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1. Introduction

The Standard Model of particle physics (SM) is the most accurate description of nature at the
microscopic level that humankind has been able to develop so far. These past 50 years have added
robustness to the theoretical structure of the SM through several experimental discoveries, such as
the confirmation on the existence of quarks, the prediction of certain properties of the weak neutral
currents or the recent discovery of the Higgs boson. Despite these and many other remarkable
findings, there are still several gears in the SM machinery that we do not yet understand and perhaps
are even missing. One particular type of problems stems from a lack of ‘naturalness’, such as the
strong CP problem [1]. This last problem is deeply related to axions and the topology of Quantum
Chromodynamics (QCD) that we will be discussing in this proceeding.

QCD, a subset of the SM, is a non-Abelian gauge theory with CP symmetry. Nonetheless,
Lorentz and gauge invariance as well as renormalisability would allow the addition of a CP-odd
term to the QCD Lagrangian, the so-called 𝜃-term, which exclusively depends on the gauge fields.
If one indeed includes this term, a nonzero value for the electric dipole moment of the neutron
𝑑𝑛 appears, which is severely constrained experimentally, |𝑑𝑛 | < 1.8 × 10−26 𝑒·cm [2]. Hence,
this CP-odd term is suppressed by the 𝜃 parameter, which several lattice studies have bounded as
|𝜃 | < 10−10 [3–5]. The fact that this parameter is unnaturally small is the strong CP problem.

Many solutions to the strong CP problem in QCD have been suggested, such as the existence of
at least one massless quark [6] or the suppression of the 𝜃 parameter due to screening effects from
confinement [7]. Experimental refutation or the appearance of undesired physical properties rule
out many of those suggestions. From the subset of physically allowed solutions, the one proposed
by Peccei and Quinn [8, 9] is probably the simplest, and thus it has attracted most attention, both
theoretically and experimentally in recent times.

The Peccei-Quinn solution postulates the existence of a new U(1)PQ (anomalous) symmetry
that is spontaneously broken in QCD. Associated with this spontaneous symmetry breaking, there is
a pseudo-Nambu-Goldstone boson which has been labelled axion. The axion only couples directly
to a CP-odd combination of the gauge fields, whereas its couplings to the rest of the particles of
the SM depend on the specific model (i.e. KSVZ [10, 11] or DFSZ [12]) and appear only through
derivative terms. For the possible detection of axions in contemporary experiments, its most
important coupling is the one to photons. The QCD corrections to this coupling are independent of
the specific model and are substantial, as was shown using chiral perturbation theory (ChPT) [13].

In this proceeding we will show that it is possible to calculate the QCD correction to the axion-
photon coupling with lattice QCD by means of simulations at nonzero background magnetic and
electric fields. We will present preliminary results for this coupling as well as for the dependence
of the topological susceptibility with the magnetic field at finite temperature.

2. QCD topology with electromagnetic fields

The vacuum of QCD (in Euclidean space) can be classified into distinct topological sectors
characterized by the integer-valued topological charge 𝑄top of the SU(3) gauge fields,

𝑄top =

∫
𝑑4𝑥 𝑞top, 𝑞top =

𝑔2

32𝜋2𝐺
𝑏
𝜇𝜈𝐺̃

𝜇𝜈

𝑏
, (1)
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where 𝑞top is the topological charge density, 𝐺𝑏
𝜇𝜈 = 𝜕𝜇𝐴

𝑏
𝜈 − 𝜕𝜈𝐴

𝑏
𝜇 − 𝑓 𝑏𝑐𝑑𝐴𝑐

𝜇𝐴
𝑑
𝜈 is the gluonic field

strength and 𝐺̃𝑏
𝜇𝜈 = 1

2𝜖𝜇𝜈𝜌𝜎𝐺
𝑏, 𝜌𝜎 its dual1. The vacuum sectors with different topological charges

are distinct in the sense that a smooth continuous transformation cannot change the value of 𝑄top

of the field configuration.
The coupling of the axion 𝑎 to gluons is of the form 𝑎/ 𝑓𝑎 · 𝑄top in the action, where 𝑓𝑎 is

the associated energy scale, the axion decay constant. Thus, for a homogeneous axion field the
prefactor can be interpreted as the 𝜃-parameter; 𝜃 = 𝑎/ 𝑓𝑎. Moreover, the second moment of 𝑄top,
the topological susceptibility 𝜒top, is related to the mass 𝑚𝑎 of the axion as

𝜒top =
𝜕2

𝜕2𝜃
ln 𝑍 (𝜃)

����
𝜃=0

= 𝑓 2
𝑎

𝛿2

𝛿2𝑎
ln 𝑍 (𝑎)

����
𝑎=0

= 𝑚2
𝑎 𝑓

2
𝑎 , (2)

where 𝑍 is the partition function of QCD. Hence, an analysis of the temperature dependence of the
topological susceptibility can provide information about the cosmological history of the axion. The
topological susceptibility can be calculated both in chiral perturbation theory (see, e.g., Ref. [13])
and on the lattice (see, e.g., Refs. [14–16]). Together with temperature-effects, the impact of
background magnetic fields on 𝜒top are expected to be relevant for off-central heavy-ion collision
phenomenology, in particular in connection with the chiral magnetic effect [17], which arises due
to a combination of magnetic fields and topology. So far, the 𝐵-dependence of 𝜒top has only been
calculated in chiral perturbation theory [18].

Besides gluons, the axion also couples to photons. This interaction is analogous to the gluonic
one above, this time involving the topological charge 𝑄EM of the photon field. Thus, if we introduce
background electromagnetic fields 𝐹𝜇𝜈 in QCD with nonzero topology – i.e., with ®𝐸 · ®𝐵 ≠ 0 – this
becomes equivalent to having an effective 𝜃-term in the action [19]. This generates a nonzero value
for the expectation value of 𝑄top that can be measured on the lattice. As a consequence of 𝑄top

being a CP-odd operator, it can only be an odd function of ®𝐸 · ®𝐵. Hence, for small fields we expect
a linear relation between the topological charge and ®𝐸 · ®𝐵.

We can understand this behaviour further through the Atiyah-Singer index theorem [20]. The
electromagnetic topological charge induced by a nonzero ®𝐸 · ®𝐵 contributes to the zero modes of the
Dirac operator as

𝑛+ − 𝑛− = 𝑄top +𝑄EM =
𝑔2

32𝜋2

∫
𝑑4𝑥 𝐺𝑏

𝜇𝜈𝐺̃
𝜇𝜈

𝑏
+ 𝑒2

16𝜋2

∫
𝑑4𝑥 𝐹𝜇𝜈 𝐹̃

𝜇𝜈 , (3)

where 𝑒 is the elementary electric charge and the dual field strength 𝐹̃𝜇𝜈 is defined analogously to
the gluonic case above. Since the zero modes are heavily suppressed in the QCD path integral by
the fermion determinant, gluon field configurations whose topological charge cancel the electro-
magnetic one will be favoured. Hence, we expect opposite signs for the QCD and electromagnetic
topological charges. Also, this implies that for weak fields the coefficient of proportionality between
〈𝑄top〉 and ®𝐸 · ®𝐵 must be negative. In the next section we will argue that this coefficient is related
to the axion-photon coupling.

1We use the convention 𝜖0123 = 1.
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3. The axion-photon coupling

The axion-photon coupling is of the form 𝑔𝑎𝛾𝛾 = 𝑔0
𝑎𝛾𝛾 + 𝑔

QCD
𝑎𝛾𝛾 , where the first term is a

coefficient depending on the details of the axion model, while the second one depends exclusively
on QCD and is model-independent. The model dependent coefficient is proportional to the ratio
of the electromagnetic and colour anomalies. In ChPT, the next-to-leading order (NLO) prediction
for the QCD correction is 𝑔QCD

𝑎𝛾𝛾 𝑓𝑎/𝑒2 = −0.0243(5) [13]. From now on we will only discuss the
QCD correction to the coupling, hence we will omit the QCD superscript.

The direct coupling between axions and photons is of the form 𝑔0
𝑎𝛾𝛾𝑎𝐹𝜇𝜈 𝐹̃

𝜇𝜈/4 = 𝑔0
𝑎𝛾𝛾𝑎

®𝐸 · ®𝐵.
After the QCD path integral, the QCD corrections to this term in the effective action can therefore
be found as

𝑔𝑎𝛾𝛾 𝑓𝑎 =
𝑇

𝑉

𝜕2

𝜕𝜃 𝜕 ( ®𝐸 · ®𝐵)
ln 𝑍

����
𝜃= ®𝐸= ®𝐵=0

, (4)

where 𝑍 includes constant background electromagnetic fields and we again traded a functional
derivative with respect to the homogeneous axion field to a derivative with respect to 𝜃. This
relation suggests several methods to extract the coupling, by computing one or two derivatives of
the partition function. We will refer to these methods as the electric and the correlator method,
respectively.

For the electric method we only perform the derivative with respect to the 𝜃 parameter. As
discussed in Sec. 2, for constant and weak electromagnetic fields, we obtain

𝑇

𝑉
〈𝑄top〉𝐸,𝐵 = 𝑔𝑎𝛾𝛾 𝑓𝑎 ®𝐸 · ®𝐵. (5)

For the correlator method, we also take the derivative with respect to the electric field. Without
loss of generality, we take both ®𝐸 and ®𝐵 to point in the 𝑥3 direction and under the same assumptions
we find

− 𝑖

∫
𝑑4𝑥 〈 𝑗4(𝑥)𝑞top(0)〉 𝑥3 = 𝑔𝑎𝛾𝛾 𝑓𝑎𝐵, (6)

where 𝑗4 is the time component of the Euclidean electric current and 𝑞top is the topological charge
density defined in Sec. 2. To arrive at this result, we replaced the homogeneous electric field by
an oscillatory one, 𝐸 sin(𝑝3𝑥3), realised by a photon vector potential 𝐴4 = 𝐸/𝑝3 cos(𝑝3𝑥3). This
induces a similarly oscillating topological charge density, which, after differentiating with respect
to the amplitude of the electric field gives rise to a momentum-space topology-current correlator.
Its zero momentum limit gives Eq. (6). Oscillatory electric fields of this type were investigated
in Refs. [21, 22] and similar correlators were also used to discuss local CP violation in relation
with the chiral magnetic effect [23] and to compute the quark spin polarisation at nonzero magnetic
fields [24].

In summary, by analysing the functional behaviour of 〈𝑄top〉 as a function of ®𝐸 · ®𝐵, and of
〈 𝑗4𝑞top〉 as a function of ®𝐵, we can obtain 𝑔𝑎𝛾𝛾 𝑓𝑎 via numerical differentiation. From now on we
will measure the electromagnetic fields in units of the elementary charge (𝑒𝐸 and 𝑒𝐵), which is
convenient for our lattice setup. Thus, we will quote results for 𝑔𝑎𝛾𝛾 𝑓𝑎/𝑒2.
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4. Preliminary results

4.1 Lattice setup

The discretisations used in the simulations were the tree-level improved Symanzik action for
the gauge fields and stout-improved staggered quarks for the fermion fields. The electromagnetic
fields have been introduced as background fields and we chose the electric field to be imaginary,
in order to avoid the sign problem. These background electromagnetic fields are included as extra
U(1) phases multiplying the SU(3) links. Since the lattices we are simulating are discretisations
of a torus [𝐿3

𝑠 × 𝐿𝑡 ], when one considers a closed loop of links there is an ambiguity regarding
which is the area that it encloses. By requiring consistency with Stokes’ theorem, we obtain a
constraint for the possible values of the (imaginary) electric and magnetic fluxes, which need to
be integer multiples of 6𝜋/(𝐿𝑠𝐿𝑡 ) and 6𝜋/𝐿2

𝑠, respectively (for an explicit derivation, see [25]).
For the topological charge we have considered two different discretisations, with improvements to
quadratic [26] and to quartic order [27] in the lattice spacing. We will refer to these discretisations
as ‘regular’ and ‘improved’, respectively. The simulations were carried out at the physical point,
using 2 + 1 quark flavours with electric charges 𝑞𝑢 = 2𝑒/3 and 𝑞𝑑 = 𝑞𝑠 = −𝑒/3.

We have also employed the gradient flow technique to renormalise the lattice gauge fields and
to ensure that the topological charge takes on integer values [28]. For sufficiently high values of the
flow time 𝜏 𝑓 , we noticed that the observables tend to reach a plateau and that the value at which
this occurs increases with the temperature. We have always made sure that a sufficiently high value
of 𝜏 𝑓 was used so that plateaus were reached.

Figure 1: Our observables: the topological susceptibility (left panel) and the axion-photon coupling (right
panel) as functions of the Wilson flow parameter. We see that for a large enough amount of flow time, the
observables tend to reach a plateau. The improved version of 𝑄top was used.

4.2 The topological susceptibility

We have computed the topological susceptibility (axion mass) for a range of temperatures
between 110 MeV and 250 MeV. This was done for three different magnetic fields: 𝑒𝐵 = 0,
0.5 and 0.8 GeV2. The results are shown in figure 2, revealing a gradual reduction of 𝜒top as
𝑇 grows and mild effects due to 𝐵. We stress that lattice artefacts are known to enhance 𝜒top

5
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substantially [14, 15], so that a reliable continuum extrapolation will require finer lattices as well
as more involved reweighting approaches.

Figure 2: The topological susceptibility as a function of the temperature. Each plot shows a different
magnetic field, increasing clockwise. The different colours correspond to different lattice spacings. The
improved definition of 𝑄top was used.

Regarding the issue of topological freezing, we have not observed it in the range of lattice
spacings used in this study ([0.066-0.29] fm). For a given lattice size, as we increase the temperature
we see that the number of topological sectors that are sampled by the Monte Carlo simulation gets
reduced and concentrated around zero, but we still notice a sufficient number of fluctuations around
the zero sector. We demonstrate this for our 283 × 10 ensemble in Fig. 3, left panel.

4.3 The axion-photon coupling

As described in Sec. 2, the introduction of non-orthogonal electric and magnetic fields induces
a nonzero topological charge in the gluonic sector. We have checked that this is indeed the case, see
Fig. 3, right panel, for an example. As anticipated using the Atiyah-Singer index theorem, the shift
is indeed towards negative values. Furthermore, the dependence on ®𝐸 · ®𝐵 is linear for sufficiently
weak fields (≤ 0.025 GeV4); see Fig. 4.

Regarding the calculation of the axion-photon coupling, we have compared the electric and
correlator methods in the same volume and at the same temperature, obtaining comparable results,

6
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Figure 3: Left: a section of the Monte Carlo history of the topological charge for our 𝑁𝑡 = 10 lattices
(𝑎 ≈ 0.080 fm) at zero magnetic field. The improved definition of 𝑄top was used. Right: comparison
between the histogram of the topological charge at zero and nonzero ®𝐸 · ®𝐵. The distribution average shifts
from zero to negative values when the electromagnetic fields are turned on. Here, 𝑛𝑒 and 𝑛𝑏 denote the
electric and magnetic flux quantum numbers. On the left (right) the improved (regular) definition of 𝑄top
was used.

see Fig 4. A priori, the main advantage of the correlator method is that we do not need to
include an imaginary electric field. Also, it is computationally advantageous since we can use the
configurations at finite magnetic field which are already available from previous studies [29, 30].
However, the required correlators are quite noisy even when calculated with thousands of random
estimators. When comparing these two methods with a similar amount of statistics, we observe
that the correlator method leads to errors of about four times larger than the electric method. This,
plus the fact that calculating the topological charge is relatively cheap in computational time (also
when taking into account the generation of new configurations), prompted us to choose the electric
method over the correlator one: see Fig.1, right panel2.

We studied the coupling using two different volumes at two different temperatures but at the
same lattice spacing, obtaining a very similar value. Hence, we can say that the volume as well as
the temperature dependence below 𝑇𝑐 is mild. The preliminary value of the coupling that we obtain
from the 243 × 32 lattice simulations is 𝑔𝑎𝛾𝛾 𝑓𝑎/𝑒2 = −0.0026(3), which is about 9 times smaller
than the value obtained from ChPT [13]. We expect that simulations at smaller lattice spacings will
take this value closer to the ChPT prediction.

The statistical errors for both observables have been computed using a jackknife procedure.
We have also included the error of the topological charge not being exactly an integer on the lattice
for 𝜒top and for 𝑔𝑎𝛾𝛾 obtained from the electric method. This was done by rounding the topological
charge to the nearest integer and adding the difference in quadrature.

2We note this situation is similar to the calculation of the spin polarisation 〈𝜓̄𝜎𝑥𝑦𝜓〉 by means of simulations at
nonzero 𝐵 and by analogous correlators [24].

7



QCD topology with EM fields and the axion-photon coupling José Javier Hernández Hernández

Figure 4: 〈𝑄top〉 as a function of ®𝐸 · ®𝐵 for our 163 × 6 (left panel) and 243 × 32 ensembles (right panel).
The lattice spacing is 𝑎 ≈ 0.29 fm in both lattices. Notice that the errors of the correlator method are
approximately 4 times bigger as that of electric method (left plot). The improved version of 𝑄top was used.

5. Summary and outlook

In this proceeding we have shown preliminary results for the magnetic field dependence of the
topological susceptibility at finite temperature. We have also presented two different methods to
compute the axion-photon coupling using lattice QCD, which we dubbed electric and correlator
methods. We have confirmed the linear response of the QCD topological charge to the non-
orthogonal background electromagnetic fields. Finally, we demonstrated how both the topological
susceptibility and the axion-photon coupling are under control when using the gradient flow.

For further work we are currently in the process of generating more statistics for both ob-
servables. We are also working towards the reweighting of the topological susceptibility to mimic
the effect of exact zero modes, as well as generating ensembles with finer lattice spacings for the
axion-photon coupling. These aspects will allow for a reliable continuum extrapolations for both
observables.
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