
Simulations of Conformational Changes and

Enzyme-Substrate Interactions

in Protein Drug Targets

Dissertation

zur Erlangung des Doktorgrades

der Naturwissenschaften

vorgelegt beim Fachbereich

Physik

der Johann Wolfgang Goethe-Universität

in Frankfurt am Main

von

Laura Tesmer

Frankfurt am Main 2022

(D 30)



Diese Arbeit wurde vom Fachbereich Physik

Johann Wolfgang Goethe-Universität als Dissertation angenommen.

Dekan: Prof. Dr. Harald Appelshäuser

1. Gutachter: Prof. Dr. Gerhard Hummer

2. Gutachter: Prof. Dr. Jens Bredenbeck

Datum der Disputation:

Die vorliegende Dissertation wurde im Zeitraum von Mai 2018 bis Januar 2022 unter der

Anleitung von Herrn Prof. Dr. Gerhard Hummer in der Abteilung Theoretische Biophysik

am Max-Planck-Institut für Biophysik in Frankfurt am Main angefertigt.







Contents

List of Abbreviations viii

List of Tables x

List of Figures xiii

Zusammenfassung xiv

Summary xxi

1 Introduction 1

1.1 Cryptic pockets in protein drug targets . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Factor VIIa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Renin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Database Cryptosite: NPC2, p38α, ricin, Eg5 . . . . . . . . . . . . . 4

1.2 Enzyme-substrate interaction in protein drug targets . . . . . . . . . . . . . 6

1.2.1 Papain-like protease . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 Casein kinase 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Aims of the thesis 10

3 Computational methods 12

3.1 Molecular dynamics simulations . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 Molecular force field . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.2 Small molecule force field parameterization . . . . . . . . . . . . . . 15

3.1.3 Integration algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.4 MD simulation procedure . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.5 Thermodynamic ensembles . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 SWISH simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Metadynamics simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 S1 pocket plasticity in trypsin-like proteases 25

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.1 MD simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.2 Metadynamics simulations . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3.1 Ligand-bound X-ray crystal structures with oxazole and benzamidine

derivative show different S1 pocket conformation . . . . . . . . . . . 28

v



4.3.2 MD simulations support a pre-existing equilibrium between E and

E* forms in FVIIa . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3.3 S1 pocket plasticity also observed in MD simulations of thirteen other

serine peptidases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.4 Well-tempered metadynamics simulation indicated a small free energy

barrier of the conformational change . . . . . . . . . . . . . . . . . . 35

4.4 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Flap dynamics and Trp39 side chain flipping in renin 39

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2.1 Clustering of X-ray crystal structures . . . . . . . . . . . . . . . . . . 40

5.2.2 MD simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2.3 SWISH simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2.4 Metadynamics simulations . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3.1 Renin structures show different flap conformation . . . . . . . . . . . 43

5.3.2 Flap in renin closed in unbiased MD simulations . . . . . . . . . . . 44

5.3.3 Minimal truncated form of open flap binder needs to have interactions

with catalytic Asp to stabilize the flap in open form . . . . . . . . . 47

5.3.4 Scaling water-protein interaction and mixed-solvent simulations led

to more flap dynamics, but did not sample fully open pocket with

flipped Trp39 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3.5 Point mutations of Phe112 in renin did not result in flipped Trp39 . 49

5.3.6 Pepsin and plasmepsin showed similar behavior as renin . . . . . . . 49

5.3.7 Well-tempered metadynamics simulation indicated a large free energy

barrier of Trp39 side chain flipping . . . . . . . . . . . . . . . . . . . 49

5.4 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6 Cryptic pockets in NPC2, p38α, ricin, and Eg5 56

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2.1 MD simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2.2 SWISH simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.3.1 Pocket opening mechanisms in NPC2, p38α, ricin, and Eg5 . . . . . 58

6.3.2 Mixed-solvent MD simulations reveal potential unknown binding

pockets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.4 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7 Preferential substrate interactions of papain-like protease in SARS-CoV-

2 65

vi



7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.2.1 MD simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.3.1 SCoV2-PLpro interacts more tightly with ISG15 compared with

K48-Ub2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.3.2 Dissociation mechanism of ubiquitin . . . . . . . . . . . . . . . . . . 69

7.3.3 Binding mode of GRL-0617 is the same between SCoV-PLpro and

SCoV2-PLpro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.4 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8 Difference in phosphorylation kinetics and conformational changes of ca-

sein kinase 1 73

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8.2.1 MD simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8.2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8.3.1 Phosphorylation of the third CK1δ site is the slowest, arising from

unusual enzyme-substrate interactions. . . . . . . . . . . . . . . . . . 76

8.3.2 Phosphorylation of the third CK1γ site is non-existent, potentially

resulting from point mutation. . . . . . . . . . . . . . . . . . . . . . 77

8.3.3 pThr220 destabilizes N-terminal part of αG segment in apo CK1δ . . 78

8.4 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

9 Conclusions 83

Bibliography 86

Appendix 104

Acknowledgement 107

Curriculum Vitae 109

Eidesstattliche Versicherung 113

vii



List of Abbreviations

ACE Angiotensin-converting enzyme
ACPYPE Antechamber python parser interface
AMBER Assisted model building with energy refinement
ANP Atrial natriuretic peptide
ATP Adenosine triphosphate

BL2 Blocking loop 2

CK1 Casein kinase 1
COVID-19 Coronavirus disease 19
CV Collective variable

DNA Deoxyribonucleic acid

FVIIa Factor VIIa

GAFF General amber force field
Gromacs Groningen machine for chemical simulations

HREX Hamiltonian replica exchange

ISG-15 Interferon-stimulated gene-15

KD Dissociation constant

LINCS Linear constraint solver

MD Molecular dynamics
MERS-CoV Middle east respiratory syndrome coronavirus

NMR Nuclear magnetic resonance
NPC2 NPC intracellular cholesterol transporter 2

PDB Protein data bank
PLpro Papain-like protease
PME Particle mesh Ewald
PMF Potential of mean force
PPC Periodic boundary conditions

QM Quantum mechanics

viii



RAAS Renin-angiotensin-aldosterone system
REMD Replica exchange molecular dynamics
RESP Restraint electrostatic potential
RMSD Root-mean-square deviation
RMSF Root-mean-square fluctuation
RNA Ribonucleic acid
rRNA Ribosomal ribonucleic acid

SARS-CoV Severe acute respiratory syndrome coronavirus
SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2
SCoV-PLpro Papain-like protease of severe acute respiratory syndrome coronavirus
SCoV2-PLpro Papain-like protease of severe acute respiratory syndrome coronavirus 2
SWISH Sampling water interfaces through scaled hamiltonians

TF Tissue factor
TIP3P Transferable intermolecular potential 3 point

Ub Ubiquitin

vdW van der Waals
VMD Visual molecular dynamics

WHAM Weighted histogram analysis method

ix



List of Tables

4.1 Protein and PDB entries used as starting structures for MD simulations. . . 28

4.2 Structures used to generate Fig. 4.3 . . . . . . . . . . . . . . . . . . . . . . . 30

5.1 Clusters of renin X-ray crystal structures based on flap coordinates . . . . . 43

5.2 RMSD to cluster 1 and 2 for cluster 3, 4, 5, 6, 7 . . . . . . . . . . . . . . . . 44

5.3 Structures used to generate Fig. 5.2 . . . . . . . . . . . . . . . . . . . . . . . 44

6.1 PDB entries for investigated proteins . . . . . . . . . . . . . . . . . . . . . . 57

6.2 Pocket definitions and volume (vol.) for apo and ligand-bound structures for

NPC2, p38α, ricin, and Eg5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

8.1 Statistics of unfolding events in WT and pThr220 MD simulations. Listed

are time points of unfolding events (event = 1) or, if no unfolding occurred

(event = 0), of the run duration. . . . . . . . . . . . . . . . . . . . . . . . . 80

x



xi



List of Figures

1.1 Cryptic pockets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Remodeled active sites of FVIIa and renin . . . . . . . . . . . . . . . . . . . 3

1.3 Cryptic pockets in p38α, NPC2, Eg5, and ricin . . . . . . . . . . . . . . . . 5

1.4 Sketch of enzymatic mechanism . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 X-ray crystal structures of CK1 and PLpro with its substrates . . . . . . . . 8

3.1 Schematic representation of an MD force field . . . . . . . . . . . . . . . . . 13

3.2 Schematic representation of periodic boundary conditions and cutoff . . . . 15

3.3 Schematic representation of a two state SWISH simulation with protein

pocket openings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Schematic representation of metadynamics . . . . . . . . . . . . . . . . . . . 23

4.1 FVIIa’s role in the blood coagulation cascade . . . . . . . . . . . . . . . . . 26

4.2 S1 pocket in FVIIa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Superimposed X-ray crystal structures of FVIIa . . . . . . . . . . . . . . . . 30

4.4 Water force field screening of FVIIa . . . . . . . . . . . . . . . . . . . . . . . 31

4.5 Backbone hydrogen bonding in FVIIa . . . . . . . . . . . . . . . . . . . . . 32

4.6 Protein-ligand distance and ligand RMSD . . . . . . . . . . . . . . . . . . . 33

4.7 Flexibility of 170 loop in MD simulations . . . . . . . . . . . . . . . . . . . 34

4.8 Backbone hydrogen bonding in sixteen serine proteases . . . . . . . . . . . . 35

4.9 Metadynamics simulation of FVIIa . . . . . . . . . . . . . . . . . . . . . . . 37

5.1 Renin’s role in the renin-angiotensin-aldosteron-system . . . . . . . . . . . . 41

5.2 Superimposed X-ray crystal structures of renin . . . . . . . . . . . . . . . . 45

5.3 MD simulations of renin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.4 MD simulations of ligand-bound renin systems . . . . . . . . . . . . . . . . 48

5.5 SWISH simulations of renin . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.6 Mixed-solvent simulations of renin . . . . . . . . . . . . . . . . . . . . . . . 51

5.7 Mutations of Phe112 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.8 Pepsin and plasmepsin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.9 Metadynamics simulation of renin with biasing χ1 of Trp39 and flap distance 53

5.10 Metadynamics simulation of renin with biasing χ1 of Trp39 . . . . . . . . . 54

6.1 Pocket definitions (transparent yellow) of each protein (green) enclosing the

respective ligands (red) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2 Violin plots show the distribution of the relative pocket volume in reference

to the ligand-bound structure for MD simulations with and without probes

and the SWISH simulation of NPC2, p38α, ricin, and Eg5 . . . . . . . . . . 59

xii



6.3 Superposition of apo X-ray structure (blue), holo X-ray structure (magenta)

and snapshot from MD simulation (cyan) . . . . . . . . . . . . . . . . . . . 60

6.4 Additional probe binding sites . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.1 Schematic representation of the role of SCoV2-PLpro in the viral life cycle . 66

7.2 SCoV2-PLpro interacts more tightly with ISG15 compared with K48-Ub2 . 68

7.3 SCoV-PLpro interacts more tightly with ubiquitin compared with SCoV2-PLpro 69

7.4 Water mediated dissociation pathway . . . . . . . . . . . . . . . . . . . . . . 70

7.5 Binding pocket of SCoV2-PLpro is preserved . . . . . . . . . . . . . . . . . 71

8.1 Schematic representation of the TAp63α dimer-to-tetramer activation cas-

cade in oocytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8.2 MD simulations of CK1δ in complex with TAp63α revealed persistent elec-

trostatic and hydrophobic interactions . . . . . . . . . . . . . . . . . . . . . 77

8.3 MD simulation of CK1δ in complex with a shorter TAp63α peptide (ACE-TPpSS-

ApSTVpSVGSSETRG-NME) with N-terminal acetyl and C-terminal methy-

lamino capping groups revealed similar results as the longer peptide . . . . 78

8.4 MD simulations of CK1γ3 in complex with TAp63α indicated the impact of

Leu257 on the phosphorylation kinetics . . . . . . . . . . . . . . . . . . . . . 79

8.5 pThr220 destabilizes N-terminal part of αG helix . . . . . . . . . . . . . . . 80

8.6 Likelihoods of unfolding rates for WT and phosphorylated form . . . . . . . 80

8.7 N-terminal αG helix unfolding due to pThr220-Arg interactions . . . . . . . 82

xiii



xiv



Zusammenfassung

Die Suche nach neuen Arzneimitteln ist eine schwierige, zeitaufwändige und kostenintensive

Aufgabe mit einer geringen Erfolgsquote von weit unter 10%. Die hohe Misserfolgsquote

in der Arzneimittelforschung regt dazu an, mehr computergestützte Methoden in dem

gesamten Arzneimittelforschungsprozess, von der Target-Identifizierung bis hin zu klinischen

Versuchen, zu verwenden. Die Target-Identifizierung ist der erste Schritt in diesem Prozess.

Dieser beschreibt die Suche nach einem biologischen Target, beispielsweise einem Protein,

das funktionale Relevanz bei einem Krankheitsbild hat, auch genannt Zielprotein. In dieser

Forschungsphase ist wichtig, dass der molekulare Mechanismus des Zielproteins in einem

Krankheitsbild verstanden werden muss. Zudem muss eine potenzielle Bindungsstelle des

Zielproteins, an der therapeutische Moleküle binden und somit die Aktivität des Zielproteins

modulieren können, charakterisiert werden. Computergestützte Methoden können dazu

beitragen, die molekulare Zielproteinermittlung und -bewertung zu verbessern.

In dieser Arbeit verwende ich computergestützte, physikbasierte Ansätze, um die

Bindungsstellen von Zielproteinen zu charakterisieren und die Wechselwirkungen zwischen

Enzymen und Substraten zu entschlüsseln, die bei Krankheitsmechanismen eine Rolle

spielen. Mit Hilfe von Molekulardynamiksimulationen (MD-Simulationen) wurde die Dy-

namik von Molekülen in Lösung mit hoher zeitlicher und räumlicher Auflösung untersucht.

Ausgehend von einem Satz von Koordinaten und Geschwindigkeiten erzeugt die Methode

zeitaufgelöste Trajektorien der Teilchen des untersuchten Systems durch numerische Inte-

gration der Newtonschen Bewegungsgleichungen. Bei MD-Simulationen werden alle Atome

eines ausgewählten Systems, einschließlich des Lösungsmittels, explizit dargestellt. Atom-

istische Simulationen eignen sich besonders gut für die Untersuchung detaillierter Wech-

selwirkungen, die von intermolekularen Wechselwirkungen abhängen, wie Hydratationsef-

fekte, Wasserstoffbrückenbindungen, hydrophobe Wechselwirkungen oder subtile chemische

Unterschiede. Die Analyse der Trajektorien ermöglicht die Vorhersage von Systemeigen-

schaften, sofern die Kraftfelder, die die Wechselwirkungen zwischen den Teilchen im System

beschreiben, eine hohe Genauigkeit aufweisen. Die gebundenen und nicht gebundenen Wech-

selwirkungen werden anhand experimenteller und quantenchemischer Daten parametrisiert.

Der Zweck von MD-Simulationen kann darin bestehen, Einblicke in das Verhalten komplexer

biologischer Systeme auf molekularer Ebene zu gewinnen, die in Experimenten oft nicht

mit der gleichen Auflösung beobachtet werden können. Mit der jüngsten Entwicklung von

Computerhardware und Simulationssoftware können molekulare Systeme mit zunehmender

Größe und Simulationsdauer untersucht werden.

Im ersten Teil der Arbeit habe ich das Konformationsensemble verschiedener Zielpro-

teine für Arzneimittel untersucht. Proteine sind dynamische Biomakromoleküle, die ver-

schiedene und nahezu isoenergetische Konformationszustände aufweisen können. Eine

Ligandenbindung kann das Gleichgewicht dieses Konformationsensembles verschieben und
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Bindungsstellen, sogenannte kryptische Taschen, aufdecken. Kryptische Bindungsstellen

entstehen nur bei der Bindung kleiner Moleküle und sind oft flach und strukturlos, so dass

sie in Kristallstrukturen ohne gebundene Liganden nicht leicht zu erkennen sind. Wenn neue

Bindungsstellen, einschließlich kryptischer Taschen, entdeckt werden, könnten sie potenziell

für die Bindung an Liganden genutzt werden und die druggability verbessern. Druggability

ist die Fähigkeit eines Proteins, kleine, arzneimittelähnliche Moleküle zu binden, und bildet

die Grundlage für das Design von Medikamenten. In dieser Arbeit verwende ich physikalisch

basierte, rechnerische Ansätze, um die Konformationsensembles von Bindungsstellen zu

untersuchen. In allen untersuchten Systemen ist aufgrund von experimentell gelösten

Strukturen bekannt, dass eine bestimmte Gruppe von Liganden Konformationsänderungen

hervorrufen kann. Das Ziel ist es, den Konformationsraum, der durch die Bindung eines

Liganden zugänglich wird, zu untersuchen, ohne dabei die spezifischen Ligandenstrukturen

oder Details über deren Wechselwirkungen zu verwenden. Wir sind daran interessiert,

das Ensemble der Taschenkonformationen zu erfassen und den jeweiligen Mechanismus

der Taschenöffnung zu identifizieren. In einigen Fällen bewerten wir zusätzlich, ob die

beobachtete Flexibilität ein Merkmal der Proteinfamilie oder spezifisch für das betrachtete

Protein ist.

Das erste untersuchte System ist Faktor VIIa (FVIIa). FVIIa ist ein wesentlicher Be-

standteil der Gerinnungskaskade und daher ein potenzieller Angriffspunkt für Medikamente

für thrombotische Erkrankungen. Zusätzlich habe ich verschiedene andere Trypsin-ähn-

liche Serinproteasen aus derselben Proteinfamilie untersucht. Die Bindungstasche von

Trypsin-ähnlichen Serinproteasen wird als S1-Tasche bezeichnet. Aufgrund einer Rönt-

genkristallstruktur ist bekannt, dass eine β-Faltblattstruktur in der S1-Tasche durch einen

gebundenen Liganden deformiert werden kann. Ausgehend von der ungebundenen Protein-

struktur, konnte ich die Konformationsänderung mit MD-Simulationen auflösen. Ich konnte

mehrere spontane Konformationsänderungen beobachten. In 7 von 22 Simulationen mit

der β-Faltblattstruktur als Ausgangsstruktur ordnete sich die S1-Tasche schließlich zu einer

Loopstruktur um. Diese Übergänge erfolgten spontan und wurden durch Wassermoleküle

hervorgerufen, die die Wasserstoffbrückenbindungen des Rückgrats aufbrechen. Die hier

untersuchte Konformationsänderung ist essentiell für die Regulierung der Substratbindung

und der Katalyse. Die freie Energiebarriere dieser Konformationsänderung habe ich mit

einer metadynamischen Simulation berechnet. Die geschätzte freie Energiebarriere beträgt

≈8 kJ/mol, was darauf hindeutet, dass eine Konformationsänderung in Abwesenheit eines

Liganden wahrscheinlich ist, was mit unseren MD-Simulationsdaten übereinstimmt. Ich

habe zusätzlich andere Serinpeptidasen untersucht, die FVIIa ähnlich sind, und stellte fest,

dass die Flexibilität der S1-Tasche auch in anderen Zielproteinen wie Thrombin, Matrip-

tase und Tryptase nachweisbar ist. Ich habe spontane Übergangsereignisse in 13 anderen

Serinproteasen beobachtet, was darauf hindeutet, dass die Plastizität der S1-Tasche inner-

halb der Proteinfamilie weit verbreitet ist. Unsere Ergebnisse zeigen, dass die deformierte

Loopkonformation der S1-Tasche ein valides Ziel bei verschiedenen Serinproteasen ist und

die Grundlage für die Entwicklung einer neuen Reihe von Inhibitoren bilden kann.

Das zweite untersuchte System ist Renin, ein Protein, das den Blutdruck im Körper re-

xvi



guliert. Hemmstoffe von Renin sind potenzielle Medikamente gegen Bluthochdruck. Die in

Röntgenkristallstrukturen beobachtete Konformationsänderung von Renin ist die Öffnung

eines nicht funktionalen Flaps in Verbindung mit einer Rotation der Trp39-Seitenkette.

Ausgehend von der Proteinstruktur ohne gebundenen Liganden konnte dieser Übergang für

Renin mit MD-Simulationen nicht erfasst werden. Daher verwendete ich etablierte Bias-

ing-Protokolle für Renin, um das Sampling zu verbessern. Zunächst fügte ich organische

Fragmente in die Simulationsbox hinzu, was als mixed-solvent MD-Simulation bezeich-

net wird. Es ist bekannt, dass Fragmente in mixed-solvent MD-Simulationen prinzipiell

Konformationsänderungen und Taschenöffnungen durch Bindung an das Protein bewirken

können. Zweitens wendete ich die erweiterte Sampling-Methode SWISH (Sampling Wa-

ter Interfaces through Scaled Hamiltonians) an, eine auf Replika-Austausch basierende

MD-Methode, die die Wechselwirkungen zwischen Wassermolekülen und Protein verstärkt.

Auf diese Weise können die Wassermoleküle mit hydrophoben Proteintaschen interagieren,

was zu mehr Sampling von Konformationszuständen führen kann. Beide Methoden er-

höhten die Flexibilität des Proteins und führten zu Fluktuationen des Flaps, aber die

Trp39-Seitenkette blieb in ihrer ursprünglichen Konformation. Um die Energiebarriere

für die Rotation der Trp39-Seitenkette zu berechnen, die das Protein davon abhält, die

vollständige Konformationsänderung zu durchlaufen, habe ich metadynamische Simula-

tionen verwendet. Die metadynamische Simulation ergab eine hohe freie Energiebarriere

für die Trp39-Seitenkettenrotation (≈35 kJ/mol), was die Schwierigkeiten beim Sampling

erklärt. Die Fallstudie von Renin zeigt, dass die Bindung kleiner Moleküle mit einer hohen

Energiebarriere verbunden sein und dennoch eine hohe Affinität erreicht werden kann.

Wir untersuchten auch vier Zielproteine für Arzneimittel, die bekannte kryptische

Taschen haben: NPC2, p38α, Rizin und Eg5. Das NPC2-Protein ermöglicht den Cholester-

intransfer und ist ein potenzielles Arzneimittelziel für die Niemann-Pick-Krankheit. Die

Proteinkinase p38α spielt eine entscheidende Rolle in verschiedenen Signalwegen und wird

als potenzielles Ziel für verschiedene Krankheiten wie Entzündungen und Krebs angesehen.

Rizin ist ein hochgiftiges Protein aus einer Pflanze, das die Proteinsynthese hemmen kann.

Eg5 ist für die Zellteilung unerlässlich und ein vielversprechendes Ziel für die Krebstherapie.

Alle vier Proteine sind Teil eines Datensatzes, in dem Proteine mit bekannten kryptischen

Stellen aufgeführt sind. Für alle Proteine sind Röntgenkristallstrukturen der ligandengebun-

denen und ungebundenen Form verfügbar. Die ligandengebundenen Strukturen weisen die

offenen kryptischen Taschen auf. In allen hier untersuchten Fällen besteht die kryptische

Tasche aus verschobenen, oberflächlich vergrabenen hydrophoben Seitenketten. Um die

dynamischen Eigenschaften der kryptischen Taschen und den entsprechenden Mechanismus

für die Taschenöffnung zu untersuchen, habe ich die gleichen drei Methoden verwendet,

wie oben beschrieben: MD-Simulationen, mixed-solvent MD-Simulationen mit 1 M Ben-

zolmolekülen und SWISH-Simulationen. Für alle vier Proteine konnten die Öffnung der

kryptischen Taschen erfasst werden. Durch den Einsatz der verschiedenen Simulations-

techniken konnten wir ein gutes Verständnis der zugrundeliegenden Bindungsmechanis-

men erlangen und sie im Spektrum von induced-fit und conformational selection verorten.

Induced-fit und conformational selection sind zwei Extreme der möglichen Öffnungsmecha-
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nismen. Beim induced-fit wird die Konformationsänderung ausschließlich durch die Bindung

eines bestimmten Liganden erreicht, während bei der conformational selection der Kon-

formationsraum bereits im ungebundenen Ensemble vorhanden ist. Bei mixed-solvent

MD-Simulationen von NPC2 habe ich beobachtet, dass zwei Benzolmoleküle nacheinander

in die kryptische Tasche eindringen. Die Bindung der Benzolmoleküle führte zur Öffnung

der tiefen Tasche. Das spricht für eine bedeutende Rolle des induced-fit im Mechanismus

der Taschenöffnung. Im Gegensatz dazu war die kryptische Tasche von p38α bereits in

der MD-Simulation ohne hinzugefügte Fragmente flexibel. In mixed-solvent MD-Simula-

tionen von p38α hat sich ein Benzolmolekül in die kryptische Tasche platziert, was auf

ein Gleichgewicht zwischen induced-fit und conformational selection hindeutet. Im Gegen-

satz zu NPC2 und p38α waren die Konformationsänderungen der kryptischen Taschen von

Rizin und Eg5 weitgehend unabhängig von der Anwesenheit von Fragmenten, was zeigt,

dass die conformational selection der Hauptfaktor für den Taschenöffnungsmechanismus ist.

Interessanterweise offenbarte die Benzolbindung an Rizin und Eg5 neben den bekannten

kryptischen Stellen mehrere zusätzliche Bindungstaschen, die möglicherweise für weitere

Studien zur Entwicklung von Arzneimitteln genutzt werden können.

Im zweiten Teil der Arbeit habe ich die Wechselwirkungen von Enzym-Substrat-Inter-

aktionen bei zwei Wirkstoffzielen auf atomistischer Ebene untersucht: der papainähnlichen

Protease (PLpro) von SARS-CoV-2 und der menschlichen Casein Kinase 1 (CK1).

PLpro spielt eine wesentliche Rolle bei der Replikation des Coronavirus, indem es

virale Polyproteine prozessiert. Darüber hinaus kann PLpro von SARS-CoV-2 die ange-

borene Immunantwort beeinträchtigen, indem es mit höherer Aktivität ISG15 von zellulären

Proteinen abspaltet. Bei verschiedenen Coronaviren (SARS-CoV und SARS-CoV-2) unter-

scheidet sich PLpro in der Substratpräferenz. PLpro aus SARS-CoV-2 spaltet bevorzugt

ISG15 im Vergleich zu Ubiquitin, während PLpro aus SARS-CoV eine höhere Präferenz

für Ubiquitin hat. Die höhere Präferenz für ISG15 von PLpro aus SARS-CoV-2 führt zu

einer reduzierten angeborenen Immunantwort, was eine mögliche Erklärung für die höhere

Übertragungsrate von SARS-CoV-2 im Vergleich zu früheren Coronaviren ist. Die hier

durchgeführten MD-Simulationen und Analysen identifizieren die molekulare Grundlage für

die experimentellen Befunde, dass PLpro bevorzugt ISG15 spaltet. Wir beobachteten, dass

PLpro aus SARS-CoV-2 stärker mit ISG15 als mit Ubiquitin interagiert. Während ISG15 in

drei unabhängigen MD-Simulationen von je 3,2 μs gebunden blieb, dissoziierte sich das dis-

tale Ubiquitin von PLpro in vier von sechs Durchläufen auf einer Zeitskala von Mikrosekun-

den. Die Simulationsdaten zeigten, dass der Dissoziationsmechanismus von Ubiquitin

wasservermittelt ist. Wassermoleküle dringen zwischen die Bindungsschnittstelle ein und

führen zur Ubiquitinabspaltung. Ein Vergleich der MD-Simulationen von Ubiquitin-ge-

bundenem PLpro aus SARS-CoV und SARS-CoV-2 zeigte, dass die Punktmutation L75T

im Kern der Bindungsschnittstelle der Grund für die unterschiedliche Ubiquitin-Präferenz

ist, da diese den hydrophoben Cluster innerhalb der Bindungsschnittstelle schwächt. Im

Gegensatz zu Ubiquitin interagiert ISG15 eng mit PLpro von SARS-CoV-2 in allen drei

Simulationsreplikaten. Die pharmakologische Hemmung von PLpro in SARS-CoV-2 block-

iert daher nicht nur die virale Replikation, sondern verstärkt auch gleichzeitig die antivirale
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Immunantwort. Einer der ersten für PLpro entwickelten Inhibitoren ist GRL-0617. Mithilfe

von MD-Simulationen fanden wir heraus, dass der Bindungsmodus von GRL-0617 für PL-

pro von SARS-CoV und SARS-CoV-2 derselbe ist, was darauf hindeutet, dass frühere

Erkenntnisse aus der Medikamentenforschung für PLpro von SARS-CoV auf SARS-CoV-2

übertragen werden können.

CK1 steuern verschiedene wichtige zelluläre Prozesse, darunter die DNA-Reparatur. In

Eizellen nach einer durch Chemotherapie verursachten DNA-Schädigung wird die CK1δ-

Isoform mit der Aktivierung eines Zelltodprogramms in Verbindung gebracht, das bei

Frauen zu Unfruchtbarkeit führt. Ein wichtiger Schritt in diesem Prozess ist die raten-

limitierende dritte Phosphorylierung von dem CK1-Substrat TAp63α, die TAp63α in eine

aktive Konformation überführt. Um zu verstehen, warum die dritte Phosphorylierung die

langsamste ist, habe ich die Enzym-Substrat-Wechselwirkungen mit MD-Simulationen auf

molekularer Ebene untersucht. Wir konnten eine atypische Enzym-Substrat-Interaktion

als Ursache für die langsame Kinetik dieses entscheidenden Schritts im Vergleich zu den

anderen drei Phosphorylierungsereignissen ausmachen. Die Simulationsdaten enthüllten

die stabilisierenden Wechselwirkungen zwischen CK1δ und TAp63α als starke Salzbrücken

und enge hydrophobe Kontakte in einer für den Phospho-Transfer ungünstigen Form. Es

wurden Punktmutationen eingeführt, um die mögliche funktionelle Bedeutung einzelner

Aminosäuren in der Bindungsschnittstelle zu ermitteln. Diese Simulationen deuten darauf

hin, dass zwei Aminosäuren von TAp63α eine wesentliche Rolle bei der Verlangsamung der

Phosphorylierungskinetik spielen. Unsere Kollaborationspartner haben gezeigt, dass die

Hemmung von CK1δ bei Mäusen die Eizellen intakt hält, selbst unter dem Einfluss von

Chemotherapeutika. Neben der CK1δ-Isoform habe ich auch die CK1γ3-Isoform untersucht,

die ein anderes Verhalten zeigt. Der dritte Phosphorylierungsschritt wird nicht verlangsamt,

sondern vollständig eliminiert. Mithilfe von MD-Simulationen haben wir eine Lys-zu-Leu-

Mutation als die Schlüsselmutation identifiziert, die die δ- und die γ3-Isoform voneinander

unterscheidet, da das Leu257 in der γ3-Isoform die hydrophoben Wechselwirkungen mit

dem TAp63α-Substrat verstärkt, was die Phosphorylierung stoppen kann. Darüber hinaus

fanden unsere experimentellen Kollaborationspartner heraus, dass CK1 autophosphoryliert

werden kann, was zu einer reduzierten Enzymaktivität führt. Die hier durchgeführten

MD-Simulationen und Analysen geben Aufschluss über die molekulare Grundlage für die

experimentellen Beobachtungen. Die Simulationsdaten zeigen, dass die autophosphorylierte

Form eine größere Plastizität aufweist als die native Form. Die verringerte Aktivität wird

durch die veränderte Konformation in der phosphorylierten Form verursacht.

Diese Arbeit zeigt, dass Computersimulationen eine effektive Methode sind, um Kon-

formationsensembles von Proteinen und Enzym-Substrat-Interaktionen zu untersuchen,

die zu einer rigorosen Bewertung von Wirkstoffzielen und zu molekularen Erklärungen

für experimentelle Ergebnisse beitragen können. MD-Simulationen ermöglichten es uns,

die Flexibilität von Bindungsstellen und Enzym-Substrat-Wechselwirkungen mit atomarer

Auflösung zu untersuchen. Somit konnten wir einen Beitrag zur Bewertung kryptischer

Taschen und ihrer jeweiligen Öffnungsmechanismen leisten. Wir fanden heraus, dass nicht

nur Faktor VIIa eine große Flexibilität der Bindungsstelle aufweist, sondern auch ver-
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schiedene weitere Zielproteine innerhalb derselben Proteinfamilie, was die Grundlage für

das Design neuer Serinproteaseinhibitoren sein kann. Darüber hinaus zeigten die Sim-

ulationsergebnisse von Renin, dass die Konformationsänderungen in der Bindungsstelle

mit einer hohen energetischen Barriere einhergehen können, was darauf hindeutet, dass

kleine Moleküle in der Lage sind, größere Konformationsänderungen hervorzurufen und

dennoch eine hochaffine Bindung zu erreichen. Die Fallstudien zu NPC2, p38α, Rizin

und Eg5 zeigten, dass die Mechanismen für kryptische Taschenöffnungen systemabhängig

sind. Darüber hinaus konnten wir zum Verständnis von Krankheitsmechanismen beitragen,

insbesondere bei COVID-19 und Unfruchtbarkeit bei Frauen nach einer Chemotherapie.

Wir haben eine molekulare Erklärung gefunden, warum PLpro von SARS-CoV-2 ISG15

besser spaltet als frühere Coronaviren, was möglicherweise ein Grund für die höhere Über-

tragungsrate des aktuellen Virus ist. Außerdem fanden wir einen Grund, warum die Kinetik

der durch CK1-Proteine vermittelten Phosphorylierungsschritte unterschiedlich ist, indem

wir die Enzym-Substrat-Interaktionen auf molekularer Ebene untersuchten. Wir zeigten,

wie Simulationen genutzt werden können, um Konformationsänderungen von Proteinen

und Wechselwirkungen zwischen Proteinen zu erforschen. Wir zeigten auch, wie biomoleku-

lare Simulationen experimentelle Daten ergänzen können. Dies stimmt uns zuversichtlich,

dass mit zunehmender Computerleistung und weiterentwickelten Simulationsmethoden in

Zukunft auch hochenergetische Konformationsänderungen und komplexere Prozesse er-

fasst und verstanden werden können. Die Fortschritte bei den Berechnungsmethoden,

einschließlich der physikbasierten und auf maschinellem Lernen beruhenden Ansätze, wer-

den Forschern helfen, neue Angriffspunkte für Medikamente zu finden.
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Summary

Finding new drugs is a difficult, time-consuming, and costly challenge, with only a small

success rate along the drug discovery pipeline of far less than 10%. The high failure rate

of drug discovery projects motivates the integration of computational tools throughout

the whole drug discovery pipeline, from target identification to clinical trials. Target

identification is the first step in the process. A biological target, e.g., a protein that plays a

role in disease, is identified and its molecular mechanism in the disease is studied. Further,

a potential binding site on the target, where therapeutic molecules can bind and modulate

the target’s activity, needs to be characterized. Computational tools can contribute to

improving the initial molecular target elucidation and assessment.

In this thesis, I use computational, physics-based approaches to characterize binding

sites of drug targets and to decipher enzyme-substrate interactions, which play a role in

disease mechanisms. Molecular dynamics (MD) simulations were applied to study the

dynamics of molecules in solution at high temporal and spatial resolution. The method

generates time-resolved trajectories of the particles in a system of interest by integrating

Newton’s equations of motion numerically, starting from a set of coordinates and veloci-

ties. In MD simulations, all atoms of a chosen system, including solvent, are represented

explicitly. Atomistic simulations are especially well-suited to study detailed interactions

that depend on intermolecular interactions, such as hydration effects, hydrogen bonding,

hydrophobic interactions, or subtle chemical differences. System properties are inferred

from the trajectories, provided that the force fields, describing the interactions between the

particles in the system, have a high accuracy. The bonded and non-bonded interactions

are parametrized on experimental and quantum chemical data. The purpose of MD simu-

lations can be to gain insight into the behavior of complex biological systems at molecular

level, which often cannot be observed in experiments at the same resolution. With recent

advances in computer hardware and simulation software, molecular systems of increasing

size and simulation length can be investigated.

In the first part of the thesis, I investigated the conformational ensemble of various

protein drug targets. Proteins are dynamic biomacromolecules that can have diverse and

nearly isoenergetic conformational states. Ligand binding can shift the equilibrium of

this conformational ensemble and can uncover binding sites, called cryptic sites. Cryptic

sites only emerge upon small molecule binding and are often flat and featureless, and

thus not easily recognized in crystal structures without bound ligands. If new binding

sites including cryptic sites are detected, they can potentially be exploited for binding to

ligands and enable a druggable target. Druggability is the ability of a protein to bind

small, drug-like molecules, which is the basis for rational drug design. In this thesis, I used

state-of-the-art physics-based, computational approaches to investigate the conformational

ensembles of binding sites. In all studied systems, it is known from experiment that a
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specific group of ligands can induce conformational changes. The aim is to sample the

conformational space made accessible upon ligand binding, yet without using the specific

ligand structures or details about their interactions. We are interested in sampling the

pocket conformational states and identifying the respective pocket opening mechanism.

For some cases, I additionally assessed whether the observed flexibility is a feature of the

protein family, or specific to the protein under consideration.

The first studied system is factor VIIa (FVIIa). FVIIa is an essential part of the

coagulation cascade and hence a potential drug target for thrombotic diseases. In addition,

I investigated various other trypsin-like serine proteases from the same protein family. The

binding pocket of trypsin-like serine proteases is called S1 pocket. An X-ray crystal structure

solved by our collaborators reveals that a β-sheet structure in the S1 pocket is distorted by

a bound ligand. I resolved the conformational change with MD simulations, starting from

the unbound protein structure solvated in water and ions. I observed multiple spontaneous

transition events. In 7 out of 22 simulations with the β-sheet as starting structure, the S1

pocket eventually rearranged into a distorted loop structure. These transitions occurred

spontaneously and were mediated by water molecules probing the backbone hydrogen bonds.

The conformational change studied here controls the onset of substrate binding and catalysis.

Furthermore, I used metadynamics simulation, an enhanced-sampling method, to estimate

the free energy barrier of this conformational change. The estimated free energy barrier is

≈8 kJ/mol, suggesting that interconversion is probable in the absence of a ligand, consistent

with our equilibrium MD simulation. I additionally studied other serine peptidases similar

to FVIIa and found that the S1 pocket flexibility is present in other drug targets including

thrombin, matriptase and tryptase. I observed spontaneous transition events in 13 other

serine proteases, indicating that S1 pocket plasticity is common within the protein family.

Our results show that the distorted loop conformation of the S1 pocket is a valid drug

target in various serine proteases and can be used as the basis for the design of a new series

of inhibitors.

The second studied system is renin, which is a protein that regulates blood pressure.

Inhibitors of renin are potential antihypertensive drugs. For renin, the opening of a non-

functional flap together with Trp39 side chain rotation was observed in a set of X-ray crystal

structures. Using MD simulations starting from the renin structure without bound ligand,

the transition could not be sampled. Thus, I used established biasing protocols for renin to

improve sampling. First, I tested mixed-solvent MD simulation where organic fragments

are added to the simulation box. It is known that fragments in the mixed-solvent MD

simulations can in principle induce conformational changes and pocket openings by binding

to the protein. Secondly, I applied the enhanced sampling method SWISH (Sampling

Water Interfaces through Scaled Hamiltonians), which is a replica exchange MD based

method that increases the interactions between solvent molecules and protein. In this way,

solvent molecules can interact with the hydrophobic protein pockets, which can lead to

more sampling of conformational states. Both methods increased the protein flexibility and

led to flap fluctuations, but the Trp39 side chain remained in its initial conformation. To

calculate the energy barrier for the Trp39 side chain rotation, which keeps the protein from
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undergoing the full conformational change, I used well-tempered metadynamics simulation.

The metadynamics simulation indicated a high free energy barrier for the Trp39 side chain

rotation (≈35 kJ/mol), which explains the sampling difficulties. The case study of renin

shows that small molecule binding can be associated with a high energy barrier and still

achieve high affinity.

We also examined four protein drug targets that have established cryptic sites: NPC2,

p38α, ricin and Eg5. The NPC2 protein enables cholesterol transfer and is a potential

drug target for the Niemann-Pick disease. The protein kinase p38α plays a critical role in

several signalling pathways and is considered as a potential target for various diseases such

as inflammatory diseases and cancer. Ricin is a highly toxic protein from a plant that can

inhibit protein synthesis. Eg5 is essential for cell division and is a promising target in cancer

therapy. All four proteins are part of a data set, which lists proteins with known cryptic

sites. For all proteins, X-ray crystal structures of the ligand-bound and unbound form are

available. The ligand-bound structures exhibit the open cryptic pockets. In all cases studied

here, the cryptic pocket consists of displaced shallowly buried hydrophobic side chains. To

study the dynamical properties of cryptic sites and the respective mechanism for pocket

opening, I used the same three methods to probe and induce the opening of cryptic pockets

starting from the unbound structures as outlined above: Equilibrium MD simulations in

water solvent, equilibrium mixed-solvent MD simulations with 1 M benzene molecules,

and SWISH simulation. For all four proteins, the opening of the cryptic pockets was

captured. By analyzing the various simulations, we were able to acquire a comprehensive

understanding of the underlying binding mechanisms. The observed mechanisms range

from induced-fit to conformational selection. Induced-fit and conformational selection are

two extremes of possible opening mechanisms. In induced-fit, the conformational change is

solely triggered by binding of a specific ligand, whereas in the conformational selection the

conformational space is already present in the unbound ensemble. In mixed-solvent MD

simulations of NPC2, I observed that two benzene molecules sequentially entered into the

cryptic pocket. Binding of the benzene molecules resulted in opening of the deep pocket,

which points towards a significant role of induced-fit in the pocket opening mechanism.

The cryptic pocket of p38α, in contrast, was already flexible in the MD simulation without

added fragments. In mixed-solvent MD simulations of p38α, a benzene molecule inserted

into the cryptic pocket, suggesting a balance of induced-fit and conformational selection.

Contrary to NPC2 and p38α, the conformational changes of the cryptic pockets of ricin

and Eg5 were largely independent of the presence of probe molecules, demonstrating that

conformational selection is the main factor in the pocket opening mechanism. Interestingly,

benzene binding to ricin and Eg5 revealed multiple additional binding pockets besides the

known cryptic sites, which can potentially be used for further drug design studies.

In the second part of the thesis, I obtain atomistic insight into the interactions of

enzyme-substrate interactions in two drug targets: the papain-like protease (PLpro) of

SARS-CoV-2 and the human casein kinase 1.

PLpro plays an essential role in coronavirus replication by processing viral polyproteins.

In addition, PLpro can interfere with the innate immune response by cleaving the substrate
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ISG15. PLpro substrate preference differs for different corona viruses (SARS-CoV and

SARS-CoV-2). PLpro from SARS-CoV-2 preferentially cleaves ISG15 compared with

ubiquitin, whereas PLpro from SARS-CoV has a higher preference for ubiquitin. The

higher preference for ISG15 of PLpro from SARS-CoV-2 results in a reduced innate immune

response, which is a potential explanation for the higher transmission rate of SARS-CoV-2

compared with earlier corona viruses. The MD simulations and analyses conducted here

identified the molecular mechanism for the experimental findings that PLpro preferentially

cleaves ISG15. I observed that PLpro from SARS-CoV-2 interacts more strongly with ISG15

compared with ubiquitin. While ISG15 remained bound in three independent MD runs of

3.2 μs, the distal ubiquitin of di-ubiquitin dissociated from PLpro in four out of six runs

on a microsecond timescale. The simulation data revealed that the dissociation mechanism

of ubiquitin is water-mediated. Water molecules enter in between the binding interface

leading to ubiquitin separation. Comparison of ubiquitin-bound PLpro from SARS-CoV

and SARS-CoV-2 showed that the point mutation L75T in the core of the binding interface

is the reason for the difference in ubiquitin preference, as it weakens the hydrophobic cluster

within the binding interface. In contrast to ubiquitin, ISG15 tightly interacts with PLpro

from SARS-CoV-2 in all three simulation replicas. Hence, pharmacological inhibition of

PLpro in SARS-CoV-2 not only blocks viral replication but also simultaneously boosts the

antiviral immune response. One of the first inhibitors designed for PLpro is GRL-0617.

Using MD simulations, I found that the binding mode of GRL-0617 is the same for PLpro

from both SARS-CoV and SARS-CoV-2, suggesting that findings from drug design efforts

on PLpro from the earlier SARS-CoV can be transferred to targeting SARS-CoV-2.

Casein kinases 1 (CK1) control various essential cellular pathways, including DNA

repair. In oocytes after chemotherapy-induced DNA damage, the CK1δ isoform is asso-

ciated with activating a programmed cell-death that results in infertility in women. A

key step in this process is the rate-limiting third phosphorylation of the CK1-substrate

TAp63α, which converts TAp63α into an active conformation. To understand, why the

third phosphorylation is the slowest, I investigated the enzyme-substrate interactions at

a molecular level using MD simulations. We could pinpoint an atypical enzyme-substrate

interaction as the cause of the slow kinetics of this decisive step, compared to the other

three phosphorylation events. The simulation data revealed the stabilizing interactions

between CK1δ and TAp63α as strong salt bridges and tight hydrophobic contacts in a form

unfavorable for phospho-transfer. Point mutations were introduced to identify the possible

functional relevance of single amino acids in the binding cleft, suggesting that two key

residues of TAp63α play a significant role in decelerating the phosphorylation kinetics. Our

collaborators showed that inhibiting CK1δ in mice keeps the oocytes intact, even under the

influence of chemotherapeutic agents. In addition to the CK1δ isoform, we investigated

the CK1γ3 isoform, which shows a different behavior. Here, the third phosphorylation

step is not decelerated, but fully eliminated. Using MD simulations, I identified a Lys

to Leu mutation as the key mutation distinguishing the δ and γ3 isoform, as Leu257 in

the γ3 isoform strengthens the hydrophobic interactions to the TAp63α substrate, which

potentially stalls phosphorylation. In addition, our experimental collaborators found that
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CK1 can be autophosphorylated, leading to reduced enzyme activity. Our simulations shed

light on the molecular basis for the experimental observations. They revealed that the

autophosphorylated form displayed greater plasticity than the native form. The decreased

activity is caused by the disruption of the integrity of the substrate binding site in the

phosphorylated form.

This thesis shows that computational simulations are a powerful tool to study confor-

mational ensembles of proteins and enzyme-substrate interactions providing rigorous drug

target assessment and molecular explanations to experimental findings. MD simulations

allowed us to investigate binding site flexibility and enzyme-substrate interaction in full

atomic detail. I could contribute to the assessment of cryptic pockets and their respective

pocket opening mechanism. I found that the known binding site flexibility of FVIIa can be

extended to various drug targets within the same protein family, which might aid rational

drug design of new serine protease inhibitors. Furthermore, the simulation results of renin

showed that the conformational changes in the binding site can come with a high energetic

barrier indicating that small molecules are able to induce major conformational changes,

and still achieve high-affinity binding. The case studies of NPC2, p38α, ricin, and Eg5 show

that the mechanisms for cryptic pocket openings are system dependent. In addition, we

could contribute to the understanding of disease mechanisms, in particular COVID-19 and

infertility in women after chemotherapy. I found a molecular explanation to why PLpro

from SARS-CoV-2 cleaves ISG15 better compared to earlier corona viruses, which is poten-

tially a reason for the higher transmission rate of the current virus. Further, we rationalized

why the kinetics of the phosphorylation steps mediated by CK1 proteins are different by

observing the enzyme-substrate interactions at a molecular level. We demonstrated how

simulations can be used to study protein conformational changes and interactions between

proteins. We also showed how biomolecular simulations can complement experimental

data. This makes us confident that also high-energy conformational changes and more

complex processes can be captured and understood in the future with increasing computer

power and enhanced sampling methods. The advances in computational methods, including

physics-based and machine learning based approaches, will help researchers to identify new

druggable targets.
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Chapter 1

Introduction

The fundamental understanding of disease mechanisms and the identification of druggable

biomolecular targets are the basis for rational drug discovery research. In this thesis, I used

physics-based simulation approaches to contribute both to the druggability assessment of

specific drug targets and to the understanding of disease mechanisms, specifically COVID-19

and infertility in women after chemotherapy.

1.1 Cryptic pockets in protein drug targets

Drug discovery is a challenging, complex, and multidisciplinary effort. Many approved

drugs are small molecules and function by binding to various specific drug targets. Drug

targets can be proteins, such as enzymes, ion channels, and G-protein-coupled receptors.

Binding of small molecules to proteins can alter their functions and hence trigger the desired

biological response, affecting the symptom or the disease that the drug was intended to

treat. Proteins, acting as receptors, bind small molecules, called ligands or compounds,

with high affinity and specificity. The ability of a protein to bind to other molecules is

determined by the physicochemical properties of the residues forming its binding pocket

and the shape of the pocket. However, a wide range of proteins does not have binding

pockets on the protein surface. Up to 85% of the human proteome lacks easy-to-find pockets

[Neklesa et al., 2017] where therapeutics in form of, e.g., small molecules can bind. The

vast majority of the proteome is perceived as “undruggable”. Identifying new cryptic sites

can provide druggable targets, which were previously assumed to be undruggable. Only

a small proportion of the proteome has known “hidden” binding sites that only become

apparent upon ligand binding. These cryptic pockets are not detectable in the ligand-free

structures. Ligand binding can induce pocket opening by shifting the equilibrium of the

protein conformational ensemble (Fig. 1.1). Cryptic pockets are not necessarily “functional”

pockets, but despite their distance from the active site, several cryptic sites have been

shown to modulate the protein’s activity [Lu et al., 2018].

There exists a continuous range of pocket forming mechanisms between the extremes

"induced-fit" and "conformational selection" [Beglov et al., 2018]. In the induced fit mech-

anism, the protein pocket can open up only with and through the insertion of a ligand. In

the conformational selection mechanism, the conformation of the protein changes indepen-

dently of the ligand and binding can occur when the ligand encounters a conformation of

the protein in which the pocket is already fully open.

Some of the first discovered cryptic pockets were found serendipitously thanks to buffer

molecules binding into the cavity [Horn and Shoichet, 2004]. Cryptic pockets are usually
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vessels and to increased production of a specific steroid hormone, which mainly causes

sodium and water retention in the kidneys. In this way, angiotensin 2 upregulates blood

pressure both by contracting the blood vessels and by increasing the intravascular volume

[Fountain and Lappin, 2021].

RAAS can be blocked pharmacologically at several points to treat hypertension, in-

cluding inhibiting renin and the angiotensin converting enzyme. Renin inhibitors target

its active site and can induce conformational changes, including lifting its characteristic β

hairpin structure known as flap (Fig. 1.2b).

1.1.3 Database Cryptosite: NPC2, p38α, ricin, Eg5

The best evidence for a cryptic pocket is an X-ray crystal or cryo-EM protein structure

determined with a ligand binding to an unusual binding pocket. Cimermancic et al. [2016]

systematically searched for cryptic binding pockets in all available protein structures in

the Protein Data Bank (PDB) and created the dataset CryptoSite. CryptoSite lists a

set of unbound and ligand-bound pairs with cryptic sites, consisting of 92 apo-holo pairs.

Beglov et al. [2018] further expanded the dataset, currently containing 4950 structures, and

investigated local flexibility at cryptic sites.

Cimermancic et al. [2016] generated the dataset CryptoSite in a systematic manner.

They collected protein-ligand complexes and corresponding unbound structures from the

PDB. The binding site was defined as the residues with at least one atom within 5 Å

from any ligand atom in the bound conformation. After removal of redundant protein

occurrences by applying a sequence identity threshold of 40%, they evaluated each binding

site using the pocket scores Fpocket and ConCavity. They added all protein structures to

the dataset CryptoSite whose binding sites had a bad score in the unbound and a good

score in the ligand-bound conformation.

We selected four pharmacologically relevant proteins from dataset CryptoSite for in-

vestigation additional to factor VIIa and renin: p38α, NPC2, Eg5, and ricin. With this

dataset, I tested current computational state-of-the art methods to decipher cryptic sites. I

compared conventional MD simulations (see Chapter 3.1), MD simulations in mixed-solvent

solution, and a special kind of replica exchange simulations specifically designed for uncov-

ering cryptic sites, called SWISH (Sampling water interfaces through scaled Hamiltonians).

The latter is a Hamiltonian replica exchange simulation scheme, varying the protein-solvent

interaction in each replica (see Chapter 3.2). It was developed in the group of Gervasio

[Oleinikovas et al., 2016] with the idea to “hydrate” hidden cryptic sites leading to openings.

Similar to Comitani and Gervasio [2018], here I sampled the pocket openings of p38α and

NPC2, and applied the same methods to two unexplored proteins Eg5 and ricin. In the

following, I will shortly introduce the selected protein systems.

p38α is a mitogen-activated protein kinase that is activated by external stimuli such as

cytokines, radiation, heat, and osmotic shock. The kinase is involved in signaling cascades

and is important for cell differentiation, cell growth, and apoptosis. Modulating the activity

of p38α is relevant for the treatment of a variety of inflammatory and autoimmune diseases

[Hui et al., 2007]. While most ligand-bound structures in the PDB database have inhibitors
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bound to the orthosteric ATP binding site, the X-ray crystal structure from Xing et al.

[2009] shows in addition a diaryl pyrazole compound bound to the lipid-binding site of the

C-terminal cap [PDB entry: 3hl7]. The compound rearranges the side chain of Trp197 and

displaces His199 with respect to the apo conformation [PDB entry: 4e5b [Tzarum et al.,

2012]] (Fig. 1.3a).

NPC2 is a soluble lysosomal glycoprotein that binds and transfers sterols and plays a

critical role in the clearance of cholesterol from the lysosomal compartment in conjunction

with NPC1. NPC2 transports unesterified cholesterol to the cholesterol binding site of the

membrane bound NPC1. Mutations in NPC2 cause a lethal neurovisceral disorder, called

the Niemann-Pick type C2 disease, leading to the accumulation of cholesterol in lysosomes

[Infante et al., 2008]. The X-ray crystal structure of the cholesterol-3-O-sulfate-bound

conformation of NPC2 [PDB entry: 2hka [Xu et al., 2007]] shows the ligand wedging

between two beta-sheets, resulting in a wider pocket compared to the apo conformation

[PDB entry: 1nep [Friedland et al., 2003]]. The ligand expands the pocket and leads to

side-chain flipping of Phe66 (Fig. 1.3b).

Eg5 is a homotetrameric molecular motor protein that is crucial in cell division. The

protein from the kinesin family is essential in mitosis and is involved in the assembly and

maintenance of the mitotic spindle [Sawin et al., 1992, Wojcik et al., 2013]. Loss of Eg5

leads to defective centrosome separation [Castillo and Justice, 2007]. During interphase,

Eg5 is associated with ribosomes and increases translation efficiency [Bartoli et al., 2011].

In the ligand-bound X-ray crystal structure from the CryptoSite data set [PDB entry: 1q0b

[Yan et al., 2004]] two compounds are present. An ADP molecule is bound to the catalytic

center and a monastrol is bound to a cryptic pocket 12 Å away from the active site. The

monastrol displaces Trp127 and induces a second binding pocket onto the protein surface,

in contrast to the structure without an inhibitor [PDB entry: 3hqd, [Parke et al., 2010]]

(Fig. 1.3c). Binding to the cryptic pocket leads to inhibition of Eg5, making the cryptic

pocket a promising target for cancer treatment.

Ricin is an extremely toxic protein from the seeds of the castor oil plant, Ricinus

communis. It is composed of two polypeptide chains, the cell surface binding chain B,

which facilitates cell uptake, and the enzymatically active chain A. Chain A is the carrier

of the toxic effect and inactivates the 60S subunit of eukaryotic ribosomes, resulting in

inhibiting protein biosynthesis [Olsnes and Kozlov, 2001]. Due to its toxicity, ricin is listed

as a weapon of war in the German War Weapons Control Act [WWL]. Ricin’s active

site recognizes a specific adenine base on ribosomal ribonucleic acid (rRNA). Pteroic acid

ligands can function as small inhibitors by binding to its active site [PDB entry: 1br6 [Yan

et al., 1997]]. The pterin ring displaces the side chain of Tyr80, with respect to the apo

structure [PDB entry: 1rtc [Mlsna et al., 1993]] (Fig. 1.3d).

1.2 Enzyme-substrate interaction in protein drug targets

Enzymes play a key role in metabolism. Without them, biochemical reactions would occur

at rates too slow to sustain life. Most enzymes are proteins, with the exception of ribozymes,

which consist of RNA. An enzyme is a biochemical catalyst that accelerates biochemical
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[Johnson et al., 2013]. The monomeric enzymes CK1s are largely cofactor independent

and ubiquitous throughout cells and tissues [Cheong and Virshup, 2011, Knippschild et al.,

2014]. CK1 kinases consist of a conserved catalytic domain (53%-98% sequence identity) at

the N-terminus and a very diverse regulatory domain responsible for determining substrate

specificity at the C-terminus [Cheong and Virshup, 2011].

CK1 enzymes can phosphorylate a broad range of substrates, including TAp63α, which

controls oocyte quality (Fig. 1.5b). CK1δ phosphorylates TAp63α four times, resulting

in apoptosis of the damaged oocyte. The third phosphorylation step is the slowest and

decisive step. Using MD simulations together with NMR mutational studies, we identified

the enzyme-substrate interaction sites responsible for decreasing the kinetics of the third

phosphorylation step (see Chapter 8).

Autophosphorylation of the carboxy-terminal residues inhibits the kinase activity [Cegiel-

ska et al., 1998, Gietzen and Virshup, 1999, Graves and Roach, 1995, Hoekstra et al., 1994].

Additional to the carboxy-terminal autophosphorylation, autophosphorylation at the αG

segment next to the catalytic site can also take place and decrease activity, as identified by

our experimental collaborators [Cullati et al., 2022]. I studied this process using MD simu-

lations at a molecular level and observed that phosphorylation destabilizes the N-terminal

part of the αG helix (see Chapter 8).
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Chapter 2

Aims of the thesis

The primary aim of this thesis is to contribute to identifying altered protein conformations

with respect to known structures using simulation techniques based on molecular dynam-

ics (MD). The secondary aim is to employ the same simulation tool to also study the

interactions of enzymes with their substrates.

In the first part of the thesis (Chapter 4-6), the predictive power of computational

methods regarding binding site plasticity is assessed. In all studied systems, it is known

from X-ray crystal structures that a specific group of ligands targeting the binding site can

induce conformational changes. Our aim was to sample the conformational space made

accessible upon binding of the ligands, yet without using the specific ligand structures or

details about their interactions. In this way, I can identify the respective pocket opening

mechanism and can assess whether the observed flexibility is a feature of the protein family,

or specific to the protein under consideration.

Chapter 4 focuses on the S1 pocket plasticity of factor VIIa. Unbiased MD simulations

can sample the S1 pocket flexibility, and this finding can be extended to a large number of

other serine proteases.

Chapter 5 deals with the known conformational change of renin and related proteins: the

flap opening. I used unbiased and biased MD simulations to investigate this conformational

change and evaluate the free energy barrier for the full pocket opening.

In Chapter 6, I compared the sampling efficiency of binding pocket openings in four

drug targets from the CryptoSite dataset (NPC2, p38α, ricin, and Eg5) and placed their

binding mechanism in the spectrum of conformational selection and induced-fit.

The second part (Chapter 7-8) deals with enzyme-substrate interactions of the papain-

like protease of SARS-CoV-2 and the human casein kinase 1. MD simulations allowed

us to investigate enzyme-substrate interaction in atomic detail and to contribute to the

understanding of disease mechanisms, in particular of COVID-19 and infertility in women

after chemotherapy.

SARS-CoV-2 is responsible for the coronavirus disease 2019 (COVID-19) pandemic.

The virus depends on its papain-like protease processing the viral polyproteins. In Chapter

7, I investigated the difference in substrate interaction of PLpro between the coronaviruses

SARS-CoV and SARS-CoV-2, which is one reason for the higher risk for humans arising

from the latter.

CK1s regulate a variety of important cellular pathways, including DNA repair. Many

chemotherapeutic agents induce DNA damage, which does not impact most healthy cells,

except for oocytes. Upon DNA damage, CK1s initiate programmed oocyte death by phos-
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phorylating TAp63α four times, leading to infertility in women. The third phosphorylation

step is the decisive, but slowest step. In this step, TAp63α is converted into the active

conformation. In Chapter 8, I elucidated the structural mechanism for the difference in the

kinetic behavior based on an unusual enzyme-substrate interaction. Additionally, I studied

the structural effects of autophosphorylation of the kinase domain.
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Chapter 3

Computational methods

Biomolecular simulations allow one to imitate the time evolution of complex biological

systems. They can reproduce experimentally observable quantities and provide insight into

the mechanistic details of processes at very high spatial and temporal resolution. This can

help practitioners better understand the process of interest and assist with the formulation

of new hypotheses.

In this Chapter, I introduce three different simulation types applied in this thesis.

First, the molecular dynamics (MD) technique is described. MD is a broadly applied and

successful tool, but it is currently limited to the investigation of events that take place on

microsecond time scales, unless excessive computational resources are used. Hence, MD is

ill-suited to capture many interesting phenomena like cryptic pocket openings, and large

conformational changes in general. To address the limited sampling time in MD, many

algorithms have been developed in the past to enhance sampling. Enhanced sampling

approaches build upon conventional MD. Two of them, Replica Exchange Method and

Metadynamics, are introduced in the following.

3.1 Molecular dynamics simulations

MD simulation is an in silico method to calculate time-dependent behavior of molecular

systems by numerically solving the classical equations of motion of atoms interacting via a

given potential. This potential, also called force field, describes the interactions between

covalent and non-covalent bonded atoms. In this section, the most fundamental aspects of

MD simulations are discussed (following Chapter 4 of Frenkel and Smit [2002]).

3.1.1 Molecular force field

In classical MD simulations, force fields approximate the quantum mechanical (QM) energy

surface [Vanommeslaeghe et al., 2014]. This approximation allows assessing microsecond

timescales [Monticelli and Tieleman, 2013]. In contrast, QM calculations, with an accurate

representation of electrons and chemical bonds, are limited to the investigation of small

systems, or small reactive regions of larger systems [Senn and Thiel, 2009] with short

timescales, usually of a few tens of picoseconds [Hug, 2013].

For classical force fields, the Born-Oppenheimer approximation [Born and Oppenheimer,

1927] allows for the description of atomic interactions employing the potential energy as a

function of nuclear coordinates without explicit modeling of electrons. Classical force fields

treat atoms as mass points in space and are parameterized based on experimental data
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The different force constants k, the equilibrium values req (distance), Θeq (angle), and Ψeq

(torsion angle), the multiplicity n, and the phase factor φ0 are free parameters that have

to be tuned to fit experimental data or QM calculations for each molecule and force field.

The non-bonded potentials arise from electrostatic (Coulomb) and van der Waals (vdW)

interactions,

Unon−bonded(~r
N ) = UCoulomb(~r

N ) + UvdW(~rN ) . (3.4)

The charge distribution of molecules is discretized in classical force fields by placing partial

charges on atomic nuclei. For the determination of the partial charges, usually the restrained

electrostatic potential (RESP) [Bayly et al., 1993] fitting is applied. In this method,

point charges are placed into the molecule in a way that this configuration reproduces

approximately the electrostatic potential calculated with QM methods. The electrostatic

potential is then calculated based on Coulomb’s law with the two charges qi and qj at

distance rij and with ε0 the dielectric permittivity of vacuum. The second term in Eq. (3.5)

describes van der Waals interactions arising from dipole interactions in a molecule. These

are modeled with the Lennard-Jones potential consisting of both short range repulsion and

attraction terms with εij being the depth of the potential well and σij the finite distance

at which the inter-particle potential vanishes. In both non-bonded energy terms rij is the

distance between the particles,
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∑
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∑
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4πε0rij
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i

∑

j 6=i

4εij

(
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σij
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. (3.5)

A special treatment for long-ranging electrostatic interactions in MD simulations is necessary

to reduce computational costs, since the electrostatic interactions decrease slowly with

1/rij in contrast to van der Waals interaction. Simulations are conducted using periodic

boundary conditions (PBC). PBC means that the simulation box is copied an infinite

amount of times by translation, and the duplicates are placed in the adjacent areas of the

original box to form a continuous lattice. In this way, particles move identically in every

three-dimensional periodic image (see Fig. 3.2a). During simulation, the number of particles

is held constant, except for grandcanonical approaches. Therefore, once a particle leaves

the simulation box at one side, one of its images from an adjacent cell will enter the box

from the opposite side with identical velocity. This identical reproduction of the simulation

box helps to avoid boundary artifacts, e.g., lateral particle motion at the box walls, and

makes it possible to emulate in-bulk behavior without explicitly having to simulate the

whole bulk. The Particle Mesh Ewald (PME) method [Darden et al., 1993] exploits the

periodic structure and addresses the challenge of computationally intensive electrostatic
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In this thesis, the parameters of the well-optimized and validated AMBER force field

[Cornell et al., 1995] are used. This force field is widely applied for simulating biomolecular

systems in aqueous solution [Ponder and Case, 2003]. The AMBER force field contains

parameters describing interactions of common biomolecules, like proteins. However, like in

all MD force fields, parameters for heteromolecular ligands such as substrates, co-factors

and potential drug molecules are not available and need to be implemented for each specific

use case.

Proteins can be built from a limited set of parameters for amino acids due to their

modular nature. In contrast, small molecules have vastly diverse structures and chemical

properties. An estimate of the chemical space indicates 1060 different compounds [Bohacek

et al., 1996, Dobson et al., 2004]. Even though the biologically relevant chemical space

is only a fraction of the chemical space [Dobson et al., 2004], a single parameter set still

cannot adequately describe such a large number of compounds. For the AMBER force

field, the General AMBER Force Field (GAFF) [Wang et al., 2004] addresses this challenge

with the development of a library of force field parameters for a wide range of organic

molecules composed of H, C, N, O, S, P, and halogens. It contains 57 atom types with

different element type, aromaticity, hybridization, and chemical environment. Atom types

are transferable and can be assigned to atoms of different molecules, if the atom has the

same chemical properties and a similar chemical environment. This approximation and

generalization makes GAFF so efficient. GAFF is able to parameterize unique structures

by averaging and extrapolating parameters from a set of ab initio structures.

The GAFF force field contains van der Waals and bonded parameters for each atom

type. The van der Waals parameters (σ and ε) are taken from the AMBER parm94 [Cornell

et al., 1995] or parm99 [Wang et al., 2000] force fields. The equilibrium bond length req and

the equilibrium angle θeq are derived from AMBER protein force fields, crystal structures,

and ab initio calculations. Torsional angles are derived by fitting to quantum mechanical

torsional energy profiles.

In contrast to the van der Waals and bonded force field parameters for ligands that

can directly be taken from GAFF, the partial charge of each atom needs to be determined

for each molecule. AMBER and GAFF force fields are not polarizable and use fixed point

charges. For the charge determination, the electrostatic potentials can be derived from

the quantum mechanical software suite Gaussian [Frisch et al., 2009] at the HF/6-31G*

level using the restrained electrostatic potential (RESP) methodology [Bayly et al., 1993,

Cornell et al., 2002]. In this way, GAFF models are compatible with other force fields of

the AMBER family, since AMBER force fields use the same approach for atomic charge

determination. The procedure of assigning existing force field parameters from the library to

the ligand of interest and calculating its partial charges was streamlined by the development

of the wrapper script ACPYPE [Da Silva and Vranken, 2012] around the ANTECHAMBER

software [Wang et al., 2001] used for GAFF.
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3.1.3 Integration algorithms

MD simulations of atomic trajectories over time are based on integrating the equations of

motion of the atoms. The equations of motion of N particles can be written as

d2~ri
dt2

=
~Fi

mi

, i = 1, . . . , N , (3.6)

where the applied force ~Fi(t) on particle i with mass mi at time t can be computed by the

negative gradient of the potential energy U at the position of the particle,

~Fi = −~∇U(~ri) . (3.7)

After plugging in the initial coordinates of each atom into the MD software and selecting

a force field defining the potential U(~ri), the overall force on each atom at time t is

evaluated as a vector sum from its interactions with other atoms (Eq. (3.7)). The required

initial velocities are commonly assigned at random according to the Maxwell-Boltzmann

distribution. The force on each particle determines the new positions evolved in time

according to Eq. (3.6). These calculations (Eq. (3.6), Eq. (3.7)) are then alternately

repeated throughout the simulation until the desired number of iteration steps is obtained.

The equations of motion in a many-particle system can only be solved numerically with

discrete time steps. Various algorithms aim to integrate the equations of motion via Taylor

expansion around a given time t. Because only a limited number of Taylor expansion terms

are employed, this procedure introduces errors. In many MD simulation software engines,

the underlying numerical integration algorithm is based on the Verlet algorithm, which

has both low integration error and high computational efficiency. The Verlet algorithm is

a time-symmetric integrator and uses the expansion of the particle position forward and

backward in time. Two third-order Taylor expansions at position ri(t) are set up, one of

them evolving in time running forward (t+ δt), while the other one evolves in time running

backward (t− δt), where ~v(t) represents velocity,

~ri(t+ δt) = ~ri(t) + ~vi(t)δt+
~Fi(t)

2m
δt2 +

...
~r i

3!
δt3 +O(δt4) , (3.8)

~ri(t− δt) = ~ri(t)− ~vi(t)δt+
~Fi(t)

2m
δt2 −

...
~r i

3!
δt3 +O(δt4) , (3.9)

The sum of these two equations leads to:

~ri(t+ δt) ≈ 2~ri(t)− ~ri(t− δt) +
~Fi(t)

m
δt2 , (3.10)

with an error of order δt4.

While the positions of the atoms can be approximated to a certain degree of accuracy,

the velocities cannot be obtained directly. The basic Verlet algorithm does not incorporate

velocities explicitly. This disadvantage is overcome with the leap-frog algorithm, which is

a modification of the Verlet algorithm and the default integration algorithm employed in

the Gromacs package. With the leap-frog algorithm, both the positions and velocities can
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be assessed directly. It computes the velocities at half-time intervals and uses positions at

time t and velocities at time (t + 1/2 δt) to derive the updated positions ~r(t + δt),

~r(t+ δt) = ~r(t) + δt~v(t+
δt

2
) , (3.11)

~v(t+
δt

2
) = ~v(t−

δt

2
) + δt

~F (t)

m
, (3.12)

with an error of δt4 in the positions.

The choice of the simulation time step is essential to ensure numerical stability. The

time step should be significantly shorter than the fastest motion occurring in the system.

In biological systems, the fastest movement is the bond vibration of a hydroxyl group with

a stretching vibration frequency of 3600 cm−1, leading to a time period of around 10 fs.

Therefore, the time step should be set to 1 fs in non-constrained MD simulations. To increase

computational efficiency, covalent bonds involving hydrogens are usually constrained to

their ideal value. In Gromacs, O-H bonds in water models are constrained with the SETTLE

algorithm [Miyamoto and Kollman, 1992], while in biomolecules, the P-LINCS algorithm is

commonly deployed for covalent bonds involving hydrogens [Hess et al., 1997, Hess, 2008].

This allows us to increase the time step to 2 fs, since the fastest motion without hydrogens

is the stretching vibration of a carboxyl group with a time period of 20 fs. In this thesis, a

time step of 2 fs is applied.

3.1.4 MD simulation procedure

The first step before starting an MD simulation is to set up a system in a simulation box

in which each atom is assigned to a position coordinate. All systems in this thesis are

proteins solvated in water, and ions. Prior to initiation of an MD simulation, the system

has to be energy-minimized and equilibrated. The minimization and equilibration steps are

necessary to remove large steric clashes, e.g., overlapping atoms, or close contacts within and

between structures. Without these pre-processing steps, energetically unfavorable structures

would result in large forces and energy differences and consequently lead to termination

in early MD steps. In this thesis, the steepest descent algorithm for minimization is

applied, which gradually moves the atomic coordinates along the negative potential energy

gradient direction until a local minimum is found. To ensure a stable simulation, an

additional equilibration phase is needed. The equilibration is a short MD run with positional

constraints on the heavy atoms of the protein, which can be decreased with time. The

constraints keep the protein atoms near their initial positions, while the solvent molecules

can move freely. The equilibration should at least last until the potential energy converges

and does not change significantly anymore. If this is the case, the production run can be

started.
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3.1.5 Thermodynamic ensembles

From the point of view of statistical mechanics, an MD simulation can be seen as a tool to

sample from a thermodynamic ensemble. The integration of Newton’s equations of motion

produces the microcanonical ensemble, also referred to as NVE ensemble, where the number

of particles (N), the total energy (E) and the volume (V ) are conserved. For biomolecular

systems, a different approach called the isothermal-isobaric (NPT) ensemble is commonly

used, where instead of the volume and total energy the pressure and temperature are held

constant. Since NVE ensembles in practice can suffer from energy drifts over time and most

experiments of biomolecules are performed at quasi-constant temperature and pressure,

the NPT ensemble is the preferred choice and applied throughout this thesis. The NPT

ensemble requires barostat and thermostat algorithms to respectively maintain the pressure

P and temperature T at constant physiological values. The temperature and pressure

values of the thermostat and barostat can be chosen and are constant by construction,

while instaneous temperature and pressure of the system do fluctuate and are computed

from the velocities and from interactive forces between particles, respectively.

Thermostat algorithms ensure constant temperature averages 〈T 〉 by exchanging kinetic

energy with the system. Several realizations of a thermostat exist. The Berendsen thermo-

stat [Berendsen et al., 1984] for instance randomly assigns additional energy to all energy

terms from the correct statistical distribution. It couples the instantaneous temperature

T (t) of the system to a target temperature T0 by a relaxation process:

dT (t)

dt
=

T0 − T (t)

τT
, (3.13)

with the coupling constant τT . After the velocity and position updates at each time step,

the velocities are rescaled according to Eq. (3.13). The drawback of this approach is that

the total kinetic energy can shift apart between high-frequency and low-frequency energy

terms, which can result in highly non-physical behaviors of the system. The Andersen

thermostat [Andersen, 1980] circumvents this problem by instead changing the velocity

of particles randomly. Their momenta are stochastically re-setted by a collision with the

heat bath, providing a Maxwellian distribution. This method is reasonable for computing

equilibration properties, but is not a reliable option, if dynamical properties are of interest.

The Nosé-Hoover thermostat [Hoover, 1985, Nosé, 1984], which is applied in this thesis,

introduces an additional virtual variable, which decelerates or accelerates particles until

the desired temperature is obtained. This is realized by including an additional degree of

freedom to the heat bath in the Hamiltonian:

H(q, s, p, ps) = H

(

q,
p

s

)

+
p2s
2Q

+ gkBT ln(s) , (3.14)

where g is the number of independent momentum degrees of freedom, kB the Boltzmann con-

stant, s is the variable of the additional degree of freedom, ps its corresponding momentum,

T its temperature and Q an imaginary mass.

Barostat algorithms maintain the pressure of the system by scaling the simulation box,

because the volume is inversely related to pressure by Boyle’s law. In MD simulations,
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usually the Berendsen [Berendsen et al., 1984] or the Parrinello-Rahman [Parrinello and

Rahman, 1981] barostats are employed. The Berendsen barostat is used in this thesis for

equilibration runs, since it is stable even when the system pressure deviates significantly

from the desired pressure. However, it does not reproduce the correct thermodynamic

ensemble due to errors in the fluctuations. In contrast, the Parrinello-Rahman barostat

can be unstable, if there is a large difference between system and target pressure, but does

reproduce the correct thermodynamic ensemble. Thus, the Parrinello-Rahman barostat is

used in this thesis for production simulations.

For the Berendsen thermostat, the pressure follows a first-order kinetic relaxation

towards a given reference pressure P0:

dP (t)

dt
=

P0 − P (t)

τP
, (3.15)

where τP is the coupling constant. For the Parrinello-Rahman barostat, similar to the

Nosé-Hover thermostat, an extended Hamiltonian is used.

3.2 SWISH simulations

Rough energy landscapes of biomolecular systems with many local minima separated by

high-energy barriers can limit the sampling efficiency of MD simulations. Often, not all

relevant conformational states can be reached with MD simulations. Enhanced sampling

methods like the below described SWISH technique or Metadynamics, described in the

following section, can address this problem.

To enhance conformational sampling of cryptic pocket openings, Oleinikovas et al.

[2016] developed the method called Sampling Water Interfaces through Scaled Hamiltonians

(SWISH), which is based on a replica exchange MD (REMD) framework. In general,

enhanced sampling methods are necessary to observe rare events such as cryptic pocket

openings. Sampling transitions between different conformations that are separated by

high-energy barriers with unbiased MD simulations is highly unlikely. The integration time

step in MD simulations is limited to femtoseconds (Chapter 3.1.3.) and conventional MD

simulations can usually not reach a millisecond, while the observation of events can exceed

the timescale of seconds.

One of the most widely used and the most successful methods to enhance conformational

sampling is the REMD method, which is the basis of SWISH simulations. The algorithm

is based on the parallel tempering method [Geyer et al., 1991] and was first applied to MD

simulations by Sugita and Okamoto [1999]. In particular, there are two types of REMD

methods: Temperature (T) and Hamiltonian (H) REMD simulations. In T-REMD or

H-REMD several copies of the system are simulated simultaneously and independently

at different temperatures or force fields, respectively. At preset time intervals, pairs of

neighboring replicas attempt to randomly exchange with a probability according to a

Metropolis acceptance criterion (schematically shown in Fig. 3.3).
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In T-REMD the probability for an exchange of states is:

P (state1 ↔ state2) = min

(

1, exp

[(

1

kBT1

−
1

kBT2

)

(U1 − U2)

])

, (3.16)

with T1,T2 and U1,U2 being the temperatures and the potential energies of replicas 1 and 2,

respectively. Each attempted exchange of two replicas is based on the probability according

to Eq. (3.16). If the exchange is accepted, the velocities are re-scaled with (T1/T2)
±0.5.

In H-REMD the probability for an exchange of states can be rewritten to:

P (state1 ↔ state2) = min

(

1, exp

[

−
1

kBT

(

(U1(r2)− U1(r1))− (U2(r2)− U2(r1))

)])

,

(3.17)

with the energy difference between neighboring configurations using the force field for

replica 2 minus the same difference using the force field for replica 1 [Meli and Colombo,

2013].

The random walk in temperature or Hamiltonian allows for sampling various conforma-

tional states that are trapped locally at low simulation temperatures, because states can

be exchanged with replicas at higher simulation temperature or at a different Hamiltonian.

These swaps between the replicas do not perturb the canonical distribution of states in each

replica. With T-REMD it is possible to sample more conformations than with the same

number of classical MD simulations running at the reference temperature, if the energy bar-

riers between states are higher than the thermal energy per degree of freedom [Zuckerman

and Lyman, 2006]. However, transitions with barriers that are mostly entropic are unlikely

to be sampled with T-REMD [Nymeyer, 2008]. H-REMD is a common alternative and can

have better convergence behavior for large systems. The sampling efficiency of T-REMD

or H-REMD is determined by the aggregate number of transitions between system states

(here open and closed substrate pockets) sampled across the replicas for a given investment

of computational resources [Rosta and Hummer, 2009].

The number of accepted exchanges of states in REMD simulations is very important. A

sufficient number of transitions of replica states is necessary to enable the lowest replica to

benefit from the other replicas with higher temperatures or modified force field parameters.

Each state should visit every replica as frequently as possible, which requires a sufficient

overlap of sampled potential energies. The number of needed replicas is related to the

difference between the ensembles.

In T-REMD simulations, the replicas vary in their physical temperature as controlled

by the respective thermostats, whereas the replicas in the H-REMD simulations can be

biased in an arbitrary manner to accelerate sampling. SWISH simulations are a specific

type of H-REMD simulations where the developers aimed to replicate the effect of small

ligands to open up hydrophobic pockets. In SWISH simulations, the replicas differ in their

water-protein interaction. The non-bonded interactions of solvent molecules with the apolar

protein atoms, carbon and sulfur, are increased with each replica. By this means, water

molecules can mimic ligand-like behavior to increase cryptic site opening. The method

makes use of a linear scaling factor λ, which can be used to increase the water affinity to
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Figure 3.4: Schematic representation of metadynamics. In the first image, the system is
simulated according to unbiased dynamics. In the second image, a Gaussian potential is added
(solid gray line) that alters the free-energy landscape and raises the system (dashed gray line). In
the third image, the system transitions into the other free-energy minimum state after the former
minimum is "filled up" with a sum of Gaussian biasing potentials. In the fourth image, both
free-energy basins are filled, and the system can evolve on a flat landscape. An estimate of the
negative free-energy profile can be derived from the summation of the deposited bias (solid gray
profile). Reprinted from [Bussi et al., 2015], with kind permission by John Wiley & Sons.

3.3 Metadynamics simulations

Metadynamics is an enhanced sampling technique that uses a repulsive, history-dependent

biasing potential along certain collective variables (CVs). CVs are any functions of internal

coordinates. The applied CVs should be good reaction coordinate models, which both allow

for distinguishing between all interesting different states of the transition, also called order

parameters, and for reflecting the correct kinetics. The idea of metadynamics is to fill the

free energy minima with an external biasing potential also described as “filling the free

energy wells with computational sand” [Laio and Parrinello, 2002]. With the help of biasing

potentials, the system is pushed away from its local free energy minima, which enables faster

sampling of conformational space (see Fig. 3.4). The bias is applied along pre-defined CVs.

In contrast to SWISH simulations, the identification of specific CVs that are critical for

sampling the rare event of interest, is necessary before starting a metadynamics simulation.

In metadynamics, the sampling is accelerated with an external history-dependent biasing

potential. The biasing potential, which is a function of the CVs, is imposed on the system.

It is constructed as a sum of Gaussian kernels added along the trajectory in CV space. The

biasing potential V (~s, t) can be expressed as:

V (~s, t) =
∑

kτ<t

W (kτ) exp

(

−

d
∑

i=1

(

si − si(~r(kτ))
)2

2σ2
i

)

. (3.21)

with ~s(~r) being the CVs, τ the Gaussian deposition rate, σi the width of the Gaussian for

the ith CV, and W (kτ) the height of the Gaussian at simulation time kτ . In the long time

limit, the biasing potential is the negative free energy as a function of the CVs. Hence, the
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biasing potential is an estimator of the free energy F (~s):

V (~s, t → ∞) = −F (~s) + C . (3.22)

where C is a constant.

In practical use, standard metadynamics has two well-known problems. One problem is

that it can push the simulated system toward non-physical high-energetic states, because the

biasing potential overfills the free-energy profile. The second problem is that the estimate

for the free-energy landscape does not converge but fluctuates, and thus it is not clear when

to stop the simulation. To alleviate these challenges, well-tempered metadynamics was

introduced in Barducci et al. [2008]. Here, the Gaussian height W decreases exponentially

with simulation time according to:

W (kτ) = W0 exp

(

−
V
(

~s(~r(kτ)), kτ
)

kB∆T

)

. (3.23)

where W0 is the initial Gaussian height and ∆T is a parameter with the dimension of a

temperature. In this way, by rescaling the Gaussian height, the biasing potential converges

more smoothly in the long time limit. However, it does not completely compensate the

underlying free energy:

V (~s, t → ∞) = −
∆T

T +∆T
F (~s) + C . (3.24)

T denotes the temperature of the system, and the input parameter ∆T can be selected

to tune the extent of the free-energy exploration. In the case of ∆T=0, the simulation

corresponds to standard MD, while ∆T → ∞ reproduces standard metadynamics. For

well-tempered metadynamics, the input parameter is called “bias factor” γ:

γ =
∆T

T +∆T
. (3.25)

γ needs to be chosen carefully, since it should be small enough for producing physical states

and should be large enough for the relevant free-energy barriers to be crossed. By adjusting

the bias factor, well-tempered metadynamics is able to enhance the fluctuations of the CVs

in a controlled manner.
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Chapter 4

S1 pocket plasticity in trypsin-like proteases

4.1 Introduction

Trypsin-like serine proteases from family S1 constitute the largest protease group in humans

[Goettig et al., 2019]. Members of this family are enzymes responsible for blood coagulation,

digestion, fibrinolysis, fertilization, development, apoptosis and immunity. Because trypsin-

like serine proteases serve so many important biological functions, many of them have been

under active pursuit as therapeutic targets with indications ranging from thrombosis and

inflammation to asthma and chronic obstructive pulmonary disease.

Trypsin-like serine proteases exhibit a highly similar tertiary folding pattern, partic-

ularly for the region near the substrate binding site comprising the conserved catalytic

triad of His57, Asp102, and Ser195. The essential catalytic unit of these peptidases is a

polypeptide chain of about 220 amino acid residues, which can be extended N-terminally

by addition of unrelated peptide segments in many mosaic proteins [Rawlings and Barrett,

1994]. Proteolytic cleavage at the N-terminus of the catalytic domain of a proenzyme leads

to a new N-terminus with a hydrophobic residue. The backbone of this residue forms a

salt bridge with Asp194 resulting in the assembly of the functional catalytic site.

We studied a wide range of trypsin-like serine proteases, all of which are important drug

targets: Complement factor D, cathepsin G, chymase, chymotrypsin, factor VIIa, factor

IXa, factor Xa, factor XIa, factor XIIa, hepsin, matriptase, thrombin, tissue kallikrein,

t-plasminogen activator, trypsin, tryptase, and u-plasminogen activator. Complement

factor D, cathepsin G, chymase, and tryptase play essential roles in anti-inflammatory

response. Chymotrypsin and trypsin are simple digestive proteases in the intestine, where

they cleave almost any protein. Hepsin plays a role in cell growth and development.

Matriptase plays a pivotol role in the formation and integrity of the intestinal epithelial

barrier. Human kallikreins and kallikrein-related peptidases are expressed in nearly all

tissues and fluids of the human body and participate in regulation of blood pressure. The

coagulation factors VIIa, IXa, Xa, XIa, XIIa and thrombin are essential for blood clotting

and in contrast to this, T-plasminogen activator and u-plasminogen activator are involved

in the breakdown of blood clots.

The complex of the serine protease coagulation factor VIIa (FVIIa) with the mem-

brane-bound tissue factor (TF) initiates the coagulation cascade leading to fibrin formation,

schematically shown in Fig. 4.1. Because this coagulation cascade plays a critical role in

pathological thrombosis, significant efforts have been made to design selective inhibitors

of the FVIIa-TF complex as anticoagulant alternatives for the treatment of thrombotic

diseases.
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have a β-strand at Trp215 position and the remaining 17 structures show a flipped Trp215

side chain, but the S1 pocket is still accessible. Based on the inactive structure of the

thrombin R77A mutant [Papaconstantinou et al., 2005], Pineda et al. [2006] mentioned

that a collapse of Trp215 in the thrombin active site would not be possible without an

initial flip of the indole side chain. Being halfway between E and E*, I call the conformation

with the flipped indole E’. In all FVIIa structures published so far, the orthosteric ligands

bind to the S1 pocket in a canonical fashion, all targeting the S1 pocket from the same

side. Our collaborators from Sanofi reported for the first time an X-ray crystal structure

of FVIIa in the E* conformation. This conformation is induced by an oxazole derivative

that binds between the β-strands and that locks the protein into the inactive E* form.

With MD simulations, I was able to investigate the conformational dynamics of the S1

pocket of FVIIa at a molecular level and to sample the β-strand to loop transition at Trp215

in FVIIa, which resembles the E and E* conformations of the active site. I was able to

extend these results to other serine proteases and observed similar S1 pocket flexibility and

spontaneous β-strand to loop transitions in thirteen out of sixteen other serine proteases

studied. This suggests that the E-E* transition with a collapse of Trp215 into the active

site is a property of many serine proteases and not just thrombin or FVIIa.

4.2 Methods

4.2.1 MD simulations

The coordinates of FVIIa with the soluble TF (two Sanofi in-house structures, PDB entry:

2aer [Bajaj et al., 2006]) served as starting points for different simulation set-ups: The ligand

structures of the internal structures were either kept or removed. The ligand structure of

2aer was removed. Zn2+ and Ca2+ ion coordinates were added to the internal structures

from PDB entry 2aer after protein alignment using VMD [Humphrey et al., 1996]. All

residues were simulated in their physiological protonation state, except His57 (chain B)

and Glu130 (chain C) were protonated. Ligand structures and γ-carboxyglutamic acid

side chains were parameterized with the General Amber Force Field (GAFF) [Wang et al.,

2004].

The coordinates of all other serine endopeptidases were taken from the PDB (Table 4.1)

and simulated in their physiological protonation state, except for doubly protonated His57

in complement factor D and for protonated Glu226 in cathepsin G and Glu70 in Factor

IXa, respectively. All bound ligands were removed.

Missing side chains in all set-ups were modeled using Modeller [Šali and Blundell, 1993].

Crystallographic water molecules and ions were retained. Each set-up was simulated with

two different water models. The protein structures were solvated once in TIP4P-D [Piana

et al., 2015] and once in TIP3P water [Jorgensen et al., 1983] with 150 mM NaCl each.

MD simulations were carried out using Gromacs 2018 [Abraham et al., 2015] and the

AMBER99SB*-ILDN-q force field [Hornak et al., 2006a, Best and Hummer, 2009, Best

et al., 2012, Lindorff-Larsen et al., 2010]. For FVIIa-TF systems, the Gromacs 2018

version with additional RTC implementation [Wassenaar, 2018] was used. Each system

was energy minimized, followed by five equilibration steps, in which I gradually weakened
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Table 4.1: Protein and PDB entries used as starting structures for MD simulations.

protein PDB entry

cathepsin G 1cgh [Hof et al., 1996]
chymase 3s0n [Lo et al., 2011]

chymotrypsin 1ggd [Neidhart et al., 2001]
complement factor D 5nb7 [Lorthiois et al., 2017]

factor IXa 6mv4 [Vadivel et al., 2019]
factor Xa 1g2l [Nar et al., 2001]
factor XIa 3bg8 [Buchanan et al., 2008]
factor XIIa 6b77 [Dementiev et al., 2018]

hepsin 5ce1
matriptase 4jyt [Goswami et al., 2013]
thrombin 5a2m

tissue kallikrein 2 4nfe [Skala et al., 2014]
t-plasminogen activator 1rtf [Lamba et al., 1996]

trypsin 1h4w [Katona et al., 2002]
tryptase 4a6l, chain A [Liang et al., 2012]

u-plasminogen activator 1c5m [Katz et al., 2000]

the position restraints on heavy atoms, first in an NVT ensemble (0.25 ns) and then in an

NPT ensemble (4 x 0.5 ns) using a Berendsen thermostat and barostat [Berendsen et al.,

1984]. Production simulations were run at a temperature of 310 K and a pressure of 1 bar

in an NPT ensemble using a Nosé-Hoover thermostat [Evans and Holian, 1985, Nosé, 1984]

and a Parrinello-Rahman barostat [Parrinello and Rahman, 1981].

4.2.2 Metadynamics simulations

Equilibrated FVIIa structure (PDB entry: 2aer with removed ligand) solvated in TIP3P

water served as starting structure for well-tempered metadynamics simulations using Gro-

macs 2018 and PLUMED 2 [Tribello et al., 2014]. The collective variable OTrp215-NVal227

distance was used to simulate the S1 pocket conformational change. Gaussians were de-

posited every 2 ps with a starting height of 0.1 kJ
mol

, which gradually decreased with a bias

factor of 2 and a temperature of 310 K. The width of the Gaussians was defined on the

basis of unbiased MD simulation runs and was set to 0.02 nm. Upper walls with a force

constant of 2000 kJ
mol

were set to 1.2 nm, 0.4 nm and 0.4 nm for the OTrp215-NVal227 distance,

OIle212-NThr229 distance and NIle212-OThr229 distance, respectively.

4.3 Results and discussion

4.3.1 Ligand-bound X-ray crystal structures with oxazole and

benzamidine derivative show different S1 pocket conformation

Our collaborators from Sanofi determined in total two new high resolution FVIIa crystal

structures: (i) The structure of FVIIa with the benzamidine-based inhibitor. (ii) The

structure of FVIIa with a bound oxazole derivative in the E* conformation with a col-

lapsed Trp215. Both structures are of human wild-type FVIIa in complex with TF. The
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oscillated. Interestingly, the second transition took place without deposition of an additional

Gaussian (Fig. 4.9e). This indicates that the simulation from this part onwards was run on a

biased potential accumulated through the initial deposited Gaussians. Noteworthy, biasing

the OTrp215-NVal227 distance did not lead to a converged simulation. The metadynamics

simulation yielded a free energy barrier of ≈8 kJ/mol between the favored β-strand form

and the unstable loop form (Fig. 4.9b,c). The small energy barrier for the conformational

change is consistent with the general concept of the existence of an equilibrium between E

and E* forms. It is also interesting to consider the kinetics of the E to E* interconversion.

From a Markov state model built on extensive MD simulations of trypsin [Plattner and

Noé, 2015], transitions between different apo forms reminiscent of E and E* were inferred

to occur on the ten-microsecond timescale, which is slower than our observations. For the

related Factor Xa, stopped-flow experiments using sodium binding as a perturbant, and

intrinsic fluorescence as probe showed even slower kinetics in the millisecond regime [Vogt

et al., 2010]. Other than differences between the proteins, possible reasons for the more

rapid sampling of E*-like states here are that I investigate β-sheet to loop interconversions,

and that the E* state may not be fully formed in our MD simulations, and that the E/E*

structures are differently defined in the stopped-flow experiments. Differences in MD force

fields may also play a role.

4.4 Summary and conclusion

Here, using MD simulations I report spontaneous transitions between the β-strand and

loop forms of the 215-217 segment in FVIIa, demonstrating S1 pocket plasticity even in the

absence of ligands and with bound tissue factor. The oxazole derivative bound to FVIIa

shifts the E-E* equilibrium towards the inactive conformation and stabilizes this inactive

conformation. Atomistic MD simulations provided detailed insights into the pre-existing

equilibrium between β-strand and loop forms at Trp215, which correlates with closed (E*)

and open (E) conformations of the active site. This conformational change controls the onset

of substrate binding and catalysis. In the E* form, substrates cannot bind to the active site,

and catalysis is impeded. In our MD simulations, I observed multiple spontaneous transition

events. In 7 out of 22 runs with the E form as starting structure, the 215-217 segment

eventually rearranged into a loop structure. These transitions occurred spontaneously and

were associated with water molecules probing the backbone hydrogen bonds. I observed a

similar destabilizing effect of water molecules wedging into the binding interface also in the

complex between the papain-like protease of SARS-CoV-2 and its di-ubiquitin substrate

(see Chapter 7).

S1 pocket plasticity appears to be common among serine proteases. I observed sponta-

neous β-strand to loop transitions in MD simulations of 13 other serine proteases (cathepsin

G, chymotrypsin, factor IXa, factor Xa, factor XIa, factor XIIa, matriptase, thrombin, tis-

sue kallikrein, t-plasminogen activator, trypsin, tryptase, and u-plasminogen activator).

Only for hepsin and chymase no transitions were observed. The results reported in this

Chapter offer a view of trypsin-like proteases in the free form that is entirely consistent

with the E*–E equilibrium concept. The observed plasticity of the S1 pocket in simulations
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and the structure of the oxazole derivative bound to FVIIa in an E* conformation together

suggest that the E* conformation is a valid target for the design of serine protease inhibitors.

MD simulations indicate that S1 pocket plasticity can be extended to a wide range of other

trypsin-like proteases.
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Chapter 5

Flap dynamics and Trp39 side chain flipping in renin

5.1 Introduction

Aspartic proteases are highly conserved from mammals to retrovirus [Revuelta et al., 2014].

Eukaryotic aspartic proteases include renin and pepsin. Renin is critical for controlling blood

pressure homeostasis, and electrolyte balance as part of the renin-angiotensin-aldosterone

system (RAAS). Pepsin is a digestive enzyme that degrades proteins in the stomach.

Aspartic proteases play also a vital role in the lifecycle of many pathogens, including HIV-1

protease, and plasmepsin, which is found in the Malaria-causing parasite Plasmodium

falciparum.

RAAS is an important system in the body to regulate blood pressure and the amount

and composition of extracellular fluid. It consists of a sequential cascade of enzymatic

reactions, schematically shown in Fig. 5.1. Specialized cells inside the kidneys from the

juxtaglomerular apparatus measure blood pressure. When these cells sense a decrease

in blood pressure, they produce renin, which is released into the blood. In the blood,

renin cleaves angiotensinogen, produced in the liver, to generate angiotensin 1. The

latter is then cleaved by angiotensin-converting enzyme (ACE) from the lungs to yield

angiotensin 2. Angiotensin 2 is the strongest vasoconstriction substance in the body

and activates vasoconstriction by binding to the angiotensin 1 receptor. Additionally,

angiotensin 2 releases aldosterone from the adrenal cortex. Aldosterone is a hormone

that increases blood pressure by reabsorption of sodium and water in the vascular system.

Hence, for the prevention and treatment of hypertension and other related disorders, the

most interesting inhibitory targets are the angiotensin 1 receptor, the enzymes ACE, and

renin. Renin is a favorable target, since renin catalyzes the rate limiting step in RAAS

and inhibition of renin prevents the formation of additional harmful angiotensin I peptides.

Further, the binding site of renin has only one known substrate, implying high specificity

and an opportunity for designing a small molecule causing little side effects [Gradman and

Kad, 2008].

Pepsin-like aspartic proteases possess a characteristic β-hairpin structure known as the

flap, which covers the active site. The eukaryotic aspartic proteases consist of two domains

of a single polypeptide chain, while the active enzyme of retroviral aspartic proteases is

a dimer of two identical subunits. The active site has a large cavity and is composed of

two aspartic acid residues, Asp32 and Asp215, one in N- and one in C-terminal domain

[Blundell et al., 1983]. Here, and throughout the thesis, pepsin numbering for residues is

used. One of the catalytic Asp residues acts as proton acceptor from the nucleophilic water

molecule and is assumed to be charged, while the other one is assumed to be protonated,
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acting as a general acid to transfer its proton to the substrate [Andreeva and Rumsh,

2001]. The flap covering the active site can be in an open or closed conformation. Its

conformational flexibility plays a crucial role in catalytic activity and substrate intake.

Most aspartic proteases share structural and sequence similarity, with Trp39 and Tyr75

being conserved amino acids next to the binding site. The majority, 78 out of the 86

available X-ray crystal structures of protein-ligand complexes of renin in the PDB, show

a closed flap conformation, which tightly caps the ligand molecule. Interestingly, 8 X-ray

crystal structures of inhibitor-bound complexes show the flap in an open conformation, with

the side chains of both Trp39 and Tyr75 flipped compared to the closed flap conformation.

In addition, there are only three X-ray crystal structures available of unbound renin (PDB

entries 2ren [Sielecki et al., 1989], 1bbs [Dhanaraj et al., 1992], and 2x0b [Zhou et al.,

2010]), which show the flap in a closed conformation with no free space to allow substrate

intake and product exit.

The flap dynamics of aspartic proteases, including renin, HIV-1 protease, BACE1 and

plasmepsin II, was investigated by several experimental and computational studies [Hong

and Tang, 2004, Pietrucci et al., 2009, Tzoupis et al., 2012, Roche et al., 2015]. Further,

MD simulations showed that the unliganded protease can reversibly transition between

closed and open flap forms [Hornak et al., 2006b, Sadiq and De Fabritiis, 2010, Xu et al.,

2012, Brás et al., 2014, Karubiu et al., 2015, Yu et al., 2017, Bhakat and Söderhjelm,

2022]. In additional to the flexibility of the flap region, which was investigated in the

previous studies, I looked into the side chain flipping of Trp39, which is crucial for all open

flap binders. All inhibitors binding to the open flap conformation not only induce the

flap opening, including a flipped Tyr75 side chain, but also induce side chain flipping of

Trp39. Trp39 needs to be in an outward-pointing conformation when bound to open flap

binders, as revealed by X-ray crystal structures. In order to investigate the conformational

dynamics in pepsin-like aspartic proteases including the role of side chain flipping of Trp39,

I analyzed the structural behavior of the flap region and surrounding residues using MD

simulations and enhanced sampling methods. Three homologous proteases, renin, pepsin,

and plasmepsin were studied with MD simulations, and renin was further investigated using

SWISH and metadynamics simulations.

5.2 Methods

5.2.1 Clustering of X-ray crystal structures

The ligands of the renin X-ray crystal structures were clustered based on their center of

mass in the binding pocket using k-means with number of clusters predefined to 3. In

addition, the protein structures were clustered based on their flap backbone (Thr72 to

Ser81) using the gromos method and a RMSD cutoff of 0.04 nm. The gromos method is

developed by Daura et al. [1999] and follows the following procedure: The mutual RMSD

between all structures is calculated and the preset RMSD cut-off determines the cluster

membership. The algorithm counts the number of neighbors for each structure within the

cut-off and identifies the structure with the largest number as cluster representative and

assigns it and its neighbors to a cluster. For the remaining structures, this workflow is
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of 310 K and a pressure of 1 bar in an NPT ensemble using a Nosé-Hoover thermostat

[Evans and Holian, 1985, Nosé, 1984] and a Parrinello-Rahman barostat [Parrinello and

Rahman, 1981].

For renin (PDB entry: 1rne), 20 replicates of a mixed-solvent system were set up. 1 M

benzene molecules were added to the simulation box with an interligand repulsion term

to the nonbonded interactions to prevent clustering and to maintain diffusive behavior.

The interligand Lennard Jones Pair was set into an effectively repulsive potential with a

σ = 0.8 nm and ε = 1.5·10−3 kJ
mol

.

5.2.3 SWISH simulations

The SWISH simulations were performed starting from the equilibrated renin structure (PDB:

1rne) with removed ligand in Gromacs 4.6.7-plumed.2.4 using the AMBER99SB*-ILDN-q

force field and the TIP4P-D water model. The replica exchange simulations were performed

within a scaling factor range of 1 - 1.35 at 310 K. In total, three different SWISH simulations

were set up: (1) SWISH using 8 replicas with scaling of binding site-water, (2) SWISH

using 8 replicas with scaling protein-water, and (3) SWISH using 6 replicas with scaling

protein-water. Parameters for the non-bonded interaction between the oxygen atoms of

water molecules and carbon/sulfur atoms of the protein were calculated according to the

Lorentz-Berthelot mixing rules and added to the topology. An exchange between two

replicas was attempted every 2 ps. Potentials of mean force (PMF) of the unbiased replicas

were obtained along the reaction coordinate Cα − Cα distance between Asp32 and Ser76.

For the (1) SWISH set-up using 8 replicas with scaling of binding site-water, the PMF

was additionally calculated using the Weighted Histogram Analysis Method (WHAM) that

takes information into account from all replicas.

5.2.4 Metadynamics simulations

Equilibrated renin structure (PDB: 1rne) with removed ligand structure solvated in TIP4P-D

water served as starting structure for well-tempered metadynamics simulations using Gro-

macs 2018 and PLUMED 2 [Tribello et al., 2014]. In total, two metadynamics simulations

were set up. In one set-up both the dihedral angle χ1 of Trp39 and the Cα − Cα distance

between Asp32 and Ser76 were used as collective variables. Gaussians were deposited every

1 ps with a starting height of 0.5 kJ
mol

, which gradually decreased with a bias factor of 6

and a temperature of 310 K. An upper wall for the distance variable was set to 2 nm with

a force constant of 2000 kJ
mol

. The widths of the Gaussians were defined on the basis of

unbiased MD simulation runs and were set to 0.13 rad and 0.02 nm. In the other set-up,

only the χ1 of Trp39 served as collective variable. Gaussians were deposited every 1 ps

with a starting height of 1.2 kJ
mol

, a bias factor of 6 and a temperature of 310 K. The width

of the Gaussians was set to 0.13 rad.
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Table 5.1: Clusters of renin X-ray crystal structures based on flap coordinates

# structures RMSD cluster members (PDB entries)

cluster 1 66 0.028 nm

1rne, 1bil, 1bim, 1hrn, 2g1n, 2g1o, 2g1r, 2g1s,
2g1y, 2g20, 2g21, 2g22, 2g24, 2i4q, 2iko, 2iku,
2il2, 2v0z, 2v10, 2v11, 2v12, 2v13, 2v16, 3d91,
3gw5, 3km4, 3oot, 3oqf, 3oqk, 3own, 3q3t,
3q4b, 3q5h, 3sfc, 3vsw, 3vsx, 3vuc, 3vyd,
3vye, 3vyf, 4gj7, 4gj8, 4gj9, 4gja, 4gjb, 4gjc,
4gjd, 4pyv, 4q1n, 4ryc, 4ryg, 4rz1, 4s1g, 4xx3,
4xx4, 5koq, 5kos, 5kot, 5sxn, 5sy2, 5sy3, 5sz9,
5tmg, 5tmk, 5v8v, 5vrp

cluster 2 9 0.032 nm
3g6z, 3g70, 3g72, 3k1w, 3o9l, 3oad, 3oag, 4gj6,
5vpm

cluster 3 2 0.000 nm 2bks, 2fs4
cluster 4 1 2bkt
cluster 5 1 2g26 (chain B)
cluster 6 1 2g27
cluster 7 1 4gj5

5.3 Results and discussion

5.3.1 Renin structures show different flap conformation

Renin can adopt different flap conformations from closed to open states. All X-ray crystal

structures from the PDB without a ligand (PDB entries: 1bbs, 2ren, 2x0b) show the closed

flap conformation. X-ray crystal structures with bound ligands show either closed or open

flap conformations, depending on the ligand binding mode. For all complex X-ray crystal

structures in the PDB, I clustered the ligands based on their center of mass in the binding

pocket using k-means with number of clusters predefined to 3. In Fig. 5.2a,b the complex

X-ray structures are shown with the three clusters of ligands (shown in red, yellow, and

green). Additionally, I clustered the protein structures based on their flap backbone (Thr72

to Ser81) using the gromos method and a RMSD cutoff of 0.04 nm. Using all X-ray crystal

structures of renin, except PDB entry 5t4s (due to missing flap coordinates), this procedure

outputted seven clusters as listed in Table 5.1.

Looking at the clusters, closed flap structures belong to cluster 1 and open flap structures

are present in cluster 2. The remaining clusters are one-membered clusters (PDB entries:

2bks and 2fs4 are identical). In order to assign them to either the closed or open flap

clusters, I calculated the RMSD values between the remaining clusters and both cluster

representative structures of cluster 1 and 2. The representative structures for cluster 1

(closed flap) and cluster 2 (open flap) are 5sxn and 3oad, respectively. The RMSD values

are listed in Table 5.2. Due to lower RMSD values to the corresponding cluster and visual

inspection, 2bks/2fs4, 2bkt, 2g27 are assigned to the open flap and 4gj5 to the closed flap

structures. 2g26 (chain B) fits more into the open flap structures, but since the flap is

curled (Fig. 5.2f) the conformation is referred to as distorted. The clustering procedure

assigned the PDB entries 5vpm and 4gj6 to an open flap conformation. However, both χ1

dihedral angles of Trp39 and Tyr75 of 5vpm and 4gj6 show an inward-pointing conformation
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Table 5.2: RMSD to cluster 1 and 2 for cluster 3, 4, 5, 6, 7

PDB entries RMSD to cluster 1 (closed flap) RMSD to cluster 2 (open flap)
cluster 3 2bks, 2fs4 0.778 nm 0.5587 nm
cluster 4 2bkt 0.7539 nm 0.5055 nm
cluster 5 2g26 (chain B) 0.7792 nm 0.8357 nm
cluster 6 2g27 0.89790 nm 0.7594 nm
cluster 7 4gj5 0.47166 nm 0.9026 nm

Table 5.3: Structures used to generate Fig. 5.2

PDB entries of closed flap conformation PDB entries of open flap conformation

1rne, 1bil, 1bim, 1hrn, 2g1n, 2g1o, 2g1r, 2g1s,
2g1y, 2g20, 2g21, 2g22, 2g24, 2i4q, 2iko, 2iku, 2il2,
2v0z, 2v10, 2v11, 2v12, 2v13, 2v16, 3d91, 3gw5,
3km4, 3oot, 3oqf, 3oqk, 3own, 3q3t, 3q4b, 3q5h,
3sfc, 3vsw, 3vsx, 3vuc, 3vyd, 3vye, 3vyf, 4gj5,
4gj7, 4gj8, 4gj9, 4gja, 4gjb, 4gjc, 4gjd, 4pyv, 4q1n,
4ryc, 4ryg, 4rz1, 4s1g, 4xx3, 4xx4, 5koq, 5kos,
5kot, 5sxn, 5sy2, 5sy3, 5sz9, 5t4s, 5tmg, 5tmk,
5v8v, 5vrp

2bks, 2bkt, 2fs4, 2g27,
3g6z, 3g70, 3g72, 3k1w,

3o9l, 3oad, 3oag

(Fig. 5.2f). Hence, they are labeled as semi-open in the following. A final list of all open

and closed flap structures can be found in Table 5.3. All X-ray crystal structures of renin

are displayed in Fig. 5.2.

As depicted in Fig. 5.2e all open flap conformations display a similar ligand binding

mode. All ligands inducing the flap opening are members of the same cluster (green) and are

located deeper in the binding pocket than ligands from the other two clusters. The ligands

penetrate the binding pocket, leading to further pocket opening. As shown in Fig. 5.2f

the Trp39 and Tyr75 side chains are flipped in the open flap conformations. Ligand arms

displace the side chain of Trp39 and wedge in between Trp39 and Phe112.

5.3.2 Flap in renin closed in unbiased MD simulations

To investigate the flap dynamics, I set up a long MD simulation with the closed flap as

starting conformation (PDB entry: 1rne) and eight short MD simulations with the open

flap as starting conformations (PDB entries: 2bks, 2bkt, 2g26, 2g27, 3g6z, 3g70, 3g72,

3k1w) with removed ligand structures (Fig. 5.3a,b). The flap remained closed over the

whole course of the trajectory of 4 μs or, if started from an open state, closes within a

timescale of 500 ns (Fig. 5.3c,d).

The Trp39 side chain flipped in 50% of the MD simulations starting from the open flap

conformations towards the closed conformation, but didn’t change its conformation in the

4 μs long MD simulation starting from the closed conformation. The MD simulations of

PBD entries: 2bkt, 2g26 and 2g27 showed a fast Trp39 side chain flipping at the start of

the simulations. The Trp39 side chain in MD simulation from PDB entry 3g72 changed

its open conformation towards the closed conformation at ≈400 ns. In the four remaining
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5.3.3 Minimal truncated form of open flap binder needs to have

interactions with catalytic Asp to stabilize the flap in open form

To assess the complex stability, I set up simulations of the closed flap complex (PDB entry:

1rne) and one open flap complex (PDB entry: 3k1w) in presence of the ligand for each

structure. Both ligand structures remained stably bound, displaying the same binding

mode as observed in the X-ray crystal structures (Fig. 5.4a,b,f). Starting from the closed

flap conformation, the flap showed some flexibility and Tyr75 side chain flipping (Fig. 5.4a),

while the open flap binder BFX locked the flap coordinates into the open form (Fig. 5.4b).

The conformation of Trp39 remained unchanged in both simulations.

To understand which fragment of BFX is essential for locking the flap in the open flap

form, three additional simulations were set up: (1) large fragment of BFX (4-4-[3-(2-bromo-5-

fluorophenoxy)propyl]phenyl-1,2,5,6-tetrahydropyridine), (2) small fragment of BFX (4-bro-

mofluorobenzene) and (3) a phenol molecule aligned on carbon atoms of 4-bromofluoroben-

zene of BFX. Only the large fragment of BFX was able to lock the flap in an open flap form,

similar to BFX (Fig. 5.4c). The small fragment, 4-bromofluorobenzene, remained bound

in the hydrophobic pocket of Trp39 and Phe112, but showed some flexibility (Fig. 5.4d,f).

Bound 4-bromofluorobenzene did not rigidify the open form, and the flap closed during

the simulation (Fig. 5.4d). Replacing 4-bromofluorobenzene with phenol resulted in phenol

leaving the binding pocket and flap closing (Fig. 5.4e,f). Hence, the electrostatic interac-

tions with the catalytic Asp and the hydrophobic interactions with Trp39 and Phe112 are

necessary for a compound to stabilize the flap in an open form.

5.3.4 Scaling water-protein interaction and mixed-solvent simulations

led to more flap dynamics, but did not sample fully open pocket

with flipped Trp39

Gervasio et al. established a Hamiltonian replica-exchange method called SWISH (sampling

water interfaces through scaled Hamiltonians) that enhances the sampling of hydrophobic

pocket openings by increasing the interactions between water molecules and protein atoms.

I set up three SWISH protocols of renin: (1) scaling only the interactions with residues of

the binding pocket using 8 replicas, (2) scaling interactions with all protein residues using

8 replicas, and (3) scaling interactions with all protein residues using 6 replicas. For all

procedures, I used the closed flap conformation without ligand structure (PDB entry: 1rne)

as starting structure. Indeed, flap openings were observed (Fig. 5.5) in contrast to the

4 μs unbiased simulation, where no flap opening took place. Interestingly, sampling of the

distinctive conformational states worked best in the set-up, where only the interaction of

the binding site were scaled (Fig. 5.5a). The simulations found three conformational states,

very closed (8 Å), closed (12 Å) and open (16 Å). The two set-ups with scaling all protein

residues also sampled open flap forms, but with the open flap form scarcely populated. In

the set-up with 6 replicas, the replica exchange with replica 5 and 6 was stopped within

the first 100 ns, thus in Fig. 5.5f only the replicas 1 to 4 are plotted. The energy barrier

between the closed and open form was similar between all set-ups and was estimated to

≈3 kT. In all three SWISH simulations, side chain flipping of Tyr75 was observed in all
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replicas, but Trp39 always remained in its inward-pointing conformation (χ1 = ≈70◦).

To enhance sampling further, I set up 20 mixed-solvent simulations of renin, starting

from the closed conformation with 1 M benzene molecules (Fig. 5.6a). In 20 x 500 ns

trajectories, increased flap dynamics was observed and the side chain of Tyr75 adopted

various conformations. However, the side chain of Trp39 remained unchanged within the

accumulated 10 μs (Fig. 5.6b).

SWISH and mixed-solvent simulations starting from the closed conformation led to

more flap dynamics and Tyr75 side chain flipping compared to the unbiased MD simulation

of 4 μs, but did not sample the full pocket opening with flipped Trp39.

5.3.5 Point mutations of Phe112 in renin did not result in flipped

Trp39

In the closed flap conformation, as seen in X-ray crystal structures, Trp39 has hydrophobic

interactions with Phe112. More hydrophobic side chains (Leu71, Leu73 and Val80) are

located at the bottom of the flap. In wild-type renin simulations from PDB entry 1rne, I

solely observed water molecules entering below the flap region. To understand the Trp39

side chain dynamics better, I computationally mutated Phe112 once to Ala, and once

to Lys, to reduce the hydrophobic interactions. In both MD simulations with the point

mutations, the number of water molecules entering into the pocket increased. However, the

conformation of the side chain of Trp39 remained rigid, as observed in the WT simulations

(Fig. 5.7d).

5.3.6 Pepsin and plasmepsin showed similar behavior as renin

Renin is a member of the aspartic protease family, which also includes several other proteins

like gastricsin, pepsin, cathepsin D and BACE (human), plasmepsin (protozoan) and HIV-1

protease (viral). To understand whether the Trp39 side chain conformation is similarly

stable in related proteins, I selected two drug targets similar to renin for MD simulation:

pepsin and plasmepsin.

Both of them have a Trp at 39 position. Plasmepsin (Fig. 5.8b) has a Tyr at 112

position, and pepsin (Fig. 5.8c) has a Val instead of Phe112. In both trajectories of 2 μs

each, the flap showed some flexibility, but Trp39 remained in its starting conformation.

Hence, these simulations indicate that the rigidity of Trp39 is not only present in renin,

but also in pepsin and plasmepsin, and a characteristic feature of the pepsin-like protease

family.

5.3.7 Well-tempered metadynamics simulation indicated a large free

energy barrier of Trp39 side chain flipping

Even with a lot of computational effort, 4 μs of unbiased MD simulations, 10 μs of mixed-sol-

vend MD simulations, and SWISH simulations, Trp39 side chain flipping starting from the

closed flap conformation was not observed. In contrast, starting from the open flap confor-

mation with outward-pointing Trp39 side chain and without ligand structure could result in

Trp39 swinging back to its inward-pointing conformation. Thus, the energy barrier for the
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and biased MD simulations, I investigated the plasticity of the flap and surrounding residues

in aspartic proteases, with a focus on renin. I observed that the flap can possess closed

and open conformations including Tyr75 side chain flipping, which is in good agreement

with previous studies [Xu et al., 2012, Brás et al., 2014, Karubiu et al., 2015, Yu et al.,

2017]. Very recently Bhakat and Söderhjelm [2022] studied the flap dynamics of pepsin-like

proteases with great detail. They found that the flap of the free enzyme can transition

between various states, closed and open forms, and that the side chain flipping of Tyr75

potentially plays a decisive role for the flexibility of the flap. In their two studied systems,

plasmepsin-II and BACE-1, computational mutation of Tyr75 to Ala resulted in complete

flap collapse. Interestingly, previous experimental studies showed that the same mutation

led to a loss of activity [NAsIR et al., 1999]. Here, I observed similar flexibility of the flap

of the wild-type apo form, including Tyr75 side chain flipping. In all 20 MD runs with 1

M benzene molecules, the flap changes its conformation between closed and open forms.

However, in the 4 μs unbiased MD simulation run without 1 M benzene molecules, the flap

remained closed, probably due to limited sampling time.

In previous studies, only little attention was given to the dynamics of the Trp39 residue

close to the flap. It is known that Trp39 can form a H-bond with Tyr75, stabilizing the

closed flap conformation [Bhakat and Söderhjelm, 2022]. Comparing all available X-ray

crystal structures reveals that all inhibitors binding to the open flap conformation also

displace the Trp39 side chain. Hence, even though flexible flap dynamics can be sampled

with simulations, the transition to a fully open hydrophobic subpocket, as observed in

X-ray crystal structures, is only achieved with an outward flipped Trp39 side chain and

has not been observed until now. Here, I could sample the Trp39 side chain flipping,

but only via applying specific biasing. I did not observe Trp39 side chain flipping in

renin, pepsin, and plasmepsin using MD, mixed-solvent MD, and SWISH simulations.

Only well-tempered metadynamics runs biasing the Trp39 dihedral angle χ1 led to the

sampling of outward-flipped Trp39 side chain in renin as observed in all open flap X-ray

crystal structures. This suggests that even long simulations, and biased simulations where

no specific bias on the conformational change is applied, fall short, when dealing with

transient, high-energy pockets. The well-tempered metadynamics simulations showed that

a large energy barrier of 35 kJ
mol

limits the flexibility of Trp39 side chain, and the side chain

of Trp39 is commonly populated in an inward pointing position. Certain small molecules

can displace the side chain of Trp39 to the flipped-out conformation. Hence, our simulations

indicate that small molecules are capable of inducing major conformational changes, up to

35 kJ
mol

, yet achieve high-affinity binding. This implies that these ligands potentially have

an exceptionally long on-time, and simultaneously a slow off rate. This can be exploited

for further drug design studies.

Most of the aspartyl proteases possess structural and sequence similarity, indicating

that understanding the conformational dynamics associated with a subset of these enzymes

allows for understanding other homologous enzymes. Hence, I postulate that the high energy

barrier of side chain flipping of Trp39 is also present in other enzymes of the pepsin-like

protease family.
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Chapter 6

Cryptic pockets in NPC2, p38α, ricin, and Eg5

6.1 Introduction

How cryptic pockets are formed is not very well understood. Even though ligands seem to

be required for the opening of the cryptic pockets, it is not clear whether the binding process

follows an induced-fit, conformational selection, or a “mixed” mechanism [Csermely et al.,

2010]. Due to this lack of knowledge and their hidden nature, cryptic sites are difficult to

find by both experimental and computational methods. Physics-based approaches, such as

MD simulations, are limited by the possible sampling time and machine learning approaches

lack the availability of large and high-quality experimental data sets.

The CryptoSite data set by Cimermancic et al. [2016] consists of a representative

set of 93 unbound and ligand-bound pairs with cryptic sites, including 4 proteins with

previously known cryptic sites from the literature (exportin-1, TEM1 β-lactamase, IL-2, and

Bcl-X). This data set is visualized in the Appendix. FVIIa and thrombin, the trypsin-like

proteases studied in Chapter 4, are part of the data set, however Cimermancic et al.

[2016] selected them based on older X-ray crystal structures not displaying the major

structural changes investigated in this Thesis. In addition to FVIIa and renin, I investigated

protein conformational changes upon ligand binding in four other systems selected from

the CryptoSite data set: NPC2, p38α, ricin, and Eg5. In all four systems, it is known from

X-ray crystal structures that ligand binding can cause conformational changes. Our aim

is to sample the conformational space made accessible upon binding of the ligands, yet

without using the specific ligand structures or prior knowledge on the location and features

of the pockets. We compared three different simulation methods, which can be beneficial for

identifying altered protein structures that can be targeted. I used these methods to probe

and induce the opening of cryptic pockets starting from the occluded apo structures: MD

simulations, mixed-solvent MD simulations with 1 M benzene molecules, and an enhanced

sampling method called SWISH. This allowed us to investigate the opening mechanisms of

the selected subset. In this Chapter, I summarize the results that were generated together

with Simon Tiede, a former Bachelor Thesis student working with me [Tiede, 2021].

6.2 Methods

6.2.1 MD simulations

The coordinates of all proteins in their apo conformation were taken from the PDB database

(table 6.1) and simulated in their physiological protonation state. For p38α, the missing

loop between residues 170 and 185 was modeled using the additional X-ray crystal structure
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from PDB entry: 2baj [Sullivan et al., 2005] after backbone alignment. All ligand structures

were removed, except ANP4− in Eg5, which was parameterized with GAFF [Wang et al.,

2004]. Missing side chains were modeled using MODELLER [Šali and Blundell, 1993] and

all proteins were solvated in TIP3P water [Jorgensen et al., 1983] with 150 mM NaCl.

protein PDB entry (apo) PDB entry (ligand-bound)

NPC2 1nep [Friedland et al., 2003] 2hka (chain C) [Xu et al., 2007]
p38α 4e5b [Tzarum et al., 2012] 3hl7 [Xing et al., 2009]
ricin 1rtc [Mlsna et al., 1993] 1br6 [Yan et al., 1997]
Eg5 3hqd [Parke et al., 2010] 1q0b (chain B) [Yan et al., 2004]

Table 6.1: PDB entries for investigated proteins

MD simulations were carried out using the AMBER99SB*-ILDN-q force field [Hornak

et al., 2006a, Best and Hummer, 2009, Best et al., 2012, Lindorff-Larsen et al., 2010]. Each

system was energy minimized, followed by five equilibration steps, in which the position

restraints on heavy atoms were gradually weakened, first in an NVT ensemble (0.1 ns)

and then in an NPT ensemble (4 x 0.5 ns) using a Berendsen thermostat and barostat

[Berendsen et al., 1984]. Production simulations were run at a temperature of 310 K and a

pressure of 1 bar in an NPT ensemble using a Nosé-Hoover thermostat [Evans and Holian,

1985, Nosé, 1984] and a Parrinello-Rahman barostat [Parrinello and Rahman, 1981]. For

each system, a 1 μs MD simulation was performed with Gromacs 2018 [Abraham et al.,

2015]. For the mixed-solvent MD simulations, benzene molecules were used as probes with a

benzene concentration of 1 M. Benzene was parameterized with GAFF. To retain diffusive

behavior and to prevent phase separation due to hydrophobic interactions, an interligand

repulsion term was added manually to the non-bonded parameters of the probe molecules

with σ = 8 Å and ε = 1.5·10−3 kJ
mol

for carbon atoms. For each system, 20 replicates of

mixed-solvent MD simulations with 500 ns each were performed with Gromacs 2016.

6.2.2 SWISH simulations

Equilibrated protein structures served as starting structures for SWISH simulations. SWISH

simulations, with 6 replicas each, were performed with the HREX implementation of the

Plumed 2.4 plugin for Gromacs 4.6.7. The different non-bonded interactions between

protein and water molecules were edited manually in the topology. Non-bonded parameters

between the oxygen atoms of water molecules and carbon/sulfur atoms of the protein were

calculated for each replica according to the Lorentz-Bertholt mixing rules and scaled from 1

to 1.35. An exchange between two replicas was attempted every 2 ps. The total simulation

length for each system was 500 ns.

6.2.3 Analysis

The pocket volume was calculated with the VMD plugin Epock [Laurent et al., 2015].

The radius and shape was chosen based on visual inspection after alignment of apo and

ligand-bound structures (Table 6.2, Fig. 6.1). The van der Waals radius for the grid sphere

size to determine the free space, was set to 1.4 Å with a cutoff of 4 Å and a grid resolution
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they also observed two benzene binding positions in the cryptic site, in agreement with our

results.

For p38α, mixed-solvent MD simulations led to efficient pocket openings and showed

that one benzene molecule can bind to the pocket. The benzene molecule can enter the

pocket from multiple directions and, when bound, is not fixed at one specific position, but is

able to move slightly in the pocket. The bound benzene molecule affects the conformation

of the key residue Trp197. Depending on its location in the pocket, it pushes the Trp197

side chain to a partially or fully open conformation. For 92% of the simulation time,

the pocket was accommodated by one benzene molecule. Unlike NPC2, the brute-force

MD simulation also showed short partial openings and some flexibility of the binding site

residues. In the first 20 ns, the Trp197 loop moved outwards, resulting in an almost

opened pocket. However, in the remaining trajectory Trp197 did not completely obtain its

holo conformation and the His199 loop was only flexible in few time frames, displaying a

rather rigid pocket. Moderate flexibility of Trp197 in the brute-force MD simulation and

efficient pocket openings by benzene binding suggests a combination of induced-fit and

conformational selection in the ligand binding mechanism. The SWISH simulation did only

sample occasional pocket openings in replicas 3 and 4 and the protein structure completely

unfolded in replica 5. The replica exchange between replica 4 and 5 stopped at 110 ns,

indicating the biasing parameters were not suitable for p38α. Our observations agree with

the results from Comitani and Gervasio [2018], except for the SWISH simulation, where

slightly less pocket openings were observed, explained by with the stop in replica exchange.

Regarding ricin, the SWISH simulation performed best and led to full pocket openings

in all replicas. The side chain orientation of the pocket residue Tyr80 primarily determines

if the pocket is occluded or open. The SWISH simulation sampled various Tyr80 conforma-

tions and with increasing bias Tyr80 spent more simulation time in its open conformation.

In replica 5, some protein unfolding was observed, but this did not affect the binding site.

In the brute-force MD run, the pocket also opened up. At 888 ns, Tyr80 flipped from its

closed to its open conformation and remained in the flipped-out conformation, resulting

in pocket opening. Unlike NPC2 and p38α, benzene molecules did not bind to the cryptic

pocket and had no effect on pocket formation. Only in one replica of the mixed-solvent

MD simulations, in replica 8, a benzene molecule temporarily interacts with the pocket

residue Tyr80, leading to side chain flipping and pocket opening, but the molecule does not

overlay with the known binder. Most benzene molecules bound not directly in the cryptic

pocket, but more towards the surface and did not displace the Tyr80 side chain. In several

replicas, no benzene molecules bound to or close to the cryptic pocket, and nevertheless

pocket openings were observed. Because pocket openings were observed independent of

benzene binding, a major role of conformational selection in the ligand binding mechanism

is proposed.

In the case of Eg5, the pocket was open most of the time in the brute-force MD simula-

tion. Overall, conformational changes of Trp127 side chain contribute most to the pocket

opening. In the brute-force MD run, all pocket residues displayed some flexibility. At 190 ns,

Trp127 flipped outwards, resulting in bigger pocket volume for the remaining trajectory.
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In addition, Tyr211 transitioned to its open conformation at 870 ns, leading to complete

pocket opening. Glu116 already obtained its open conformation after energy minimization

and retained it for the whole simulation time. The mixed-solvent MD simulation found

a probe binding site within the cryptic cavity, but it was only occupied rarely, compared

with NPC2 and p38α. Benzene molecules more often entered into another binding pocket

beneath the known cryptic pocket (see Chapter 6.3.2), not resulting in pocket opening.

The cryptic pocket of interest was occupied for only 16% of the simulation time. Pocket

openings were also observed in the SWISH simulation and occurred more frequent and

longer with the increase in bias. Because pocket opening was sampled efficiently with

brute-force MD and benzene molecules binding played only a minor role, conformational

selection probably dominates the ligand binding mechanism.

6.3.2 Mixed-solvent MD simulations reveal potential unknown binding

pockets

Mixed-solvent MD simulations show various binding pockets for benzene molecules in all

four systems (Fig. 6.4). In NPC2 and p38α, only known binding pockets accomodate

benzene molecules. For NPC2, both binding positions for probe molecules are located in

the cryptic pocket. For p38α, the cryptic pocket and the ATP pocket can be populated

with probe molecules. New binding pockets were found for ricin and Eg5. In ricin, four

benzene binding pockets were observed. The most occupied position is close to the known

cryptic pocket [2], but not directly where the known ligand sits [1]. Two additional binding

positions [3,4] were often occupied in multiple replicas, with a residence time of at least

100 ns. One benzene binding spot is between Phe119 and Phe168 and close to Phe93 [3]

and the other one is between Leu207 and Phe240 [4]. In Eg5, benzene molecules bound

frequently to a binding pocket beneath the known cryptic site [2] close to Leu171 and

Leu214. In addition, benzene molecules were stably bound in multiple replicas for at least

100 ns at sites distant from the cryptic pocket, close to Phe144 and Val210 [3], between

Ile196, Ile319 and Val238 [4] and between Val41 and Val71 [5].

6.4 Summary and conclusion

Here, I used three simulation-based approaches to study the dynamical properties of cryptic

pockets in four protein drug targets: NPC2, p38α, ricin, and Eg5. For all proteins, X-ray

crystal structures of the unbound and ligand-bound conformations are available. Starting

from the unbound structure, I used MD, mixed-solvent MD, and SWISH simulations to

investigate the opening mechanisms of the binding pockets.

We were able to resolve the opening of the cryptic pockets for all four proteins. Different

simulation methods enabled us to gain insights into their respective opening mechanisms and

put them in the spectrum of induced-fit and conformational selection. In the mixed-solvent

MD simulations of NPC2, two benzene molecules consecutively inserted into the cryptic

site. The pocket opening was correlated with benzene binding, which indicates that an

induced-fit mechanism plays a dominant role in the ligand binding process. The cryptic

pocket of p38α, on the other hand, showed flexibility even in the absence of probe molecules.
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Also, in the mixed-solvent MD simulations of p38α, one benzene molecule frequently entered

into the cryptic pocket, suggesting a joint effect of induced-fit and conformational selection.

While the conformation of cryptic pockets in NPC2 and p38α was greatly affected by probe

molecules, those of ricin and Eg5 were not. Hence, I propose a major role of conformational

selection in the ligand binding mechanism of ricin and Eg5. In addition to the previously

known cryptic binding sites, several new binding pockets were observed in ricin and Eg5

by benzene binding.

In general, we observed that the water molecules with scaled interactions of the SWISH

simulations can enhance the conformational sampling of solvent-exposed residues, while they

seem not to be suited to enter into deep cavities, e.g., in NPC2. In this case, mixed-solvent

MD simulations seem to perform best. Comitani and Gervasio [2018] also combined SWISH

with probe molecules, which improved the sampling in NPC2. As seen in the SWISH

simulation of p38α, the scaling factor λ needs to be chosen carefully, because the protein

unfolded in the most biased replica. This makes the wide application of SWISH difficult.

Further, our simulations show that the mechanism for cryptic pocket opening is system

dependent.

64



Chapter 7

Preferential substrate interactions of papain-like protease in

SARS-CoV-2

7.1 Introduction

The coronavirus disease 19 (COVID-19) escalated into a global pandemic in 2020 caused by

the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) [Huang et al., 2020].

Coronaviruses belong to a large family of enveloped single-stranded RNA viruses and can

cause respiratory, hepatic, gastrointestinal, and neurologic diseases in both animals and

humans [Weiss and Leibowitz, 2011]. To date, there have been seven human coronaviruses

identified, including Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) [Drosten

et al., 2003], and Middle East Respiratory Syndrome Coronavirus (MERS-CoV) [Zaki et al.,

2012]. Due to the vast distribution of coronaviruses, the huge genetic variation, frequent

recombination of their genomes, and the increase of human-animal interface activities, new

coronaviruses emerge sporadically in humans [Cui et al., 2019, Zhu et al., 2020].

In contrast to the related SARS-CoV, responsible for the SARS outbreak in 2003, the

symptoms of COVID-19 are mostly less severe and the case-fatality rate is lower. However,

SARS-CoV-2 has a much higher transmission rate [Wu et al., 2020, Yuen et al., 2020]. Both

viruses are vitally dependent on the activity of two proteases, namely the main protease

and the papain-like protease (PLpro). These proteases process the polyproteins that are

translated from the viral RNA. In addition to the polypeptide processing, the PLpro

modulates the host immune system via deubiquitination and deISGylation of host cell

proteins, resulting in inhibition of the host antiviral innate immune response [Frieman

et al., 2009]. As a result, PLpro is an important therapeutic target to halt virus replication.

Recently, we found with our collaborators that inhibiting PLpro not only stops viral

replication, but also improves the antiviral immune response [Shin et al., 2020]. Upon

infection, SARS-CoV-2 must overcome numerous human defense mechanisms, including

the innate immune defense. The innate immune system functions as the first line of host

defense against pathogens, and limits viral invasion or replication. Natural killer cells can

sense messenger molecules called type I interferons released by infected body cells, which

leads to depletion of infected cells. By cleaving proteins of infected cells, PLpro can disturb

the release of type I interferons and in effect can block the innate immune response of the

host (Fig. 7.1).

Shin et al. [2020] also discovered that the viral protein PLpro of SARS-CoV-2 (SCoV2-PLpro)

cleaves ISG-15 (interferon-stimulated gene-15) from cellular proteins with greater activity

than the SARS equivalent (SCoV-PLpro), leading to reduced interferon response. This
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and (2) with the X-ray crystal structure of the SCoV2-PLpro–mouse ISG15 complex (PDB

entry: 6yva [Shin et al., 2020]) after PLpro alignment using PyMol. In all di-ubiquitin sys-

tems, the triazole linker was substituted with Lys using Modeller and a harmonic-distance

restraint potential between the backbone carbonyl carbon atoms of Lys48 and Gly75 with

a target distance of 9.5 Å and a force constant of 502.080 kJ
mol·nm2 . The covalent propargy-

lamide linker was removed. SCoV2-PLpro with bound mISG15 was built based on the X-ray

crystal structure of the SCoV2-PLpro–mouse ISG15 complex (PDB entry: 6yva). Missing

residues of SCoV2-PLpro and one Zn2+ ion were modelled according to the X-ray crystal

structure (PDB entry: 6w9c, re-refined by T. Croll). In addition, two inhibitor-bound

complexes were set up, the inhibitor GRL-0617 is once bound to SCoV-PLpro and once to

SCoV2-PLpro. The coordinates of the SCoV-PLpro–GRL-0617 complex were taken from

PDB entry: 3e9s [Ratia et al., 2008]. The oxidized Cys112 was switched to the reduced form

(SH) using Modeller. The simulation model of the SCoV2-PLpro–GRL-0617 complex was

built according to the X-ray structure of the apo form of SCoV2-PLpro (PDB entry: 6w9c,

re-refined by T. Croll). The compound GRL-0617 was manually placed into the binding

site according to PDB entry: 3e9s after PLpro alignment using PyMol. The blocking loop

2 (BL2 loop, GNYQCGH) capping the GRL-0617 binding site was remodelled according to

the SCoV-PLpro X-ray crystal structure of the complex (PDB entry: 3e9s) using Modeller.

The GRL-0617 ligand was parameterized with GAFF [Wang et al., 2004].

In all set-ups, I set up all ionizable residues in their physiological protonation state,

except His17 of SCoV2-PLpro (His18 of SCoV-PLpro) and His272 of SCoV2-PLpro (His273

of SCoV-PLpro) were charged. Missing side chains were modelled using Modeller and

all crystallographic water molecules and ions were retained, except a nickel ion in PDB

entry: 5e6j. I used Gromacs 2018 [Abraham et al., 2015] for the MD simulations with the

AMBER99SB*-ILDN-q force field [Hornak et al., 2006a, Best and Hummer, 2009, Best

et al., 2012, Lindorff-Larsen et al., 2010] combined with TIP4P-D water [Piana et al., 2015]

and 150 mM NaCl. After energy minimization, I performed five rounds of equilibration, in

which I gradually weakened the position restraints on protein heavy atoms, first in an NVT

ensemble (0.25 ns) and then in an NPT ensemble (4 x 0.5 ns) using a Berendsen thermostat

and barostat [Berendsen et al., 1984]. Production simulations were run at 310 K and at

a pressure of 1 bar in an NPT ensemble using the Nosé–Hoover thermostat [Evans and

Holian, 1985, Nosé, 1984] and the Parrinello-Rahman barostat [Parrinello and Rahman,

1981]. I set up three independent runs of the SCoV2-PLpro systems with bound substrates,

starting from different Modeller results for the apo-like model of SCoV2-PLpro:K48-Ub2

and for the SCoV2-PLpro–mouse ISG15 complex.

7.2.2 Analysis

For simulations with bound substrates and with bound inhibitor, I calculated the RMSD

of each backbone substrate (distal ubiquitin in K48-Ub2 and N-terminal domain of mouse

ISG15) and of GRL-0617 (heavy atoms) with respect to the equilibrated structure after

alignment on the helix backbone of PLpro (without the flexible UBL domain). From

simulations of SCoV-PLpro–K48-Ub2, the minimum heavy-atom distance between Phe70
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7.4 Summary and conclusion

With MD simulations, I found that the viral protein PLpro of SARS-CoV-2 interacts more

strongly with ISG15 compared to ubiquitin, whereas PLpro from the SARS equivalent

tightly interacts via a hydrophobic cluster with ubiquitin. This can explain the differences

in substrate activities observed in experiments. The MD trajectories gave us a unique

opportunity to explore the origin of the differences in specificity. Inspection of simulation

data revealed that the disruption of a hydrophobic triad in the core of the K48-Ub2 binding

interface is presumably the main factor, primarily due to the mutation of Leu76(SCoV) to

Thr75(SCoV2). The model of SCoV2-PLpro bound with ubiquitin based on the apo form

potentially underestimates the interaction, because full dissociation occured in all three

runs, whereas the model based on the substrate-bound form showed one full dissociation of

the distal ubiquitin and two transient partial separations to an RMSD of 10 Å. Nevertheless,

the subtle change in the binding interface clearly reduces the interaction between PLpro

and ubiquitin. All dissociations were initiated by water penetrating between Ile44(Ub) and

Thr75(SCoV2). Therefore, consistently and independent of the initial model, the observed

dissociations occur with the same mechanism of water first entering into the hydrophobic

contact between Ile44(Ub) and Thr75(SCoV2).

MD simulations also revealed that the binding mode of the inhibitor GRL-0617 is

completely preserved between SCoV-PLpro and SCoV2-PLpro. As inhibiting PLpro is a

promising double-hit therapeutic strategy against COVID-19, GRL-0617 can be a potential

lead compound for further studies. Until now, several drugs against COVID-19 are approved

in the European Union, but there was no small molecule drug targeting SCoV2-PLpro

among them. Ongoing research on further development of GRL-0617 derivatives and

additional potential PLpro drugs is encouraging [Osipiuk et al., 2021, Shen et al., 2021,

Welker et al., 2021]. Further, research teams from New York and the University of Texas

discovered that the oral agents simeprevir, paritaprevir and vaniprevir, which are approved

for hepatitis C therapy, also block PLpro and suppress viral replication in cell culture when

administered in synergy with remdesivir, increasing remdesivir’s antiviral activity 10-fold

[Bafna et al., 2021].
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Chapter 8

Difference in phosphorylation kinetics and conformational

changes of casein kinase 1

8.1 Introduction

Casein kinases 1 (CK1) belong to the serine/threonine-selective enzymes and play essential

roles in various cellular functions. They are involved in the regulation of DNA repair,

cytokinesis, signal transduction pathways and the circadian rhythm [Knippschild et al.,

2005]. Seven distinct genes encoding the mammalian CK1 isoforms α, β, γ1-3, δ and ε have

been characterized. To date, α, δ and ε are known to be important regulators, but the role

of the γ isoforms is not very well understood [Fulcher and Sapkota, 2020].

One role of CK1δ is to control the oocyte quality by phosphorylating the protein TAp63α.

TAp63α is present in high concentrations in the oocytes, acting as a quality control factor,

and can cause infertility in women after chemotherapy. When DNA is damaged, oocytes

initiate programmed cell death in order to minimize genetic defects in the offspring. This

process, also known as apoptosis, is regulated in oocytes by TAp63α [Tuppi et al., 2018].

TAp63α is present in an inactive dimeric conformation in non-damaged oocytes. DNA

damages from radio- or chemotherapy cause TAp63α to be phosphorylated, which converts

TAp63α to the active tetrameric conformation, resulting in apoptosis (Fig. 8.1). As a

result, female patients receiving chemotherapy potentially enter menopause much earlier.

Premature death of oocytes is not only associated with infertility, but also with other

hormone-dependent problems such as osteoporosis. A potential therapeutic strategy to

prevent TAp63α phosphorylation leading to apoptosis is to inhibit CK1δ. Indeed, when

CK1δ in mice was blocked by inhibitors, their oocytes remained intact when exposed to

chemotherapeutic agents [Gebel et al., 2020].

To initiate oocyte apoptosis, TAp63α needs to be sequentially phosphorylated by two

kinases, CHK2 and CK1δ. A single phosphorylation by CHK2 is not sufficient to trigger

tetramerization, but CK1δ is required to break the auto-inhibitory complex by attaching

another four phosphates in a +3 pattern to the primed TAp63α. Upon phosphorylation

by CK1δ, the dimeric state of TAp63α is converted into the active tetrameric state due to

charge repulsion [Coutandin et al., 2016]. While the first two CK1 phosphorylation events

are fast, the third one is slow, which is the decisive step to form the active conformation. The

tetramerization is unidirectional, and the third phosphorylation by CK1δ is the point of no

return [Gebel et al., 2020]. Hence, the third phosphorylation event determines the threshold

of DNA damage necessary for induction of apoptosis. Here, I studied the underlying

structural mechanism for the difference in the kinetic behavior of the phosphorylation
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capped with N-terminal acetyl and C-terminal methylamino capping groups using VMD

Molefracture [Humphrey et al., 1996] and Modeller [Šali and Blundell, 1993]. In the third

set-up, the point mutation V589A was introduced into the longer peptide using Modeller.

For CK1γ3, two simulations were performed based on X-ray crystal structures of the WT

and the Leu257Lys form. Both the X-ray crystal structures of the WT and the mutant are

unpublished and were solved by Apirat Chaikuad, a Postdoctoral Scientist in the group of

Stefan Knapp, and Jakob Gebel, a Postdoctoral Scientist in the group of Volker Dötsch from

the Goethe-University, respectively. In both set-ups, the bound peptides were elongated to

ACE-TPpSSApSTVpSVGSSETRG-NME using Modeller.

For CK1δ, three independent MD runs of two additional set-ups each without bound

peptide were performed, once in the WT form and once with phosphorylated Thr220

(pThr220) using chain A of PDB entry 4tn6 [Wager et al., 2014] and PDB entry 7p7f

[Cullati et al., 2022] as initial structures, respectively.

In all set-ups, all crystallographic water molecules and ions within 10 Å of the pro-

tein were retained. Bound ligands were removed, ADP was replaced with ATP and a

complexed Mg2+ ion was added using PDB entry 1csn [Xu et al., 1995] as a template,

by superimposing the protein backbones and aligning the nitrogen atoms of ATP with

the crystallographic ADP. Missing side chains were added using the software Modeller. I

protonated Asp128 and set up all other ionizable residues in their physiological protonation

state. All MD simulations were carried out with Gromacs 2018 [Abraham et al., 2015]

using the AMBER99SB*-ILDN-q force field [Hornak et al., 2006a, Best and Hummer, 2009,

Best et al., 2012, Lindorff-Larsen et al., 2010], combined with TIP3P water [Jorgensen

et al., 1983], 150 mM NaCl [Mamatkulov and Schwierz, 2018], ATP [Meagher et al., 2003],

and phosphothreonine or phosphoserine [Homeyer et al., 2006]. After energy minimization,

I performed five rounds of equilibration, in which I successively decreased the position

restraints on protein heavy atoms, first in an NVT ensemble (0.25 ns) and then in an

NPT ensemble (4× 0.5 ns) using a Berendsen thermostat and barostat [Berendsen et al.,

1984]. The production runs were run at 310 K in an NPT ensemble using a Nosé–Hoover

thermostat [Evans and Holian, 1985, Nosé, 1984]. The pressure was maintained at 1 bar

with a Parrinello–Rahman barostat [Parrinello and Rahman, 1981].

8.2.2 Analysis

For the peptide-bound simulations of CK1δ, the minimum heavy-atom distances between

E593 and Arg127 and between E593 and Lys154, as well as the minimum heavy-atom

distance between V589 or A589 (side chain) and the protein CK1δ were monitored. For the

CK1γ3 simulations, the minimum heavy-atom distances between V587 and Leu257, and

between V587 and Lys257 were measured. The distances were obtained at 1 ns intervals

using the gmx mindist tool. The raw distance data were processed using moving average

smoothing with a window size of 5 ns. For the replicate simulations of CK1δ in the WT

and phosphorylated form, the secondary structure of residues 220-235 was monitored at

10 ns intervals using the gmx do_dssp tool [Kabsch and Sander, 1983].
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8.3 Results and discussion

8.3.1 Phosphorylation of the third CK1δ site is the slowest, arising

from unusual enzyme-substrate interactions.

Our collaborators could demonstrate that the kinetic behavior of CK1δ phosphorylation

sites differ using nuclear magnetic resonance (NMR) based phosphorylation experiments

[Gebel et al., 2020]. CK1δ phosphorylates pre-phosphorylated TAp63α four times at S585,

S588, S591, and T594. The first two phosphorylation events, pS585 and pS588, occur

fast, whereas the phosphorylation for the third phosphorylation site, pS591, is 40 times

slower. Hence, the third phosphorylation step is the rate-limiting step and in addition the

decisive step for activation. The phosphorylation of all sites takes pace via a distributive

mode, because the concentration of the double and triple phosphorylated peptide increased

beyond the concentration of the kinase. The first two CK1 phosphorylation events have

a distributive mode with a very fast product releasing and substrate re-binding kinetics.

In contrast, the third CK1δ phosphorylation takes place slowly, implying that pS585 and

pS588 delay phosphorylation of the downstream sites S591 and T594. Mutational studies

showed that the point mutations S592V and E593G in TAp63α resulted in stark reduction

in the difference between the fast and slow phosphorylation kinetics. To understand this

observation and the kinetic difference in WT, I performed MD simulations of CK1δ with

the triple phosphorylated TAp63α peptide, in WT and with in silico mutated V589A.

Interestingly, the X-ray crystal structure is in the product-bound state of the peptide

(PDB entry: 6ru8). The 3rd phosphorylated residue is located in the active site, and

the phosphate group of pS588 is orientated towards the ATP binding site (Fig 1.5a).

Crystallization of the product-bound state indicates that the interaction between enzyme

and triple phosphorylated peptide is strong, decelerating the subsequent phosphorylation

step.

MD simulations revealed the stabilizing interactions of CK1δ and the triple-phosphory-

lated TAp63α. Both WT simulations differing in the length of the peptide demonstrated

strong electrostatic interactions between the positively charged side chains Arg127, Lys154,

and Lys171 in CK1δ with E593 of TAp63α. The set-ups were modelled with either a long

peptide construct with charged termini (TPpSSApSTVpSVGSSETRGER) or a shorter

peptide (ACE-TPpSSApSTVpSVGSSETRG-NME) capped with N-terminal acetyl and

C-terminal methylamino capping groups. The long peptide sequence is the same as used in

the experimental kinetic measurements. The short peptide mimics the full-length protein,

because E597 and R598 may not be accessible to CK1. Both simulations consistently

displayed strong interactions of E593 with a basic cluster in CK1δ consisting of Arg127,

Lys154, and Lys171. For the longer construct, E593 forms a persistent salt bridge with

Arg127 (distance < 3 Å), and binds transiently to Lys154 (Fig. 8.2a,b). Similar results

are observed for the shorter TAp63α construct (Fig. 8.3). In addition, MD simulations

highlighted the importance of the van-der-Waals interactions between V589 and CK1δ.

Comparison of the two 1 μs long simulations of the WT and the V589A peptide showed

that the V589A mutation weakened the hydrophobic interactions with CK1δ and increased

the flexibility of the peptide in this region (Fig. 8.2c,d). In the WT set-up, V589 remained
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Figure 8.3: MD simulation of CK1δ in complex with a shorter TAp63α peptide (ACE-
TPpSSApSTVpSVGSSETRG-NME) with N-terminal acetyl and C-terminal methy-
lamino capping groups revealed similar results as the longer peptide. Reprinted from
Gebel et al. [2020], with kind permission by Springer Nature. a, Minimum heavy-atom distances
of E593 to Arg127 and Lys154 are shown as a function of time. b, Snapshot at 1 μs, zooming in
on the C-terminal region of the shorter p63 peptide. CK1 is shown as a transparent electrostatic
surface (blue/red for positive/negative charge) and the p63 peptide is represented as a cyan cartoon.
The residues E593, Arg127 and Lys154 are highlighted. The minimum distances between E593 and
the basic residues are indicated.

no large differences (backbone RMSD of kinases: 1.8 Å). However, two side chains next to

the binding cleft are different: Lys75 and Lys221 in the δ isoform correspond to Arg79 and

Leu257 in the γ3 isoform. Indeed, NMR based phosphorylation experiments showed that

the single mutation Lys221Leu in the CK1δ form could recreate the γ3 behavior displaying

only two phosphorylation events. The reversed mutation in the γ3 isoform, Leu257Lys,

results in an effectively non-functional kinase, which, however, has a similar behavior to

the δ isoform at a very low level in terms of kinetics. The X-ray crystal structure of

the CK1γ3 mutant Leu257Lys did not reveal any structural changes compared with the

WT form. Comparison of the WT and mutant form with MD simulations revealed that

the interactions between CK1 and TAp63α differ (Fig. 8.4). In the WT form, Leu257 of

CK1 strongly interacts with V587 of the TAp63α peptide. This hydrophobic interaction

is lost in the mutated form. Within 10 μs Leu257 in the WT form remained attached to

V587, whereas Lys257 and V587 did not interact and were separated by water molecules

(Fig. 8.4b,c). The strong interaction of Leu257 and V587 is potentially one key factor for

eliminating the third phosphorylation step in the γ3 isoform.

8.3.3 pThr220 destabilizes N-terminal part of αG segment in apo

CK1δ

Cullati et al. [2022] demonstrated that autophosphorylation of CK1 at the Thr220 position

results in enzyme inhibition. The first solved X-ray crystal structure (PDB entry: 7p7f)

with the phosphorylated Thr220 did not exhibit any structural changes compared to the

WT form (backbone RMSD of αG helix: 1.4 Å after backbone protein alignment). The

phosphorylatable threonine is located at the end of loop FG preceding the αG helix. To

understand why the phosphorylated form inhibits activity, I performed MD simulations of

both the WT and the phosphorylated form. I found that the WT αG segment in apo CK1δ

can adopt helix and loop conformation (Fig. 8.5a (left image),b). This finding is consistent
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Given the event statistics in Table 8.1, the likelihoods then are

LWT = ke−k(t1+t2+t3) = ke−kt (8.1)

with t = t1 + t2 + t3 the cumulative time in the helical state for WT, and

LpThr220 = (k′)3e−k′(τ1+τ2+τ3) = (k′)3e−k′τ (8.2)

with τ = τ1 + τ2 + τ3 the cumulative time in the helical state for pThr220 (Fig. 8.6). For a

Jeffreys prior, prior(k) ∝ 1/k for k > 0, and analogously for k′, the normalized posteriors

become

pWT (k|dataWT ) = te−kt (8.3)

and

ppThr220(k
′|datapThr220) =

1

2
τ3(k′)2e−k′τ (8.4)

We now consider two mutually exclusive models, k ≥ k′ and k < k′. A priori, we consider

both models to be equally likely. Then, given the data in Table 8.1, the evidence for model

1 with k ≥ k′ is

p(k ≥ k′|dataWT , datapThr220)

=

∫
∞

0
dk

∫ k

0
dk′pWT (k|dataWT ) ppThr220(k

′|datapThr220)

=
1

(1 + t/τ)3
≈ 0.041 (8.5)

Conversely, the evidence for model 2 with k < k′ is

p(k < k′|dataWT , datapThr220)

= 1− p(k ≥ k′|dataWT , datapThr220) ≈ 0.959 (8.6)

Given equal a priori probabilities of the two models, the Bayes factor in favor of model 2

over model 1 is

K =
p(k < k′|dataWT , datapThr220)

p(k ≥ k′|dataWT , datapThr220)
≈ 23.3 (8.7)

The cumulative evidence from 2× 3 MD simulations therefore strongly favors a model in

which phosphorylation of Thr220 accelerates the rate of helix unfolding.

Hence, we could show that the phosphorylated form tends to destabilize the N-terminal

part of the αG helix. Visually inspecting all three trajectories of the phosphorylated form

revealed that the negatively charged phosphate group interacts with one or two arginines,

in particular Arg222 and Arg227, which leads to the deformation of the helix structure

(Fig. 8.7). In addition to the strong electrostatic interactions, the change in the helix

capping and dipolar moment of the added phosphate group potentially weakens the helical

structure.
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Conclusions

I used physics-based computational methods to study the flexibility of binding sites and

enzyme-substrate interactions. Investigating ligand-induced conformational dynamics and

flexibility of a protein are of high interest to advance the computational contribution to

drug discovery studies [Adelusi et al., 2022]. This can enable and accelerate the drug

design process. Proteins are dynamic biomacromolecules that can have diverse and nearly

isoenergetic conformational states. Ligand binding can shift the equilibrium of this con-

formational ensemble. Cryptic pockets are binding sites in proteins that become apparent

only in ligand-bound structures, and are not visible in unbound structures. These sites

provide an opportunity to target proteins that were previously considered undruggable.

However, their hidden nature makes it difficult to identify and exploit them. We investi-

gated protein conformational changes upon ligand binding in six different systems. In all

systems, it is known from experiment that a specific group of ligands targeting the binding

site can induce conformational changes. For FVIIa, the observed conformational change

is the distortion of a β-sheet structure in the S1 pocket, while for renin a non-functional

flap opens up combined with Trp39 side chain rotation. Four additional drug targets from

the dataset CryptoSite show displaceable shallowly buried aromatic residues: NPC2, p38α,

ricin, and Eg5.

For all systems, except for renin, computational methods could have predicted these

conformational changes. For FVIIa, the conformational change can be captured with

unbiased MD simulations. I found that the S1 pocket flexibility is not only present in

FVIIa, but that it is transferable to other serine peptidases including thrombin, matriptase,

and tryptase. For renin, the full pocket opening could not be sampled, even with established

biasing protocols such as adding organic fragments to the simulation box and increasing

the water-protein interaction using the SWISH technique. The biasing protocols enhanced

the protein flexibility, but did not disrupt the hydrophobic interactions between Trp39

and Phe112. Well-tempered metadynamics simulation indicated a high free energy barrier

for the Trp39 side chain rotation (≈35 kJ/mol), which explains the sampling difficulties.

The simulations of renin suggest that small molecules can induce major conformational

changes yet achieve high-affinity binding. For all four proteins from the CrypstoSite data

set, I could resolve the opening of the cryptic pockets. By using different simulations

methods, we gained insights into the respective binding mechanisms and place them in

the spectrum of induced fit and conformational selection. I used three different methods

to probe and induce the opening of cryptic pockets starting from the unbound structures:

unbiased MD simulations, mixed-solvent MD simulations with 1 M benzene molecules, and
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the enhanced sampling method SWISH. In mixed-solvent MD simulations of NPC2, two

benzene molecules sequentially entered into the cryptic pocket. Opening of the deep pocket

was associated with ligand binding, which advocates for a major role of induced fit in the

ligand binding mechanism. By contrast, the cryptic pocket of p38α was flexible already in

the unbiased MD simulation. In mixed-solvent MD simulations of p38α, a benzene molecule

inserted into the cryptic pocket, indicating a balance of induced fit and conformational

selection. In contrast to NPC2 and p38α, the conformational changes of the cryptic pockets

of ricin and Eg5 were largely independent of the presence of probe molecules, suggesting that

conformational selection dominates the ligand binding mechanism. Interestingly, benzene

binding in ricin and Eg5 revealed several additional binding pockets besides the known

cryptic sites. In conclusion, mixed-solvent simulations with 1 M benzene molecules were able

to expose cryptic sites in all systems, except for renin. For renin, only the flap movement

was captured, but not the full pocket opening. If the respective energy barrier is too high,

i.e., above 35 kJ/mol, the existing methods fail. In this case, protein surfaces can potentially

be scanned for shallowly buried aromatic residues, which can be biased specifically to assess

their flexibility. In general, our simulations show that the opening mechanisms of cryptic

pockets are specific to the system under consideration. Hence, establishing a robust method

that works on all systems remains to be considerably challenging. However, I also found

that mixed-solvent simulation perform well on four out of five studied dissimilar cryptic sites,

ranging from conformational selection to induced-fit. This makes mixed-solvent simulation

an efficient method for assessing druggability.

Furthermore, I used MD simulations to study enzyme-substrate interactions in two

drug targets: the PLpro of SARS-CoV-2 and the human CK1. PLpro plays a critical role

in coronavirus replication. In addition, PLpro can suppress the innate immune response

by preferentially cleaving ISG15 compared with ubiquitin. With MD simulations, I could

confirm that PLpro from SARS-CoV-2 interacts more tightly with ISG15. While ISG15

remained bound in three independent MD runs of 3.2 μs, the distal ubiquitin of di-ubiquitin

separated from PLpro in four out of six runs on a microsecond timescale. I observed a

water-mediated dissociation mechanism for ubiquitin and identified L75T of PLpro as a

key mutation distinguishing the earlier SARS-CoV and new SARS-CoV-2 coronavirus, as

it weakens the hydrophobic cluster within the binding interface. Hence, pharmacological

inhibition of PLpro in SARS-CoV-2 not only blocks viral replication, but also simultaneously

boosts the antiviral immune response.

CK1 regulates a variety of important cellular pathways, including DNA repair. After

chemotherapy-induced DNA damage, CK1 is associated with activating a cell-death pro-

gram in oocytes that leads to infertility in women. A key step in this process is the third

phosphorylation of TAp63α, which converts TAp63α into an active conformation. With

MD simulations, I could trace the slow kinetics of this decisive step—compared to the

other three phosphorylation events—to on an unusual enzyme-substrate interaction. The

simulations identified the stabilizing interactions between CK1 and TAp63α as persistent

salt bridges and tight hydrophobic contacts in a form unfavorable for phospho-transfer.

When inhibiting CK1 in mice, the oocytes remained intact, even under the influence of
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chemotherapeutic agents. Our experimental collaborators found that CK1 can be autophos-

phorylated, resulting in reduced enzyme activity. Using MD simulations, I observed that

the phosphorylated form exhibited greater plasticity than the non-phosphorylated form.

In particular, the integrity of the substrate binding site in the phosphorylated form was

altered, which explains the reduced activity.

In summary, MD simulations allowed us to investigate binding site flexibility and

enzyme-substrate interaction in atomic detail. We could contribute to the assessment of

cryptic pockets in specific drug targets and to the understanding of disease mechanisms,

in particular COVID-19 and infertility in women after chemotherapy.

Advances in computational resources will push the time boundaries of simulations

further and will allow for more sampling time both for investigating cryptic sites and

enzyme-substrate interactions. Shan et al. [2022] recently used extensive computational

resources to decipher ligand binding to a cryptic site. Current approaches will be developed

further, for example a different procedure of a mixed-solvent MD simulation scheme was

delevoped by Ung et al. [2016], Lal Gupta and Carlson [2022], which uses only miscible,

organic solvent, such as pyrimidine. By using solely miscible fragments, no inter-ligand

repulsion terms are necessary to prevent their aggregation. However, in this case, the choice

of fragments is limited. At present, mixed-solvent simulations are already routinely used

for target assessments in the pharmaceutical industry. With rising computational power,

mixed-solvent MD simulations will not only support target assessment, but also help in

lead generation by improving activity and reducing the toxicity of compounds in early drug

discovery research. One simulation of a desirable target protein in a mixed-solvent with

several diverse fragments can in principle construct the potential interaction pattern in the

binding site. This can inform drug designers which binding site residues can be targeted to

optimize compounds further. Additionally, current methodologies for sampling of cryptic

sites can be improved by combining MD with fragment docking and machine learning

approaches [Vajda et al., 2018]. In general, the combination of artificial intelligence and

physics-based methods will shape the future of computational drug design.
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