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dependence on several parameters, such as the temperature and the quark mass.
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1. Introduction

The topological sector of Quantum Chromodynamics (QCD) has been the subject of intense
study for more than 40 years, yielding a series of very interesting phenomena associated with it.
Some of these effects are called anomalous transport phenomena, as they arise from the interplay
between quantum anomalies and electromagnetic fields or vorticities. Topology and quantum
anomalies are related via the index theorem, so the manifestation of these non-dissipative transport
effects provides an exciting opportunity to probe the non-trivial topological structure of QCD.

One of the most celebrated among these phenomena is the Chiral Magnetic Effect (CME)
[1]. The CME has been detected in condensed matter systems [2] and, what is more relevant for
our discipline, is actively sought for in heavy ion collision experiments. The most recent result
from the STAR collaboration [3] could not find a signal of CME in a dedicated run in RHIC with
isobar collisions. Although the results are still under discussion [4], understanding this apparent
suppression of such effects is one of the motivations behind this contribution.

However, in this work we will focus on another anomalous transport phenomenon, the Chiral
Separation Effect (CSE) [5, 6]. The objective is to use lattice QCD simulations to determine the
CSE conductivity 𝐶CSE and analyze its dependence on relevant parameters, like the temperature 𝑇
or the mass 𝑚 of the quarks. This conductivity has been calculated analytically only for free quarks,
so the physical setup involving full QCD simulations will certainly help understand how this effect
appears in realistic situations. The present effort will also be useful for studying further anomalous
transport effects like the CME, for which most lattice simulations so far [7–12] were either based
on indirect approaches or are yet to be performed in full QCD at the physical point.

This contribution is organized as follows: in section 2 we review the main features of anomalous
transport phenomena. In section 3 we present our setup on the lattice and the techniques used to
calculate the conductivity. In section 4 we present our results for 𝐶CSE both in the free case and in
full QCD. Finally, we present our conclusions in section 5.

2. Anomalous transport phenomena

As it is widely known, QCD is observed to possess CP-symmetry, or equivalently, the \

parameter is experimentally bound to be practically zero. This fine-tuning issue is known as the
strong CP-problem. One of the most interesting characteristics of anomalous transport effects is
that they represent a local or event-by-event CP-violation in QCD.

In this theory, anomalous transport phenomena arise from the UA(1) anomaly. The non-
trivial topological solutions of QCD can transfer chirality to quarks through this anomaly, and it
is this origin that explains its CP-odd nature. Globally, the expectation value of these anomalous
currents has to vanish since the topology has to be trivial in the system with zero topological
charge

(〈
𝑄top

〉
= 0

)
. However, localized regions with non-trivial topology may exist (for example

instantons). In these topological environments anomalous phenomena can arise.
As already mentioned above, the prime example of these effects is the CME: the generation of

a vector current in the presence of a chiral imbalance and a magnetic field 𝐵. Another example is
the CSE, which can be thought of as a “dual” of the CME. The CSE is the emergence of an axial
current in the presence of finite density and a magnetic field. To first order, the current is linear in
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Figure 1: Schematic representation of the CSE in a system with only 𝑢 and �̄� massless quarks.

the magnetic field (assumed to point in the 𝑧 direction,) and in the baryon chemical potential `

𝐽5
3 = 𝜎CSE 𝑒𝐵 = 𝐶CSE ` 𝑒𝐵 + O(`3) (1)

with 𝐽5
3 the 𝑧-component of the axial current

𝐽5
3 =

∫
d4𝑥 �̄�(𝑥)𝛾3𝛾5𝜓(𝑥). (2)

This expression holds for a system consisting of a single fermion with charge 𝑒 and no color.
Since this is the effect we will be focusing on, let us understand intuitively how this phenomenon

works. In Fig. 1 we can see a sketch of how the CSE current can appear. Consider a situation
with only massless 𝑢, �̄� quarks for simplicity (0). When a strong magnetic field is applied (1), all
the particles are in the lowest Landau level and their spins align with the direction of 𝐵 (anti-align
if the charge of the particle is negative). At finite density (2), there is a net surplus of particles
(supposing ` > 0) and right-handed and left-handed particles would flow in different directions,
separating particles with different chiralities and thus creating an axial current, which is precisely
the CSE current (3).

For non-interacting quarks, an analytical treatment of this problem gives [5, 6]

𝜎CSE =
1

4𝜋2 𝑛𝑚(𝑇, `) (3)

where
𝑛𝑚(𝑇, `) =

∫ ∞

−∞
d𝑝3

[
𝑛

(√︃
𝑝2

3 + 𝑚2
)
+ 𝑛

(
−
√︃
𝑝2

3 + 𝑚2
)]

(4)

and 𝑛(𝐸) is the usual Fermi-Dirac distribution

𝑛(𝐸) = 1
exp{(𝐸 − `)/𝑇} + 1

. (5)

In the case of massless quarks (or, equivalently, asymptotically high temperatures), this expression
simplifies to

𝐶CSE =
1

2𝜋2 . (6)
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Figure 2: Numerical value of 𝐶CSE as a function of 𝑚/𝑇 using Eq. (3). 𝐶CSE is the numerical coefficient of
the first order contribution in 𝐵 and ` to the current, so in terms of Eq. (3) it can be defined as 1

4𝜋2
d𝑛𝑚
d`

���
`=0

.

One of the long-standing questions raised about the CSE (and in general about anomalous transport
effects) is how this coefficient is modified by interactions. In the first years after the proposal
of anomalous transport phenomena, it was believed that the conductivity did not change in the
full theory, as it was topologically protected and hence was not modified by gluonic interactions.
However, later works are pointing to corrections of this coefficient in the interacting theory. Since
these corrections are non-perturbative, lattice QCD provides an optimal tool to study these effects [7–
12].

3. Lattice setup

Simulations at finite real ` suffer from the infamous sign problem. That is why former efforts
to calculate 𝐶CSE in the full theory with lattice QCD relied on special setups where this issue does
not appear, for example in the quenched theory [13], where no significant corrections were found,
or in two-color QCD [14], where at high 𝑇 the conductivity approached the free case result and for
low 𝑇 CSE was found to be suppressed.

In this work, we take a different approach. Rather than simulating at finite ` and 𝐵, we can
measure derivatives of the CSE current with respect to the baryon chemical potential. Using Eq. (1),
the derivative yields

d
〈
𝐽5

3
〉

d`

�����
`=0

= 𝐶CSE 𝑒𝐵. (7)

Employing this, leading-order Taylor expansion of the current only requires simulations at ` = 0,
free of the sign problem. Then we can take a numerical derivative (linear fit) of the result with
respect to 𝑒𝐵 to obtain 𝐶CSE.

As mentioned above, the last expression holds for a fermion of charge 𝑒 and no color. For a
system with several quark flavors with charge 𝑞 𝑓 = 𝑞 𝑓 𝑒 and 𝑁𝑐 colors, the formula is modified to

d
〈
𝐽5

3
〉

d`

�����
`=0

= 𝐶CSE 𝑁𝑐

∑︁
𝑓

𝑞2
𝑓 𝑒𝐵 ≡ 𝐶CSE𝐶dof 𝑒𝐵 (8)
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Figure 3: Derivative of the CSE (axial) current with respect to ` as a function of the magnetic field for a
243 × 6 lattice in the free case (left) and in full QCD with 2 + 1 flavors and physical quark masses at 𝑇 = 305
MeV (right). As expected, the behavior is linear in both cases and the slope of the fit gives the value of 𝐶CSE.

with
𝐽5

3 =
∑︁
𝑓

𝑞 𝑓

∫
d4𝑥 �̄� 𝑓 (𝑥)𝛾3𝛾5𝜓 𝑓 (𝑥). (9)

These are overall factors that can always be restored, so from this point we rescale all our results by
𝐶dof.

4. Results for CSE

The measurement of the current derivative in the (rooted) staggered formulation involves a
usual connected and a disconnected term, plus an additional term coming from the derivative of the
staggered Dirac matrices Γ` with respect to `

d
〈
𝐽5
𝑧

〉
d`

�����
`=0

=
𝑇

𝑉

[
1
4

〈
Tr
(
Γ4𝑀

−1
)
Tr
(
Γ3Γ5𝑀

−1
)〉

`=0

− 1
16

〈
Tr
(
Γ4𝑀

−1Γ3Γ5𝑀
−1
)〉

`=0

+1
4

〈
Tr
(
𝜕 (Γ3Γ5)

𝜕`
𝑀−1

)〉
`=0

] (10)

where 𝑀 = /𝐷 + 𝑚, 𝑉 = (𝑎𝑁𝑠)3 is the spatial volume, 𝑇 = (𝑎𝑁𝑡 )−1 is the temperature, with 𝑁𝑠

and 𝑁𝑡 the number of spatial and temporal points of the lattice respectively.1 We have measured
the three terms at physical quark masses [16] in an already existing ensemble of configurations for
different magnetic fields [17, 18]. In Fig. 3 we show an example of the obtained results. In this
plot, we can see that the expected linear behavior is confirmed. However, we are mostly interested
in the quantitative result of the slope, so that is what we will be presenting next, both in the free
case and in the interacting theory.

Let us start with the free case. In this particular scenario, the sign problem is not present,
but we will still use the same approach presented before since we can check the consistency of

1Note that the last term in (10) arises because the staggered discretization of the Dirac matrices (see, e.g., Ref. [15])
contain links that explicitly depend on the chemical potential.

5



Anomalous transport phenomena on the lattice E. Garnacho Velasco

Figure 4: Results for 𝐶CSE with free staggered quarks at different values of 𝑚/𝑇 and 𝐿𝑇 . The red dashed
line represents the numerical value of 𝐶CSE at the given 𝑚/𝑇 according to Fig. 2, while the black dashed line
represents 1/2𝜋2, the value for the analytical calculation of the same coefficient in the massless limit.

our setup by comparing to the analytical prediction from Eq. (3). In Fig. 4 we show the free case
results for different 𝑚/𝑇 values, in each plot a continuum limit is taken for different aspect ratios
𝐿𝑇 by increasing 𝑁𝑠 and 𝑁𝑡 (with 𝐿𝑇 and 𝑚/𝑇 kept constant). For small values of 𝑚/𝑇 , we can
see a divergence when 𝐿𝑇 goes to zero. This behavior disappears when we go towards higher
values of 𝑚/𝑇 . This tells us finite size effects at 𝐿𝑇 → 0 are sizeable if 𝑚/𝑇 is not large enough.
It is also worth noting the importance of the continuum limit, since, as can be seen in the plots,
non-continuum extrapolated results would underestimate𝐶CSE if the value of 𝑁𝑡 is not large enough.
Finally, the main result is that 𝐶CSE approaches the value given by Eq. (3) when 𝐿𝑇 → ∞ for every
value of 𝑚/𝑇 . This serves as a cross-check of our setup since we can reproduce the analytical result
for 𝐶CSE with our lattice simulations in the free case.

Finally, we present our main result, the conductivity 𝐶CSE in full QCD, in particular for
𝑁 𝑓 = 2 + 1 flavors of staggered fermions at physical quark masses. This is the first fully non-
perturbative result for 𝐶CSE at the physical point. Fig. 5 demonstrates the dependence of the
conductivity on the temperature for several finite-temperature lattice ensembles 243 × 6, 243 × 8,
283×10 as well as a zero-temperature ensemble 243×32. For temperatures above the QCD transition
temperature 𝑇𝑐 , 𝐶CSE is found to approach the free case prediction. This is in accordance with the
expectation based on asymptotic freedom, i.e. that at high 𝑇 , QCD approaches a gas of quasi-free
quarks and gluons. At temperatures below 𝑇𝑐 , the coefficient decreases until reaching zero. This
indicates a suppression of the CSE at low temperatures, which is consistent with a previous study
in two-color QCD [14] and can be understood, at a qualitative level, using chiral effective theories
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Figure 5: Results for 𝐶CSE with 2 + 1 flavors of staggered quarks at physical masses for a wide range of
temperatures and four different lattice sizes. The black dashed line represents the analytical prediction for
the free case with massless quarks.

[19]. Although a proper continuum and thermodynamic limit is yet to be taken, our results include
different lattices spacings and different volumes and the dependence is observed to be minor, so the
(qualitative) behavior of 𝐶CSE is not expected to change after taking these limits.

5. Summary and Outlook

In this proceedings article, we have presented a study of the CSE using lattice QCD. In
particular, we have calculated the conductivity 𝐶CSE using dynamical staggered quarks both in
the absence of gluonic interactions and in full QCD at the physical point. In the free case, we
have recovered the expected value given in Eq. (3) once the continuum limit is taken and finite
size effects are under control. Having cross-checked our setup, we moved on to full QCD, where
we have determined the dependence of 𝐶CSE on the temperature at physical quark masses. At
temperatures higher than 𝑇𝑐 , the coefficient approaches the free case prediction as expected, while
at temperatures below𝑇𝑐 , the conductivity goes to zero, showing that CSE might be very suppressed
at low 𝑇 . This is the first study of this dependence at physical quark masses and it agrees with some
of the expectations based on investigations in two-color QCD. The next steps in this project will
be to analyze the mass dependence of 𝐶CSE in the interacting case, as well as to obtain continuum
extrapolated results for all the cases. Finally, our technique can be generalized to study the CME,
which can contribute to a better theoretical understanding of anomalous transport phenomena, as a
counterpart to the experimental efforts being made to detect this effect.
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