into a rich microcircuit (39–42). The thalamus projects to the primary sensory and higher-order cortices (43), from where
activity is dispersed throughout the brain (44), including many areas that are thought to be involved in the generation of eye
movements (45–47).

In summary, this suggests that the vergence reward could be computed as early as in the thalamus, only requiring feedback
from the primary visual cortex.
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Fig. S1. 2× 8× 8 px binocular receptive fields of cortical neurons after training for 5× 106 iterations under different conditions (compare Main text, Fig. 3C). The statistics of
the visual input was determined by the actions of the reinforcement learning agents, which were trained simultaneously. Receptive fields of the foveal scale are shown in the top
row, receptive fields of the peripheral scale are shown in the bottom row. 50 randomly selected neural receptive fields are shown per cortical encoder and condition. The upper
patch represents the left eye’s receptive subfields (L), the lower patch represents the right eye’s receptive subfield (R). In the healthy case (left), binocular receptive fields evolve
in both scales, with matching left and the right eye subfields. In the anisometropic case (center), in the foveal scale (center, top), receptive fields are mostly selective for input
from the unimpaired, left eye while being unselective for input from the right eye (compare Main text, Fig. 5C, bottom). This is due to the sustained suppression of the right eye
at the foveal scale (compare Fig. S9A). However, the peripheral scale is not suppressed (Fig. S9A) and binocular receptive fields emerge (center, bottom). This matches
psychophysical findings in human patients (3, 4, 6, 49, 50) and receptive field measurements in animals raised with monocular deprivation (see (51) and references therein). In
the monovision case, at the foveal scale, neurons are tuned towards one or the other eye (right, top), i.e., the receptive fields are either left or right monocular. This is similar to
receptive fields of kittens which were raised under monocular deprivation (51, 52). In the peripheral scale, receptive fields tuned for lower frequencies are mostly binocular.
Receptive fields tuned for higher frequencies are selective for one or the other eye, comparable to the foveal scale (right, bottom).
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Fig. S2. (A) Running average of absolute (abs.) vergence and accommodation errors during healthy training measured in the final iteration before object change. The error
gives the average distance between the respective planes and the object plane. The left and the right accommodation errors overlap since the left and the right accommodation
planes coincide. The vergence error becomes almost zero. (B) Same as A for the anisometropic case. The model learns to focus the object with the left eye, leading to
defocused input for the right eye. Vergence behavior is impaired compared to the healthy case in A.
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Fig. S3. Example trajectories of plane positions after training. Vertical gray lines indicate the end of fixations, where stimulus distance and image are randomly switched. (A) In
the healthy conditions the left and right accommodation planes coincide (Main text, Fig. 3C, top). Shortly after the start of a new fixation (vertical gray line) all planes overlap at
the object distance (dotted line) which results in sharp, zero disparity input for the left and right eye (compare Main text, Fig. 3D, top left). (B) Same as in A for anisometropic
case (compare Main text, Fig. 3C, center). The object is continuously focused with the unimpaired (left) eye. Vergence performance is decrease compared to the healthy case.
In this configuration, position 0 is the closest distance that can still be focused by the right eye (compare Main text, Fig. 3C, center).
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Fig. S4. (A) Disparity tuning of receptive fields from 10 dictionaries trained with uniform input disparity distribution for 100k iterations. The preferred disparity of each receptive
field was determined as the disparity that yields the largest average scalar product with a whitened input patch. Responses were averaged over 300 textures × 81 input
patches. Each dot represents the number of receptive fields in a particular disparity bin of one cortical encoding dictionary. We tested if bin size distributions were significantly
different between neighboring bins and marked them accordingly (*, p<0.0001, Kolmogorov–Smirnov test). This means that even though unbiased input with uniform disparity
distribution was presented, receptive fields tuned to zero disparity are overrepresented. Therefore, the cortical encoding algorithm is not unbiased, i.e., I(R,C) is not
independent of disparity. Thus, when maximizing−H(R|C) = I(R,C)−H(R), the sparse coder is not dependent on the lower entropyH(R) for zero disparity input. We
can not exclude that this is due to the specific choice of our cortical coding algorithm, however, as long as there is no bias for another disparity that can offset the bias inH(R)
the system should still favor zero disparity input. (B) We investigated the effect of introducing such a bias. We trained a set of bases with constant input disparity of 4 px
and measured the vergence reward for inputs with different disparities (averaged over 300 textures). This resembles a scenario where early in life due to, e.g. mechanical
constraints, the visual input is impeded. Receptive fields with non-zero disparity preference developed, which suggests that the system might develop strabismus. Closer
analysis of this scenario is left for future work.
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Fig. S5. (A) Estimated probability distribution of the entries of the whitened retinal response R∗ for different defocus blur values (blue dots). Average distribution over 300
images (bin size 1). Fitted with Laplace distributions (solid lines).
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Fig. S6. Frequency spectra for whitened and non-whitened images, averaged over 300 textures, are shown in dark blue and light blue, respectively. The spectrum for the
whitening filter is shown in purple. The 1/fa decay of the non-whitened input image spectrum is balanced with the fa increase of the whitening filter, such that, after whitening,
the spectrum becomes roughly flat for low frequencies. For comparison, the spectrum of a gaussian blur filter with a standard deviation of 2 px is shown in dotted gray.
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Fig. S7. Selected vergence (verg., top row) and accommodation (acc., bottom row) action for different input blur levels and disparities. The agent was trained under healthy
conditions. Averaged histogram over 300 images. The intensity of each pixel indicates the fraction of input images with given blur and disparity for which the respective
command was chosen. For zero blur and small absolute input disparities, the correct shift for the vergence plane is chosen. For example, for +2 px input disparity the vergence
plane is shifted by−1, such that the input disparity would decrease by 2 px and become zero in the next timestep (*, top left). Large input disparities are not resolved effectively
if input blur is low. This is probably due to the low number of training samples, since low blur and high disparity become more and more unlikely the better the agent performs.
For high blur levels and input disparities, the system can correctly reduce vergence error (**, top right). Since different blur levels give no defocus sign cue, the system utilizes
disparity information to decrease the accommodation error. For example, in the case of 1 px input blur and +2 px input disparity, the accommodation plane is moved by−1 (#,
bottom center). Such a policy is successful in decreasing defocus blur if accommodation plane and vergence plane coincide. In fact, this is mostly the case after training
(Fig. S3A).
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Fig. S8. Model responses to ’unnatural’ input after training under healthy conditions. (A) Average plane trajectories for a ramp stimulus (dotted gray line) with induced
anisometropia. By introducing a refractive error to the right eye, the left and the right accommodation plane are separated such that only one of the retinal images can be in
focus at any given time (Main text, Fig. 3C, center). The stimulus position, i.e the object plane (dotted, gray line), gradually shifts from a distant position 3 to a close position−3
(left panel) or vice versa (right panel). At each trial, the vergence and accommodation planes were initialized at fixed positions. The vergence plane was initialized such that it
overlapped with the object plane. When the object shifted from a close (distant) to a distant (close) position, the accommodation plane of the left(right) eye was initialized to
overlap with the object plane. As was previously suggested (53), the model chooses to focus with one or the other eye dependent on the initial stimulus position. When the
object could no longer be focused with the right, myopic eye, it was focused by the left eye instead (left panel). (B) Accommodation error histogram of a model trained under
healthy conditions and tested under lens-induced anisometropia for random object positions. The peaks at−3, 0, 3 indicate that most often, one or the other eye focuses the
object. This results in an accommodation error of 0 for the focusing eye and an absolute accommodation error that is equal to the anisometropic off-set due to the simulated lens
for the other eye; In this case an absolute error of 3 (Main text, Fig. 3C, center). There is a slight preference to use the unimpaired, left eye, to focus. This is probably because
some distances at which the objects are presented are out of the right eye’s focus range. Apart from that, both eyes are similarly recruited to encode the input. This indicates
that despite induced anisometropia, due to the predominantly binocular receptive fields (Fig. S1), none of the eyes gets suppressed. (C) Average vergence and accommodation
plane trajectories while adding and removing additional prisms at iteration 0 and 20, respectively. Due to the additional, virtual prisms in front of the eyes, the vergence target
distance, which yields zero disparity (dotted, dark blue line) changed, while the accommodation target distance, which yields zero blur (dotted, light blue line), remained
unaltered. In response, accommodation focus erroneously shifted in the direction of the new fixation target plane. When removing the prisms at iteration 20, we observed the
same effect in the opposite direction. This is in accordance with experiments (54) and can lead to visual fatigue and discomfort while using virtual reality headsets (55).

14 of 21 Samuel Eckmann*, Lukas Klimmasch, Bertram Shi, Jochen Triesch*



  

5 5.5
-1

0

left eye, static
right eye, static

left eye, plastic
right eye, plastic

average contrast adjustment
foveal scale

iteration [        ]106

1
co

n
tr

as
t 

fa
ct

o
r 

  
 

0.5 1

0

left eye, peripheral
right eye, peripheral

left eye, foveal
right eye, foveal

co
nt

ra
st

 f
ac

to
r 

  
 

-1

1
average contrast adjustment

anisometropic case

iteration [        ]107

A B

Fig. S9. Contrast adjustment factors gk = yk − yk̄, k ∈ {l, r} during anisometropic training and correction (compare Methods section). (A) Running averages of the
contrast adjustment factors of peripheral (coarse) and foveal (fine) scale during training under the anisometropic condition. At first, suppression of the left and the right eye is
balanced, i.e., there is no contrast adjustment for both eyes gl = gr = 0. Then, the left eye starts to dominate on the foveal scale. (B) Foveal scale contrast factors of formerly
anisometropic model after correction of all refractive errors at iteration 5× 106 (vertical gray line). The (dotted)solid line indicates a model with (non-)plastic receptive fields.
The left (unimpaired) eye’s contrast adjustment factor is shown in light blue and the right (hyperopic) eye’s factor in green.
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Fig. S10. (A) Example trajectories of plane movements at the end of training for the monovision case (compare Fig. S3A for healthy case trajectories and Fig. S3B for
trajectories in the anisometropic case). The object plane is tracked by the vergence plane. When the object is positioned far away, it is tracked by the right (hyperopic) eye,
when it is positioned close to the observer the left (myopic) eye is utilized. (B) Accommodation error of the right (hyperopic) eye at the end of a trial for different object positions
in the monovision case with unbiased anisometropia. n = 900 trials with random object positions and image textures. In this configuration, position 0 is the only distance that
can be focused by both eyes (compare Main text, Fig. 3C, bottom). The error is defined as the difference between the right accommodation plane position and the object
plane position. For close, i.e. negative object positions, the left (myopic) eye is favored which results in large accommodation errors for the right eye (#). At intermediate
distances around zero, the history of the system, i.e. the current suppression, determines which eye is preferred (hysteresis): (C) Same as in A filtered for fixations where the
right (hyperopic) eye was suppressed in the last iteration of the previous fixation, i.e., y(xl) > 0 (compare Suppression Mechanism section). At intermediate distances, the
non-suppressed left (myopic) eye is favored, which leads to a large accommodation error in the right eye (*).
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Fig. S11. (A) In our model, defocus blur is a function of the distance between the object plane and the two accommodation (acc.) planes. Defocus blur for the left retinal image
is plotted in green and for the right retinal image in light blue and is realized with a Gaussian filter of variable standard deviation (stdv.). The dark blue dashed line indicates one
exemplary object position. This configuration results in a large blur for the right eye input (dashed green line) and a lower blur level for the left eye (dashed blue line). In our
model, defocus blur does not depend on whether the eye focuses in front of or behind the object. Therefore, there is no defocus sign cue in the healthy case where the left and
the right accommodation plane coincide. Instead, input disparity is recruited to guide accommodation movements (see Fig. S7). In the anisometropic case, asymmetric blur
levels for the left and the right eye provide a limited defocus sign cue which enables the agent to accommodate (compare Fig. S2B). For example, in Fig. S7B, the retinal image
of the unimpaired (right) eye is much blurrier than the retinal image of the myopic (left) eye and the focal planes should be shifted towards the observer. However, note that this
heuristic changes to the contrary when the object is positioned in between the two accommodation planes. (B) Plane configuration congruent with A. An object is placed at
position −1 (dashed dark blue line). The left eye focuses at position 1 (light blue line) while the right eye focuses at position 3 (green line). Same scheme as in Main text,
Fig. 3B.
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Fig. S12. Ratio between defocus blur and disparity. (A) An observer fixates at distance s1 (dark blue line) while an object is presented at distance s2 (dotted, dark blue line).
δd is the distance between the two fixation points in the object plane (dark blue circles). The retinal input for the two eyes is indicated with two congruent squares (light purple).
Then, δd = dd

s1
(s2 − s1) is equal to the disparity shift between the left and right eye image. (B) Same configuration as in B, with the lens of one eye sitting at se, focusing at

distance s2 (light blue line). In this case, δb = db
s1−se

(s2 − s1) gives the extent of space that is mapped to a single point on the retina and, therefore, determines the level of
defocus blur. We now simplify and assume that the diameter of the eyeball se is small compared to the object distance s1. We further assume that db is equal to the pupil
size p ≈ 0.3 cm (1). In the case of disparity, dd is approximately the interocular distance IOD ≈ 6 cm (2). Then, the ratio between disparity and defocus blur is given as
δd/δb = dd/db ≈ IOD/p ≈ 20.
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Fig. S13. Input processing (A) We extracted input patches at two scales. One peripheral scale (purple) and one foveal scale (red). For the peripheral(foveal) scale a 160× 160
(72× 72) pixel-sized window was cut from the original image. The peripheral scale window was downsampled by a factor of 4, using a Gaussian pyramid (48). Both windows
were processed into 81 binocular patches of size 8× 8× 2 pixels. Due to the downsampling process, each peripheral scale patch represents an area of size 32× 32× 2
pixels in the original window. Furthermore, each peripheral patch overlapped by half of its width with the neighboring patch. (B) Each scale had its own sparse coder with a
separate dictionary. Every 8× 8× 2 pixel binocular patch was normalized to zero mean intensity and subsequently encoded by 10 out of 300 bases bj using the matching
pursuit algorithm (27). Thus, each one of the 162 input patches was represented by the activities cik

of 10 bases of the respective dictionary. This resembles the sparse activity
of simple cells in the visual cortex(15, 34). Selected receptive fields are marked in orange. Receptive fields of neurons with zero activity are shown in gray. Transparencies
indicate activation strength. For each scale, the activity of the 300 bases was squared and afterward averaged over all 81 patches. The resulting activity vector can be
understood as a model for complex cells in the visual cortex (23, 24). The two resulting 300 dimensional feature vectors (right) were normalized to unit length, i.e., such that∑

j
c̄2j = 1, concatenated, and subsequently passed as the state information for the reinforcement learning agents (see Methods section).
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