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1. Introduction

Inhomogeneous chiral condensates, where both chiral symmetry and translational invariance
are spontaneously broken by non-vanishing, spatially dependent 〈�̄�𝜓〉(x), have been observed in
several model studies, most-prominently the Gross-Neveu (GN) model [1] and related models in
1+1 dimensions (see Refs. [2–8]), but also in 3 + 1-dimensional, low-energy effective models for
QCD (see Ref. [9] for a review and, e.g., Refs. [10–16]). Albeit these phases have been found
in the mean-field approximation, i.e., neglecting bosonic quantum fluctuations, it is discussed in
recent literature [17–22] whether such an inhomogeneous chiral phase might leave its imprint
when studying the full quantum field theories. In 2 + 1 dimensions the situation seems to differ
from even spacetime dimensions. Even though inhomogeneous condensates can be favored at
finite regulator values in the 2 + 1-dimensional GN model (depending on the chosen regularization
scheme), the inhomogeneous phase vanishes in the renormalized limit [23–27]. In this work, we
analyze the stability of homogeneous condensates in a variety of Four-Fermion (FF) models and
recover expressions similar to those derived in Ref. [24]. No indications for an inhomogeneous
phase are observed in all of the discussed models. The homogeneous ground states are stable
against inhomogeneous perturbations after renormalization. We argue that this statement, observed
in these bosonized FF models, also remains valid when studying corresponding Yukawa models1.
Numerical minimizations of the lattice actions allow us to determine the preferred ground states at
finite lattice spacing. The results obtained by the two different methods are in agreement, as both
approaches show no indications for the existence of an inhomogeneous phase in the continuum.

2. Detecting inhomogeneous phases via the momentum dependence of the bosonic
two-point function

In Sec. 3, we study a variety of FF models, which feature different interaction channels and
chemical potentials. In order to introduce our method, the stability analysis, we define a general
FF model, which can be reduced to the later mentioned actions by choosing certain values for the
model parameters. The action of the FF model in Euclidean spacetime is given by

𝑆FF [�̄�, 𝜓] =
∫

d3𝑥

�̄�(𝑥)
( /𝜕 + 𝛾0` + 𝛾0𝛾45`45

)
𝜓(𝑥) −


16∑︁
𝑗=1

_ 𝑗

2𝑁
(
�̄�(𝑥) 𝑐 𝑗 𝜓(𝑥)

)2

 , (1)

where 𝜓 contains 2𝑁 four-component spinors (𝑁 identical spinors with isospin up/down respec-
tively) without a bare mass term for the spinors. The Dirac matrices are chosen as reducible 4 × 4
representations of the 2+1-dimensional Euclidean Clifford algebra (for details see, e.g. Refs. [24, 27–
29]). The matrices 𝑐 𝑗 are elements of

𝐶 = {𝑐 𝑗} 𝑗=1,...,16 = {1, i𝛾4, i𝛾5, 𝛾45, ®𝜏, i®𝜏𝛾4, i®𝜏𝛾5, ®𝜏𝛾45}, (2)

where ®𝜏 is the vector of Pauli-matrices acting on the isospin degrees of freedom. The integration
over the temporal direction 𝑥0 is restricted to the compact interval [0, 𝛽) at temperature 𝑇 = 1

𝛽
. The

1By corresponding Yukawa models we mean those Yukawa models that are built out of the bosonized FF action by
adding kinetic terms and self-interactions for the auxiliary bosonic fields. Details are discussed in Sec. 2.1.
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coupling of the FF terms is denoted by _𝑖 . The baryon chemical potential is denoted as `, while
`45 describes the chiral chemical potential2. After bosonization with one auxiliary bosonic field 𝜙 𝑗

for each channel and integration over the fermion fields, one obtains an equivalent effective action
given by

𝑆eff [ ®𝜙]
𝑁

=

∫
d3𝑥

∑︁
𝑖

𝜙2
𝑖
(x)

2_𝑖
− Tr ln Q, (3)

Q = /𝜕 + 𝛾0` + 𝛾0𝛾45`45 +
∑︁
𝑗

𝑐 𝑗 𝜙 𝑗 (x), (4)

where Tr is a functional trace over the spacetime coordinates as well as over the internal fermionic
degrees of freedom. The 16 real bosonic fields ®𝜙 are restricted to depend on the two spatial
coordinates x = (𝑥1, 𝑥2). They are related to fermion bilinears via the identities

〈𝜙 𝑗〉 = −_ 𝑗

𝑁
〈�̄�𝑐 𝑗𝜓〉, 𝑗 = 1, . . . , 16. (5)

Suppressing the bosonic fluctuations in the path integral, i.e., taking 𝑁 → ∞, the computation
of observables is equivalent to their evaluation on the global minima of the effective action with
respect to the bosonic fields ®𝜙(x). Finding the global minima ®𝜙(x) = ®Φ(x) of the effective
action (3) for all possible field configurations is an extremely challenging task, both analytically
and numerically. Thus, we simplify the search for inhomogeneous condensates by analyzing the
stability of the homogeneous ground state ®𝜙(x) = ®̄Φ against inhomogeneous perturbations (see
Ref. [30] for a detailed discussion and test of the method). Such an analysis was already applied in
[12, 13, 24, 31]. The analysis requires a homogeneous expansion point, i.e.,

®𝜙(x) = ®̄𝜙 + 𝛿 ®𝜙(x), (6)

where 𝛿 ®𝜙(x) describes the spatially dependent inhomogeneous perturbation around the homoge-
neous expansion point ®̄𝜙. Then, the effective action is expanded in terms of the perturbation 𝛿 ®𝜙(x).
Here, the zeroth order correction corresponds to 𝑆eff [ ®̄𝜙]. The first order correction 𝑆

(1)
eff vanishes

due to the gap equation when evaluated at the homogeneous minima, e.g. the homogeneous ground
state ®̄𝜙 = ®̄Φ. Thus, we will not explicitly present 𝑆 (1)

eff in the following. The second order correction
evaluated in momentum space is given by

𝑆
(2)
eff [ ®̄𝜙]
𝑁

=
𝛽

2

∫
d2𝑞

(2π)2

[∑︁
𝑖, 𝑗

𝛿𝜙∗𝑖 (q) 𝛿𝜙 𝑗 (q)
(
𝛿𝑖, 𝑗 _

−1
𝑖 + Γ𝐹

𝜙𝑖𝜙 𝑗
(q2)

)]
, (7)

Γ𝐹
𝜙𝑖𝜙 𝑗

=

∫
d3𝑝

(2π)3 tr
(
𝑐𝑖 �̄�

−1(𝑝 + 𝑞) 𝑐 𝑗 �̄�
−1(𝑝)

)
, (8)

where q is the momentum of the inhomogeneous perturbation and 𝑞 = (0, q). Eq. (8) is the
contribution of the fermion 1-loop diagram with two amputated bosonic legs and, correspondingly,
contains two fermion propagators with the homogeneous fields ®̄𝜙, i.e. the inverse of

�̄�(𝑝) = /𝑝 + 𝛾0` + 𝛾0𝛾45`45 +
∑︁
𝑗

𝑐 𝑗 𝜙 𝑗 . (9)

2In general, our formalism allows us to include several chemical potentials. For simplicity, we will only discuss `

and `45 throughout this work.
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To compute the curvature in each field variable, one has to diagonalize the quantity in parentheses
in Eq. (7) with respect to 𝛿 ®̃𝜙(q) by finding a suitable basis of bosonic fields 𝛿 ®̃𝜑(q). If it is possible
to transform to such variables, one obtains a two-point function Γ

(2)
𝜑 𝑗

for each corresponding field
𝜑 𝑗 , 𝑗 = 1, . . . , 16. The detection of an inhomogeneous condensate, which yields a lower effective
action than 𝑆eff [ ®̄Φ] for a given ` and 𝑇 , corresponds to obtaining a two-point function Γ𝜑 𝑗

(q) < 0
with q ≠ 0 when the two-point function is evaluated at ®𝜙 = ®̄Φ.

2.1 Generalization to Yukawa models

In general, our conclusions drawn from the bosonic two-point functions of the bosonized FF
models can be generalized to corresponding Yukawa models, where the auxiliary bosonic fields are
promoted to dynamical fields 𝜒 with 2𝑛-point self-interactions and kinetic terms, i.e.,

𝑆eff,𝑌 [ ®𝜒] =
𝑆eff [ℎ ®𝜒]

𝑁
+

∫
d3𝑥

[
1

2𝑁
(𝜕a ®𝜒(x)) (𝜕a ®𝜒(x)) +

∑︁
𝑛

^𝑛

𝑁

(∑︁
𝑗

𝜒2
𝑗 (x)

)𝑛]
, (10)

with the Yukawa-coupling ℎ and the couplings ^𝑛 of the 2𝑛-self interactions . The kinetic term yields
a monotonically increasing contribution ∼ q2 to the integrand in Eq. (7), while the bosonic self-
interaction gives a q-independent offset. These additional terms cannot cause a FF model without
an instability to develop an instability. Details will be discussed in an upcoming publication.

3. Results

Before repeating the analysis for other FF models we shortly summarize the GN model results
obtained in Ref. [24]. The two-point function of the GN model or analogous expressions are then
identified for a variety of FF models. The FF models can all be derived from (1) by setting certain
couplings _𝑖 to zero, while the non-zero couplings are set to _. The result regarding the stability
of the homogeneous condensates against inhomogeneous perturbations implicitly also holds for
the corresponding Yukawa models as discussed in Sec. 2.1. We set the chiral chemical potential
`45 = 0 if not explicitly stated otherwise.

3.1 GN model

The effective action of the GN model [1] is given by

𝑆eff [𝜎]
𝑁

=
1
2_

∫
d3𝑥 𝜎2(x) − Tr ln( /𝜕 + 𝛾0` + 𝜎(x)), (11)

where 𝜎 is the auxiliary bosonic field, whose expectation value is proportional to the fermion
bilinear 〈�̄�𝜓〉 via Eq. (5). The expansion around the homogeneous ground state �̄� = Σ̄, as
discussed for arbitrary �̄� in Ref. [24], results in a vanishing first order correction 𝑆

(1)
eff . The second

order correction evaluated in momentum space is given by

𝑆
(2)
eff
𝑁

=
𝛽

4

∫
d2𝑞

(2π)2 |𝛿�̃�(q) |2 Γ(2)
𝜎 (q2) (12)

with
Γ
(2)
𝜎 (q2) = 1

2_
− ℓ1 + 𝐿2(q2, �̄�, `) (13)
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and
𝐿2(q2, �̄�, `) = −1

2
(q2 + 4�̄�2)ℓ2(q2, �̄�, `), (14)

where ℓ1 is a linearly diverging integral (see Ref. [24] for the definitions of ℓ1 and ℓ2) and has to
be regulated, e.g., with the Pauli-Villars regularization. The integral ℓ2 is finite, but, in general, is
often also regulated for consistency3. The coupling constant _ can be tuned using the condensate
in the vacuum such that 1

2_ − ℓ1 < ∞ for all ` and 𝑇 . A main finding of Ref. [24] is that Γ(2)
𝜎 is a

monotonically increasing function of 𝑞 = |q| for all values of ` and 𝑇 after renormalization. For
𝑇 = 0, one can derive the monotonic behavior analytically, i.e., one finds

𝐿2
��
𝑇 =0 =


(𝑞2+4�̄�2)

2π𝑞 arctan
(

𝑞

2 | �̄� |

)
if `2 < �̄�2

(𝑞2+4�̄�2)
2π𝑞 arctan

(√
𝑞2/4−`2+�̄�2

|` |

)
if `2 > �̄�2

0 if `2 > �̄�2 + 𝑞2

4

. (15)

As a result, Γ(2)
𝜎 (q2) ≥ 0 and no indications for an inhomogeneous phase can be found. One is left

with the phase diagram derived in Ref. [32]. As discussed in Ref. [24], one obtains Γ(2)
𝜎 (q2) < 0 at

finite q ≠ 0 when studying finite regulator values, e.g., lattice spacings 𝑎, for certain regularization
schemes. We refer to Ref. [24] for numerical results in the GN model. In the following, we will
identify analytical structures similar to 𝐿2(q2, �̄�, `) in the other FF models.

3.2 𝑈 (4𝑁) invariant model

A model, which – in contrast to the GN model – features a continuous chiral𝑈 (4𝑁) symmetry4

has the effective action
𝑆eff [𝜎, [4, [5, [45]

𝑁
=

∫
d3𝑥

𝜌2

2_ − Tr ln
( /𝜕 + 𝛾0` + 𝜎 + i𝛾4[4 + i𝛾5[5 + 𝛾45[45

)
, (16)

where 𝜎, [4, [5, [45 are the auxiliary bosonic fields corresponding to fermionic bilinears, as dis-
cussed in Eq. (5), and 𝜌2 = 𝜎2 + [2

4 + [2
5 + [2

45. A non-vanishing expectation value of [45 indicates
spontaneous parity breaking, in contrast to the other three fields, where a non-vanishing expec-
tation value indicates spontaneous chiral symmetry breaking. Considering homogeneous fields
(𝜎, [4, [5, [45) = (�̄�, [̄4, [̄5, [̄45) one can rotate [̄4 = [̄5 = 0 through the 𝑂 (3) rotational sym-
metry of the model5. One finds additionally [̄45 = 0 for all ` and 𝑇 by explicitly minimizing
𝑆eff [�̄�, 0, 0, [̄45]. With (𝜎, [4, [5, [45) =

(
Σ̄, 0, 0, 0

)
as the expansion point one obtains a vanishing

first order correction 𝑆
(1)
eff . The second order correction is then given by

𝑆
(2)
eff
𝑁

=
𝛽

4

∫
d2𝑞

(2π)2

∑︁
𝜙∈{𝜎,[4,[5,[45 }

|𝛿𝜙(q) |2 Γ(2)
𝜙

(q2), (17)

Γ
(2)
[45 = Γ

(2)
𝜎 =

1
2_

− ℓ1 + 𝐿2(q2, �̄�, `), Γ
(2)
[4 = Γ

(2)
[5 =

1
2_

− ℓ1 −
1
2

q2ℓ2(q2, �̄�, `2), (18)

3This is an arbitrary choice, which is however reasonable as it leaves mathematical relations between the unregulated
integrals intact. Such a prescription is, e.g., applied in 3+1 dimensions, where FF models are non-renormalizable. It is
also suitable to compare with lattice regularizations where anyhow all quantities are regulated.

4One free massless fermion field is invariant under𝑈 (2) chiral symmetry transformations. Studying 𝑁 fermion fields
with an isospin degree of freedom enlarge the symmetry group to 𝑈 (4𝑁) accounting to rotations in these spaces.

5This symmetry is linked to the 𝑈 (2) chiral symmetry. The field [45 is not connected to the other fields via such a
symmetry transformation, as the bilinear �̄�𝛾45𝜓 remains invariant under 𝑈 (2).
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Figure 1: Inhomogeneous ground states using naive fermions at temperature 𝑇/�̄�0 = 0.137, chemical
potential `/�̄�0 = 1.033, finite lattice spacing 𝑎�̄�0 = 0.365 and spatial volume𝑉�̄�2

0 = (7.3)2. The three plotted
minima are energetically degenerate up to the precision of our numerical minimization. The corresponding
inhomogeneous phase is expected to vanish when taking 𝑎 → 0.

where the two-point functions Γ
(2)
[45 , Γ

(2)
𝜎 are equal to Eq. (13), while Γ

(2)
[4 , Γ

(2)
[5 differ slightly in

the prefactor of ℓ2 but are also monotonically increasing functions of 𝑞. However, studying the
model at finite lattice spacing 𝑎, as relevant for 3 + 1-dimensional, non-renormalizable FF models
(compare [12, 14, 33]), one obtains negative values when evaluating the two-point functions (18)
at finite q ≠ 0 in a certain (𝑎-dependent) range of chemical potentials ` and temperatures 𝑇

(compare Ref. [24]). Then, an inhomogeneous phase is observed in the phase diagram using
numerical minimization (for details regarding the algorithm we refer to Sec. 4.3 of Ref. [27]).
We present an exemplary plot of inhomogeneous condensates obtained at finite `/�̄�0 = 1.033
and 𝑇/�̄�0 = 0.137 using naive fermions at finite lattice spacing 𝑎�̄�0 = 0.365 in Fig. 16. Here,
�̄�0 =

√︃
Σ̄2 + �̄�2

4 + �̄�2
5 + �̄�2

45

��
𝑇 =`=0 is used to set the scale, where Σ̄, �̄�𝑖 are field configurations of

𝜎, [𝑖 corresponding to the homogeneous, global minimum of the effective action. One obtains
multiple degenerate inhomogeneous minima even when neglecting the ones which are related via
global 𝑂 (3) rotations of the vector (𝜎(x), [4(x), [5(x)). Note that the bosonic fields are allowed to
be functions of the two spatial coordinates x = (𝑥1, 𝑥2), but one-dimensional functions are observed
as the resulting ground state after minimization of the effective action similar to our results in
the GN model [27]. We find degenerate minima, where both Σ(x) and 𝐻45(x) oscillate. On the
rightmost plot, they oscillate with the same phase, while on the leftmost plot they have a phase
shift as observed for chiral density waves (see, e.g., Refs. [4, 9, 35]). In the middle plot, only Σ(x)
oscillates while 𝐻4(x) = 𝐻5(x) = 𝐻45(x) = 0, but we note, again, that the oscillation can be shifted
into 𝐻4(x) and/or 𝐻5(x) via the mentioned global 𝑂 (3) rotations.

The external parameters ` and 𝑇 are in the order of the cutoff scale7 𝜋
𝑎

and it is, thus, expected
that the found ground state will change when varying 𝑎. Since the found inhomogeneities coincide
with the region of negative Γ(2)

𝜙𝑖
(q ≠ 0) when evaluating the two-point functions (18) on the lattice

(as in Refs. [24, 27]), the observed ground states are only cutoff effects and the inhomogeneous phase

6Note that the naive discretization requires a weighting function with certain properties. This is, e.g., discussed in
[17, 24, 34].

7Additionally, studying the model with the same finite cutoff for both the vacuum and at external parameters ` and 𝑇

violates renormalization group consistency, as discussed in Ref. [36]. This hints towards significant cutoff artifacts on
the observed ground states.

6



Stability of homogeneous phases against inhomogeneous perturbations in 2+1 dimensions Marc Winstel

is expected to vanish in the continuum limit. We highlight that we do not observe inhomogeneous
condensates on the lattice when Γ

(2)
𝜙𝑖

≥ 0, ∀𝑖 at given ` and 𝑇 , similar to [24, 27].

3.3 Nambu-Jona-Lasinio model in 2 + 1 dimensions

A FF model, which also features interactions in the isospin channel similar to the 3 + 1-
dimensional Nambu-Jona-Lasinio model, is given by

𝑆eff [𝜎, ®𝜋4, ®𝜋5]
𝑁

=

∫
d3𝑥

𝜎2+ ®𝜋2
4+ ®𝜋2

5
2_ − Tr ln

( /𝜕 + 𝛾0` + 𝜎 + i𝛾4 ®𝜏 ®𝜋4 + i𝛾5 ®𝜏 ®𝜋5
)

(19)

with auxiliary fields 𝜎, ®𝜋4, ®𝜋5. Restricting to homogeneous condensates one can study only homo-
geneous minima with (𝜎, ®𝜋4, ®𝜋5) =

(
Σ̄, 0, 0

)
using chiral symmetry transformations. The second

order correction due to the inhomogeneous perturbations is given by

𝑆
(2)
eff
𝑁

=
𝛽

4

∫
d2𝑞

(2π)2

∑︁
𝜙∈{𝜎, ®𝜋4, ®𝜋5 }

|𝛿𝜙(q) |2 Γ(2)
𝜙

(q2), (20)

Γ
(2)
𝜎 =

1
2_

− ℓ1 + 𝐿2(q, �̄�, `), Γ
(2)
®𝜋5

= Γ
(2)
®𝜋4

=
1
2_

− ℓ1 −
1
2

q2ℓ2(q2, �̄�, `), (21)

which again yields monotonically increasing two-point functions of 𝑞. The homogeneous expansion
points (𝜎, ®𝜋4, ®𝜋5) =

(
Σ̄, 0, 0

)
are stable against inhomogeneous perturbations.

3.4 The effect of chiral imbalance

A chiral imbalance, described by a finite value of `45, in general complicates the analysis. We
study the effect on the GN𝑃-model, given by the effective action

𝑆eff [𝜎, [45]
𝑁

=

∫
d3𝑥

𝜎2+[2
45

2_ − Tr ln
( /𝜕 + 𝛾0` + 𝛾0𝛾45`45 + 𝜎 + 𝛾45[45

)
. (22)

Minimizing the effective action for homogeneous condensates, i.e., finding (𝜎, [45) =
(
Σ̄, �̄�45

)
,

yields a non-vanishing �̄�45 at finite `45. This leads to off-diagonal terms in the second order
contribution by the fermionic determinant, where Γ𝐹

𝜎[45
≠ 0. This is resolved by a change of basis

in field variables and chemical potentials using

𝑃𝐿/𝑅 = (1 ± 𝛾45), `𝐿/𝑅 = (` ± `45), 𝜙𝐿/𝑅 = (𝜎 ± [), (23)

which yields

𝑆eff [𝜙𝐿 , 𝜙𝑅]
𝑁

=

∫
d3𝑥

𝜙2
𝐿
+ 𝜙2

𝑅

4_
− Tr ln

( /𝜕 + 𝛾0 (𝑃𝐿`𝐿 + 𝑃𝑅`𝑅) + 𝑃𝐿𝜙𝐿 + 𝑃𝑅𝜙𝑅

)
. (24)

The corresponding second order correction due to the inhomogeneous perturbations is given by

𝑆
(2)
eff
𝑁

=
𝛽

4

∫
d2𝑞

(2π)2

∑︁
𝜙∈{𝜙𝐿 ,𝜙𝑅 }

|𝛿𝜙(q) |2 Γ(2)
𝜙

(q2), (25)

Γ
(2)
𝜙𝐿

=
1
4_

− 1
2ℓ1 + 1

2𝐿2(q, 𝜙𝐿 , `𝐿), Γ
(2)
𝜙𝑅

=
1
4_

− 1
2ℓ1 + 1

2𝐿2(q, 𝜙𝑅, `𝑅), (26)

where it becomes evident that this model decomposes into two independent GN models, each with
one chemical potential `𝐿/`𝑅 and scalar field 𝜙𝐿/𝜙𝑅 respectively. Consequently, the two-point
functions do not signal the existence of an inhomogeneous phase in the GN𝑃-model with chiral
imbalance, as the homogeneous expansion points (𝜎, [45) =

(
Σ̄, �̄�45

)
are stable.

7
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4. Summary

We analyzed the stability of homogeneous chiral condensates against inhomogeneous pertur-
bations in a variety of FF models, which cover different interaction channels and underlying (chiral)
symmetry groups. In each of the studied models no indications for an inhomogeneous phase are ob-
served. We found substantial arguments, that also Yukawa models, that correspond to the bosonized
FF models via addition of kinetic terms and 2𝑛-self interactions for the auxiliary bosonic fields, do
not develop an instability towards an inhomogeneous condensate.
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