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Notation
Units: Unless otherwise specified, geometrized units are used throughout this
work such that G = c = kB = 1 where G is the gravitational constant, c is the
speed of light, and kB is Boltzmann’s constant. Table A.1 provides a convenient
chart for converting between dimensionful and dimensionless quantities. Addi-
tionally, relevant variables have been defined that will be used throughout this
work.

Index Notation: Tensor indices denoted by greek characters e.g., µ, ν, include the
range [0, 3] where as latin indices e.g., i, j include only the subset [1, 3].

Metric Definitions: In the construction of initial data using the conformally flat
approximation, we will regularly reference the flat background metric. Within a
cartesian basis the conformal 4-metric, g̃µν , and purely spatial conformal 3-metric
, γ̃ij , take the following form

g̃µν =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , γ̃µν = γ̃ij =




1 0 0
0 1 0
0 0 1


 ,

with the 4-gradient defined by

∂µ =
∂

∂xµ
.

For a generic 4-metric, the Christoffel symbols and covariant derivatives are then
given by

Γδµν =
1

2
gδλ(∂νgλµ + ∂µgνλ − ∂λgµν) ,

∇µ = ∂µ + Γδµν ,

Dµ = γνµ∇ν ,

where the definitions of the covariant derivative assume a torsion free spacetime
such that Γδµν = Γδνµ.



Abbeviations

ADM Arnowitt-Deser-Misner
AH Apparent Horizon
BNS Binary Neutron Star
BBH Binary Black Hole
BHNS Black Hole-Neutron Star binary
COM center-of-mass
CRV constant rotational velocity
CTS Conformal Thin Sandwich
EFE Einstein’s Field Equations
EOS Equation of State
FUKA Frankfurt University/KADATH initial data code
GRHD general relativistic hydrodynamics
GRMHD general relativistic magneto–hydrodynamics
GW Gravitational Wave
HMNS hypermassive neutron star
ID Initial Data
KADATH Kadath spectral solver library
LORENE Langage objet pour la relativité numérique spectral library
NR Numerical Relativity
PSD power spectral density
PTTC phase transition triggered collapse
QE quasi-equilibrium
TOV Tolman-Oppenheimer-Volkoff
XCTS eXtended Conformal Thin Sandwich
XPN Xth (X = [3.5th, 4th, 5th]) order post-Newtonian estimate
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Zusammenfassung

Motivation

Seit der ersten erfolgreichen numerischen Zeitentwicklung eines schwarzen
Loch Binärensystems [1], eines binären Neutronensternsystems (BNS) und ge-
mischter Binärsysteme, die aus einem Neutronenstern und einem schwarzen
Loch, bestehen (SLNS) hat die Erforschung von Kollisionen kompakter Objekte
mit Methoden der numerischern Relativitätstheorie ein enormes Wachstum er-
fahren (vgl. [2]–[4]).Mit diesen Erfolgen kommen Fragen bezüglich der Dynamik
nach der Verschmelzung, den Signaturen von Gravitationswellen (GW) und der
resultierenden elektromagnetischen Signale auf. Die Multi–Messenger Detektion
von GW170817[5] hat verdeutlicht, dass der Einfluss der Zustandsgleichung von
Dichter Kernmaterie berücksichtigt werden muss, um dieses Ereignis zu erklären
und auch die Frage, wie solche Ereignisse die Zustandsgleichung einschränken
können. Spätere Ereignisse wie GW190425[6] haben die Wahrscheinlichkeit für
ein Doppelsystem aus einem schwarzen Loch und einem Neutronenstern in
Frage gestellt, bei dem die Masse des schwarzen Loches ähnlich der maximal-
len Masse eines Neutronensterns ist, da solche Fusionsszenarien in derzeitigen
theoretischen Modellen nur schwer zu erklären sind (vgl. [7], [8]).

In dieser Arbeit untersuchen wir zum ersten Mal den Einfluss der Mas-
senasymmetrie und des Spins auf die (Post–)Fusionsdynamik bei binären
Neutronenstern–Simulationen, das heißt die Schwellenmasse, die einen Kollaps
zu einem schwarzen Loch auslöst und den kritischen Bereich des Überlapps
zwischen binären Systemen aus zwei Neutronensternen (BNS) und binären
Systemen aus einem schwarzen Loch und einem Neutronenstern (SLNS).
Darüber hinaus untersuchen wir auf welche Weise Ereignisse wie GW170817
Zustandsgleichungen für dichte Kern– und Quarkmaterie, welche mit Ergebnis-
sen aus Kerntheorie und störungtheoretischer Quantenchromodynamik (QCD)
übereinstimmen, weiter einschränken können. Für die Untersuchung sind jedoch
geeignete Anfangsbedingungen erforderlich. Zu diesem Zweck haben wir den
öffentlich verfügbaren Code FUKA entwickelt, welcher als erster öffentlicher Code
in der Lage ist, verlässliche Anfangsbedingungen für hochgradig asymmetrische
und schnell rotierende gemischte Binärsysteme, die aus einem Neutronenstern
und ein schwarzen Loch bestehen, zu erzeugen.

Das Anfangswertproblem in Allgemeiner Relativitätstheorie und Hydrodyna-
mik

Die numerische Simulation kompakter Binärsysteme stellte jahrzehntelang
ein ungelöstes Problem in Einsteins Allgemeiner Relativitätstheorie dar. Die Me-
thode, die die Untersuchung binärer kompakter Objekte ermöglicht hat, zerlegt
die vierdimensionale Rauzeit in dreidimensionale räumliche Hyperflächen Σt die
mit der Zeitkoordinate t parametrisiert werden [10], [11]. Mit dieser Zerlegung
lassen sich die Einstein’schen Feldgleichungen zu einem gekoppelten System
elliptischer partieller Differentialgleichungen umformen, die für das Anfangs-
wertproblem auf einer der räumlichen Hyperfläche Σt gelöst werden müssen
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Abbildung 1: Links: Konvergenzanalyse für ein BSL–System mit gleicher Masse. Dargestellt ist
die absolute relative Differenz für eine gegebene Größe X in Abhängigkeit von der Auflösung
N̄ (siehe Gl. (2.82)). Hier ist X die Umlaufgeschwindigkeit Ω, die ADM–Masse MADM, der
ADM–Drehimpuls JADM und die Komar–Masse MK, die unter der Annahme eines Quasi–
Gleichgewichts berechnet wurden. Die relative Differenz dieser Größen bei einer bestimmten
Auflösung wird mit dem Datensatz mit der höchsten Auflösung von N̄max = 52 verglichen.
Rechts: Vergleich der dimensionslosen Bindungsenergie als Funktion der dimensionslosen Or-
bitalgeschwindigkeit von Quasi–Gleichgewichtssequenzen von BSL– (Kreise), BNS– (Quadrate)
und SLNS– (Rauten) Datensätzen gleicher Masse sowie von asymmetrischen BSL–(q = 0.5) und
BNS–(q = 0.6) Datensätzen zu 4PN–Vorhersagen, die durch Gl. (B.5) gegeben sind (durchgezoge-
ne Linien). Diese Grafik wurde aus [9] wiederverwendet.

(vgl. [12]–[16]). Der öffentlich zugängliche Code LORENE [17] ist seit über zwan-
zig Jahren von der physikalischen Gemeinschaft benutzt um das Anfangswert-
problem für kompakte binäre systeme zu lösen. Die zuverlässige Konstruktion
asymmetrischer binärer Anfangsdaten mit ungleichen Spins ist jedoch sehr be-
grenzt mit diesen Code und hat das Studium eines großen Teils des verfügbaren
Parameterraums nicht ermöglicht.

In Kapitel 2 untersuchen wir das Anfangswertproblem für BSL–, BNS– und
SLNS–Systeme und beschreiben die öffentliche Codekollektion FUKA1, der auf
der Spektralbibliothek KADATH[18] basiert. Um Anfangsbedingungen zu erzeu-
gen, löst FUKA die XCTS–Formulierung[16] der Einstein Gleichungen in einem
mitrotierenden Koordinatensystem, unter Verwendung einer flocken Hinter-
grundmetrik und der maximalen Schnittbedingungen. An der asymptotischen
Grenze legen wir die Randbedingungen so fest, dass die Raumzeit wieder-
hergestellt wird. Für schwarze Löcher verwenden wir Randbedingungen bei
denen [19], das innere des schwarzen Loches heraus geschnitten wird und
der Rand ein scheinbarer Horizont ist, der durch eine Marginally Outer Trapped
Surface definiert ist. Darüber hinaus ist FUKA in der Lage, Anfangsbedingun-
gen für Neutronensterne unter Verwendung einer (stückweise) polytropen oder
1D–tabellierten Zustandsgleichung zu erzeugen.

In Abschnitt 2.7 analysieren wir die Selbstkonsistenz der mit FUKA erzeugten
Anfangsdaten. Da KADATH die Spektralmethode verwendet, erwarten wir eine ex-
ponentielle Konvergenz der Lösung in Abhängigkeit von der Anzahl der nume-
rischen Gitterpunkte.

In Abb. 1 (links) zeigen wir ein Beispiel für Quasi–Gleichgewichts–BSL–
Anfangsdaten, bei denen eine solche exponentielle Konvergenz gezeigt wird.

1https://bitbucket.org/fukaws/
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Abbildung 2: Links: Beispiel für die gemessene Exzentrizität der Anfangsdaten eines asymmetri-
schen, sich schnell drehenden BNS–Systems im Quasi–Gleichgewicht (schwarz), unter Verwen-
dung von 3,5PN Schätzungen (blau) und nach Anwendung der iterativen Exzentrizitätsreduktion
(rot). Die verwendete binäre Konfiguration ist M∞ = 2, 7, q = 0.6875, χ1 = 0 und χ2 = 0.6,
wobei das Fluid mit der TNTYST Zustandsgleichung modelliert wird. Rechts: Analyse der Evo-
lutionskonvergenz von einem nicht rotierenden BNS–System mit gleicher Masse, dessen Fluid
mit der SLy Zustandsgleichung modelliert wurde. Die roten und grünen Sequenzen wurden für
eine fixe Anfangsdaten–Auflösung (N̄ = 47) berechnet und vergleichen den Einfluss der Evo-
lutionsauflösung. Die blauen Linien entsprechen einer fixierten Evolutionsauflösung von ∆xHR,
so dass die Auswirkungen von den Anfangsdaten zu sehen sind. Diese Grafik wurde aus [9]
übernommen.

Dabei vergleichen wir die ADM–Masse (Gesamtenergie in Σt=0), die Komar–
Masse (gesamte erhaltene Masse in Σt=0), den ADM–Spin–Drehimpuls (ge-
samter Spin–Drehimpulses in Σt und die Orbitalgeschwindigkeit Ω, mit un-
terschiedlicher Auflösung Ñ . Darüber hinaus zeigen wir in Abb. 1 (rechts)
Quasi–Gleichgewichtssequenzen von BSL–, BNS– und SLNS–Konfigurationen
mit unterschiedlichen Abstanden und Massenverhältnissen q, und vergleichen
sie mit post–Newtonschen Schätzungen der Bindungsenergie 4. Ordnung. Ins-
gesamt finden wir eine ausgezeichnete Übereinstimmung zwischen unseren
numerische Ergebnissen und der post–Newtonschen Annährung.

In Abschnitt 2.8 benutzen wir die mit FUKA erzeugten Anfangsdaten um die
Zeitentwicklung von kompakten Binärsysteme zu studieren. Konkret analysie-
ren wir die Exzentrizität wärend des Inspirals mit Anfangsdaten unter Quasi–
Gleichgewichtsannahmen (QG), post–Newtonschen Korrekturen der Ordnung
(3,5PN) sowie iterativen Verfahren zur Reduzierung der Exzentrizität (ECC4). In
allen untersuchten Konfigurationen stellten wir fest, dass 3.5PN im Vergleich zu
den QG–Ausgangsdaten eine deutlich weniger exzentrische Spiralbewegung lie-
fert. Die iterative Exzentrizitätsreduktion verringert diese weiter bis zu . 10−4,
wie im linken Feld von Abb. 2 zu sehen ist.

Darüber hinaus haben wir den Einfluss der Auflösung der Anfangsbedingung
und der Evolutionsauflösung sowohl für BSL– als auch für BNS–Konfigurationen
quantifiziert. Im Fall eines BSL–Systems finden wir, dass die Evolutionsauflösung
die dominante Fehlerquelle bei der Messung der absoluten Phasendifferenz (φ)
für den ` = m = 2–Multipol der gravitativen Wellenform ist. Dabei könne Un-
terschiede in der Evolutionsauflösung zu einem Wert von |∆φ| > 1 führen. Beim
Vergleich unterschiedlicher Auflösung der Anfangsdaten mit der höchsten stu-
dierten Evolutionsauflösung stellen wir fest, dass |∆φ| < 0.1 ist. Wir stellen
ähnliches Verhalten bei nicht rotierenden BNS–Konfiguration mit gleicher Masse
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Abbildung 3: Links: Die spektrale Leistungsdichte (PSD) der (`,m) ∈ {(2, 1) , (2, 2)} Moden des
Gravitationswellensignals für die TNTYST Zustandsgleichung. Außerdem zeigen wir die domi-
nanten PSD–Frequenzen fm=1 := max [PSD(` = 2,m = 1)] und f2 := max [PSD(` = 2,m = 2)]

zusammen mit den aLIGO–Sensitivitätskurve. Rechts: Die Massenkritikalität M∞/M
1 ,0
th ist als

Funktion das Massenverhältnisses q und des dimensionslosen Spins χ1 des schwereren Sternes
dagestellt, wobei sich die Farbkodierung auf die Masse, die um den zentrelen Stern rotiert, be-
zieht. Diese Masse wird gemittelt und auf eine 2D–Ebene projiziert, wodurch die entsprechen-
de kubische Spline–interpolierte Konturdarstellung entsteht, die das stark nichtlineare Verhalten
hervorhebt. Diese Grafik wurde aus [20] entnommen.

fest, wie in Abb. 2 (rechts) gezeigt wird. Dabei finden wir, dass der gemessene
Wert |∆φ| um etwa eine Größenordnung höher ist als bei der BSL–Konfiguration.
Das ist wahrscheinlich darauf zurückzuführen, dass unsere BNS–Konfiguration
mit einer Entwicklung 4. Ordnung, wohingegen die BSL–Konstellation mit einer
Entwicklung 8. Ordnung beschreiben wird.

Auswirkungen extremer Spins und Massenverhältnisse auf die Beobachtun-
gen nach der Verschmelzung massereicher Neutronensternbinärsysteme

Ein wichtiger Aspekt bei der Untersuchung von BNS–Systemen ist eine de-
taillierte Analyse Dynamik während und nach der Verschmelzung der Sterne.
Eine Reihe von Arbeiten mit Focus auf die Dynamik von asymmetrischen und
nicht rotierenden BNS–Systemen sind jedoch auf Massenverhältnisse 0.7 . q ≤ 1
beschränkt [siehe z.B. [21]–[30]]. Es gibt doch nur wenige Studien mit kleineren
Massenverhältnissen, z. B. q ≈ 0.5, unter Verwendung einer polytropen Zu-
standsgleichung durchgeführt [siehe z.B. [25], [27], [31], [32]] und vor Kurtzem
eine Studie mit einer neuartigen tabularisierten Zustandsgleichung die den
Phasenübergang von dichter Kernmaterie zu Quarkmaterie beschreibt [33]. Zu
den wichtigsten Hauptmerkmalen asymmetrischer binärer Systeme zaehlen
die Störung des sekundären Objekts durch Gezeitenkräfte, zu die höre Mas-
se im Materietorus um das zentrale Objekt und die Zunahme der dynamisch
ausgeschtoßenen Masse [22], [34].

Parallel dazu wurden auch Studien durchgeführt, um den Einfluss des Spins
auf die Kollisionsdynamik zu untersuchen [8], [35]–[40]. Der dominante Effekt
den dabei ein zusätzlicher Spin–Drehimpuls hat ist eine veraenderte Lebensdau-
er das Kollisionsproduktes, sowie dessen Spin der bis zu χ ∼ 0.89 [35]–[37], [39]
betragen kann. Es wurde jedoch gezeigt, dass der Einfluss des Spin auf die Le-
bensdauer hypermassiver Neutronensterne im Vergleich zum Einfluss der Mas-
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Abbildung 4: Die Säulen in dieser Grafik beziehen sich jeweils auf einen fixierten Spin χ ∈
{−0.3, 0, 0.3}. Wir zeigen die Einschränkungen für die untere Grenze der zulässigen TOV–Radien,
indem wir die Schwellenmasse unter Verwendung von Gl. (4.7) entlang von Linien mit kon-
stantem RTOV ∈ {10, 11} km für jedes Massenverhältnis berechnen. Der horizontale blau schat-
tierte Bereich entspricht dem von GW170817 festgelegten Bereich unter der Annahme von q ∈
{0.5, 0.7, 0.9, 1}. Der rot schraffierte Bereich umfasst die EOS, die unter der Annahme ausgeschlos-
sen sind, dass die von GW170817 festgelegte Untergrenze für q = 1 gilt, während die grauen Be-
reiche durch Kausalität ausgeschlossen sind. Diese Grafik wurde aus [41] entnommen.

senasymmetrie gering ist[38]. Eine neuere Arbeit, in der schnell rotierende BNS–
Systeme mit q = 1 untersucht wurden, in dennen der Spin mit der Richtung der
orbitalen Rotationsachse uebereinstimmt, ziegt eine Unterdrückung der dynami-
schen ausgestoßenen Materie für gleichgerichtete Spins[40].

In Kapitel 3 untersuchen wir erstmals den Einfluss extremer Spins für
BNS–Systeme mit Massenasymmetrie q ∈ [0.6, 1.0] und Gesamtmasse M∞ ∈
[1.025, 1.105]M1,0

th , wobei M1,0
th die Schwellenmasse für ein massengleiches irrotie-

rendes System. In Abb. 3 identifizieren wir einen nichtlinearen Zusammenhang
zwischen der Massenasymetrie und dem Spin und dessen Auswirkung auf die
dynamisch emittierte Masse und die gebundene Masse rund um das zentrale
Objekt. Die höchste gemessene emittierte Masse für q = 1 finden wir bei maxi-
malen Spin, die minimale emittierete Masse q ≈ 0.8, jedoch höhere Masse bei
q = 0.6. Im Gegensatz dazu stellen wir fest, dass die Meiste gebundene Masse
rund um das zentrale Objekt bei der höchsten Massenasymmetrie von q = 0.6
auftritt, gefolgt von q = 1, wobei wiederum den minimale Wert für q ≈ 0.8 fin-
den (siehe Abb. 3, rechts). Im Gegensatz dazu finden wir in Abb. 3 (links), dass
die auffälligste Gravitationswellensignatur für q = 0.8 auftritt. Schließlich stellen
wir fest, dass der effektive Restspin nach der Kollision zu einem Anstieg der ma-
ximalen Leuchtkraft um bis zu einem Faktor 5 führen kann und bis zu einem Tag
verzögert ist.

Quasi–universelles Verhalten der Schwellenmasse bei der Verschmelzung von
Neutronensternen mit ungleicher Masse und Spin

In Kapitel 4 untersuchen wir die BNS–Konfigurationen mit q ∈ {0.5, 0.7, 0.9, 1}
und χ ∈ {−0.3, 0, 0.3}, um die Schwellenmasse für den prompten Kollaps un-
ter Verwendung von drei rein hadronischen Zustandsgleichungen (bei endlichen
Temperaturen) zu quantizieren. Aus unserer Analyse schließen wir, dass eine
quasi–universelle Beziehung, die unabhängig von den untersuchten Zustands-
gleichungen ist, existiert. Diese enthält als Spezialfall die universelle Beziehung
für die Schwellenmasse massengleicher Systeme aus [42]. In Abb. 4 zeigen wir,
dass langlebige Binärsysteme die massiv sind und eine starke Antiorientierung
der Spins haben, die stärksten Einschränkungen für die Zustandsgleichung lie-
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fern. ’́Ahnliche Ergebnisse wurden auch in früheren Arbeiten [43], [44] gezeigt.

Schnelle Emission als mögliches Unterscheidungsmerkmal von Kollisionen
gemischten Systemen und Neutronensternensystemen bei hoher Masse

Innerhalb eines kritischen Bereichs der Gesamtmasse der Asymmetrie und
der Spinparameter können binäre Konfigurationen existieren, bei denen es
schwierig zu erkennen ist, ob das primäre (massereichere) Objekt ein mas-
siver Neutronenstern oder ein kleines Schwarzes Loch ist (z.B. GW190418).
Frühere Studien haben gezeigt, dass ein wichtiger Unterschied in den Massen-
strömen bei SLNS–Systemen und BNS–Systemen existiert. Der Matteriefluss
in einem SLNS–System ist auf die Gezeitenkraefte des sekundären Objektes
zurückzuführen [45]–[48]. Im Vergleich dazu erfolgt in BNS–Systemen zusätzlich
zu dem (meta–)stabilen Überrest ein Massenauswurf durch die Schockwellen die
bei der Kollision entstehen [49]–[53]. Am auffälligsten ist im Fall eines binären
Neutronenstern–Systems die Produktion einer blauen Kilonova, die größtenteils
auf die Schockerwärmung an der Kollisionsoberfläche der beiden Neutronen-
sterne zurückgeführt werden kann [54], [55]. Dieses Merkmal ist einzigartig
für BNS–Systeme, wobei eine rote Kilonova, die für die langfristigen Massen-
emissionen aus der Akkretionsscheibe charakteristisch ist [56]–[59], auch bei
SLNS-Systemen auftritt.

In Kapitel 5 erforschen wir den kritischen Bereich, in dem sich BNS– und
SLNS–Bedingungen natürlich überschneiden. Innerhalb dieses Bereichs ver-
wenden wir numerische Simulationen, um den Einfluss der Massenasymmetrie
q ∈ [0.486, 0.714] und des Spins χ1 ∈ [0.00, 0.52] auf charakteristische Merkma-
le der SLNS– und BNS–Kollisionen zu berechnen. Insbesondere untersuchen wir
die Masse und Zusammensetzung der emittierten Materie in jeder Konfigura-
tion für zwei hardonische Zustandsgleichungen ,wobei wir uns auf Merkmale
konzentrieren, die für zukünftige Multi–Messenger–Detektionen von Bedeutung
sein könnten. Wir stellen fest, dass ein charakteristisches Merkmal von BNS–
Kollisionen die Bildung eines zusätzlichen Emissionsschweifs ist, der durch die
Kollision der beiden Neutronensterne entsteht und durch den Materie mit Ge-
schwindigkeiten bis zu v ∼ 0.8c ausgeworfen wird. Bei Konfigurationen mit
einem rotierenden primären Objekt wird der schnelle Emissionsschweif jedoch
zunehmend unterdrückt und schwer von einem SLNS–Ereignis zu unterschei-
den.

Quarkbildung und Phänomenologie bei der Kollision von Neutronensternen
mit dem V–QCD Modell

Die Berechnung der Zustandsgleichung von dichter Kernmaterie ist nach
wie vor ein ungelöstes Problem der theoretischen Physik. Kollisionen von BNS–
Systemen geben einzigartige Einblicke in das Verhalten von Materie bei hoher
Dichte und Temperatur. Die numerische Erforschung dieser Systeme war je-
doch bis vor Kurzem auf rein hadronische Zustandsgleichungen oder polytrope
Zustandsgleichungen in denen der Übergäng zu Quarkmaterie und die Tempe-
raturabhängigkeit stark vereinfacht beschreiben wird (vgl. [63]).

In Kapitel 6 untersuchen wir erstmals ein neuartiges Modell für die Zustands-
gleichung auf der Grundlage von V–QCD, welches einen physikalisch motivier-
ten Rahmen für die thermodynamisch konsistente Beschreibung von Kernmate-
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Abbildung 5: Left: Die +–Polarisation der ` = m = 2 Mode der Gravitationswellenbelastung.
Mitte: Die aus Gl. (6.5) berechnete Leistungsspektraldichte (`,m) = (2, 1) , (2, 2). Hier zeigt die
dunkel gepunktete Linie den Beitrag der Spiralbewegung nur für (`,m) = (2, 2). Eingeschlossen
sind die Empfindlichkeitskurven, die sich auf die derzeitige Empfindlichkeit des aLIGO und des
Einstein Teleskops [60], [61] beziehen. Rechts: Das Spektrogramm von h2,2

+ , wobei die weiße Kur-
ve den Betrag des Spektrogramms als Funktion der Zeit zeigt. Hinweis: In den beiden rechten
Spalten entsprechen die orangefarbenen und blauen gestrichelten Linien den Spitzenfrequenzen
f2,1 und f2,2 für (`,m) = (2, 1) , (2, 2), während die gestrichelte gelbe Linie der aus dem Spektro-
gramm gemessenen Frequenz f3 entspricht. Der rote Stern bezeichnet die Fusionsfrequenz fmer.
Diese Grafik wurde aus [62] entnommen.

rie von niedriger Dichte bis hin zu extrem hohen Dichten bietet. Auserdem kann
dieses Modell Vorhersagen für den Phasenübergang von dichte Kernmaterie zu
dichte Quarkmaterie machen die mit Ergebnisse der pertubativen QCD konsis-
tent sind. Eine natürliche Folge dieses hybriden Modells ist das Auftreten eines
kritischen Punktes bei hoher Temperatur und endlicher Dichte im Phasendia-
gramm. Neutronensternensimulationen mit dem V–QCD Modell können dabei
helfen Erkenntnisse über die Lage des kritischen Punktes im QCD Phasendia-
gramm zu erlangen.

Wir studieren drei verschiedene Zustandsgleichungen auf der Grundla-
ge des hybriden Modells mit unterschiedlichen Steifigkeiten. Diese Modelle
sind in Übereinstimmung mit aktuellen Massen– und Radiusmessungen von
Pulsarbeobachtungen und den Gravitationswellenmessungen von GW170817.
Diese Modelle wurden verwendet, um numerische Simulationen von BNS–
Kollisionen durchzuführen, die mit den gemessene Parametern von GW170817
übereinstimmen. Dabei gehen wir der Frage nach, ob Quarks während der
Verschmelzung der beiden Neutronensterne gebildet werden und ob die Le-
bensdauer des HMNS–Überrests mit der ∼ 1s Lebensdauer von GW170817
übereinstimmt. In unserer Analyse identifizieren wir drei Zeitbereiche nach der
Kollision mit in denen heiße Quarks, warme Quarks, und kalte Quarks gebildet
werden. Besonderes interessant ist die weiche Zustandsgleichung, die bei bei-
den betrachteten Massenverhältnissen innerhalb von tBH < 12ms zur Formation
eines schwarzen Loches führt. In Abb. 3 zeigen wir das Gravitationswellen-
signal, die spektrale Leistungsdichte und das Spektrogramm für die weiche
Zustandsgleichung, mit und ohne Übergang zur Quarkmaterie, für die q = 0.7
Konfiguration. Außerdem finden wir, dass der Kollaps zu einem Schwarzen
Loch auf den Phasenübergang zu Quarkmaterie im kalten und dichten Kern des
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Neutronensterns zurückzuführen ist. Darüber hinaus ist der frühe Kollaps zu
einem Schwarzen Loch die einzige nennenswerte Auswirkung auf das Gravitati-
onswellenspektrum. Daher werden zukünftige Detektoren, die in der Lage sind
das Gravitationswellensignal nach der Kollision zu messen, besonderes wichtig
um den Zeitpunkt des Kollapses zu einem Schwarzen Loch festzustellen und da
mit etwas über Quarkmaterie in Neutronensternen zu lehrnen.

Künftige Arbeit

Die Ergebnisse dieser Arbeit können auf meherer weissen mit zukünftiger
Forschung erweitert werden. Im Bereich der Konstruktion von Anfangsdaten
könnten die aktuellen Codes in FUKA mit Alternativen zur klassischen Relati-
vitätstheorie wie Skalar–/Tensortheorien erweitert werden. Darüber hinaus be-
steht ein erhebliches Interesse an binären Bosonensternsystemen, die zur Zeit
hauptsächlich mit stark vereinfachten Methoden für die Anfangsdatenkonstruk-
tion [64] beschrieben werden. Außerdem könnten Anfangsdaten für Systeme mit
extrem schnell rotierenden Schwarzen Löchern mit χ ≈ 0.99 implementiert wer-
den.

In Kapitel 3 und Kapitel 5 untersuchen wir Binärsysteme mit kritischer
Masse oberhalb der Schwellenmasse mit extremen Spins und kleinen Massen-
verhältnissen, wobei wir uns auf zwei rein hadronische Zustandsgleichungen
beschränken. Eine genauere Untersuchung des Parameterraums für q, χ, die Ge-
samtmasse des Doppelsterns M∞, und die Zustandsgleichung wäre wertvoll,
um die Beziehung zwischen diesen Parametern und der resultierenden Masse
um das zentrale Objekt, der dynamischen emittiereten Materie und der Zu-
sammensetzung der Materie zu charakterisieren. Außerdem wäre es interessant
Systeme in denen schnell emittierete Materie (v > 0.6) gefunden wird genauer
zu untersuchen.

In Kapitel 4 haben wir einen erster Blick auf die Schwelle zum promp-
ten Kollaps als Funktion von der Zustandsgleichung, q und χ geworfen.
Seit der ursprünglichen Veröffentlichung wurden mehrere ähnliche Arbeiten
veröffentlicht (siehe [65], [66]), die den Parameterraum von q und den Einfluss
der Zustandsgleichung gründlich untersucht haben. Daher wäre es wichtig,
eine Folgearbeit durchzuführen, die den Spinparameterraum gründlicher un-
tersucht, um eine zuverlässigere Aussage über die in dieser Arbeit diskutierte
quasi–universelle Beziehung zu erhalten.

Schließlich wurden in Kapitel 6 die ersten BNS–Simulationen mit einer Zu-
standsgleichung mit voller Temperaturabhängigkeit und einer Beschreibung der
Quark–Materie auf der Grundlage des V–QCD Modells vorgestellt. Zunächst
wird es wichtig sein, unsere numerischen Codes so anzupassen, dass sie die
Berechnung des Quarkanteils im gesamten numerischen Bereich während der
Entwicklung ermöglichen und somit eine genaue 3D–Nachbearbeitung erlauben.
Darüber hinaus könnten wir die in den Kapiteln 3–5 durchgeführten Studien
ausweiten und die Zustandsgleichungen einbeziehen, die mit dem hybriden
V–QCD Modell erzeugt wurden. Das würde uns ermöglichen die Auswirkungen
auf die resultierenden Gravitationswellenspektren, die Zusammensetzung der
emittierten Materie und das Kollapsverhalten zu ermitteln.
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senkritikalität M∞/M

1 ,0
th ist als Funktion das Massenverhältnisses
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1 ,0
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1

Chapter 1

Introduction

The study of compact object binary mergers using numerical relativity is an excit-
ing field that has experienced incredible growth since the first stable evolution of
a binary black hole (BBH)[1], neutron star binaries (BNS) and black hole-neutron
star binaries (BHNS) (cf. [2]–[4]). With these successes many questions have been
raised with regards to the (post-)merger dynamics, gravitational wave signature,
and the resulting electro-magnetic counterpart. The multi-messenger detection
of GW170817[5] has highlighted the need to broadened these questions to in-
clude the influence of the equation of state (EOS) of nuclear matter in order to
explain this event as well as how such events can put constraints on the EOS.
Furthermore, later events such as GW190425[6] have brought into question the
likelihood of a BHNS binary where the BH has a mass of the order of the max-
imum irrotational mass MTOV of a neutron star as such formation channels are
challenging to explain within current theoretical models (cf. [7], [8]).

Within this introduction we will outline a few key areas of research using
numerical relativity that have been explored in this work. Specifically, the ex-
ploration of the influence mass asymmetry and spin have on (post-)merger dy-
namics for BNS simulations, the threshold mass to prompt collapse to a BH, the
critical regime of overlap between BNS and BHNS binaries, and the impact multi-
messenger observations can have on constraining the EOS. However, for such
exploration constraint satisfying initial conditions are required. To that end, a
discussion of the initial value problem of numerical relativity will be described
as well how we address this in our work.

1.1 Initial value problem

Solutions to Einstein’s field equations (EFE) for dynamical spacetimes has
continued to be a challenging problem for decades. To study binary coalescence
and merger the solution to this problem has been the splitting of the 4D spacetime
manifold using a 3+1 decomposition such that one obtains purely spatial hyper-
surfaces Σt parameterized by a time coordinate t. From this splitting, Einstein’s
field equations can be recast into a coupled system of elliptic partial differential
constraint equations that are solved on the initial spatial hypersurface Σt=0. The
dynamics are then governed by a set of hyperbolic evolution equations (cf. [67]–
[70]).

In the case of publicly available initial data for binary objects, only a few op-
tions exist. First is the TwoPuncture code [71] which has been an asset to the
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Figure 1.1: Within this work we ex-
plore a large portion of the available
space of mass ratio q and spin χ1 for
binary neutron star and select black-
hole neutron star binaries. Here the
mass ratio q ≤ 1 and the dimension-
less spin of the primary (more mas-
sive object) χ1 ∈ [−1, 1]. The legend
refers to the chapter that explores the
highlighted region.

community for studying asymmetric spinning BBHs since its development. Sec-
ondly, the publicly available LORENE spectral solver [17] has been the leading
code available for the study of isolated and binary compact objects with commu-
nity support for over twenty years. Third and more recently, the announcement
of the Elliptica code for BHNS initial data has been published though a pub-
lic repository has not been announced [72]. For a semi–complete overview on the
state of numerical relativity codes (open and closed source) along with an outlook
for future developments, see [73].

However, reliable construction of asymmetric binary ID with compact objects
having non–equal spins has been very limited for binaries involving NSs and, as
such, has not allowed for the exploration of a large portion of the available pa-
rameter space for BNS and BHNS binaries. Pivotal works on excision conditions
for black holes [19] has allowed for the construction of high quality binary black
hole [74]–[76] and black hole-neutron star [4], [77], [78] initial data which has
proven to be efficient when constructing eccentricity reduced initial data using
spectral solvers [79]. Furthermore, the construction of BNS initial data allowing
for asymmetric binaries with mixed spins has only become well understood in
recent years [31], [80] as well as extending these theorems to mixed binaries [81].
However, the codes that currently employ these state-of-the-art approaches such
as SGRID [25], [31], [82]–[84], Spells [4], [75], [80], [81], [85]–[90], and COCAL [91]–
[95] are closed source; therefore, there is a well known need in the NR community
for a collection of initial data codes that can produce eccentricity reduced binary
initial data for BHNS and BNS systems such that extremal configurations can be
reliably obtained. Moreso, the inclusion of tabulated EOS in the construction of
ID is extremely important given the breadth of research dedicated to exploring
the EOS parameter space.

In Chapter 2 we will examine the initial data problem as it relates to the con-
struction of BBH, BNS, and BHNS initial data. Furthermore, we will describe our
solution to this problem based on the KADATH[18] spectral library which has re-
sulted in the public release of our suite of solvers known as FUKA1. Furthermore,
we will examine a series of test configurations to quantify the quality of the result-
ing ID as it pertains to the resulting evolution. The theory and results discussed
in Chapter 2 have been published in [9].

1https://bitbucket.org/fukaws/
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1.2 Exploration of asymmetric spinning BNS mergers

Gravitational wave events such as GW170817 [5] and GW190814 [6] have pro-
vided a wealth of insight into the merger of compact objects, but, due to the de-
generacy of mass ratio, spin, and tidal deformability; it is challenging to ascer-
tain the constituent mass and spins of the compact objects [96]–[100]. However,
multi–messenger events such as GW170817 where an electro-magnetic counter-
part was observed have provided considerably more insights which has enabled
constraints on the EOS (cf. [28], [42], [101]–[114]) in addition to constraints on the
maximum mass of a NS of MTOV . 2.3M� to due the expected delayed collapse
to a BH (cf. [101], [103], [104], [113], [114]). Furthermore, in each GW event there
exists a low-spin and high-spin prior. For instance, for GW190418, the low-spin
prior is consistent with an irrotational binary, however, the high-spin prior would
result in a dimenionless spin of the primary2 of χ1 ≈ 0.52.

The uncertainty of the influence mass asymmetry and spin have on merger
dynamics, GW spectra, and electro–magnetic counterparts has lead to a wealth
of results in numerical relativity which will be discussed in the following sec-
tions. In Fig. 1.1 an overview of the parameter space explored within this work
is shown where the colored regions correspond to the associated chapter in this
work where its results are discussed. However, Fig. 1.1 is slightly misleading as
the space of parameters includes as well the total binary mass M∞, the eccentric-
ity of the binary 3 , and the EOS. We have, therefore, identified relevant configu-
rations to explore aimed at identifying prominent characteristics and constraints
that will be insightful for future multi-messenger detections.

1.2.1 Dynamics of asymmetric spinning BNS mergers

A key aspect in studying BNS mergers is the detailed analysis of the resulting
dynamics during merger and into the post–merger. A number of works focusing
on the dynamics of asymmetric irrotational BNS systems have been carried out,
but have been limited to 0.7 . q ≤ 1 [see, e.g., [21]–[30]]. Additionally, limited
studies with smaller mass ratios, e.g., q ≈ 0.5, have been explored using poly-
tropic EOSs [see, e.g., [25], [27], [31], [32]] and, more recently, a study using a
novel tabulated EOS with a first–order transition to quark mater [33]. The result-
ing key features of asymmetric binaries include the disruption of the secondary
object for highly asymmetric binaries due to the interaction of tidal forces, a larger
remnant disk after collapse, and an increase in dynamical ejecta [22], [34].

Additionally, parallel studies have also been carried out to investigate the in-
fluence of spin on merger dynamics [8], [35]–[40]. In these works they find that
the addition of spin–angular momentum influences the lifetime of the remnant
as well as results in a remnant black hole with spins up to χ ∼ 0.89 [35], [36].
It has also been shown that spin as well as highly eccentric orbits can also re-
sult in an increased lifetime of the remnant via the onset of a one–arm instability
in the HMNS remnant and an increase in the disc mass[37], [39], however, these
effects have been shown to be subdominant when compared to the influence of
mass asymmetry[38]. Conversely, a more recent work examining strongly spin-

2Here we assume the secondary object is irrotational which is consistent with the simulations
we have performed throughout this work.

3In this work we will only consider quasi-circular orbits with small residual eccentricities that
have a negligible influence on the resulting dynamics
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ning BNS configurations with q = 1 where the spins are (anti-)aligned with the
orbital axis of rotation using temperature-dependent EOS models results in an
overall suppression of dynamical ejecta for aligned spins[40].

The results from previous studies have focused on the influence of spin or
asymmetry which has provided important insights into the dynamics of BNS
mergers, however, in this work we will extend the parameter study to include
equal–mass binaries with extremal spins up to χ1 = 0.6 as well as the effective
dynamics when considering asymmetric and spinning BNS mergers, the results
of which have been published in [20]. In Chapter 3 we will explore the orange
region within Fig. 1.1 for massive binaries with M∞ ∈ [1.025, 1.105]M1,0

th where
M1,0

th is the threshold mass for an equal-mass irrotational binary for a given EOS
as shown in Tab. C.1.

1.2.2 Threshold mass to prompt collapse in BNS mergers

Another fascinating regime to explore is that of the threshold mass for binary
neutron stars mergers where the threshold mass describes the minimum mass
such that a prompt collapse to a BH occurs within the freefall timescale. This
has important astronomical implications as prompt collapsing BNS mergers are
more electro–magnetically quiet and are challenging to distinguish from BHNS
mergers with a similar total mass [115]–[117]. For equal–mass binaries, it would
be unlikely for a BH to be involved for MBH ≈ 1.4M� [118], [119], however, for
highly asymmetric binaries where the primary mass is of the order of the maxi-
mum non-rotating mass for a NS,MTOV, such a configuration cannot be ruled out
in this critical regime [7], [120].

The threshold mass (Mth) has been thoroughly studied in order to character-
ize the quasi–universal behavior of the threshold mass of BNS mergers for ir-
rotational equal–mass and asymmetric mass ratio binaries [23], [42], [65], [66],
[121]–[123]. In the case of smaller mass ratios it was originally suggested that the
threshold mass decreases with a power–law behavior as a function of decreasing
mass ratio q [124] which was later supported by [65]. Hence, it was suggested
that a quasi–universal behavior exists and numerous fits are available with Mth

as a function of various EOS quantities [124]. In contrast, a more recent study was
performed which focused on asymmetric irrotational binaries which concluded
that no such quasi-universal behavior exists and, as such, the threshold mass as
a function of q has an EOS dependent fit of two splines such that, for stiffer equa-
tions of state, the maximum threshold mass can occur on the order of q = 0.8
whereas, for softer equations of state would only result in a decreasing threshold
mass[66].

In Chapter 4 we will discuss the blue region in Fig. 1.1 which is related to
BNS mergers in the q ∈ [0.5, 1] with the dimensionless spin of the primary (more
massive) object χ1 ∈ [−0.3, 0.3]. Specifically, our work focuses on measuring
the threshold mass to prompt collapse in BNS simulations which has been thor-
oughly explored for equal mass, irrotational binaries[23], [42], [102], [123] and ex-
tended later to asymmetric irrotational BNS mergers[65], [66], [122], [125]. Here
we explore the asymmetric binaries mass ratios as small as q = 0.5 and, for the
first time, explore the influence of spin on the mass ratio. The analysis of the
quasi–universal relation has been reported in [41].
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1.2.3 Distinguishing BHNS from BNS

Within a critical region of total binary mass, asymmetry, and spin parameter
space; binary configurations may exist such that detections (e.g. GW190418) are
challenging to discern whether or not the primary (more massive) object is a mas-
sive NS or a small BH. Previous studies have shown that a key feature of a BHNS
is discrepancies in the mass flows, specifically, the outflow from a BHNS is due to
the tidal disruption of the secondary objects[45]–[48] as compared to BNS merg-
ers which will also produce mass ejection from the collisional shock and, possibly,
from the resulting (meta-)stable remnant [49]–[53]. Most prominent in the case of
a BNS is the production of a blue kilonova which is largely attributed to the shock
heating at the collisional surface of the two NSs [54], [55]. This feature is unique
compared to the red kilonova emission characteristic of the long–term mass ejec-
tion from the accretion disk [56]–[59].

In Chapter 5 we will explore the critical region where BNS and BHNS con-
figurations naturally overlap. Within this region, we will use numerical simu-
lations to determine the influence of mass asymmetry q ∈ [0.486, 0.714] and spin
χ1 ∈ [0.00, 0.52] on the characteristic feature of BHNS and BNS inspiral and merg-
ers. Specifically, we will examine the ejecta mass and composition of each con-
figuration for two hardonic EOS models (TNTYST and BHBΛΦ) with a focus on
unique characteristics that may inform future multi-messenger detections. The
results from this chapter have been previously reported in [8].

1.3 Equations of state with quark matter

The equation of state of nuclear matter remains a long standing problem for
nuclear theory as well as theoretical physics. Specifically, the low density regions
have been fairly well understood using nuclear theory with the extremely high
density regions being well described by chiral effective field theory and lattice
QCD. Conversely, the intermediate scales between ∼ [1, 10]ns, where ns is nu-
clear saturation density, are less understood and are only loosely constrained by
polytropic EOSs that do not violate causality or more recently, by sound-speed
constraints [126]–[128]. Furthermore, merger events of BNS systems provide a
unique insight into this intermediate regime, however, the numerical exploration
of these systems have been limited to purely hadronic EOSs or polytropic EOSs
with artificial transitions to quark matter and an analytical scheme for tempera-
ture dependence (cf. [63]).

In Chapter 6 we will explore for the first time a physically motivated tem-
perature and charge fraction dependent EOS with a description of quark matter
at densities in excess of nuclear saturation density based on the V-QCD frame-
work [129]. Such a novel framework includes a mixed phase of quark and nu-
clear matter resulting in a critical point at high temperature and large density. In
Chapter 6 we will examine BNS configurations similar to GW170817 to ascertain
the mechanisms that influence quark formation, how the formation of quarks in-
fluence the GW spectra, and how GW events can constrain the V-QCD model.
These results have been reported previously in [62]

Finally, we will close this thesis with a cumulative conclusion in Ch. 7. Here
we will review highlighted results from this work in addition to summarizing
avenues for future research.
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Chapter 2

Initial data

The study of compact objects in numerical relativity (NR) is the process of solv-
ing the Einstein field equations (EFE) using computers, where the EFE in their
original form

Gµν = Rµν −
1

2
gµνR = 8πTµν , (2.1)

represent the description of spacetime as a 4D Lorentzian manifold (M , g) which
entails a coupled system of non–linear, second order, partial differential equa-
tions. Such a system of equations is vastly more complex than the classical coun-
terpart in Newtonian mechanics such as the two body or effective one body mod-
els where only knowledge of the stellar objects are necessary and the initial con-
ditions are trivially defined based on the component mass, separation, and initial
momenta. To this end, it is essential to cast the system of equations into a form
that reduces computational complexity by taking advantage of relevant symme-
tries, make meaningful approximations and ensures a convergent solution. This
chapter is devoted to the construction of the initial data time slice which will
serve as the basis for the numerical simulations discussed in the remaining chap-
ters, however, for a mathematically rigorous review of the decomposition of the
EFE to include the evolution equations, the reader is referred to [10], [11].

2.1 3+1 decomposition

The first step towards initial data (ID) construction is by employing the stan-
dard 3+1 decomposition which decomposesM into purely spatial hypersurfaces
Σt which are parameterized by a time coordinate t. For a line element of the form

ds2 = gµνdx
µdxν , (2.2)

such a decomposition is obtained by constructing a projection tensor onto the
purely spatial hypersurface as well as a normal pointing vector along the param-
eterization component, t,

nµ ≡ −α∇µt , (2.3)
γµν = gµν + nµnν . (2.4)

As such, we can define the coordinate time of our hypersurfaces in terms of the
normalization factor α and a purely spatial vector, βµ,

tµ ≡ αnµ + βµ. (2.5)
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The 4D line element (2.2) can then be rewritten with the help of equations (2.4)
and (2.5) into the following form

ds2 = −α2dt2 + γij(dx
i + βidt)(dxj + βjdt). (2.6)

The scalar α is commonly referred to as the lapse[130] as it describes how the coor-
dinate time is influenced by curved geometry. In the limit of flat spacetime, α→ 1
and, as the curvature of the manifold increases e.g., near a massive compact ob-
ject, α < 1. Conversely, βi describes how the spatial coordinates shift when trav-
eling along a geodesic which is most easily understood as a loss of parallelism.
Therefore, in the limit of flat spacetime, the shift vector βi → 0.

It is now useful to make a few definitions which are used throughout this
chapter. First, we can define a covariant derivative that is compatible the projec-
tion tensor, γij , as

Di := γki∇k.

Additionally, we can characterize the curvature of Σt by measuring the change of
the 3-metric along the normal vector n

Kij = −1

2
Lnγij ,

which is commonly referred to as the extrinsic curvature. Finally, we define nec-
essary contractions of the energy-momentum tensor

E ≡ Tµνn
µnν , (2.7a)

which is the time-like projection of the energy-momentum tensor and

jα ≡ −Tµνγµαnν , (2.7b)

which is the space-like momentum current. Furthermore,

Sαβ ≡ Tµνγ
µ
αγ

ν
β , (2.7c)

is the purely spatial projection of the stress-energy tensor.
In this way it is possible to recast the EFE as a Cauchy problem such that the

EFE are decomposed into a set of evolution equations describing the dynamics of
the purely spatial hypersurface which are characterized by a coupled system of
second order, partial differential constraint equations. As such, Eq. (2.1) can be
cast into the well known Hamiltonian and momentum constraint equations

R +K2 −KijK
ij = 16πE , (2.8)

DjK
j
i −DiK = 8πji , (2.9)

(2.10)

where R is the 3-Ricci scalar on Σt.
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2.1.1 Conformal Thin Sandwich formulation

Even in the current form of Eq. (2.8) and (2.9), it is unclear what the underlying
degrees of freedom of the system of equations are nor are they efficient to be
solved directly. To this end, works by Lichnerowicz[13] and York[14], [15] played
an important role to dissect the key elements of the constraint equation which has
evolved into the Conformal Thin Sandwich decomposition.

The underlying idea is to take the 3+1 decomposition discussed in Sec. 2.1 to
the limit where the parameterization of neighboring hypersurfaces are infinites-
imally separated such that Σt → Σt+δt. Lichnerowicz proposed the idea of a
conformal transformation of the 3-metric such that

γij := Ψ4γ̃ij , (2.11)

where γ̃ij is denoted as the conformal or background metric and Ψ is a scalar field
describing the deviation from the background metric which is, therefore, a coor-
dinate dependent quantity. Furthermore, the extrinsic curvature can be decom-
posed into its trace and tracefree form

Kij = Aij +
1

3
Kγij , (2.12)

where K quantifies the mean curvature of Σt. In this work, we utilize the confor-
mal relation for the tracefree extrinsic curvature of

Âij := Ψ10Aij , (2.13)

where the exponent of Ψ is chosen to be consistent with the computed result from
the momentum constraint (cf. [10], Sec. 6.5.2 for a discussion). With Eq. (2.11) &
(2.13), Eq. (2.8) & (2.9) can be rewritten as

D̃kD̃kΨ +
1

8
Ψ−7ÂijÂ

ij + 2πΨ5E − 1

8
R̃Ψ− 1

12
K2Ψ5 = 0 , (2.14)

D̃jÂ
ij − 2

3
Ψ6D̃iK − 8πΨ4ji = 0 , (2.15)

where Âij is defined as [15]

Âij =
Ψ6

2α
(D̃iβj + D̃jβi − 2

3
γ̃ijD̃kβ

k + ∂tγ̃
ij). (2.16)

After substituting Eq. (2.16) into (2.15) we obtain

D̃j

(Ψ6

α
(L̃β)ij

)
+Dj

(Ψ6

α
∂tγ

ij
)
− 4

3
Ψ6D̃iK − 16πΨ4ji = 0 , (2.17)

(L̃β)ij := D̃iβj − D̃jβi − 2

3
γ̃ijD̃kβ

k.

A natural first estimate is to set γ̃ij = fij where fij is the flat spatial 3-metric
which, in a cartesian basis, is simply fij = δij . By using the conformal decompo-
sition with the flat metric the system of equations simplifies considerably as the
terms related to the intrinsic curvature of the manifold are zero. Additionally, we
can demand a constant background metric such that ∂tγij = 0. And finally, by
imposing maximal slicing we assume the mean curvature K = 0. The remaining
degrees of freedom to be specified are α, E, and ji.
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2.1.2 eXtended Conformal Thin Sandwich

Of the remaining degrees of freedom from the CTS system of equations α, E,
and ji, α is not trivially specifiable since, although it is a smooth distribution it
is not uniform in the case of binary compact objects. A later work from York
and Pfeiffer [16] introduced an extension to the CTS system coined (XCTS) which
derived an equation for α based on the momentum constraint and ∂tK yielding

D̃iD̃
i(αΨ)− α

[1

8
R̃ +

5

12
K2Ψ4 +

7

8
ÂijÂij + 2πΨ5(E + 2S)

]

+Ψ5(∂tK − βiD̃iK) = 0, (2.18)

thus resulting in ∂tK now becoming freely specifiable. With Eq. (2.18) along with
Eq. (2.14) and (2.17) we obtain a complete set of elliptic equations. We can then
substitute our assumptions of a flat background and maximal slicing along with
∂tK = 0 to obtain the reduced system of equations

D̃kD̃kΨ +
1

8
Ψ−7ÂijÂ

ij + 2πΨ5E = 0 , (2.19a)

D̃j

(Ψ6

α
(L̃β)ij

)
− 16πΨ4ji = 0 , (2.19b)

D̃iD̃
i(αΨ)− α

[7

8
ÂijÂij + 2πΨ5(E + 2S)

]
= 0 , (2.19c)

where now only the source terms E and ji remain to be specified along with
appropriate boundary conditions.

2.1.3 Stationarity

When generating ID we wish to find an equilibrium solution such that the
Hamiltonian and momentum constraints are satisfied throughout their dynami-
cal evolution. This equates to identifying a time-like Killing ξµ vector such that
the well known Killing equation is satisfied

D̃ξγ̃ij = 0.

Within the 3+1 decomposition, this simply results in

ξµ := tµ = αnµ + βµ. (2.20)

In other words, this can also be thought of as computing Σt in the co-moving
frame. However, in the case of binary initial data only an approximate helical
killing vector exists that describes quasi-stationary initial conditions which is de-
fined as (cf. [10], [11], [131])

ξµ := ∂t + Ω∂iφ(xc) , (2.21)

where Ω is the orbital velocity of the binary and ∂iφ(xc) is the rotation vector field
at a coordinate center xc. In this work the formulations presented are completely
general, however, we use the analytically known rotation field ∂φ due to the strict
z-symmetry imposed by the KADATH library.
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2.1.4 Matter sources and hydrostatic equilibrium

In the case of binary initial data involving a neutron star, the energy-
momentum tensor in the perfect fluid form is used to model neutron star
matter

T µν := ρhuµuν + pgµν , (2.22)

where ρ is the rest-mass density, h := 1+ε+p/ρ is the relativistic specific enthalpy,
uµ is the fluid four-velocity, and p is the pressure. Using Eq. (2.7) projections we
can compute the source terms in Eqs. (2.19)

E := ρhW 2 − p , (2.23a)

Si i := 3p+ (E + p)U i
i , (2.23b)

ji := ρhW 2U i , (2.23c)

where W is the Lorentz factor which we define as

W 2 := (1− U iUi)
−1 (2.24)

A common issue when using spectral methods is the appearance of so-called
Gibbs phenomenon when attempting to find a spectral fitting function which mod-
els a shock or a discontinuous region thereby deteriorating or spoiling the so-
lution. A first step to minimize these effects is to utilize an intelligent domain
decomposition such that known shock interfaces e.g., the stellar surface, coincide
with a domain boundary, however, this only removes aliasing due to attempt-
ing to model the shock with a single interpolating function and does not resolve
the issue inside the stellar surface where the gradient of the density is still very
steep when approaching the surface. Therefore, even with an optimal domain
decomposition one can still obtain a result that includes strong oscillations near
the surface especially when increasing the resolution of the stellar domains. To
avoid resorting to filtering of higher order terms we instead rescale Eqs. (2.19)
in the stellar interior by p/ρ which is more well behaved spectrally and removes
explicit terms of ρ from the system of equations thus enabling an accurate de-
scription of stellar matter and providing a reliable means for convergence.

As we wish to model a binary in equilibrium, we must ensure the fluid is
in hydrostatic equilibrium. This reduces to solving the relativistic conservation
equations for the energy-momentum tensor and of the rest-mass current

∇µT
µν = 0 , (2.25)

∇µ(ρuµ) = 0. (2.26)

In the construction of binary ID we make the assumption that the stellar matter
is isentropic (ds = 0) which we find reasonable when modeling a cold star that
is unperturbed. As such, we can write the relativistic Euler equation obtained by
the constraint Eq.(2.25) as

uµ∇µ(huν) +∇νh = 0. (2.27)

In order to decompose Eq. (2.27) we first introduce the projection of the spe-
cific enthalpy current onto Σt

ûi = hγµi uµ. (2.28)
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In the presence of Killing vector, we can define the co-rotating fluid 3-velocity as

V i := αU i − ξi , (2.29)

and, with Eq. (2.28) and (2.29), we can rewrite Eq. (2.27) in a purely spatial
form[11], [131]

Di

(
hα

W
+ ûjV

j

)
+ V j(Djûi −Diûj) = 0. (2.30)

We see by inspection that the isentropic relativistic Euler equation has an exact
first integral for configurations where V j = 0 or ûj = 0. For the case of V j =
0 we see this as the case when the fluid is co-moving with the Killing vector
ξi. Conversely, ûj = 0 represents the case when the fluid is described by an
irrotational flow which we model using a velocity potential φ such that ûj = Djφ.
In a similar fashion, the purely spatial form of Eq. (2.26) is

Di(ρWV i). (2.31)

Equation (2.31) with (2.29) now form an elliptic equation for the velocity potential
φ. However,DiV

i in fact includes a laplacian term related to the velocity potential
φwhich is therefore defined up to a constant and, as such, must be fixed explicitly
in order to obtain a unique solution. Given Eq. (2.31) contains explicit appearance
of ρ, we can define H := lnh and recast (2.31) such that ρ is no longer present

Ψ6WV iD̃iH +
dH

dlnρ
D̃i(Ψ

6WV i) = 0 , (2.32)

where, in order to obtain Eq.(2.32) we assume dH/dlnρ is strictly monotonic.
Up until now only binary configurations containing irrotational or co-rotating

fluid profiles have been addressed. In order to extend the formulation to include
arbitrary uniform rotating fluid profiles, we follow the constant rotational veloc-
ity (CRV) formulation as derived by Tichy[131] which adds a spin component to
the specific enthalpy current such that

ûi := Diφ+ si , (2.33)

si := ωξiNS. (2.34)

In the same manner as for black hole initial data, ξi = ∂iφ(xNS) is a rotation vector
field centered on the neutron star parameterized by rotation parameter ω. From
this we can now explicitly define the projection of the fluid 4-velocity as well as
the Lorentz factor to be

W 2 =
ûiûi
h2

+ 1 , (2.35)

U i =
û

hW
. (2.36)

However, by substituting Eq. (2.33) into (2.30) results in a significantly more com-
plex equation which is discussed in detail in [131], [132]. The conclusion from
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these discussions is that many of the new terms introduce a negligible contribu-
tion to the first integral allowing the following expression to be sufficient when
modeling irrotational and arbitrary uniformly rotating fluids

hα

W
+ V iDiφ = 0. (2.37)

Tootle:2022pvd, Finally, to fully constrain the fluid degrees of freedom we must
specify an equation of state (EOS) which provides a relation between the pressure
p, internal energy ε, rest-mass density ρ, and the relativistic specific enthalpy h.
Our code is thus able to support both analytical (piecewise-)polytropic EOSs as
well as 1D cold or finite temperature tabulated EOSs.

2.2 Boundary conditions

To close our system of equations appropriate boundary conditions must be
enforced both at the outer boundary of the numerical space, at the matching
boundary between each spectral domain, and on the surface of each compact
object. The matching condition between spectral domains ensures continuity of
the solution as well as it’s derivatives, however, the boundary conditions on the
outer boundary and compact object surfaces require physical motivations to ob-
tain meaningful ID.

2.2.1 Asymptotic boundary conditions

To enforce boundary conditions on α, Ψ, and βi at the outer boundary, we
utilize a a compactified coordinate system which maps numerical infinity to finite
values[18]. As such, we can compute Σt in the asymptotic flat limit and impose
the following boundary conditions

lim
r→∞

α = 1 , lim
r→∞

Ψ = 1 , lim
r→∞

βi = βicor , (2.38)

such that in the asymptotic limit the shift simply describes the co-moving frame

βicor := ξi + ȧri = Ω∂iφ(xc) + ȧri , (2.39)

where the additional factor ȧri equates to a relative acceleration between the two
objects which will be discussed in detail in Sec. 2.5.

Although well defined analytically, ∂iφ is challenging numerically given it in-
volves coordinate locations up to spatial infinity. To overcome this limitation the
shift can be decomposed into

βi := βi0 + βicor , (2.40)

where βi0 measures the deviations from the co-moving frame and, as such, is re-
ferred to as the inertial shift. Therefore, in the asymptotic limit we can enforce
βi0 = 0 which is well defined numerically. It has been shown in the case of a con-
formally flat metric that (L̃∂φ)ij = 0, therefore, in practice we can freely replace
βi by βi0 within the XCTS system of equations[131].
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2.2.2 Horizon boundary conditions

In this work we utilize excision boundary conditions as developed by Cook et
al [19] which excises the black hole interior by defining the excision surface to be
an apparent horizon. To do so, we define the excision surface to be a coordinate
2-sphere of constant radius characterized by an outward pointing unit normal
vector field (si) and a projection tensor (hij)

sµ := [0, si] = Ψ−2s̃i , hµν := γµν − sµsν = Ψ4h̃µν . (2.41)

To demand that the excision surface is in fact an apparent horizon can be achieved
by ensuring a vanishing expansion (θ) at the surface. This is equivalent to de-
manding that the horizon will initially evolve along the out-going null generators
of the horizon[11]. We can define such null generators as

kµ :=
1√
2

(
nµ + sµ), (2.42)

and fix the excision surface to be a null surface by demanding

tµkµ|SBH
= 0, =⇒ βisi|SBH

= α. (2.43)

Furthermore, by decomposing βi into perpendicular and tangent components as
derived by Cook et al[19], we can translate Eq. (2.43) into the following boundary
conditions on the excision surface

βi⊥|SBH
:= αsi , (2.44)

βi|||SBH
:= ωBHξ

i
BH , (2.45)

where ξi is the rotational killing vector field centered on the black hole

ξiBH := ∂φ(xBH), (2.46)

and the rate of rotation is parameterized by ωBH. In conformal notation, we can
express the expansion on the two surface as

θ =
Ψ−2

√
2

(h̃ijD̃is̃j + 4s̃kD̃klnΨ−Ψ−4h̃ijÂij) , (2.47)

and, by demanding θ = 0, we obtain the boundary condition enforcing our exci-
sion surface as an apparent horizon (or Marginally Outer Trapped Surface)

s̃iD̃iΨ|SBH
= −Ψ

4
D̃is̃i −

1

4
Ψ−3Âij s̃

is̃j. (2.48)

Finally, a condition for the lapse on the horizon must be specified. In our code
there are two possibilities

α|SBH
= const , (2.49)

s̃iD̃i(αΨ) = 0. (2.50)

Cook et al have analyzed both the former fixed lapse condition as well as the
later von Neumann condition[19] and have found that the later is more sensitive to
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tidal forces in binary configurations which lead to a more consistent description
of the black hole. As a result the BH characteristics (mass and spin) throughout
numerical simulations are retained to higher degree of accuracy compared to a
fixed lapse boundary condition. 1

2.2.3 Neutron star boundary conditions

In the case of neutron stars we need to impose boundary conditions on the
fluid such that the stellar surface is well defined and is located at a domain
boundary. Given the distribution of matter is not uniform due to tidal interac-
tions with the binary companion the surface of the NS is not necessarily spheri-
cal. Traditionally the surface is defined by the vanishing of the rest-mass density
ρ, however, to be consistent with removing explicit use of ρ, we instead utilize
vanishing log specific-enthalpy

H|SNS
:= 0. (2.51a)

In addition to the constraint on the distribution of matter, we must also enforce
conservation of the momentum at the boundary. In the limit ρ→ 0, Eq. (2.32) can
be reduced by ascertaining that the second term goes to zero and that the first
term remains real and non-zero resulting in the boundary condition

V iD̃iH|SNS
= 0. (2.51b)

2.3 Asymptotic quantities

To characterize the self–consistency of our binary initial data with respect
to a quasi–equilibrium ansatz yet to be discussed and in comparison to post-
Newtonian estimates; we can measure the total energy contained in the com-
puted spacetime via integration over a spherical surface at spatial infinity of the
Arnowitt–Deser–Misner (ADM) Hamiltonian which has been derived from the
Hilbert action. In our numerical implementation we utilize a compactified do-
main such that the solution within the coordinate patch extending to spatial in-
finity drops off quickly enough to yield a finite value. By taking advantage of the
conformal decomposition this integral takes the form

MADM := − 1

2π

∮

S∞

DiΨdsi , (2.52)

where dsi is a normal pointing surface element on a sphere at spatial infinity and,
as such, is compatible with the flat metric and covariant derivative [11].

In contrast to measuring the total mass stored in a spacetime, we can also
measure the total conserved mass, or the Komar mass, along a timelike Killing
vector. In the case of binary initial data this reduces to measuring the conserved
mass along the time component of the binary helical Killing vector which we have
defined as Eq. (2.20). In practice we compute this quantity on a sphere at spatial
infinity as with the MADM. The basic expression takes the form of

MK :=
1

4π

∮

S∞

nj∇iξj(t)dsi, (2.53)

1Within the FUKA codebase initial data using fixed lapse or von Neumann conditions are pos-
sible, however, the results in this work involving BHs are obtained using exclusively the von
Neumann condition.
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and, by substituting Eq. (2.20), reduces to

MK :=
1

4π

∮

S∞

Diαdsi. (2.54)

One such method to quantify the degree to which the initial data is in quasi–
equilibrium is by imposing the virial theorem defined as [11]

MADM −MK = 0. (2.55)

In the case of BBH initial data we impose the virial theorem in order to fix the
orbital velocity Ω of the binary whereas, in the case of BNS and BHNS initial
data, the more reliable force–balance equation is used which will be discussed in
more detail in Sec. 2.6.2 - II. With a precise definition of the total mass stored in
the spacetime using MADM, we can define the binding energy of the binary as

Eb := MADM −M1 −M2 =: MADM −M∞, (2.56)

where M〈1 ,2〉 are the component gravitational masses. Finally, we can compute
the total ADM linear and spin-angular momentum of the binary computed at
spatial infinity using

JADM :=
1

8π

∮

S∞

Âijξidsj , (2.57)

P i
ADM :=

1

8π

∮

S∞

Âijdsj. (2.58)

2.4 Quasi-local quantities

With a closed system of equations we also need a way to constrain the charac-
teristics of our compact objects such as their gravitational mass and spin-angular
momentum. To this end, we utilize the previous definition of a rotation vector
field centered on each compact object

ξi(NS,BH) := ∂iφ(x(NS,BH)) (2.59)

For a black hole, quasi–local quantities provide an accurate measurement of
mass and spin-angular momentum even in a binary configuration given the ex-
cision surface is an apparent horizon. Therefore, the quantities measured on the
excision surface should match what is measured by the dynamic horizon finders
in an evolution code. We can first employ the use of the proper integral of the
black hole area within the conformal approximation employed here

A :=

∮

SBH

Ψ4

√
det(h̃ij)dS , (2.60)

whose irreducible mass (i.e., the mass without spin contributions) is equivalent
to

Mirr :=

√
A

16π
. (2.61)
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Furthermore, the spin-angular momentum of the horizon is measured analo-
gously to Eq. (2.57) on the excision surface

S :=
1

8π

∮

SBH

Âijξ
i
BH

√
det(h̃ij)dS

j. (2.62)

Furthermore, we can compute the total gravitational mass of the black hole, also
known as the Christodoulou mass, which includes the mass contribution from
the spin angular momentum

M2
CH := M2

irr +
S2

4M2
irr

. (2.63)

MCH is an exceptionally useful relation as it provides an accurate measurement
of the gravitational mass of the BH when in a binary or isolated configuration.
Finally, we can define the dimensionless spin parameter to be

χ :=
S

M2
CH

, (2.64)

which provides an accurate and comparable measure of black hole spins along
sequences of BH masses and spin-angular momenta.

In the case of neutron stars quasi–local measurements are not as precisely de-
fined since we do not have a strict geometric definition of the mass and spin of
the NS. In the case of the gravitational mass that is used to fix the dimensionless
spin of the NS, we instead compute the ADM mass of the TOV solution (i.e., at
infinite separation)

MNS(1,2)
:= lim

d0→∞
MADM ,(1,2). (2.65)

In the same matter, we fix the baryonic mass Mb for each NS in the binary to be
equivalent to Mb of the isolated TOV solution which is simply a volume integral
over the stellar interior

Mb :=

∫

VNS

WρΨ6dV. (2.66)

We can, however, perform a quasi–local measure of the gravitational mass of the
neutron star within the binary by computing the ADM gravitational mass as a
volume integral outside of the stellar object as proposed in [31]

MQL := −
∫

VNS

DiD
iΨdV. (2.67)

It is important to note that the measurement of MQL results in a systematic devia-
tion from the gravitational mass measured in the isolated solution. The definition
of the spin-angular momentum is also not well defined in the case of NS. There-
fore, we follow the procedure as suggested by [80] where we compute the quasi–
local spin–angular momentum on a spherical surface outside of the neutron star
such that the entire distribution of matter is captured inside this surface

SQL :=
1

8π

∮

SNS

Âijξ
i
NS

√
det(h̃ij)dS

j. (2.68)
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Aside from the gravitational mass definitions, however, a similar characterization
of spinning neutron stars can be made as in the case for BHs

χNS :=
SQL ,(1,2)

M2
ADM ,(1,2)

. (2.69)

Therefore, based on these definitions, the total mass of the binary is computed as

M∞ := M1 +M2 (2.70)

MNS
X := MADM,(X)

MBH
X := MCH,(X)

2.5 Eccentricity reduction

As eluded to during the discussion of our approximate helical killing vector
Eq. (2.39), we wish to generate initial data that is in quasi–equilibrium as well as
initial conditions with an eccentricity reduced inspiral. 2 To accomplish this we
follow the iterative methods proposed by Pfeiffer et al which aims at reducing
orbital eccentricity by either introducing analytical corrections or iteratively cor-
recting Ω and the radial infall velocity, ȧ, based on numerical evolutions of the
initial data which has proven effective in prior and this current work [31], [80],
[133].

For 3.5PN corrections to Ω and ȧ, the analytical expressions utilized within
FUKA are discussed in Appendix B. The iterative procedure is, however, more
involved. To obtain iterative corrections we first evolve an initial dataset for at
least four orbits. We can then fit the separation distance (proper or coordinate
separation) as a function of time as well as its time derivative to

r(t) = Sr(t)−
Br

ωr
cos(ωrt+ φr) , (2.71)

ṙ(t) = Sr(t) +Br sin(ωrt+ φr), (2.72)

where fitting parameters Br, ωr, and φr are used to estimate the degree of binary
eccentricity

e := − Br

ωrd0

. (2.73)

Here d0 is the corresponding separation distance between the two objects at t = 0.
A freedom in this procedure is the definition of Sr(t) of which there have been

various definitions proposed that include higher order terms in t, however, in
this work we have utilized the simplest which has proven to be robust

Sr(t) := A0 + A1t .

Use of higher order terms in twithin Sr(t) as well in the trigonometric terms have
been evaluated, however, they had negligible impact on the iterative corrections
for the binaries considered in Sec. 2.8 and, thus, we have chosen to ignore them.

2In principle the FUKA ID solvers with the current definition of a helical Killing vector could be
used to generate ID that is intentionally eccentric, however, we have not focused on such binaries
within this work
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Once a dataset has been evolved for ∼ 4 orbits, a fit has been made to, for
instance, Eq. (2.72), and the fitting parameters have been computed; we can then
compute the corrections δȧ and δΩ using

ȧk+1 := ȧk + δȧ , (2.74a)
Ωk+1 := Ωk + δΩ , (2.74b)

δȧ := −Br sinφr
d0

, (2.74c)

δΩ := −Brωr cosφr
2Ωkd0

, (2.74d)

such that the portion of the shift that describes co-rotation (2.39) can be written
as

βicor = Ωk+1∂
i
ϕ(xc) + ȧk+1r

i. (2.75)

The eccentricity reduction procedure is then repeated until the desired threshold
is obtained or further corrections no longer prove beneficial.

In this work we have elected to use Eq. (2.72) as it provided the ability to
reduce the eccentricity of the binaries considered in this work below e ≈ 10−3

whereas additional iterations using Eq. (2.71) did not yield beneficial corrections
below this threshold. This is likely due to the fact that, in this regime, r(t) is
already very linear and, therefore, the fitting parameters are not very sensitive to
the small amount of eccentricity that remains in the system.

In practice the process of iterative eccentricity reduction within the FUKAcodes
reduces to defining two parameters ecc omega and adot in the parameter file be-
fore (re)running the relevant eccentricity reduction stage as discussed in Sec. 2.6.2 -
IV; where ecc omega and adot have been computed by an external analysis code
that is not part of the ID solvers.

2.6 Numerical implementation

When solving initial value problems it is imperative to utilize a numerical al-
gorithm that is optimally suited for the problem. It has been shown that spectral
methods are particularly well suited for initial value problems since, when imple-
mented correctly, the solution will result in exponential convergence when the
number of collocation points are increased[85]. Additionally, spectral methods
allow for very fast computation of the derivatives and integrals of the basis func-
tions since these are analytically known and, in certain cases, efficient algorithms
such as fast fourier transformations can be used. To this end, we have utilized
the KADATH spectral solver library which has been specifically designed for solv-
ing numerical relativity problems[18]. A key advantage of using KADATH is that it
provides an interface which can ingest equations in a LATEXlike format similar to
how they are formulated within this work. This allows for more readability and
extensibility of the application codes.

2.6.1 Spectral solver setup

In the previous section, we have defined a highly non-linear system of cou-
pled partial differential equations which are constrained both by physically mo-
tivated boundary conditions as well as the desired characteristics of the binary
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Figure 2.1: This figure describes the domain decomposition of the physical space of a BBH initial
dataset. Regions A correspond to adapted spherical shells describing the apparent horizon (AH).
Regions B corresponds to the spherical shells exterior to the AH. Regions C, D, and E correspond
to the bispherical domains that provide a continuous coordinate map between regions B and F.
Region F is the compactified domain which extends to numerical infinity. This figure has been
reused from [9].

configuration (i.e., separation, masses and spins). An integral part of this pro-
cess is the decomposition of the numerical space using a multi-domain approach
such that a continuous map is available between numerical and physical coor-
dinates as well as to ensure non-trivial boundaries (e.g., stellar surface, excision
surface, numerical infinity) correspond to domain boundaries.

To that end, the binary numerical space is decomposed using a bispherical
domain decomposition composed of a minimum of twelve domains[18] which is
characterized in Fig. 2.1. Each compact object is composed of at least three do-
mains which cover the interior solution and the matching exterior domain. In the
case of a black hole the interior is empty since this region is excised whereas,
in the case of a neutron star, the interior is the only region that is composed
of nuclear matter. The surface of each object is set as the domain boundary of
two spherical–adapted domain boundaries within KADATH such that the surface
(e.g., stellar surface or excision surface) can adapt to the shape of the object based
on its mass and spin configuration. In the case of a black hole this is simply a
change in the radius of the 2-sphere in order to obtain the desired irreducible
mass. Conversely, the resulting shape for a NS becomes ellipsoidal under the
influence of stellar spin frequency and tidal influence from the companion.

The choice of adapted domains describing the compact object surface is two
fold. In the case of NS, this allows for non-spherical objects to be accurately mod-
eled by the numerical domains. Secondly, it is possible for Gibbs phenomenon
to occur at discontinuities or sharp gradients in the solution when using spectral
methods, therefore, it is imperative that the surface lies on a domain boundary. To
further reduce the influence of Gibbs phenomenon, trigonometric functions are
used as the basis functions to represent periodic variables such as angular compo-
nents, whereas Chebyshev polynomials are used for non-periodic variables such
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as the radial coordinate. As discussed in Sec. 2.1.3, choosing appropriate basis
functions not only increases the efficiency of obtaining a numerical solution us-
ing spectral methods, but they can also be used to enforce additional constraints
such as regularity along the axis of rotation and take advantage of symmetries in
the system (e.g., z-symmetry).

Once the spherical–adapted surfaces have been defined for each object, a bi-
spherical domain decomposition between the two objects and the external com-
pactified domain is utilized in order to obtain a continuous coordinate map across
the entire numerical domain. The addition of the compactified domain results in
a mapping of the coordinate systems ∝ 1/r such that spatial infinity is mapped
to a real value which allows for integrals to be taken at the asymptotic limit [18].

Based on this domain decomposition, a minimum of twelve domains are
needed for binary initial data, however, additional spherical shells around each
compact object and between the bispherical domains and the compactified do-
main can be added in order to provide additional local resolution. Addition
of spherical shells plays an important role when considering highly asymmet-
ric binaries as well as BHNS binaries in order to adequately resolve the steep
gradients in the vicinity of the BH.

The implemented system of equations are solved in bulk directly, i.e., no form
of relaxation or zig-zag algorithms are utilized. To this end, the system of equa-
tions is ingested and its residual, R, is computed in spectral form which utilizes
the domain basis functions as the so-called ”test-functions”, ξ, such that the scalar
product, 〈R|ξ〉 goes to zero. This is known as the ”tau-method”. Within the tau–
method additional boundary conditions can be imposed in place of equations for
higher order terms. The system of equations are then iteratively solved using a
Newton-Raphson method in order to minimize the residuals. A key feature of
KADATH in this regard is that the fields store not only their value on the colloca-
tion points, but also their derivative by means of automatic differentiation[18].
This allows for nearly perfect scaling of KADATH and KADATH–based applications
via MPI parallelization to & 32000 cores.

An additional feature of spectral codes is the ability to iteratively increase the
resolution of the initial data given the spectral solution only improves with res-
olution. To do so, a given binary configuration is solved at a reasonably coarse
resolution as this is quite cheap and fast to do. The solution can then be interpo-
lated onto a new grid that is at the desired higher resolution before attempting
to resolve the ID. In this manner, computing high resolution ID iteratively using
KADATH can be done much more efficient then attempting to solve at high resolu-
tion directly.

2.6.2 Binary initial data algorithm

The details up til now reflect the theoretical and implementation details as
discussed in [9], however, since then a considerably more efficient algorithm has
been implemented to reliably construct extremal binary initial data which will
now be discussed. The design and implementation of the new algorithm was
developed by S.D. Tootle with helpful insights from L.J. Papenfort. We will refer-
ence the originally published implementation as v1 and the new implementation
as v2 for the remainder of the text.

It is important to note that the v1 implementation documented in [9] leads to
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the same constraint satisfying initial data for compact objects as those obtained
with v2, however, v1 was very inefficient especially when attempting extremal
configurations of highly asymmetric and spinning binaries. As such, the results
section remains unchanged. Furthermore, the algorithm for v2 is nearly uniform
across the construction of binary ID making it much more easily understood than
the published v1 algorithm.

The v2 algorithm is built on a relatively simple principle of superimposed iso-
lated objects which have been used extensively throughout numerical relativity
to construct initial conditions for binary and head–on collisions of compact ob-
jects including boson stars, neutron stars, black holes, exotic objects, and recently
multi–fluid neutron stars including dark matter (cf. [64], [134]). To our knowledge
though, only the use of analytical solutions have been used within spectral codes
to construct binary initial data which is a very crude estimate when attempting to
construct extremal binaries and, at least within KADATH, does not allow for reliable
convergence.

Instead, we utilize a slightly different approach. For a given binary configu-
ration the standard inputs to constrain the binary are the mass and spin of each
object as well as their relative separation distance. With this information, we can
obtain a crude, although reasonable estimate, of the ”center-of-mass” (COM) us-
ing the classical Newtonian estimate

xc :=
1

M

∑

i

miri. (2.76)

With an estimate of the COM, we can compute the 3.5th order post–Newtonian
(3.5PN) estimate of the orbital velocity Ω which will serve as the initial guess for
the binary initial data and as the boost to our isolated compact object solutions.

Instead of using analytical solutions of our isolated objects, we now take a
moment to compute the 3D solutions of each compact object using the same for-
mulations described previously [see Sec. 2.1,2.3 and 2.4]. In this way, we have the
most consistent description of our compact objects within the desired formula-
tion of the EFE. Furthermore, once the isolated object solutions are obtained, we
can boost each object using the 3.5PN estimate of Ω to obtain isolated solutions
that resemble the solutions and spin velocities that will be computed in the bi-
nary configuration minus the influence of the companion object. It is important
to note that computing the isolated solutions even in 3D is computationally in-
expensive when compared to the efficiency gained in computing extremal binary
solutions.

To generate the initial guess for a given binary ID configuration, we can now
superimpose the isolated solutions onto the binary numerical space. To do so,
each field, X , is superimposed in a similar fashion

Xbinary(x) := Ξ + κ1 (X1 (x̂1)− Ξ) + κ2 (X2 (x̂2)− Ξ) , (2.77a)

κ<1,2> := exp

[
−
(r<1,2>

w

)4
]
, (2.77b)

x̂<1,2> := x− x<1,2>, (2.77c)

w :=
d0

2
, (2.77d)
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where X is substituted by the relevant field (e.g., α , βi0, etc), Ξ is the asymptotic
value of the field (e.g., α = Ψ = 1 , H = 0, etc), r<1,2> is the coordinate radius
from the center of the respective compact object, w is the decay weight factor
which controls where the falloff of the isolated solution occurs, κ 3 is the overall
decay factor such that the solution near each compact object is essentially the
isolated solution which is then exponentially decayed to the asymptotic value,
and x̂<1,2> represents the shift in the coordinates such that the isolated solutions
are interpolated properly.

This algorithm concludes the generation of the initial guess for the binary
solver and is the same irrespective of the binary configuration (BBH, BHNS,
BNS). Moreso, the solving procedure is also fairly generic and includes three
main stages, however, there are some nuances in binaries involving NS which
will be addressed in the following sections.

2.6.2 - I Non-equilibrium stage

In the Non-equilibrium stage we solve the XCTS system of equations (2.19)
while imposing asymptotic boundary conditions on the spacetime fields using
Eqs (2.38) with the orbital velocity Ω as well as the COM fixed within equation
(2.39). This is due to the fact that

1. the initial estimates for the COM and Ω from Newtonian and 3.5PN are not
in equilibrium

2. the ADM and linear momentum constraints are evaluated at spatial infinity

As such, fixing Ω removes an important degree of freedom that would other-
wise result in a solver that is prone to convergence issues. Within this stage the
spacetime is able to find a consistent solution throughout the numerical space
even though the fixed values of COM and Ω are only approximate. A converged
solution from this stage provides a reliable foundation to obtain an equilibrium
solution. 4

Considerations for a BH - In the presence of a BH we impose Eq. (2.48) and
(2.50) boundary conditions on βi while, at the same time, fixing the irreducible
mass (2.61), the Christodoulou mass (2.63), and the dimensionless spin parameter
χ (2.64). Furthermore, source terms in Eq. (2.19) are set to zero.

Considerations for a NS - Conversely, when a NS is present, we must also
compute the source terms to be included in Eqs. (2.19) and rescale the equations
by p/ρ along with imposing (2.38) boundary conditions. Additionally, we solve
equation (2.32) and impose boundary conditions (2.51) on the fluid and the ve-
locity potential. In this stage the matter is only rescaled by a constant

H → H = Hconst(1 + ∆H), (2.78)

whereHconst is the distribution of matter from the previous solution (e.g., boosted
isolated solution) and ∆H is found by enforcing the baryonic mass of the NS is

3The functional form of κ was motivated by superimposed Kerr initial data[4], [89], however,
the utility is quite different in this case.

4A converged solution at fixed Ω does not guarantee convergence to an equilibrium configu-
ration since the respective equilibrium constraint, especially at very close separation, is not easily
satisfied. However, for physically reasonable separations (i.e., when equilibrium is a reasonable
assumption), convergence is highly expected.
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fixed. In a binary setup, the tidal influence of the companion object will result
in a change in the velocity profile of the fluid due to Lorentz forces and, from
Eq.(2.66), we can see that the volume integral for the measured baryonic mass
simply scales as a function of the Lorentz factor, W. Therefore, solving for ∆H by
enforcing MB = const ensures conservation of rest-mass density. There are two
key points to mention:

1. Without using a simple rescaling in the initial fixed Ω stage, the solver will
often diverge

2. Without boosting the isolated NS solution prior to import or using an in-
correct boost to the NS such as a linear boost, the solution will also diverge
even if initially rescaled

Both points highlight the importance of using superimposed boosted isolated ob-
jects for the initial guess within the FUKA solvers.

2.6.2 - II Quasi-equilibrium stage

In the quasi-equilibrium stage the same system of equations and boundary con-
ditions as specified in Sec. 2.6.2 - I are used only now the COM and Ω are no
longer fixed and, are instead, found by enforcing quasi–equilibrium conditions
and minimizing PADM. In the case of BBH, this is fixed by the virial constraint

MK −MADM = 0 ,

whereas for binaries that include a NS, equilibrium determined based on the
”force-balance equation”

DxH|xc1,2 = 0 , (2.79)

such that the divergence of the log specific enthalpy is zero along the x-axis where
the stellar center(s) are located. This stage is very important as this will pro-
vide a binary where the matter is now in hydrostatic equilibrium (i.e., no longer
rescaled) in the case of NSs and will compute a COM estimate by finding the loca-
tion of the axis of rotation xcom such that the ADM linear momenta are minimized

P i
ADM = 0. (2.80)

Given our domain decomposition is defined a priori and as such the coordinate
system is always centered about the origin and not the COM, the shift in the
coordinate system is implemented by shifting our helical Killing vector

ξi = Ω∂iφ(xcom). (2.81)

Furthermore, having a more precise estimate of the COM of the system allows
for a more accurate 3.5PN estimate which can be used in the eccentricity reduction
stage.
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2.6.2 - III BNS drift removal stage

In the case of BNS initial data there is an additional intermediate stage be-
fore proceeding to the eccentricity reduction stage stage in order to fix both the x
and y components of the COM. During the quasi-equilibrium stage, both stars are
fixed based on the ”force-balance” equation (2.79). As such, only one component
of PADM is minimized during the quasi-equilibrium stage, otherwise, the system
of equations would be overdetermined. Furthermore, the values of Ω computed
when only one star is constrained by the ”force-balance” equation are inconsis-
tent in the regime of highly asymmetric or highly spinning stellar configurations.
Even more so, we found that resorting to a averaging of the two values leads to
inconsistent and, in extreme cases, non-convergent behavior. Therefore, in this
intermediate stage, Ω is fixed from the equilibrium solution and the fluid solu-
tion is rescaled in the same way as in the non-equilibrium stage thereby removing
Eq. (2.79) for both stars from the system of equation. With this reduced system,
we can now enforce that P i

ADM is minimized.

To further elaborate on the quasi-equilibrium nature of this stage, it is im-
portant to highlight that, although rescaling ensures conservation of rest–mass,
rescaling the fluid solution results in violating the first integral equation (2.37) to
a degree. We have found that resorting to this rescaling does result in a slight
breathing in the central density, however, we found throughout our exploration
of the space of parameters in q and χ that the impact on the evolution of the
binary when comparing solutions from the quasi-equilibrium and the BNS drift re-
moval stage are insignificant and are, overall, subdominant to the approximations
made by resorting to the simplified model leading to Eq. (2.37). Furthermore,
the dynamics of the binary when using solutions from the BNS drift removal are
indistinguishable from solutions from the quasi-equilibrium stage aside from the
spurious drift still present in the quasi-equilibrium solution.

As with the equilibrium stage for the BBH and BHNS ID, this stage is impor-
tant to further refine the COM of the system in order to remove spurious drifts
prior to the eccentricity reduction stage and obtain more reliable post-Newtonian
estimates for eccentricity reduction.

2.6.2 - IV Eccentricity reduction

After the quasi-equilibrium stage(s) we have the option to perform an addi-
tional stage which will take the ID out of equilibrium, but with the goal to reduce
the eccentricity of the binary in order to obtain a more circular inspiral. This is
done by either utilizing 3.5PN analytical estimates (See Append B) or through
iterative eccentricity reduction procedures as discussed in detail in Sec. 2.5.

Similar to what was discussed in Sec. 2.6.2 - I, since the eccentricity reduction
stage results in a non-equilibrium configuration by fixing Ω and ȧ, we resort to
fixing the matter and rescaling it by a constant. For this stage the correction to
Ω is usually quite small (∼ [10−3, 10−5]) with the resulting scaling factor ∼ 10−4.
Therefore, the impact to the solution describing the NS very nearly reflects a so-
lution in hydrostatic equilibrium.
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2.7 Consistency results

When generating initial data there are multiple aspects that can be analyzed
to ensure the solution is consistent with expectations and the utilized analyti-
cal models. In this section we will discuss our results which highlight the self-
consistency of our solution prior to utilizing an evolution framework.

2.7.1 Spectral convergence

A first step when analyzing a solution is to perform a convergence analysis
which compares the solution obtained at low resolution to that obtained at the
highest possible resolution. The reasoning is two-fold such that we expect with
increasing resolution that our solutions will converge to the highest resolution
solution and, since we are using a spectral solver, we expect such convergence to
be exponential as a function of the global resolution of our spectral grid. In order
to characterize the global resolution of our solution, we first reiterate that we uti-
lize a domain decomposition D such that we obtain a continuous map across the
entire physical space. As such, our binary space is decomposed into a minimum
of twelve domains each with a given spectral resolution. For a given domain i in
D, we denote the total number of collocation points as N(i). Therefore, the global
resolution of the numerical space can be quantified as

N̄ :=

(∑

i∈D

N(i)

) 1
3

. (2.82)

We can then show convergence for a given quantity, X , of which we report on
MADM, MK, Ω, and JADM. To this end we have computed a sequence of ID at vari-
ous resolutions N̄ for an equal-mass irrotational BBH configuration and extracted
these quantities. The absolute relative difference to the highest resolution N̄max

has been computed and is shown in Fig. 2.2. We highlight the fact that, although
the error for MK and MADM are consistently lower than Ω and JADM, we do find
exponential convergence among the analyzed quantities.

The discrepancies in the absolute relative difference are not surprising overall.
In the case of MK and MADM, these quantities are measured at the asymptotic
limit and are dominated by the total mass of the system which are fixed in each
solution. However, Ω is a condition that is fixed by an integral at spatial infinity
by imposing the virial theorem which introduces errors from two main sources:
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Figure 2.3: Comparison of the dimensionless binding energy as a function of the dimensionless
orbital velocity to 4PN predictions given by Eq. (B.5) (solid lines). Left: We plot quasi–equilibrium
sequences of equal mass irrotational BBH (circles), BNS (squares), and BHNS (diamonds) datasets
as well as asymmetric BBH (q = 0.5) and BNS (q = 0.6) datasets all of which show agreement
when compared to 4PN estimates. Right: Conversely, we plot sequences of equal mass BNS
datasets with dimensionless spins of χ = [−0.3, 0, 0.3] such that the sign denotes (anti-)aligned
spins. We again find good agreement within the range of binary separations considered. This fig-
ure has been reused from [9].

1. The virial theorem is the difference between MK and MADM which already
contain errors of their own

2. The calculation at spatial infinity suffers from finite resolution over a large
region of physical space

Furthermore, JADM measures the total spin angular momentum of the binary at
spatial infinity which is a function of orbital velocity. Therefore, it is expected that
the error in JADM will correlate with the error in Ω as we see in Fig. 2.2.

2.7.2 Equilibrium sequences

An additional consistency check that can be made is to compare the binding
energies measured from quasi-equilibrium initial data solutions to post-Newtonian
estimates. As such, we compute sequences of quasi-equilibrium ID at various sep-
arations and compare the dimensionless binding energy Eb/M∞ to the dimen-
sionless spin orbital velocity M∞Ω. We have considered both equal mass (q = 1)
for BBH, BHNS, and BNS initial data as well as asymmetric initial data (q = 0.5
for BBH and q = 0.6 for BNS). Initial data involving a neutron star is generated
using a polytropic EOS with K = 100 and Γ = 2. In Fig. 2.3 (left panel) we plot
Eb/M∞ of our sequences of BBH (circles), BHNS (diamonds), and BNS (squares)
initial data along with the 4PN estimates of which we find they closely agree.

In Fig. 2.3 (right panel) we extend this analysis in the case of BNS initial data
by incorporating the influence of spin on the binding energy. In this way we
consider sequences of equal mass BNS initial data where the spins are either ir-
rotational or has a dimensionless spin of χ = ±0.3 where the sign denotes (anti-
)aligned with the axis of orbital rotation. As used in the previous sequences, the
fluid is modeled using the same Γ = 2, K = 100 polytropic EOS. We find that
the binaries with aligned spin are less bound which is inline with [31] and will
result in more orbits prior to merger. Conversely, anti–aligned spins are much
more tightly bound and therefore will merge faster. These results overall agree
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Figure 2.4: Results from the evolution of a BBH configuration with properties similar to
GW150914. Left: Orbital trajectory of the eccentricity reduced dataset ECC4. Middle: Coordi-
nate separation timeseries with its time derivative within the inset for the quasi–equilibrium (QE),
eccentricity reduced using 3.5PN estimates (3.5PN), and the resulting solution from four itera-
tions of eccentricity reduction (ECC4). Right: Gravitational wave strain of the (`,m) = (2, 2) mode,
+-polarization for the ECC4 dataset. This figure has been reused from [9].

with the 4PN estimates (solid lines) as shown in Fig. 2.3.

2.8 Evolution results

The results shown in Sec. 2.7 provide a first estimate to the degree to which
our initial data codes provide a consistent solution to the EFE. It is then natural to
extend our analysis to the evolution of various initial data sets to ascertain their
evolution characteristics. Unless stated otherwise, we have utilized the evolution
setup as discussed in Appendix C.

2.8.1 Evolution of black-hole binaries

Although other codes exist to generate asymmetric, spinning binary black
hole initial data, we include here a test case that encapsulates the features of the
FUKA BBH initial data solver specifically the ability to perform iterative eccentric-
ity reduction as well as quantify its influence on the resulting evolution.

2.8.1 - I GW150914

As our test case we construct initial data based on the event GW150914. More
specifically, we utilize an evolution setup and initial data characteristics inline
with [135] which consists of a mass ratio q = 0.8055 with χ1 = 0.31, χ2 = −0.46,
and an initial coordinate separation of d0 = 10M. This includes the use of the
McLachlan spacetime evolution thorn using the BSSNOK evolution equations.
Furthermore, the dimensionless spins are (anti-)aligned with the orbital axis of
rotation. In the following we will describe the series of evolutions that have been
performed, however, we refer the reader already to Fig. 2.4 for a summary of the
dynamics which will be described in detail.

To begin our analysis we initially generate the ID while only assuming quasi-
equilibrium (QE) when computing Ω. However, given the asymmetry and spin in
the system the eccentricity of the binary is very pronounced as can be seen in the
middle panel of Fig. 2.4. As a first attempt to reduce the eccentricity we utilize
FUKA’s built-in 3.5PN estimates for Ω and ȧ. We see already in Fig. 2.4 (mid-
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dle) that the eccentricity of the inspiral is already considerably reduced when
compared to QE ID. Furthermore we repeated the iterative eccentricity reduction
procedure as discussed in Sec. 2.5 until the measured eccentricity fell below 10−4.
The final dataset, referred to as ECC4, shows a considerably cleaner evolution of
the coordinate separation in the middle panel of Fig. 2.4. Similar to the fitting pro-
cedure proposed in[79], we ignore the initial half orbital period which includes
spurious junk data in the evolution which is largely attributed to the equilibrium
assumptions and, therefore, ignores gravitational radiation present in the system.
Moreso, we fit using the time derivative of the coordinate separation (ṙ) which is
much more sensitive to eccentricities on the order of 10−3 as discussed in Sec. 2.5.
It is important to mention that we also found that resulting corrections (δΩ , δȧ)
can be sensitive to the fitting procedure used, the number of orbits included, and
the initial estimates of the fitting parameters. Therefore, it is important to be con-
sistent throughout each iteration of eccentricity reduction.

In addition to the coordinate separation we include the orbital track (left plot)
along with the ` = m = 2 multi–pole of the + polarization of the gravitational
wave strain (right plot) within Fig. 2.4 from the evolution of the ECC4 ID. The
orbital track shows a clean inspiral with negligible eccentricity and no apparent
linear drift of the binary.

2.8.1 - II Influence of ID resolution on gravitational-wave phase

An additional aspect of the initial data that is useful to quantify is the impact
of the initial data resolution on the evolution. Furthermore it is useful to deter-
mine at which point the ID resolution is the dominant error source compared to
the evolution resolution.

To answer this question we perform a total of nine simulations using the ECC4

set of parameters with different ID resolution, i.e., N̄ ∈ {24, 38, 42}, and different
evolution resolutions, i.e., low resolution (∆xLR/M = 0.024), medium resolution
(∆xMR = 0.019), and high resolution (∆xHR/M = 0.015). As a reference quantity,
we choose to measure the characteristic GW phase of the ` = m = 2 multi–pole of
the + polarization of the GW strain. This quantity has been chosen due to the fact
that it is a coordinate independent quantity as well as plays an important role
in GW modeling [136]. In all cases, the evolution scheme utilizes an 8th order

|∆ϕ|
LR
|∆ϕ|

MR
|∆ϕ|

HR
M

ADM
[M ] J

ADM
[M2]

N̄ = 24 12.214 1.888 0.095 0.9897 0.9572

N̄ = 38 12.067 1.771 0.008 0.9899 0.9573

N̄ = 42 12.067 1.770 0.000 0.9899 0.9573

Table 2.1: In this table the rows correspond to three difference ID resolutions, N̄ = {24, 38, 42}
whereas the columns of |∆ϕ| correspond to the measured gravitational-wave phase differences at
merger for the ` = m = 2 multipole of the + polarization for three different evolution resolutions
(LR, MR, HR) as compared to the measured GW phase from the highest evolution (HR) and ID
resolution (N̄ = 42). Furthermore, columns of ADM mass M

ADM
and ADM angular momentum

J
ADM

as computed from the initial data slice are included. This table was original published in [9].
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ECC4 dataset. This figure has been
reused from [9].

finite–differencing scheme to further minimize errors throughout the evolution.
To quantify the influence of ID and evolution resolution, we compute the ab-

solute relative difference |∆ϕ| for each configuration as compared to the mea-
sured GW phase from the highest evolution (HR) and ID resolution (N̄ = 42). We
include Tab. 2.1 as a tabulated reference which includes the computed absolute
GW phase differences when utilizing the values extracted at the time of merger.
Included in this table is also the measured ADM mass M

ADM
and ADM angular

momentum J
ADM

from the ID. We note that the relative difference of J
ADM

is com-
parable for all of the resolutions considered. As briefly discussed in Sec. 2.7.1, a
significant source of error in low resolution ID for quasi–equilibrium datasets is
related to the computed value for Ω between low and high resolution ID. How-
ever, since we are using eccentricity reduced data such that Ω is fixed, this source
of error is removed and consistent measurements for JADM are obtained regard-
less of the resolution used for the ID. This already hints that the dynamics of the
binary for a given evolution resolution should be fairly similar between ID reso-
lutions.

To further explore this point we include in Fig. 2.5 the timeseries describing
|∆ϕ| when comparing ID resolutions (N̄42−24, N̄42−38) at fixed evolution resolu-
tion (∆xHR). As expected, the dynamics of the binary yield a consistent GW phase
nearly independent of the ID resolution when Ω is fixed. We note that for N̄42−24 a
much more apparent non–linear growth leading up to merger is observed, how-
ever, |∆ϕ| by merger is still only ∼ 0.1 rad. In contrast, we include the dark red
timeseries which is associated with the comparison of evolution resolutions ∆xHR

and ∆xMR for fixed ID resolution N̄ = 42. In this case we see that a change in the
evolution resolution results in |∆ϕ| that is roughly an order of magnitude higher
than the difference obtained when comparing ID resolutions.

These results highlight that, in the case of vacuum evolution, the error intro-
duced by the ID resolution is subdominant compared to the evolution resolution
so long as Ω is fixed either by using iterative eccentricity reduction or PN esti-
mates.

2.8.2 Evolution of neutron star binaries

Within this section we include the evolution of representative test cases to
characterize the influence of initial data resolution on the dynamics of the evolved
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Figure 2.6: Similar to Fig. 2.5 only
the ID describes an equal–mass irro-
tational BNS with the fluid modeled
using the SLy EOS. The red and green
sequences are computed for fixed ID
resolution (N̄ = 47) and compare the
influence of evolution resolution. The
blue lines correspond to a fixed evolu-
tion resolution of ∆xHR such that the
impact of ID can be seen. This figure
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binary, to compare to previously published works, and to examine more extreme
configuration using the FUKA BNS solver to showcase its capabilities.

2.8.2 - I Dependence of evolution dynamics on ID resolution

To ascertain the degree to which the initial data resolution can influence the re-
sulting evolution dynamics we perform an analysis similar to Sec. 2.8.1 - II by per-
forming a series of nine evolutions with varying ID resolution of N̄ ∈ {29, 38, 47}
and evolution resolutions of, i.e., low resolution (∆xLR = 0.25M� ≈ 369m),
medium resolution (∆xMR = 0.2M� ≈ 295m), and high resolution (∆xHR =
0.145M� ≈ 215m). 5 To do so, we use an equal–mass, irrotational binary config-
uration where each NS has a fixed baryonic mass of Mb = 1.4946 with an initial
coordinate separation of 52.42km. Furthermore, we have modeled the fluid us-
ing a tabulated version of the SLy EOS. Finally, since the QE computed value of
Ω is heavily dependent on ID resolution used, we have elected to utilize 3.5PN
estimates of Ω and ȧ to remove this degree of freedom and overall, reduce the
resolution dependence of the ID solution. Alternatively, iterative eccentricity re-
duction parameters could also have been used, but, overall, should not impact
the results presented here.

In Fig. 2.6 we plot the absolute phase difference |∆ϕ| for the ` = m = 2 multi–
pole of the + polarization for ID resolutions of N̄ = {29, 38} as compared to
N̄ = 47. In contrast to Fig. 2.5, the sequences are not aligned at t = 0 and are,
instead, aligned at t = 1000M�. The reason for this is that during the start of
the evolution a considerable amount of junk data is produced in the simulation
similar to what is seen in the case of the BBH which are compounded given the
additional approximations used in the fluid description of the neutron stars. We
find that by decreasing the ID resolution from N̄ = 47 down to N̄ = 29 results
in |∆ϕ| > 1 whereas decreasing the ID resolution from N̄ = 47 down to N̄ = 38
results in |∆ϕ| ≈ 1 which indicates that ID resolution can have an appreciable
impact on the inspiral especially for long inspiral simulations.

Furthermore, we contrast the influence of evolution resolution by comparing

5Unlike in the BBH simulations, here only a 4th order finite difference scheme is used to evolve
the spacetime. This is reasonable given the order of convergence of the hydro evolution code (< 3)
dictates the accuracy of the results.
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evolutions of high ID resolution of N̄ = 47 using ∆xLR and ∆xMR evolution reso-
lutions. The absolute phase difference |∆ϕ| is then computed between these runs
as compared to the run at high ID and evolution resolution. In this case, we find
the impact of evolution resolution is roughly an order of magnitude higher when
comparing to the changes in |∆ϕ| due to ID resolution. Moreso, in all cases the
slope in the growth of |∆ϕ| is nearly the same in all simulations indicating that
the evolution resolution plays the dominant role in the computed errors.

In conclusion, we have shown that for the given BNS configuration, the er-
rors measured using the |∆ϕ| are dominated by the evolution resolution, similar
to what was seen in the BBH analysis [c.f. Sec. 2.8.1 - II]. In the case of high
evolution resolution, low resolution ID will provide similar evolution dynamics,
however, additional accuracy can be obtained by utilizing higher resolution ID
on the order of |∆ϕ| ≈ 1. This is likely most important to those studying long
inspiral configurations for waveform modeling. Conversely, in the case of de-
creasing the evolution resolution we find considerably larger errors even at high
ID resolution further highlighting the need for high resolution evolutions when
modeling binaries that include a NS.

2.8.2 - II Comparison of spinning binary neutron star initial data

To verify the accuracy of our initial data we continue our analysis using a
benchmark test setup based on previously published results for BNS configura-
tions. As a first setup, we utilize an equal–mass binary configuration with the
same characteristics as documented in [31] where each NS has a fixed baryonic
mass of Mb = 1.7745. Furthermore, two different spin configurations are gen-
erated such that each NS has a spin rotation parameter of ω ∈ {0, 0.01525} and
the coordinate separation of the centers of each NS is d0 = 47.2M�. To close the
system of equations the EOS utilized is a single polytrope with K = 123.6 and
Γ = 2.

Overall our results which are summarized in Tab. 2.2 agree very well with
[31], however, we do note discrepancies in the measured spin-angular momen-
tum for the spinning BNS configuration. We believe this is primarily due to the
differences in how the spin–angular momentum is measured in [31] as compared
to this work. However, the discrepancy is approximately 0.3% for the configura-
tion considered which still shows close agreement.

Reference ω [M−1
� ] Mb [M�] M

QL
[M�] S

QL
[M2
�] S

QL
/M2

Tichy+ 2019 [31] 0.00000 1.7745 1.620 −0.0007 −0.0003

this work 0.00000 1.7745 1.620 −0.0007 −0.0003

Tichy+ 2019 [31] 0.01525 1.7745 1.626 0.8652 0.3217

this work 0.01525 1.7745 1.626 0.8631 0.3209

Table 2.2: The results for the irrotational and spinning BNS initial data sets that can be compared
to [31] published results where ω is the fixed rotational parameter for each NS, Mb is the fixed
baryonic mass,MQL is the quasi–locally measured gravitational mass, SQL is the quasi–local spin–
angular momentum, and the dimensionless spin normalized by M = 1.64M�. Discrepancies in
the results are largely attributed to the different approaches to compute the spins. This table is
taken from [9].
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Figure 2.7: Characteristic results
showing the relation between the di-
mensionless spin χ as a function of
the dimensionless spin–rotation pa-
rameter ω for a sequence of q = 1
BNS initial data (open symbols) us-
ing a polytropic EOS with K = 123.6
and Γ = 2. Solid lines denote pre-
viously published fitting functions re-
ported in [31], [80], [87]. This figure
has been reused from [9].

To gain further insights into this discrepancy and to gain some confidence
regarding our implementation of equations Eq. (2.33) as well as rescaling of
Eqs. 2.19 and the relativistic Euler equations, we have generated a sequence of
BNS models where the ADM mass of each NS has been fixed to MADM = 1.64M�.
The fluid is described once again by an EOS model using a single polytrope
with K = 123.6 and Γ = 2. The variable in these sequences comes from vary-
ing the fixed spin rotation parameter ω from zero until our solver no longer
converges. Our results along with those obtained from [87], [80], and [31] have
been included to show the overall consistency of FUKA ID which are shown in
Fig. 2.7. We note that the resulting fit from [87] is based on ID generated using an
incorrect first integral which was corrected in a later published erratum [80].

In the slowly spinning regime all codes generate similar results which ex-
hibits, overall, a linear relation between χ and ω. As ω increases beyond
ωMADM ∼ 0.012, not only do the incorrect results from [87] begin to become
apparent, but we also begin to observe non-linear behavior between χ and ω.
Additionally, in the highly spinning regime we see some discrepancy with [31]
which is, again, largely attributed to differences in how the spin measurement is
being computed.

2.8.2 - III Eccentricity reduced asymmetric spinning ID

For an initial test of the full functionality of the FUKA BNS ID solver, we have
chosen an example configuration with a total mass M∞ = 2.7 and q = 0.6875 with
component spins of χ1 = 0 and χ2 = 0.6 where the spin is chosen to be on the
more massive star. Furthermore, the ID is generated using the tabulated TNTYST

EOS [137]. As observed in the BBH test case, it can be expected that a BNS system
where the force-balance constraint Eq. (2.79) has been enforced to obtain ID in
quasi–equilibrium will result in an eccentric binary. Therefore, in order to obtain
a binary in a circular orbit, we perform the same eccentricity reduction procedure
as done in Sec. 2.8.1 - I.

In Fig. 2.8 we plot the binary separation timeseries based on the initial QE ID
(blac) along with the datasets utilizing 3.5PN estimates of Ω and ȧ (blue) and,
finally, the ID after four iterations of eccentricity reduction which we will refer
to as ECC4 (red). To obtain ECC4 we initially generate ID using a resolution of



33

0 1000 2000 3000

t [M∞]

30

35

40

45

50
r

[M
∞

]

QE

3.5PN

ECC4

Figure 2.8: Initial test run showing the
degree of eccentricity for an asymmet-
ric rapidly spinning BNS ID in quasi–
equilibrium (black), using 3.5PN esti-
mates (blue), and after using iterative
eccentricity reduction (red). The bi-
nary configuration used is a M∞ =
2.7, q = 0.6875, χ1 = 0 and χ2 =
0.6 where the fluid is modelled using
the TNTYST EOS. This figure has been
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N̄ = 29 and an evolution resolution of ∆x = 0.2M� for the first iterations of
eccentricity reduction. For ECC4 we use a resolution of N̄ = 38, however, as
we discover in Sec. 2.8.2 - I, increasing the resolution beyond N̄ = 29 has no
appreciable influence on the evolution. The eccentricity measured from ECC4 is
. 10−4. Further iterative corrections were attempted, however, beyond this point
fitting against Eq. (2.72) no longer yields useful corrections.

Figure 2.8 further reinforces that QE ID using Eq. (2.79) results in a highly ec-
centric inspiral. Furthermore, utilizing the built–in 3.5PN corrections to Ω and ȧ
provide orders of magnitude decrease in the eccentricity. Moreso, the eccentric-
ity1 measured from the ID using 3.5PN estimates is similar to those measured
from equal–mass non–spinning quasi–equilibrium. Finally, iterative eccentricity
reduction can be used to obtain a low eccentricity inspiral. It is therefore rec-
ommended to, at a minimum, utilize the 3.5PN estimates for generating BNS ID
as it not only allows for a considerably less eccentric binary, but also removes a
significant source of resolution dependent error when generating ID by fixing Ω.

2.8.2 - IV Extremal BNS configurations

In an effort to probe the limits of the FUKA BNS solver we have chosen a set
of final test cases that examines the extremes of what is physically allowed in a
BNS configuration. To that end, we model two binaries with a total mass M∞ =
3.2 with mass ratio q = 0.455 using the TNTYST tabulated EOS with an initial
separation of d0 = 30M�. Furthermore, in the first binary, the component spins
are both irrotational χ1 = χ2 = 0 and thus, the more massive star with M1 = 2.2 is
nearMTOV for the TNTYST EOS. In the second binary, the dimensionless spin of the
primary is χ1 = 0.6, where such a high spin is motivated by a possibly recycled
binary pulsar where the primary has gained a significant amount of matter and
angular momentum throughout a phase of accretion. To our knowledge, these are
still the smallest mass ratio BNS configurations examined to date and, with the
modified algorithm discussed in Sec 2.6.2, can be obtained with minimal effort
compared to what was necessary to obtain the original published results in [9].

For each configuration, ID solutions were obtained initially at a coarse res-
olution of N̄ = 19 without the need for any form of hand–tuning or modifica-
tions to the implemented system of equations or boundary conditions discussed
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Figure 2.9: 2D slices in the 〈x, y〉 and 〈x, z〉 planes of the rest–mass density profile of the two ex-
tremal BNS configurations considered with component masses of M1 = 2.2M�,M2 = 1.0M�.
The left column corresponds to the 〈x, y〉 and 〈x, z〉 slices of the binary where both stars are ir-
rotational whereas the right column corresponds to the binary where the more massive star has
a dimensionless spin of χ1 = 0.6. The panels only consider the more massive star, however, the
small inset in each panel shows the equivalent binary cross section with the red being the com-
panion star which is the same in both binary configurations. This figure has been reused from [9]

in Sec. 2.1. The coarse solution was then interpolated onto a higher resolution
spectral grid of N̄ = 47 before being resolved. Furthermore, the eccentricity of
each binary was reduced using the same iterative reduction procedure discussed
in Sec. 2.5 until the eccentricity reached / 10−4.

To investigate the inherent properties of the irrotational massive star in con-
trast to the highly spinning configuration, we measure the rest–mass density of
both massive stars and include 2D slices in the 〈x, y〉 and 〈x, z〉 planes which are
shown in Fig. 2.9. The left column of Fig. 2.9 are the 〈x, y〉 and 〈x, z〉 density
profiles for the irrotational, 2.2M� star and the right column is for an equally
massive star with a dimensionless spin of χ = 0.6. Furthermore, within each
panel is a small subplot showing the corresponding binary cross section where
the secondary, which is the same mass and spin for both binaries, is shown in
red. Finally, white contours of constant density are provided in order to identify
the regions that contain the most mass for a given NS.

In the irrotational case we see a consistent nearly spherical profile between
the two slices where the region the density exceeds 1015[g/cm3] dominates the
stellar interior. Conversely, the highly rotating configuration displays a fairly



35

−20 0 20

x [M∞]

−20

−10

0

10

20

y
[M
∞

]

(M,χ) = (2.20, 0.00) (M,χ) = (1.00, 0.00)

0 1000 2000

t [M∞]

15

20

25

30

r(
t)

[M
∞

]

3.5PN

ECC4

−0.03

−0.02

−0.01

0.00

ṙ
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Figure 2.10: In the same manner as Fig. 2.4 only here we provide plots based on the extremal
BNS configurations considered in Sec. 2.8.2 - IV with M∞ = 3.2 , q = 0.455 using the TNTYST

EOS. Above: Includes the orbital track, timeseries of the proper separation, and the GW strain for
the irrotational binary configuration. Below: The same as Above only for the binary configuration
where the primary is highly spinning with a χ1 = 0.6. This figure has been reused from [9]

spherical shape in the 〈x, y〉 plane, but a highly oblate shape in the 〈x, z〉 plane.
This is matches our expectation given the axis of rotation is along the z-axis and,
with a highly spinning fluid, we would expect to see compression of the fluid
along the axis of rotation and expansion orthogonal to this axis. Furthermore, we
highlight that the spin induced deformation results in the more massive region
of the star with density in excess of 1015[g/cm3] 1015[g/cm3] becomes quite small
and localized in the stellar core.

In order to obtain a first look at the influence an extremal spinning primary
can have on the evolution dynamics, we evolve the eccentricity reduced datasets
(ECC4) for both binaries into the post-merger phase which we have visually sum-
marized in Fig. 2.10 in the same manner as in Sec. 2.8.1 - I. Specifically, we plot
the orbital trajectory of the binary, the evolution of the proper separation and its
time derivative, and the ` = m = 2 multi–pole of the + polarization of the gravi-
tational wave strain (right plot). In comparing these evolutions, we note that the
binary with a highly spinning primary not only takes a longer time to merge due
to the additional spin–angular momentum present in the system, but also leads to
a metastable hyper–massive neutron star (HMNS) instead of promptly collapsing
to a black hole. This is a very exciting result and one that has been the motiva-
tion for the exploration of the impact on remnant stability due to spin and mass
asymmetry in BNS mergers which will be discussed in Ch. 3 and the study of the
threshold mass to prompt collapse for asymmetric spinning BNS configurations
in Ch. 4.
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Figure 2.11: Same as in Figs. 2.4 and 2.10 but for a BHNS configuration. Note that the right panel
reports the ` = m = 2 multipole the ψ4 Weyl scalar [(both the real part (red solid line) and its
norm (black solid line)] in order to highlight the very short ringdown that would not be visible in
the gravitational-wave strain. This figure has been reused from [9]

2.8.3 Evolution of black hole-neutron star binaries

The last FUKA ID solver is that for the construction of BHNS configurations.
For our test case we utilize a fairly extreme configuration that includes a low
mass black hole of MBH = 2.42M� and a dimensionless spin of χBH = 0.52 with
an extremal spinning companion NS with a mass of MNS = 1.18M� and a di-
mensionless spin of χNS = 0.6. The binary components are constructed with a
coordinate separation of d0 = 35.2M� with a total mass of M∞ = 3.6M� as de-
fined by Eq. (2.70).

It is important to note that in the construction of BHNS initial data the reso-
lution of the system, coordinate separation, and domain decomposition are sen-
sitively intertwined in order to obtain a converged solution especially in the case
of a low mass BH. The reason for this is that it has been found that in order to
reliably obtain a converged solution, the domain decomposition of the bispheri-
cal domains should provide a coordinate map between two equal sized spherical
shells. However, the coordinate radius of the BH is considerably smaller than
that of the NS, so having outer radii that are equal results in insufficient resolu-
tion density near the excision region. The same resolution issues can also be ob-
tained when considering highly asymmetric BBH systems with q . 0.1. In order
to resolve this issue, additional spherical shells are added near the excision region
thus allowing one to solve the BHNS ID at relatively coarse resolution initially as
well as utilize resolution increase procedures to obtain a higher resolution solu-
tion at lower computational cost. It remains a long-term effort to further refine
the procedure to automate the addition of shells around binary components to
ensure reliable convergence and consistent solutions.

As performed in our previous results, we begin initially with the eccentricity
reduced dataset using 3.5PN estimates for Ω and ȧ where the component masses
used are the Christodoulou mass of the BH and the ADM mass of the NS as
measured in isolation. Even though we neglect the spins of the component ob-
jects this still provides a reasonable first estimate which can then be used as the
starting point for iterative eccentricity reduction procedures. For this dataset we
have obtained eccentricity reduction estimates using both Eq.(2.71) and (2.72) fit-
ting expressions. After three iterations of eccentricity reduction we obtained an
eccentricity e ∼ 5e−3, however, Eq. (2.71) no longer provided useful corretions
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and, as in the case of BBH and BNS, we were only able to use corrections from
Eq. (2.72) to obtain ECC4 with a resulting eccentricity of . 10−4.

The results of the evolutions of the ID using 3.5PN estimates as well as ECC4

are included in Fig. 2.11. In the left plot we include the orbital track of the ECC4

dataset which not only demonstrates a smooth inspiral with negligible eccentric-
ity, but also that the COM remains in the center of the evolution grid providing
further evidence that the ADM linear momentums have in fact been minimized
within the ID solver. Furthermore, during the import of the ID there are no spe-
cial import considerations other than filling the BH that need to be addressed,
e.g., there has been no manual corrections to the shift to remove spurious drifts.
Next, the middle panel includes the time evolution of the separation distance and
its time derivative. When comparing the middle panel to, for instance, Fig. 2.8 we
see that the addition of spin–angular momentum aligned with the orbital axis of
rotation from both compact objects results in higher initial eccentricity based on
the irrotational 3.5PN estimates. Further testing could be done with implement-
ing effective–one–body estimates where spin–spin and spin–orbital coupling cor-
rections are considered and could be used to obtain more accurate estimates for
Ω and ȧ; however, these have not been utilized within this work. Finally, the right
panel is a semi–log plot of the magnitude of the ψ4 Weyl scalar for the ` = m = 2
multiple of the gravitational wave strain +–polarization and the magnitude of its
real component as measured from the evolution of the ECC4 dataset. The tran-
sition to plotting the raw ψ4 in semi-log scale is to be able to analyze the sharp
cutoff due to the tidal disruption of the NS [c.f. [138]].

It is evident that the space of parameters now accessible with the new BHNS
solver is incredibly large and will, hopefully, allow for further research into re-
gions previously inaccessible using the previous generation of public ID solvers.
Furthermore, we have not fully explored the extremes of the ID capabilities such
as the highest spin that can be obtained and the evolutions of highly counter–
rotating objects which we leave for future works to investigate. Finally, it is im-
portant to note that, in the case of BHs, the choices made for the XCTS degrees
of freedom which enforce a conformally flat, maximally sliced background can-
not produce black holes with spins& 0.85. Therefore, moving to black holes with
spins in the realm of χ ∼ 0.99 would require extensive research and, overall, a
new implementation to obtain results similar to [89].

2.9 Summary

In this chapter we have laid the foundation for the projects to come which
require the ability to reliably generate binary initial data across a broad range of
mass ratios q and dimensionless spins χ〈1 ,2〉. Furthermore, the use of physically
motivated tabulated EOS play a crucial role in the projects to come both in looking
at merger dynamics and potential astrophysical observables that are dependent
on the EOS as well as our analysis on the quasi–universal relation of the threshold
mass.

It is with this in mind that we have developed a suite of elliptic solvers for
BBH, BNS, and BHNS ID based on the KADATH spectral solver library which are
capable of exploring a large portion of the available parameter space in q, and
χ as well as polytropic or finite temperature tabulated EOSs. In this work we
have examined representative test cases of the FUKA binary ID solvers that aim
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to showcase the capabilities of each solver as well as quantify the contribution
of error from the ID on the dynamical evolution. Furthermore, FUKA is the first
public code that affords the ability to perform iterative eccentricity reduction of
BHNS and BNS ID. Within the FUKA suite, it is now possible for the numerical
relativity community to reliably explore a much broader space of parameters in
q, χ, EOS, and, in principle, eccentricity. Finally, the continued development of
the FUKA suite to include the advancements described in Sec. 2.6.2, which have
also been made available publically, aims to ensure the highest level of reliability
is available to the NR community such that future works can focus on the physics
without the labor of the initial value problem.

In FUKA we have constructed initial data using the XCTS system of equations,
we have modeled black holes using excision methods such that constraints on
the lapse and shift can be made on our 2-surface which is an apparent horizon
by construction, and we have implemented an approximate first integral formu-
lation based on a specific enthalpy fluid velocity profile that is a function of a
divergence free potential and uniform rotation component. In this work we have
focused on the generation of BHNS and BNS where, in the case of BNS, we have
generated and examined the most extreme configurations to date. In all of our re-
sults, we have shown the ability and value of performing eccentricity reduction
especially for asymmetric and spinning binary ID such that we obtain eccentrici-
ties on the order of . [10−4, 10−3].

Finally, in an attempt to quantify the impact of ID resolution on the evolu-
tion dyanmics we have taken a first look at the absolute GW phase difference as
a function of both ID and evolution resolution in the case of BBH and BNS ID. In
general we find the evolution resolution to be the dominant source of error using
this measurement, and, thus, conclude that coarser resolution ID can be justifi-
ably used for evolutions unless high accuracy waveforms are needed. We stress
of course that these assessments only hold strictly true for the configurations an-
alyzed here, however, they are representative of commonly used setups.

With FUKA as our foundation we can now begin to explore the space of pa-
rameters for extremal binary compact objects in the remaining chapters.
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Chapter 3

Impact of extreme spins and mass
ratios on the post-merger observables
of high-mass binary neutron stars

Within the results discussed related to extremal binary neutron star configura-
tions in Sec. 2.8.2 - IV, we found for two binaries using the same equation of
state, mass ratio q, and total mass M∞ (as defined by Eq. (2.70)) that the con-
figuration with an extremal spinning primary neutron star can result in a meta-
stable hyper–massive neutron star (HMNS) remnant. Furthermore, based on the
numerical and theoretical foundation described in Sec.1.2 we are motivated to
quantify the extent mass asymmetry and spin can influence the stability of the
HMNS remnant. In this way, the most well established benchmark to compare
against is the threshold mass for a given equal–mass, irrotational binary (M1 ,0

th )
where the value for the threshold mass in this regime has been thoroughly ex-
plored for all of the EOSs utilized in the work (cf. [23], [42], [102]). Therefore, in
this work we provide the first systematic study of asymmetric and spinning BNS
mergers with total masses in excess of M1 ,0

th and up to near extremal spin on the
primary NS. To characterize these mergers we identify important characteristic
differences in the merger dynamics and the remnant stability. Additionally, we
leverage the ability of FIL to utilize temperature- and Ye-dependent tabulated
EOSs with accurate microphysics and, as such, analyze the ejecta, disk mass and
resulting peak luminosity properties while using a grey neutrino leakage scheme.

In Sec. 3.1 we will discuss the details related to the systematic sampling within
our parameter space along with the numerical setup used to perform the binary
mergers. In Sec. 3.2 we will examine the dynamics and distinguishing character-
istics of the various ejecta. Finally, we will provide a brief summary of our results
in Sec. 3.2.6.

3.1 Methods

Given the large space of parameters in EOS, M∞, q and χ; we restrict our-
selves to performing 14 simulations using the relatively soft TNTYST [137] EOS
and 14 simulations using the relatively stiff BHBΛΦ[139] (see Tab. C.1). Both EOSs
are temperature and charge fraction dependent equations of state and are con-
sistent with current astronomical constraints. Hence, these EOSs provide a nice
contrast in our results as to the impact stiffness may have on the dynamics and
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measured remnant properties. Furthermore, we choose M∞ ∈ [1.025, 1.11]M1 ,0
th ,

q ∈ [0.6, 1] and a dimensionless spin of the primary NS of χ1 ∈ [0.3, 0.6] as de-
fined by Eq. (2.69). In all cases the initial separation of the binary is 45km, the
spin of the secondary (less massive) NS is χ2 = 0 and the axis of rotation for
both NSs are aligned with the orbital axis of rotation. Table 3.2 provides a com-
plete list of the configurations investigated along with additional properties that
will be described in the results section. The choice of an irrotational secondary is
both of convenience as well as to reflect what could be expected in reality where
the primary gains additional spin due to accretion of the progenitor star of the
secondary NS [7]. Through this process the spin-angular momentum of the sec-
ondary is reduced and, therefore, we choose to model it as non-rotating.

For each configuration we simulate the inspiral, merger, and post-merger
phase in order to investigate the stability of the HMNS remnant, the mass of the
post–collapse disk, and the measured dynamical ejecta. To provide accurate esti-
mates of our ejecta as well as obtain estimates on the peak luminosity, a neutrino
leakage scheme within FIL is utilized such that neutrino cooling and weak rates
are taken into consideration. Furthermore, we utilize the same evolution setup
as denoted in Appendix C to perform these evolutions.

When attempting to measure the post-collapse disk mass and ejecta proper-
ties, sufficiently high resolution simulations are required. This is in part due to
capturing the complex dynamics that occur during the merger process, but also
to accurately resolve the small volume of ejecta as they form and are ejected away
from the HMNS remnant. To this end, we have performed our simulations with
a grid extent up to ' 6, 000km with eight levels of refinement resulting in a grid
spacing for the finest level of ∆x = 0.16M� ' 236m. Furthermore, we have per-
formed additional simulations at a resolution of ∆x = 0.133M� and find that in
most cases, the estimates are within a few tens of percent (see Appendix in [20]
for a discussion).

3.2 Results

The following section describes the results of 28 binary simulations where,
for a given EOS and total mass (M∞), the mass ratio varies between q ∈ [0.6, 1]
and the dimensionless spin of the primary 1 varies between χ1 ∈ [0.3, 0.6]. More
specifically, we have chosen two mass configurations using the TNTYST EOS
(M∞/M

1 ,0
th ∈ {1.050, 1.105}) and three mass configurations for the BHBΛΦ EOS

(M∞/M
1 ,0
th ∈ {1.025, 1.050, 1.109}). In this work the total mass of each binary is

chosen in units of M1 ,0
th as measured by [42] from the study of equal–mass ir-

rotational BNS configurations. This normalization provides a measure of the
“mass criticality” of the system such that M∞/M

1 ,0
th < 1 is sub-critical and

M∞/M
1 ,0
th > 1 is supercritical. A comprehensive list of the binary configurations

and the parameters of its constituent objects are summarized in Tab. 3.2.
In the remaining subsections we will focus on the results pertaining to the

(post-)merger dynamics, remnant stability, dynamical ejecta, and the remnant
disc mass. A comprehensive analysis of these properties is important to under-
stand the secular ejecta and the overall influence on the kilonova emission.

1In the case of q = 1, the rotating object is chosen at the same coordinate location as the
more massive stars in the asymmetric cases for consistency, however, this has no impact on the
measured quantities.
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Figure 3.1: 2D slices in the equatorial plane of the rest-mass density at merger time corresponding
to q ∈ {1.0, 0.8, 0.6}where the primary NS has a dimensionless spin of χ1 = 0.6 and the secondary
is irrotational χ2 = 0. Notably, the equal-mass configuration (left) results in the tidal disruption of
the primary object which is then accreted onto the irrotational secondary. As the binary becomes
more asymmetric, the secondary becomes tidally disrupted due to the larger gravitational mass
of the primary. This figure has been reused from [20].

3.2.1 Merger and post-merger dynamics

In the study of inspiral waveforms via post-Newtonian expansions, the influ-
ence of aligned–spins of the component masses has been thoroughly analyzed
[140]–[143]. Specifically, the addition of aligned spin–angular momentum of each
object as well as the spin–orbital coupling will result in a longer inspiral and, thus,
a later merger time. Here, we will instead focus on the violent merger processes
and the role extremal spins and asymmetry play.

Given the space of highly spinning mergers has yet to be analyzed, we will
start with a qualitative analysis of the dynamics for a subset of binary configu-
rations with an extremal spinning primary with χ1 = 0.6, q ∈ {0.6, 0.8, 1.0}, and
M∞/M

1 ,0
th = 1.05 for the TNTYST EOS. In Fig. 3.1 we show a cross section of the

rest-mass density in the equatorial plane ∼ 0.5ms post-merger for each configu-
ration. Interestingly, we find a transition in the disruption characteristics during
merger such that, for q = 1 (left figure), we see that the primary (spinning) object
is tidally disrupted by the more compact secondary object whereas for q = 0.8,
the merger dynamics are comparable to the irrotational asymmetric case. Fur-
thermore, the disruption dynamics for q = 0.6 are analogous to the irrotational
configuration where the secondary is tidally disrupted due to the more massive
primary. In both cases, the merger or accretion of the secondary NS results in a
transfer of angular momentum causing a further spin-up of the primary which
also undergoes some disruption as a consequence.

In contrast, we repeat this analysis for binary configurations with M∞/M
1 ,0
th =

1.105. In this case, even for q = 1 the disruption of the primary is less due to the
higher gravitational mass of each NS. The trend continues as the spin of the pri-
mary is further decreased resulting in dynamics similar to an irrotational binary.
Similarly for decreasing mass ratio, the impact of the total mass and mass ratio
play the dominant role in the resulting merger dynamics, however, the spin of the
primary has a noticeable influence on the merger dynamics especially at q = 0.6
where the secondary is strongly disrupted.

Furthermore, by repeating this analysis for the BHBΛΦ EOS we find similar
qualitative behavior to that found in the TNTYST configurations, however, the
characteristic dynamics are overall milder for BHBΛΦ and the degree of disrup-
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Figure 3.2: 2D slices in the equatorial plane of the rest–mass density at three characteristic post-
merger times for two models, TNT-05.0-0.45-0.800 and TNT-05.0-0.60-0.800 in order to qual-
itatively analyze the influence of spin on the HMNS remnant. To do so, we include a marker
for the maximum rest-mass density which is denoted by a black cross as well as a red dot to
denote the coordinate center. Here we note that by increasing χ1 = 0.45 → 0.6, the distribu-
tion of the rest-mass density obtains a higher degree of asymmetry and retains it for longer. By
t − tmer = 9ms, the rest-mass distribution for χ1 = 0.45 has already started to become more uni-
form with the maximum density being nearly at the coordinate center whereas, for χ1 = 0.6, the
rest-mass density profile is still highly asymmetric. To further emphasize this feature, we include
dotted contours corresponding to log ρ ∈ {14.7, 14.8, 14.9}. This figure has been reused from [20].

tion of the primary is already quite minute even for M∞/M
1 ,0
th = 1.05. From this

analysis, we can deduce that the EOS plays an important role in the dynami-
cal (post-)merger processes which sensitively depend on the compactness of the
neutron stars. In reality, the (post-)merger dynamics and remnant stability are
dictated by a subtle balance between tidal and centrifugal forces as well as the
overall strength of the gravitational potential which can be tuned by adjusting q,
χ1, and M∞ respectively. We can therefore characterize the dominant dynamical
features in the following manner. First, for q = 1, the spin-angular momentum of
the primary results in matter being less bound and, thus, is more sensitive to tidal
interactions with the non-spinning secondary. Second, for increasingly asymmet-
ric binaries, the secondary NS is instead disrupted due to the stronger tidal in-
teraction with the primary (more massive) object. Third, in the case of extremal
spins a second tidal tail can form which carries a significant amount angular mo-
mentum and expands quicker than the tidal tail of the secondary thus allowing
the possibility for primary tidal tail to cause shocks in the secondary tidal tail.

We now adjust our focus to the post–merger HMNS remnant. In all configu-
rations considered, the distribution of matter within the merger remnant shows
various degrees of asymmetry most notably in the equatorial plane. In Fig. 3.2
we show 2D slices of the post-merger remnant at given times for q = 0.8, χ1 ∈
{0.45, 0.6} and M∞/M

1 ,0
th = 1.050 using the TNTYST EOS. Although both binaries

demonstrate the development of a strong one-arm instability [see [36], [37], [39],
[144]–[147]], we highlight that, especially in the later times (middle and right
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Figure 3.3: Here we analyze the remnant disk mass (Left) as well as the total dynamical mass
ejected (Right) from the merger. In each plot we show the data for both EOSs where the symbol
shape denotes the remnant lifetime and the marker line style denotes the EOS where solid lines
correlate with the TNTYST EOS and dotted lines correlate with the BHBΛΦ EOS. Furthermore, mass
criticality M∞/M

1 ,0
th is plotted as a function of the mass ratio q and the dimensionless spin of the

primary χ1. Finally, the respective disk (ejecta) masses are projected onto a 2D plane generating
a corresponding cubic spline interpolated contour plot which highlights the highly non-linear
behavior. This figure has been reused from [20].

panels), the highly spinning HMNS (χ1 = 0.60) has a highly asymmetric mass
distribution as compared to the binary with χ1 = 0.45. Furthermore, both binary
mergers create a HMNS that is (meta-)stable for configurations with a (low) high
spinning primary which could result in distinguishable characteristics in the GW
emission and disc winds [148].

3.2.2 Ejecta analysis

Given the excessively high masses of the configurations studied, a key aspect
to understanding the stability of the remnant is by understanding how much
mass has been ejected at merger so as to ascertain the mass of the remnant. To
this end, we show in Fig. 3.3 3D plots of the mass criticality of each binary as a
function of the mass ratio q and the dimensionless spin of the primary χ1. It is
important to note that the color bar represents the disk (dynamical ejecta) mass
measured for the binary in the left (right) plot. Furthermore, the data is projected
onto a 2D contour plot which is then interpolated using a cubic spline which
provides insights into the non-linear relation of the disk (dynamical ejecta) mass
as a function of q and χ1.

We will first focus our attention on the disk mass (left) plot in Fig. 3.3. Un-
surprisingly, binaries with low spin and q > 0.8 result in very small Mdisc which
correlates well with the short lifetime of the remnant such that the majority of
the mass is consumed in the formation of the BH. Additionally, as χ1 increases
for q = 1 we see a steady increase in Mdisc whereas, for q = 0.6, we find a sharp
increase in Mdisc resulting in & 50% increase in disk mass compared to q = 1 con-
figuration. In contrast, the collapse time (τc) to a BH is significantly longer in the
case of q = 0.6 compared to q = 1. This is attributed to the fact that, in the case
of q = 1, the star that is disrupted is in fact the spinning NS [see Fig. 3.1]. There-
fore, matter is accreted onto the equally massive irrotational NS resulting in a
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Figure 3.4: The power spectral density (PSD) of the effective gravitational wave strain for
the (`,m) ∈ {(2, 1) , (2, 2)} modes for the TNTYST (left panel) and BHBΛΦ (right panel). Fur-
thermore, we highlight the dominate PSD frequencies fm=1 := max [PSD(l = 2,m = 1)] and
f2 := max [PSD(l = 2,m = 2)]. Finally, we include the aLIGO sensitivity curve for reference.
This figure has been reused from [20].

prompt collapse for all configurations explored in this study except in the case of
TNT-05.0-0.60-1.000. More interesting is the fact that we find a minimum Mdisc

for χ1 & 0.4 and q ≈ 0.82 highlighting a non–monotonic behavior in Mdisc as a
function of q and χ1.

As we shift our focus to the ejected mass Mej, we find a very similar quali-
tative behavior as for Mdisc showing a clear non–monotonic behavior of Mej as a
function of q and χ1. Unlike in the case of Mdisc, we do not see a clear trend in
the behavior of a local minimum as the spin of the primary increases. Instead,
the minimum shifts from q ≈ 0.82 towards q ≈ 0.75. However, it is important to
note that the measured ejected mass is prone to precision errors especially for the
small quantities noted here. Specifically, the resolution of the evolution numerical
grid can result in errors up to 40%. Furthermore, the contour plot is constructed
using a cubic spline interpolation of the averaged measured quantities. There-
fore, for the limited configurations obtained within this large parameter space,
the shift in the minium to q ≈ 0.75 could also be an artifact of insufficient sam-
pling. Overall we see a similar behavior for q = 1 and q = 0.6, however, opposite
to Mdisc, we find larger amounts of dynamical ejecta for q = 1 by nearly an order
of magnitude. We find this can likely be attributed to the fact that the irrotational
star experiences an abrupt spin–up due to accreting matter from the highly spin-
ning star which we’ll explore further in Ch.5. In this way, the rapid spin up of the
irrotational star results in a second tidal tail formed by the primary NS.

3.2.3 Gravitational-wave analysis

Motivated by the results presented in Sec. 3.2.1, it is pertinent to examine the
GW properties of the 28 simulations performed. Specifically, we focus our exam-
ination during a time window starting at the merger time and extending to the
end of the simulation or until collapse to a BH. Out of necessity, we will focus our
analysis on configurations that are at least short-lived given the GWs of promptly
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collapsing binaries consist predominantly of the collapse and ring-down of the
remnant BH.

For the remaining short- and long-lived configurations, we show in Fig. 3.4 the
computed power spectral density (PSD) for the (`,m) = (2, 2) , (2, 1) multi–poles
of the gravitational wave strain for the TNTYST (left panel) and BHBΛΦ (right panel)
EOSs along with the sensitivity curve for aLIGO (see [29], [149] for PSD details).
Furthermore, the computed PSD is filtered using a Hann windowing function
to remove spectral noise followed by a cubic-spline interpolation to provide a
smooth function for presentation. All of the configurations examined show a
prominent peak in the (2, 1) mode with an approximate relation of fm=1 ≈ 0.5f2,
where f2 is the frequency associated with the global maximum in the (`,m) =
(2, 2) spectra. The f2 peak has been thoroughly examined in previous works and
is the dominate post–merger frequency[39], [50], [146], [149]–[153].

Interestingly, we find that the maximum value of the fm=1 peak in the (2, 1)
mode for both EOSs is for the configuration with q = 0.8 and χ1 = 0.6 which
hints that there may be an optimal mass ratio resulting in a stronger (2,1) mode.
However, the (2,1) mode typically depends sensitively on the mass ratio of the
binary thus causing an asymmetry in the HMNS remnant resulting in a one-
arm instability. For the simulation times considered here, the collapse time for
TNT-05.0-0.60-0.800 and TNT-05.0-0.60-0.600 could not be computed. Thus,
the total power in the (2,1) mode due to the remnant lifetime could also play
a role in this discrepancy if the simulations were performed until both config-
urations collapsed. To further emphasize this point, in the case of χ1 = 0.45,
TNT-05.0-0.45-0.800 collapses much earlier than for TNT-05.0-0.45-0.600 re-
sulting in the larger fm=1 for TNT-05.0-0.45-0.600 as expected.

In an effort to further analyze the large fm=1 peak for TNT-05.0-0.60-0.800,
we have chosen to define the total ejected mass as

Mtot := Mej +
1

2
Mdisc, (3.1)

which we have included for the 28 configurations studied in this work in
Tab. 3.2. When we compare TNT-05.0-0.45-0.800 and TNT-05.0-0.60-0.800,
we find a 57% increase in Mtot resulting in a collapse time > 300% longer
given TNT-05.0-0.60-0.800 did not collapse by the end of the simulation
time. Furthermore, TNT-05.0-0.60-0.800 results in Mtot ∼ 45% less than
TNT-05.0-0.60-0.600 which implies the HMNS is in fact more massive which
could contribute to the strong one-arm instability.

Looking now to the BHBΛΦ EOS, we see the same dominate (2,1) peak for
q = 0.8 and χ1 = 0.6, however, this is limited to M∞/M

1 ,0
th = 1.025 as higher

masses result in an early collapse to a BH for q = 0.6. Furthermore, Mtot increases
by only 8% when increasing χ1 = 0.45 → 0.6 for q = 0.8. Unlike for TNTYST,
two mass configurations with q = 0.8 do not collapse within the simulation time,
namely BHB-05.0-0.60-0.800 and BHB-02.5-0.60-0.800. We see from Fig. 3.4
(right panel) that, in fact, the binary with the more massive HMNS remnant re-
tains the dominant (2,1) mode, specifically BHB-05.0-0.60-0.800.

3.2.4 Remnant lifetime

Up until now, the lifetime of the remnant has been mentioned, but not thor-
oughly discussed. Here we aim to not only quantify the remnant lifetime, but
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are colored as a function of the mass ratio Q and the symbols denote the lifetime of the remnant.
For clarity, we denote remnants that did not collapse within the simulation time with an arrow
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also characterize the lifetime in an intuitive manner so as to determine the influ-
ence of mass and spin as well as EOS. In this work, we utilize the same collapse
time (τc) measurement as proposed in Ch.4 which are reported in Tab. 3.2. Fur-
thermore, we characterize the lifetime of the remnants as short lived for τc . 5ms,
medium lived for 5 < τc . 10ms, and long lived for τc > 10ms.

From Tab. 3.2 we can already gain an appreciation for the influence of spin
and mass asymmetry based solely on the post merger time leading up to col-
lapse to a BH. Specifically for TNTYST, we see for the configurations with a total
binary mass M∞/M

1 ,0
th = 1.05 and χ1 = 0.6 that all models survive up to the end

of the simulation time. For χ1 = 0.45, only TNT-05.0-0.45-0.600 survives til
the end of the simulation time with the remaining two mass ratios resulting in a
meta-stable remnant that collapses within 10ms. Conversely, for the more mas-
sive configurations with M∞/M

1 ,0
th = 1.105, we find all of the configurations have

a short lifetime except for the long lived TNT-10.5-0.60-0.675 and the meta-stable
TNT-10.5-0.60-0.837.

Repeating this analysis for BHBΛΦ shows quite a different behavior. Specifi-

binary model heff,f2
heff,fm=1

heff,fm=1
heff,f2

heff,fm=1
heff,f2

∣∣∣∣
5ms

TNT-10.5-0.60-0.675 0.500 0.032 0.064 0.173

TNT-10.5-0.60-0.838 0.764 0.028 0.036 0.037

TNT-05.0-0.45-0.600 0.414 0.032 0.078 0.131

TNT-05.0-0.45-0.800 0.682 0.023 0.034 0.030

TNT-05.0-0.45-1.000 1.000 0.019 0.019 0.021

TNT-05.0-0.60-0.600 0.428 0.028 0.065 0.104

TNT-05.0-0.60-0.800 0.594 0.033 0.056 0.341

TNT-05.0-0.60-1.000 0.895 0.031 0.035 0.019

BHB-05.0-0.60-0.600 0.333 0.019 0.057 0.042

BHB-05.0-0.60-0.800 0.371 0.029 0.079 0.295

BHB-02.5-0.45-0.800 0.404 0.030 0.075 0.267

BHB-02.5-0.60-0.600 0.377 0.021 0.056 0.108

BHB-02.5-0.60-0.800 0.428 0.027 0.063 0.169

Table 3.1: Here we highlight the power
corresponding to the dominate f2 and
fm=1 frequencies where the total power
is computed based on an integration
window starting at the merger time and
extending until collapse or the end of
the simulation time. Finally, we include
the relative power heff,fm=1

heff,f2
for the total

integration window and an integration
window limit to 5ms post-merger in or-
der to ascertain the relative power for
equal integration times. Note: all cells
have been normalized by largest value
in the table to give a sense of the rela-
tive power of each binary and their re-
spective ratios.
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cally, we see for M∞/M
1 ,0
th = 1.025 and χ = 0.6 that, even with the addition of

extremal spins, q = 1 still collapses in a short time frame where as q ∈ {0.6, 0.8}
survive over a long time frame. Surprisingly, for M∞/M

1 ,0
th = 1.05, q = 0.8 ends

up surviving for a long time frame whereas q = 0.6 is only meta-stable. Re-
viewing Tab. 3.1, we see in column 5 that the measured relative effective power
in the first 5ms post-merger for BHB-05.0-0.60-0.600 is . 60% compared to
TNT-05.0-0.60-0.600. This implies that, for stiffer equations of state, the lack
of a strong one-arm instability in the HMNS contributes to a significantly shorter
collapse time.

Another avenue to characterize the HMNS remnant is to quantify the effective
spin of the remnant as a function of the initial conditions, the mass and spin-
angular momentum lost through gravitational waves. To this end, we choose to
define the effective dimensionless spin of the remnant as

χ̃rem :=

(
M1,0

th

M∞

)
JADM − JGW

(MADM −MGW)2 , (3.2)

where JADM and MADM are computed from the initial data and we have chosen
to rescale the dimensionless spin by the mass criticality allowing for underlying
characteristic behaviors to be realized such that comparison across all the binary
configurations can be studied. In practice we compute JGW and MGW by extract-
ing the Weyl scalar Ψ4 on spherical shells at a finite coordinate distance of 735km
from the grid center and integrate from merger up to the BH formation or the end
of the simulation (see [154]).

With this definition we show in Fig. 3.5 χ̃rem as a function of the computed
collapse time τc where the symbols are colored as a function of mass ratio. In this
way we find for the TNTYST EOS a clear trend such that configurations resulting
in χ̃rem & 0.9 result in a long lived remnant. Conversely, for BHBΛΦ configura-
tions such a line is not easily drawn as configurations with χ̃rem ∼ 0.95 can still
result in promptly collapsing binary. Furthermore, we see from another view the
non–monotonic behavior of the remnant lifetime as a function of spin and mass
asymmetry. Specifically, the three BHBΛΦ models with q = 0.8 result in a long
lived remnant whereas only the extremal spinning q = 0.6 configuration survives
for a long period. This provides a unique measurement to further support our
assessment that, for stiffer EOSs, the lifetime of the remnant is much more de-
pendent on the degree of mass asymmetry and spin of the system.

3.2.5 Kilonova emission

In this section we conclude our analysis by approximating the influence q and
χ1 play on the electro–magnetic counterpart for the configurations considered.
Therefore we included estimates of the peak luminosity Lp and the time of peak
emission tp in Tab. 3.2 which have been computed using the semi–analytical mod-
els by [155] and [156] where we have used a grey opacity of 10cm2/g. It is impor-
tant to note that previous modeling and numerical simulations have not consid-
ered binaries with such extremal configurations as what has been analyzed here
nor have accretion disk simulations been computed with disk masses as large as
those measured in this work Mdisk ≈ 0.3M�.

With this in mind, we utilize reference estimates for the amount of the disk
mass that will end up being ejected over time (∼ 50%) with an average velocity of
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〈v〉disc = 0.1. With this we can then compute the mass weighted average velocity
of the ejecta using

〈v〉 :=
〈v〉ejMej + 1

2
〈v〉discMdisc

Mtot

, (3.3)

where 〈v〉ej is the average ejecta velocity at infinity andMtot is given by Eq. 3.1. We
have included 〈v〉 in Tab. 3.2, however, we note that for the models that have not
collapsed the characteristics of the ejecta and as a result, the kilonova estimates,
would be impacted.

To determine the influence of q and χ1 on the emission properties, we plot in
Fig. 3.6 the peak luminosity (bottom) and the time of peak luminosity (top) as a
function of χ̃rem, where the color code is a function of mass ratio. For both EOSs
we find that q = 1 results in the highest peak luminosities Lp where the time of
the peak can be between ∼ 1 and ∼ 2 days depending on χ̃rem. However, the
next brightest emissions come from the most asymmetric binaries with q ∼ 0.6
further pointing towards non-monotonic behavior as a function of q. Finally, the
weakest emissions are those near equal mass and with lower χ̃rem as expected. At
the same time we find a consistent trend between tp and χ̃rem such that remnants
with higher effective spins will peak more than a day later.

3.2.6 Summary

In this work we have computed the inspiral, merger, and post-merger of
28 configurations with q ∈ [0.6, 1.0] and χ ∈ {0.3, 0.45, 0.6} for BHBΛΦ and
TNTYST EOSs with total binary basses of M∞/M

1 ,0
th ∈ [1.025, 1.109]. With the

availability of the FUKA BNS initial data solver we have analyzed a previously un-
explored region of the BNS parameter space by performing GRHD simulations
from inspiral up to ∼ 35ms post-merger. From these simulations we have been
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able to analyze the influence mass asymmetry and spin can have on the remnant
stability, gravitational wave power spectrum, and electro–magnetic counterparts.

We have found that the imprint on the gravitational waveform, kilonova emis-
sion, and remnant stability depend sensitively on the mass ratio and spin. Specif-
ically, the stability of the remnant requires a sufficiently large addition of spin
angular momentum to support large mass binaries in excess of the irrotational
threshold mass. This behavior is, however, not independent of the EOS as we
have found for the stiffer BHBΛΦ EOS where the examined binaries predomi-
nantly have a short lifetime independent of the mass ratio given the HMNS can-
not support such a high mass even with χ̃rem > 0.9. We find this can be partially
attributed to the fact that for stiffer EOSs the one-arm instability is significantly
weaker by as much as 50% for similar mass criticality TNTYST configurations.

Finally, we find an overall trend between the time of peak luminosity tp as
a function of χ1 such that configurations with a higher spinning primary will
peak up to a day later. Additionally, we find the peak luminosities Lp are often
the equal–mass binaries. This phenomena will be discussed further in Ch.5 as it
relates to the secondary fast ejection tail.

With a more clear understanding of the merger dynamics, we will focus in
Ch. 4 instead on determining how the measured threshold mass changes as a
function of q and χ and whether or not quasi–universal behavior exists similar
to what has been found for equal–mass irrotational binaries [42] and asymmetric
binaries [125].
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binary model EOS M∞ q χ1 χeff 〈v〉 〈Ye〉 Mtot τc lifetime
[M�] [c]

[
10−1M�

]
[ms] symbol

TNT-10.5-0.30-0.837 TNTYST 3.199 0.837 0.30 0.158 0.101 0.14 0.047 0.7 5
TNT-10.5-0.30-1.000 TNTYST 3.199 1.000 0.30 0.150 0.100 0.10 0.097 0.6 5
TNT-10.5-0.45-0.675 TNTYST 3.199 0.675 0.45 0.268 0.103 0.08 0.783 2.4 5
TNT-10.5-0.45-0.837 TNTYST 3.199 0.837 0.45 0.244 0.100 0.13 0.149 1.0 5
TNT-10.5-0.45-1.000 TNTYST 3.199 1.000 0.45 0.225 0.101 0.04 0.469 0.7 5
TNT-10.5-0.60-0.675 TNTYST 3.199 0.675 0.60 0.358 (0.100) 0.06 (1.142) > 36.4 4
TNT-10.5-0.60-0.837 TNTYST 3.199 0.837 0.60 0.326 0.102 0.04 0.627 5.7 �

TNT-10.5-0.60-1.000 TNTYST 3.199 1.000 0.60 0.300 0.116 0.04 1.153 1.2 5
TNT-05.0-0.45-0.600 TNTYST 3.039 0.600 0.45 0.281 (0.101) 0.05 (1.239) > 34.2 4
TNT-05.0-0.45-0.800 TNTYST 3.039 0.800 0.45 0.250 0.100 0.13 0.444 9.9 �

TNT-05.0-0.45-1.000 TNTYST 3.039 1.000 0.45 0.225 0.103 0.07 0.525 6.0 �

TNT-05.0-0.60-0.600 TNTYST 3.039 0.600 0.60 0.375 (0.101) 0.05 (1.347) > 34.8 4
TNT-05.0-0.60-0.800 TNTYST 3.039 0.800 0.60 0.333 (0.100) 0.04 (0.701) > 35.9 4
TNT-05.0-0.60-1.000 TNTYST 3.039 1.000 0.60 0.300 (0.112) 0.04 (1.438) > 36.2 4
BHB-10.8-0.30-0.837 BHBΛΦ 3.500 0.837 0.30 0.163 0.100 0.12 0.174 0.7 5
BHB-10.8-0.45-0.675 BHBΛΦ 3.500 0.675 0.45 0.268 0.100 0.04 0.942 0.7 5
BHB-10.8-0.45-0.837 BHBΛΦ 3.500 0.837 0.45 0.244 0.100 0.10 0.327 0.8 5
BHB-10.8-0.60-0.675 BHBΛΦ 3.500 0.675 0.60 0.358 0.100 0.05 1.300 2.4 5
BHB-10.8-0.60-0.837 BHBΛΦ 3.500 0.837 0.60 0.326 0.102 0.03 0.870 0.9 5
BHB-05.0-0.60-0.600 BHBΛΦ 3.314 0.600 0.60 0.375 0.101 0.04 1.509 8.4 �

BHB-05.0-0.60-0.800 BHBΛΦ 3.314 0.800 0.60 0.333 (0.100) 0.03 (0.812) > 39.1 4
BHB-05.0-0.60-1.000 BHBΛΦ 3.314 1.000 0.60 0.300 0.120 0.05 1.381 0.9 5
BHB-02.5-0.45-0.600 BHBΛΦ 3.235 0.600 0.45 0.281 0.101 0.04 1.382 1.5 5
BHB-02.5-0.45-0.800 BHBΛΦ 3.235 0.800 0.45 0.250 0.100 0.14 0.732 25.2 4
BHB-02.5-0.45-1.000 BHBΛΦ 3.235 1.000 0.45 0.225 0.101 0.04 0.674 2.9 5
BHB-02.5-0.60-0.600 BHBΛΦ 3.235 0.600 0.60 0.375 0.101 0.04 1.601 26.5 4
BHB-02.5-0.60-0.800 BHBΛΦ 3.235 0.800 0.60 0.333 (0.101) 0.03 (0.792) > 38.8 4
BHB-02.5-0.60-1.000 BHBΛΦ 3.235 1.000 0.60 0.300 0.113 0.04 1.537 1.3 5

Table 3.2: The binary models considered in this work are listed including the utilized EOS, the
total gravitational mass of the binary M∞, the mass ratio q, the dimensionless spin of the primary
NS χ1, the effective dimensionless spin parameter of the binary χeff , the mass weighted average
velocity of the ejecta, the average Ye of the ejecta, the mass weighted total ejected mass Mtot, and
the collapse time of the remnant to a black hole τc. Additionally, we include the symbol used in
later plots which are defined by the survival time of the HMNS remnant for each configuration.
Finally, the dimensionless spin of the secondary object is irrotational in all the configurations
presented here.
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Chapter 4

Quasi-universal behavior of the
threshold mass in unequal-mass,
spinning binary neutron star mergers

In chapter 3 the examination of binaries with a critical mass up to ∼ 10% above
the irrotational, equal–mass threshold mass provided both qualitative and quan-
titative insights into the influence mass asymmetry and spin can have on rem-
nant stability. The addition of spin-angular momenta and mass asymmetry in the
binary configuration result in the sensitive interplay of complicated dynamics in-
cluding mass ejection, tidal disruption, and a possibly strong one–arm instability.
We have shown that the collective result of these dynamics can produce a long-
live HMNS remnant even for supercritical mass configurations. Furthermore, the
relation between many of these dynamical features to q and χ1 showed a clear
non-monotonic behavior (cf. Fig. 3.3).

In this chapter we will shift our focus to the study of the threshold mass to
prompt collapse (cf. Sec. 1.2) for given configurations of q and χ. As such, the bi-
nary masses used are iteratively changed until an accurate measurement of the
threshold mass can be obtained. Within Sec.4.1 we will describe our experimental
setup and the binary configurations that will be explored. In Sec. 4.2 we will an-
alyze the measured threshold masses along with the ansatz proposed describing
a quasi–universal relation. Finally, in Sec. 4.3 we will summarize the highlighted
results from this work.

4.1 Methods

Given the large space of parameters in EOS, M∞, q and χ we must impose
some restrictions in order to reasonably sample the space of parameters while still
obtaining accurate results. To this end we have utilized the temperature depen-
dent TNTYST, BHBΛΦ, and DD2 EOSs. These EOSs have been chosen since they are
still within astronomical constraints while, at the same time, span across a range
of stiffnesses. We shown in Tab. C.1 characteristic quantities for the EOSs consid-
ered such as their maximum non-rotating (TOV) mass MTOV, TOV compactness
CTOV, and the associated TOV freefall timescale τTOV. For the remaining space
of parameters (q , χ) we choose q ∈ {0.5, 0.7, 0.9, 1.0} where binaries with q = 0.5
are at the extreme of physically plausible binaries such that the secondary (less
massive) object has a mass MADM ∼ 1.0M�. Additionally, we restrict ourselves
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to binaries where only the primary 1 (more massive) object is spinning. Further-
more, we choose to explore dimensionless spins χ1 ∈ {−0.3 , 0 , 0.3} where χ1 is
defined using Eq. (2.69).

For each configuration we simulate the inspiral, merger, and post-merger
phase in order to compute the collapse time τc which is the time from merger
until the NS becomes gravitationally unstable and a collapse to a BH is immi-
nent. To this end, we utilize the FUKA BNS initial data solver as discussed in
Ch. 2 along with the evolution setup described in Appendix C. Specifically, we
utilize a numerical evolution grid with an extent of ≈ 3000km. Using the Carpet

box-in-box refinement driver, a total of 6 boxes of refinement are utilized result-
ing in a finest grid spacing of ∆x ≈ 295m. In order to minimize the eccentricity
for the configurations examined here, we have utilized FUKA’s ability to perform
eccentricity reduction using 3.5PN estimates as described in Sec. 2.5. This is an
important step as appreciable eccentricity can influence the collapse time in BNS
mergers[37].

Finally, the key for studying the threshold mass of BNS mergers is to have
a rigorous and physically motivated measurement of the collapse time. To this
end we have chosen a modified approach to what was originally defined in [42].
Specifically, the minimum of the lapse, min (α), is monitored throughout each sim-
ulation [see Eq. (2.6) for a definition of α]. This is a precisely tracked quantity
throughout numerical simulations and, by definition, characterizes the region of
the highest gravitational potential (i.e., small α means a stronger gravitational in-
fluence). Therefore, as a NS or HMNS becomes gravitationally unstable such that
the fluid pressure can no longer compensate for the gravitational potential, a col-
lapse to a BH is imminent. Furthermore, the collapse to a BH takes place over a
finite timescale known as the freefall timescale[157] and is defined as

τff(M,R) :=
π

2

√
R3

2M
, (4.1)

where, for a given EOS, we can compute τff for the maximum TOV mass, i.e.
τTOV := τff(MTOV, RTOV). However, since α is a gauge dependent quantity its
measured value is dependent on the asymmetries in the system. In order to re-
move this degeneracy so as to compute comparable collapse times, we normalize
min (α) by its maximum which we define as

α̂ :=
min (α)

max (min (α))
. (4.2)

With the necessary definitions in place we can now define thresholds on α̂ in
order to compute the collapse time. To do so we first set the lower limit on α̂
which ensures gravitational instability of the HMNS across the explored param-
eter space considered. As such we define

tBH := t(α̂ = 0.1). (4.3)

Furthermore, we want to ensure the collapse time never exceeds τTOV for a given
EOS. As such, we have identified this to be true when

tmerge := t(α̂ = 0.9). (4.4)

1For q = 1 primary is only used as a label to describe the NS with spin since they both have
equal gravitational mass at infinite separation.
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Figure 4.1: Bottom-right panel: The total binary mass M∞ normalized by the TOV mass plotted
as a function of the collapse time tcol normalized by τTOV for a given EOS. Remaining panels:
Representative examples of the behavior of the normalized minimum lapse α̂ as a function of
the simulation time for q = 0.7 , χ = 0.3 for each EOS. We highlight how sensitive the collapse
behavior is for M∞ especially near Mth. This figure has been reused from [41].

Therefore, the measurement of the collapse time is simply

tcol := tBH − tmerge. (4.5)

With a measure of the collapse time using Eq. (4.5), we can compute the
threshold mass for each configuration in a straight forward manner. Each con-
figuration (q, χ, and EOS) with variable total mass (M∞) of the binary is com-
puted up to ∼ 5ms post–merger. Once three or more points are collected near the
threshold mass, e.g., tcol/τTOV . 15, the data points are fitted to

M∞
MTOV

= b1 exp

[
−b2

(
tcol

τTOV

)2
]
, (4.6)
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Figure 4.2: The surface representing the fit to Eq. (4.7) for each EOS is plotted as a function of q
and χ. This figure has been reused from [41].

in the same way as performed in [42] 2. The measured Mth is, thus, the value
obtained by extrapolating the resulting fit using Eq. (4.6) to tcol/τTOV = 1. This
process is repeated for all configurations considered which will be analyzed in the
following results section. As an example, we show in Fig. 4.1 the timeseries of α̂
for the q = 0.7 , χ = 0.3 BNS configurations; where each panel is for a different
EOS. In the bottom right panel we show the fit performed to obtain the measured
threshold mass value (solid line) and the related linear fit (dotted line) which
tends to overestimate the threshold mass. We note the sensitivity of the resulting
timeseries as a function of the binary mass where changes of∼ 10−3 are sufficient
to transition to collapse behavior at merger time.

4.2 Results

In order to gain an insight into the influence of mass asymmetry and spin
on the threshold mass we utilize an initial dataset of 36 configurations spanning
across q, χ, and EOS. For each configuration the threshold mass is measured by
computing a sequence of BNS simulations until an error in the measurement of
Mth is below 1%. For such a parameter study, more than 400 simulations were
performed to enable these results. As such, we have plotted the threshold mass
as a function of q and χ as shown in Fig. 4.2 for each EOS.

4.2.1 Quasi-universal behavior

Examination of Fig. 4.2 highlights a highly non–linear relation between q, χ,
and Mth which could be well described by a second-order polynomial. To this
end, we propose an ansatz of

Mth(q, χ)|EOS := a1 + a2(1− q) + a3χ+ a4(1− q)χ+ a5(1− q)2 + a6χ
2 , (4.7)

where the resulting fit for each EOS results in a chi–squared of X2
BHBΛΦ = 0.001,

X2
DD2 = 0.001, and X2

TNTYST = 0.003. In all cases, the average deviation from the fit
is 1% with a maximum deviation of∼ 2% which is of the order of δMth = 0.03M�.

Upon further inspection, the form of the fit is similar for each EOS and, as
such, the question arises as to whether or not a quasi-universal relation can be

2Use of non-linear fit continues to be necessary as the use of a linear fit can result in an overes-
timate of Mth of ∼ 1− 2%.
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obtained that effectively rescales the surface depending on the EOS. Within [42]
and the study of equal–mass irrotational BNS, the threshold mass is related sim-
ply to EOS specific TOV quantities, MTOV and RTOV. Although the influence of q
and χ on Mth results in a more complicated form we expect, in the limit of q = 1
and χ = 0, that the relation from [42] should be recovered. To this end we propose
a new ansatz which is that of separability

Mth(EOS, q, χ) = κ(EOS) f(q, χ) , (4.8)

where all of the dependence on the EOS is encapsulated within κ(EOS) and the
remaining functional dependence on q and χ, i.e. f(q, χ), is contained within
Eq. (4.7). In order to demand that the quasi-universal relation from [42] is recov-
ered for q = 1 , χ = 0 we have chosen to use this relation as κ(EOS)

κ(EOS) :=

(
a− b

1− c C
TOV

)
M

TOV
, (4.9)

where C
TOV

= M
TOV

/R
TOV

is the stellar compactness and the fitting coefficients are
a = 2b/(2 − c), b = 1.01, and c = 1.34 as documented in [42]. In Fig. 4.3, we plot
all of the data as a function of M̂th := Mth/κ along with the fit of the normalized
data to Eq. (4.7). For the EOSs considered we note a non–monotonic behavior in
terms of q which has been discussed in [37], [124]. However, it is expected that
for neutron stars the dependence on spin should increase monotonically given

FIT a1 a2 a3 a4 a5

BHBΛΦ 0.982± 0.005 0.08± 0.06 0.14± 0.02 0.04± 0.06 −0.4± 0.1

DD2 0.997± 0.007 0.13± 0.08 0.12± 0.02 0.04± 0.08 −0.3± 0.1

TNTYST 1.024± 0.008 0.14± 0.08 0.12± 0.03 0.04± 0.09 −0.3± 0.2

Univ 1 0.11± 0.07 0.12± 0.03 0.07± 0.09 −0.3± 0.2

Table 4.1: The fitting coefficients for each EOS and the universal fit to Eq. (4.7). For Univ, a1 := 1 in
order to recover the equal-mass, irrotational result from [42]. This table was originally published
in [41].
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the addition of angular momentum to the system will result in a more stable
and longer lived remnant[158]–[160]. As such, we expect there to be a maximum
threshold mass at the maximum allowable spin, χmax. In this work, χ = χ1 + χ2

which implies χmax := 2 × 0.65, where 0.65 is the maximum spin possible for an
isolated NS [44]. Furthermore, we can use this reasoning to remove a degree of
freedom from Eq. (4.7) by imposing the following constraint

∂χf(q, χ)|χmax = 0 , (4.10)

which results in a functional relation for a6 of

a6 :=
a3 + a4(1− q)

2χmax

. (4.11)

Shown in Tab. 4.1 are the fitting coefficients for each EOS as well as the univer-
sal fit where Eq. (4.11) has been used in all cases. Note that even though a1 := 1
is only fixed in the case of the universal fit, the independent fits for each EOS re-
sult in a1 ≈ 1 further supporting the separability ansatz. Ultimately the fit results
in a chi–squared of X2 = 0.028 and the data deviates from the fit by an average of
2% with a maximum deviation of ∼ 6% which is at the most extreme configura-
tions. Compared to the equal–mass irrotational binary configurations we find the
threshold mass can increase by as much as ∼ 6% for aligned spins and decrease
by ∼ 10% for anti–aligned spins. In an effort to ensure this result holds not only
for χ2 = 0, we have included an additional small sample of runs with χ2 6= 0 and
have found that this fit holds equally well. The final fits reported in Tab. 4.1 have
used these additional data points for completeness.

4.2.2 Constraints on stellar radii

With a robust relation for the threshold mass we can extend the analysis per-
formed in [42] to provide constraints on the lower limit of stellar radii. To this
end we have used Eqs. (4.6), (4.9), and (4.8) to compute sequences of Mth as a
function of MTOV along lines of constant RTOV which are shown in the top pan-
els of Fig. 4.4. Within each panel we use the chirp mass of GW170817 1.188M�
as the lower bound given the electro–magnetic counterpart indicates the merger
did not result in a prompt collapse, however, translating this to a gravitational
mass results in the shown blue band depending on the mass ratio. This is em-
phasized in the top left-most panel of Fig. 4.4. This procedure is conducted for
each χ ∈ {−0.3 , 0 , 0.3} which corresponds to the left, middle, and right columns
in Fig. 4.4 respectively. Looking first at the mass ratio, we find that knowledge
of q & 0.7 does not constrain the stellar radius much more than assuming q = 1,
however, for q ∼ 0.5 we see that much stronger constraints can be made given
the significantly smaller prediction for the threshold mass. On the other hand, if
we look at the spin of the binary, this can play an important role on constrain-
ing the EOS especially in the case of anti–aligned spins. For instance, by looking
at the left panel and, under the assumption that GW170817 was equal mass with
a total spin of χ = −0.3, all EOSs with an RTOV . 10.1km would be excluded.
Conversely, under the assumption that GW170817 had an aligned spin of χ = 0.3
would result in a weaker constraint on the EOS.

In the same manner as [42], we can extend this analysis for an arbitrary mass
M in order to ascertain an estimate for the associated radius Rx with a functional
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Figure 4.4: The columns within this figure are associated with a fixed spin χ ∈ {−0.3, 0, 0.3}
respectively. Top: The constraints set on the lower limit of allowable TOV radii by computing the
threshold mass using Eq. (4.7) along lines of constantRTOV ∈ {10, 11} km for each mass ratio. The
horizontal blue shaded region corresponds to the constrained region set by GW170817 under the
assumption of q ∈ {0.5, 0.7, 0.9, 1}. The red shaded region includes those EOSs excluded under
the assumption that the lower limit set by GW170817 for q = 1 whereas the grey regions are those
excluded by causality. Bottom: We plot the obtained relation Rx(M, q, χ) given by Eq. (4.12) for
each q. In the middle panel, the symbols show that Rx(M) from [42] is recovered when plotting
Rx(M, q, χ)f(q, χ). In all of the lower panels, the red dashed line is the result Rx(M) presented in
[42]. This figure has been reused from [41].

dependence on q and χ, i.e. Rx(M, q, χ). In the bottom row of Fig. 4.4 we plot the
ascertained function Rx(M, q, χ) for each χ ∈ {−0.3 , 0 , 0.3} which corresponds
to the left, middle, and right columns. In our analysis, we have verified that
the independently obtained expression can recover Rx(M) presented in [42] by a
simple rescaling using f(q, χ) defined in Eq. (4.7) such that

Rx(M, q, χ) =
Rx(M)

f(q, χ)
, (4.12)

where Rx(M) is the expression presented in [42]

Rx(M) = −0.88M2 + 2.66M + 8.91. (4.13)

Within Fig. 4.4 we have shown that the lower limit on the stellarRx is significantly
influenced by spin where, in the case of anti–aligned spin, the lower limit is∼ 9%
larger than in the aligned spin case. Furthermore, as with the top panels, we see
only a weak constraint that can be set by knowledge of the mass ratio except in
the extreme case where q < 0.7.

4.3 Summary

In this work we have explored the influence of mass ratio q and spin χ on
the threshold mass to prompt collapse in binary neutron star mergers. To do
so we have computed BNS configurations within the range of parameters such
that q ∈ {0.5, 0.7, 0.9, 1} and χ ∈ {−0.3 , 0 , 0.3} using three finite temperature
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equations of state BHBΛΦ, TNTYST, and DD2. Measuring the threshold mass for
these configurations resulted in computing the inspiral and merger of more than
400 BNS configurations.

From these results we have derived a quasi–universal relation that provides
an accurate approximation of the measured threshold masses with an average
(maximum) deviation from the acquired universal fit of ∼ 2% (< 6%). Further-
more, we find the influence of asymmetry results in a non–monotonic behavior
with a peak threshold mass on the order of q = 0.8. Interestingly, this lines up
well with the non-monotonic behavior noted in Sec. 3.2.2. Finally, we find the ad-
dition of spin-angular momentum from rotating NS solutions results in a mono-
tonic behavior such that the threshold mass can increase by as much as 5% for
aligned spins and decrease by as much as 10% for anti–aligned spins.

With a broad understanding of the influence mass asymmetry and spin have
on massive binary neutron star mergers as discussed in chapters 3-4, it is perti-
nent to explore how such mergers can be distinguished from black hole-neutron
star configurations with the same mass and spin distribution which we will ex-
plore in the following chapter.
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Chapter 5

Fast ejecta as a potential way to
distinguish black holes from neutron
stars in high-mass gravitational-wave
events

It is well established that the detection of heavy binary neutron star mergers can
constrain the equation of state of nuclear matter while, at the same time, also
help to constrain the potential mass ratio q and effective spin χ̃ of the binary [43].
Gravitational wave events such as GW170817[108] provide unique insights into
the EOS of nuclear matter as heavy binaries can constrain the EOS via analysis of
the threshold mass[23], [42], the lifetime of the remnant, and the electromagnetic
counterpart. Furthermore, GW190425[6] poses a unique scenario where the total
binary mass M ≈ 3.4M� and lack of a detected EM counterpart brings into ques-
tion whether or not the binary consisted of two neutron stars or a black hole and a
neutron star. A difficulty in assessing whether or not GW190425 could have been
a BHNS system is due to the fact that current models for formation channels of
such a low mass black hole [118], [119], especially for black holes withM ≈MTOV

[161]. However, recent observations have provided further evidence to support
the formation of massive neutron stars[162] and, as such, could lead to the forma-
tion of a black hole with M ≈MTOV in the event of an accretion induced collapse
from a companion star or possibly from pulsar spin-down[163].

In this work we seek to analyze this unique regime of overlap for low–mass
BHNS systems and high–mass BNS systems. To this end, we perform simula-
tions of BHNS and BNS configurations with constant total mass M∞ = 3.6M�
while varying the effective spin, χ̃, and mass ratio, q. Furthermore, we fix the di-
mensionless spin of the secondary (less massive neutron star) to be irrotational,
i.e., χ2 = 0. In this way, the effective spin of the binary is related to the dimen-
sionless spin of the primary object and the mass ratio by

χ̃ :=
m1χ1 +m2χ2

m2 +m1

=
χ1

1 + q

(
1 + q

χ2

χ1

)
. (5.1)

With these constraints, we perform a systematic study for q ∈ [0.486, 0.714] with
an effective spin of χ̃ ∈ {0, 0.15, 0.35}.

In Sec.5.1 we will describe our experimental setup and specify the binary con-
figurations to be examined. Furthermore, in Sec. 5.2 we will compare and contrast
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Figure 5.1: The dotted (solid) line de-
scribes the critical configurations for
the BHBΛΦ (TNTYST) EOSs based on the
universal relations derived in [43] for a
total mass Mtot = 3.6, χ1 = (1 + q)χ̃,
and χ2 = 0. The green region de-
fines the parameter space resulting in
a stable primary NS whereas the red
region below the critical lines denotes
the region where a BNS is not possible.
The stars denote the configurations ex-
amined in this work along the criti-
cal line which could be either a BNS
or BHNS. This figure has been reused
from [8].

the resulting dynamics as well as the resulting mass, composition, and distribu-
tion of the ejecta. Finally, in Sec. 5.3 we will summarize our results and discuss
the potential impact to future multi–messenger observations.

5.1 Methods

In this work we utilize the same evolution setup as described in Appendix C.
More specifically we use a numerical extent up to ≈ 6, 000km in each coordi-
nate direction with a refinement level setup that provides a finest grid spacing of
≈ 215m. Furthermore, we perform a full GRMHD evolution where an ≈ 1014G
dipole magnetic field is imbedded into the secondary neutron star. In order to
ensure consistency among results we have chosen to not include a magnetic field
on the primary NS in the BNS simulation. The BNS initial data has been gener-
ated using the FUKA BNS solver as described in Ch. 2, however, at the time these
simulations were performed the BHNS solver was not yet complete. Therefore,
the publicly available LORENE spectral code was utilized to generate the BHNS

M1 M2 Mb,1 Mb,2 q χ1 χ̃ EOS

TNT.BH.chit.0.00 2.20 1.40 – 1.55 0.636 0.00 0.00 TNTYST

TNT.BH.chit.0.15 2.24 1.36 – 1.50 0.608 0.24 0.15 TNTYST

TNT.BH.chit.0.35 2.42 1.18 – 1.28 0.486 0.52 0.35 TNTYST

TNT.NS.chit.0.00 2.20 1.40 2.66 1.55 0.636 0.00 0.00 TNTYST

TNT.NS.chit.0.15 2.24 1.36 2.70 1.50 0.608 0.24 0.15 TNTYST

TNT.NS.chit.0.35 2.42 1.18 2.87 1.28 0.486 0.52 0.35 TNTYST

BHBLP.BH.chit.0.00 2.10 1.50 – 1.65 0.714 0.00 0.00 BHBΛΦ

BHBLP.BH.chit.0.15 2.14 1.46 – 1.60 0.681 0.24 0.15 BHBΛΦ

BHBLP.NS.chit.0.00 2.10 1.50 2.40 1.65 0.714 0.00 0.00 BHBΛΦ

BHBLP.NS.chit.0.15 2.14 1.46 2.48 1.60 0.681 0.24 0.15 BHBΛΦ

Table 5.1: Details of the configurations examined in this study including the EOS, component
gravitational (Mx) and baryonic (Mb,x) masses, mass ratio q, and the effective binary spin χ̃. Here,
χ2 = 0 and χ1 = (1 + q)χ̃. This table was previously reported in [8].
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Figure 5.2: The results for the high–spin configuration using the TNTYST EOS with a χ̃ = 0.35 and
q = 0.486 for the BH–NS (top) and BNS (bottom) at three characteristic post-merger times. For the
BNS system, a second mechanism of mass ejection from the primary is clearly seen that is absent
in the BHNS. This figure has been reused from [8].

initial data [77], [78], [164]. The LORENE code functions similar to FUKA in that
it provides a solution to the EFE in the XCTS formulation (see Sec. 2.1 for de-
tails). Furthermore, the black hole is excised from the spectral domain using a
fixed lapse boundary condition as discussed in Sec. 2.2.2. Finally, we utilize the
BHBΛΦ and TNTYST EOS to describe the microphysics of nuclear matter such that
a range of compactnesses can be examined (see Appendix C.1).

In this work we intend to probe the distinguishing characteristics between
BHNS and BNS mergers. As a visual aid we include Fig. 5.1 based on the univer-
sal relations discussed in [43] where the green region is the allowed parameter
space for a BNS of a given q and χ̃ such that χ2 = 0 and the primary object is uni-
formly rotating with χ1 = (1 + q)χ̃. The dotted (solid) lines mark the critical con-
figuration for BHBΛΦ (TNTYST) such that, below this line no stable configuration is
possible for a BNS system. For χ̃ = 0, the mass of the primary is, therefore, MTOV.
A neutron star below (or possibly on) the critical line would, therefore, collapse
to a BH resulting in a BHNS system. Within Fig. 5.1 we denote the configurations
examined in this work with stars which correspond to χ̃ ∈ [0, 0.15, 0.35] 1 The spe-
cific configurations including mass ratio, component gravitational and baryonic
masses, dimensionless spin of the primary, and the effective binary spin can be
found in Tab.5.1.

1We note that in the case of BHBΛΦ a configuration with χ̃ = 0.35 was not possible given
the primary, after import into the evolution framework, would lie on the unstable branch and
collapse to a BH.



62 5.2. Results

x [ km ]

−200

−100

0

100

200

y
[ k

m
]

t = 1.9 ms

BH−NS

χ̃ = 0.00

TNTYST

x [ km ]

t = 1.8 msχ̃ = 0.15

−200 −100 0 100 200
x [ km ]

−200

−100

0

100

200

y
[ k

m
]

t = 1.8 ms

NS−NS

χ̃ = 0.00

−200 −100 0 100 200
x [ km ]

t = 1.9 msχ̃ = 0.15

6

8

10

12

lo
g 1

0
ρ

[g
cm
−

3 ]

x [ km ]

−200

−100

0

100

200

y
[ k

m
]

t = 1.8 ms

BH−NS

χ̃ = 0.00

BHBΛΦ

x [ km ]

t = 1.7 msχ̃ = 0.15

−200 −100 0 100 200
x [ km ]

−200

−100

0

100

200

y
[ k

m
]

t = 1.8 ms

NS−NS

χ̃ = 0.00

−200 −100 0 100 200
x [ km ]

t = 1.7 msχ̃ = 0.15

6

8

10

12

lo
g 1

0
ρ

[g
cm
−

3 ]

Figure 5.3: The low-spin prior configurations (χ̃ ∈ [0.00, 0.15]) for the TNTYST EOS (left) and
BHBΛΦ (right). This figure has been reused from [20].

5.2 Results

In the following we will detail the results of our simulations for the BNS and
BHNS configurations tabulated in Tab. 5.1. Specifically, our analysis will high-
light the characteristic features that are unique to BNS mergers in the high mass
and asymmetric regime. Furthermore, we will examine how robust these features
are as the effective spin of the binary varies.

5.2.1 Matter Dynamics

As a first step to gain a qualitative insight into the distinguishing characteris-
tics of the merger ejecta, we show in Fig. 5.2 the the rest–mass density during the
post-merger of the BHNS (top) and BNS (bottom) systems using the TNTYST EOS
with a χ̃ = 0.35 and q = 0.486. Shortly after merger (left column), we see al-
ready the formation of a secondary mass ejection arm for the BNS configuration
which is opposite of the main tail that is observed for both configurations. As the
evolution continues we can observe that the secondary tail provides an apprecia-
ble amount of ejecta to the system, however, it appears subdominant to the main
ejection tail. If we focus on the right column (≈ 2.4ms post-merger), the BHNS
results in a main tidal arm that is localized to the +x side of the plot whereas in
the BNS we see a more isotropic, although asymmetric, distribution.

The dynamical processes contributing to the secondary tidal arm can be at-
tributed to the presence of the primary neutron star instead of a BH. With the
presence of the primary NS, the disruption of the secondary object carries angular
momentum and can induce a spin–up of the primary object. The rapid spin–up
results in the generation of a secondary ejection channel of which can have very
high velocities and is absent for the BHNS. It is important to note that the gener-
ation of a secondary arm has been identified for asymmetric BNS mergers in [22],
[165]. Furthermore, such secondary arms are present in equal-mass BNS simu-
lations at which point they are equal in mass. As the mass ratio decreases, the
secondary arm formed by the spin–up of the primary object results in a smaller
secondary tail that is sub-dominant to the main tidal arm. Moreso, as the asym-
metry increases so to does the mass of the ejecta. In the limiting case of maximal
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Figure 5.4: Mass fraction of the unbound ejecta mass Mej as a function of the electron fraction Ye
(left column), specific entropy s (middle column), and the fluid velocity v (right column). Each
row corresponds to increasing χ̃ ∈ {0.00, 0.15, 0.35} respectively. Finally, the blue (red) lines
correspond to the TNTYST (BHBΛΦ) configurations where solid (dashed) lines denote BNS (BHNS)
systems. This figure has been reused from [8].

asymmetry in the BNS merger, the main tidal arm resembles the main tidal arm
in the BHNS merger, but the BNS still retains the smaller secondary arm.

We can extend the above analysis to include the influence of smaller effective
spins. In Fig.5.3 we see the the low–spin prior for the TNTYST (left pane) and
BHBΛΦ (right pane) configurations. Overall, we find the dynamical behavior to be
similar, however, we find that with increasing spin (left to right) the total mass of
the ejecta appears to increase significantly. We note for BHBΛΦ that the influence
of its larger tidal deformability results in a more highly deformed secondary star
which, in turn, will yield a more massive remnant disk. In contrast, the velocity of
the secondary tail appears to increase as χ̃ decreases. This can be seen in Fig.5.3
where we see the ejection from the secondary tail already escaping the box for
χ̃ = 0 whereas the secondary ejection for χ̃ = 0.15 has not traveled as far. In
the following section we will quantify this further upon presenting a detailed
analysis of the ejecta composition.

5.2.2 Dynamical mass ejection composition

In order to obtain a quantitative understanding of the composition of the dy-
namical ejecta, we show in Fig. 5.4 the relative composition of the dynamical
ejecta in terms of the electron fraction (Ye), specific entropy (s), and velocity (v) in
the first, second, and third column respectively. To discern bound from dynami-
cal ejecta we utilize the Bernoulli criteria of hut < −1 where h is the specific en-
thalpy and and uµ is the fluid four velocity[53]. In Fig. 5.4 each row corresponds
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to the effective spin of the binary configuration, blue (red) colors corresponds to
the TNTYST (BHBΛΦ) configurations, and solid (dotted) lines correspond to BNS
(BHNS) configurations.

Focusing first on Ye we find that the BNS configurations with low–spin results
in a peak at higher Ye values of Ye ≈ 0.1 as compared to their BHNS counter-
parts. This can be understood by considering that the generation of fast ejection
occurs as a result of the collision of matter from the surface of the two NSs which
is composed of matter with higher Ye than at the NS core. When comparing the
extent of the Ye distribution for the BHNS and BNS configurations, we see for
χ̃ = 0.00 (top row) that the BHBΛΦ (red) configurations are quite similar, however,
for TNTYST the BNS configuration includes a much broader distribution reaching
Ye ≈ 0.35 while the BHNS obtains a maximum Ye = 0.3 which further high-
lights the influence of the tidal deformability on the dynamical ejecta. As the
spin is increased to χ̃ = 0.15 (middle row) the extent of Ye decreases to 0.3 for the
BHBΛΦ BNS configuration and, overall, a decrease in the mass fraction of the ejecta
at higher Ye decreases. Finally, the high–spin configuration for the TNTYST EOS
shows a similar peak to the BHNS counter part at low Ye ≈ 0.02, however, a sec-
ondary peak is still found at Ye ≈ 0.08 which is absent in the BHNS configuration.
The distribution in Ye for the high-spin BNS configuration still produces ejected
up to Ye ≈ 0.3 in contrast to the BHNS with a maximum Ye ≈ 0.2.

Looking next at the entropy s (middle column) of Fig. 5.4, we see that a large
fraction of the ejecta mass has a peak at lower specific entropy than the BHNS
configurations which is attributed to the collision of nuclear matter from the two
NSs. However, for the high-spin TNTYST configuration, we see that the fraction
of ejecta at low-entropy decreases significantly which implies that rotation pro-
vides a more efficient mechanism to absorb the collisional energy resulting in an,
overall, less energetic merger.

The most prominent impact to the dynamically ejecta can be readily observed
in the velocity distribution (right column) in Fig. 5.4. In the case of χ̃ = 0.00, we
find a similar broad distribution for both EOSs with a peak velocity on the or-
der of v ≈ 0.8 in contrast to the BHNS configuration which have a peak velocity
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v ≈ 0.5. Given the main tidal arm is qualitatively similar as shown in Fig.5.3, the
distribution of dynamical ejecta at v > 0.5 are largely attributed to the secondary
tidal arm which appears to be primarily composed of fast-ejecta. For χ̃ = 0.15, a
considerable suppression in the velocity distribution is observed such that only a
peak of v ≈ 0.6 is observed, however, we still find there is a broader distribution
at a larger mass fraction, i.e., a larger portion of the dynamical ejecta at higher
velocities, for the BNS configuration as compared to the BHNS configuration. In-
terestingly, for the highly spinning TNTYST configuration the velocity distribution
of the BNS and BHNS configurations are essentially the same further highlight-
ing, in the limit of highly spinning configurations, that it will very challenging to
distinguish a BNS from a BHNS.

Furthermore, we show in Fig. 5.5 the total dynamical ejecta measured up to
the end of the simulation. Overall, we find a steady increase in the mass of
the dynamical ejecta as χ̃ increases with a significant increase in the high-spin
TNTYST configuration, however, given the second tidal arm is only a small frac-
tion of the ejected mass, there are no significant differences between the BHNS
and BNS configurations in terms of total dynamical ejecta. This conclusion is fur-
ther supported by Fig. 5.6 which shows the total baryonic mass outside of the
apparent horizon relative to the merger time. In this case we see that the to-
tal baryonic mass in the system is indistinguishable between the BNS and BHNS
configurations further solidifying the result that the fast-ejecta is only a small frac-
tion of the resulting mass present in the accretion disk and the dynamical ejecta.
We note that this result is in line with previous estimates [166].

Finally, the analysis thus far has given a broad understanding of the influ-
ence of the fast–ejection on the bulk properties of the measured dynamical ejecta
and disk mass, however, we will focus our attention now on the spatial distri-
bution of the dynamical (unbound) ejecta. In Fig. 5.7 we show the time integra-
tion of the dynamically ejected mass (upper hemisphere) and the mass–weighted
average Ye (lower hemisphere) for all of the configurations examined. The up-
per (lower) panels correspond to the TNTYST (BHBΛΦ) configurations with each
row corresponding to increasing χ̃. Comparing the BHNS with the BNS con-
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figurations using the TNTYST EOS and χ̃ = 0.00 (top row) we see that the fast–
ejecta produces the bulk of the unbound material which lies dominantly along
the equatorial plane with some off-axis ejection which has been examined previ-
ously (c.f.[22], [165]). Furthermore the average Ye of the ejecta is Ye > 0.1 which
aligns well with the peak Ye in Fig.5.4. Conversely, the ejected mass for the low–
spin BHNS is much more tightly bound given the lack of a secondary tail. As
the spin increases to χ̃ = 0.15 (middle row) we see an increase in Mej for the
BHNS, however, the ejecta is still tightly constrained to the equatorial plane. For
the BNS configuration, we see not only unbound fluid elements at higher lati-
tudes, but also the prominent secondary tail that is opposite to the primary tail.
Once again, the ejecta of the secondary tail has a higher Ye > 0.1 compared to the
ejecta of the primary arm which is Ye < 0.05. In the final high-spin configura-
tion with χ̃ = 0.35, we see the main tidal tail becomes the dominant production
mechanism for unbound ejecta as seen previously [47], [167] and the secondary
fast–ejection arm becomes subdominant. Overall, the same dynamics are seen for
the BHBΛΦ configurations with the notable difference being enhanced dynamical
ejection for χ̃ = 0.00 which is attributed to the higher tidal deformability of the
EOS.

5.2.3 Remarks on multi-messenger signatures

In this work, we’ve compared and analyzed the merger and post–merger of
BNS and BHNS configurations with the same gravitational mass and effective
spin. Both binary systems result in a similarly massive BH remnant with a rem-
nant disk of nearly equivalent size (see Fig. 5.6) thus concluding that both config-
urations will likely result in comparable after glow properties [56]–[58]. In light of
this analysis, we conclude that the implication for future multi–messenger detec-
tion will likely be limited to potential kilonova precursors drive by the fast–ejecta
produced by the second tidal arm[53] which could result in a bright kilonova
precursor[168].

5.3 Summary

In this work we have performed a first systematic study of the distinguish-
ing characteristics between BNS and BHNS systems using a high binary mass of
Mtot = 3.6M� with an effective spin of χ̃ ∈ {0.00, 0.15, 0.35} which is within the
critical overlap region in the parameter space of q and χ̃ (c.f. Fig.5.1). To do so we
have performed state-of-the-art GRMHD simulations using a neutrino leakage
scheme of five configurations using the TNTYST and BHBΛΦ EOSs (see Tab.5.1).

When comparing the ejecta results between BHNS and BNS configurations,
we find the resulting total remaining rest–mass density profile outside of the rem-
nant BH is essentially the same thereby implying that the dominant kilonova and
afterglow will be similar between BNS and BHNS configurations. However, the
distribution of the dynamical ejecta’s spatial and physical composition is quite
diverse. Specifically, we find for the BNS configurations the formation of the sec-
ondary spiral arm due to the rapid spin–up of the primary NS. The rapid spin–up
is largely attributed to the torque applied by the collision of the secondary NS re-
sulting in fast ejecta up to v ≈ 0.8 for χ̃ = 0.0. In contrast, the same BHNS
configuration produces dynamical ejecta with only v < 0.5. Furthermore the sec-
ondary arm results in dynamical ejecta that is proton rich with Ye > 0.1. The
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fast ejection arm provides the most prominent characteristic to distinguish a BNS
from a BHNS merger for the configurations examined. It has been shown pre-
viously that fast dynamical ejecta can lead to a brighter kilonova precursor[168],
however, such a rebrightening has yet to be observed[169]. Furthermore, for the
high–spin configuration examined using the TNTYST EOS we find that the sec-
ondary arm becomes considerably less pronounced thereby reducing the ability
to distinguish the two configurations. As shown in Fig. 5.4, the high–spin config-
urations are similar although the BNS still results in a more proton rich ejecta.

In the works leading up til now the focus has been on extreme BNS configu-
rations, however, these results have been restricted to purely hadronic equations
of state. In the final chapter we will discuss a promising framework that includes
a novel treatment of the transition to quark matter while still providing a physi-
cally motivated temperature and charge fraction dependence.
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Figure 5.7: In each panel the time-integrated ejected mass Mej (upper hemisphere) and mass-
weighted average electron fraction Ye (lower hemisphere) projected onto a sphere at radius
r = 295 km from the origin. The upper (lower) panels are for the TNTYST (BHBΛΦ) configura-
tions which contain in the the left (right) panels the results for the BHNS (BNS) respectively. The
time integration is performed up to a short period after the fluid elements of both arms have
passed through the detector. Finally, the rows correspond to increasing χ̃ for a given EOS. In the
high latitude regions with low Mej, artificially high/low values of Ye appear due to low density
dynamics within the evolution framework, however, these regions can be ignored since they do
not contribute to the total ejected mass properties. This figure has been reused from [8].
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Chapter 6

Quark formation and
phenomenology in binary
neutron-star mergers using V–QCD

In the previous chapters we have been restricted to purely hadronic equations
of state, however, probing densities above nuclear saturation density without a
description of quark matter may overestimate characteristic features such as the
threshold mass[125]. Therefore, we are inclined to find an EOS which includes
a physically motivated treatment of the transition from nuclear to quark matter
specifically one that is both temperature and charge fraction dependent. Previous
works focusing on EOSs with a first–order phase transition have used construc-
tions such as polytropic equations of state where a Gibbs-like construction is used
to model the phase transition to quark matter and the temperature dependence is
imposed using the standard Γth component for an ideal fluid (cf. [63]). This is of
particular relevance to binary neutron star mergers given densities reached can
be in excess of five times nuclear saturation density (ns = 0.16fm−3) and temper-
atures far above 100MeV. Therefore, it is expected that matter during and after
merger will exist outside of β–equilibrium. Furthermore, a physically motivated
model that includes both temperature as well as charge fraction dependence is
needed given simpler polytropic models or tabulated models which utilize a Γth

law allow for exotic configurations that are potentially non-physical, (e.g. meta-
stable remnants with hot quark cores).

In a recent work[129], a novel hybrid solution to this problem is presented
which provides a description of the deconfinement phase of dense nuclear matter
to quark matter based on the V–QCD model. Within this framework the temper-
ature dependence is obtained using a van der Waals model which extrapolates
the cold β–equilibrium slice to finite temperature in the high density regime. Ad-
ditionally, a Gibbs construction is used to construct the mixed phase region such
that the baryon and charge chemical potentials are treated consistently for nu-
clear and quark matter. A natural consequence of this framework is the appear-
ance of a critical point at a high finite temperature and large density. Finally, the
low-density and temperature regime is described using the APR [170] and the
Hempel-Schaffner-Bielich(DD2)[171] models. In the following section we will
highlight the relevant model details for completeness, however, a thorough de-
scription of the construction as well as the individual components of the hybrid
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the mass–radius constraint (Rx(M)) as derived in [42] is shown as the dotted-black line. This fig-
ure has been reused from [62].

framework can be found in [129] and the references therein.
With the appearance of a new EOS the space of parameters to explore are quite

vast. A well established test case is GW170817 since it was not only a moderately
heavy binary, but also one that is expected to produce a meta-stable remnant that
survived & 1s prior to collapsing to a BH. Additionally, since the mass ratio of
GW170817 is not well constrained, we can explore the influence q has on the re-
sulting dynamics. Finally, by using numerical simulations to compute the inspiral
and merger of GW170817-like configurations we can explore the stages and distri-
bution of quark formation during the (post-)merger and infer how gravitational
wave events can provide insights into and constrain the V–QCD framework.

6.1 EOS model

In this work we have utilized the soft (Soft), intermediate (Inter), and stiff
(Stiff) models as described within [129] and have been made publicly avail-
able on CompOSE [181]. The novel approach described in [129] and the references
therein utilize gauge/gravity duality in order to circumvent issues that arise
within quantum field theory in the finite density and high coupling regime by re-
formulating the problem within classical five-dimensional gravity. More specif-
ically, the framework described by Demircik et al, V–QCD, is rooted in string
theory in the Veneziano limit [182], [183], however, an effective theory is needed
which reduces to tuning the action of the model such that it agrees with QCD
data at finite number of colors (Nc) and flavors (Nf ). Specifically, the model must
be tuned in order for characteristic features such as asymptotic freedom, con-
finement, linear glueball and meson trajectories and chiral symmetry breaking
are reproduced. However, this only partially constrains the available space of
tuning parameters available within V–QCD. To fully constrain the model lattice
QCD data is leveraged for large-Nc pure Yang-Mills theory [184] and data for
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Nc = 3 QCD with Nf = 2 + 1 flavors at physical quark masses [185], [186] at
small baryon-number density. Furthermore, the model utilizes a homogeneous
prescription which is effective at describing the high density regime, but quickly
breaks down when the density is of the order of ns.

In order to accurately describe the low density regime a hybrid approach has
been taken which utilizes the most accurate model for the density regime of in-
terest. To this end, the V–QCD description of nuclear matter at low temperature
and near nuclear saturation is paired with the APR model at β–equilibrium. The
remainder of the low density and temperature regime is governed by a combi-
nation of the HS(DD2) and APR models. In this way a series of hybrid EoSs are
obtained that agree well with all current observational constraints by tuning the
remaining degrees freedom of the V–QCD model. However, the V–QCD suffers
from a trivial dependence on temperature which must be rectified to obtain an
EOS with predictive power. Therefore, a van der Waals model is used with an ex-
cluded volume correction for the nucleons and an effective potential. In this way,
the temperature dependence is solved by matching the V–QCD predictions for
the cold EOS and extrapolating to finite temperature. Furthermore, a dependence
on charge fraction is also achieved by utilizing the charge fraction dependence of
the DD2 EOS in the low density and temperature regime while a simple free elec-
tron model is utilized in the quark phase. Finally, a meson gas model is used near
the cross over in the high temperature regime. To ensure proper treatment of the
baryon and charge chemical potential of nuclear and quark matter, a Gibbs con-
struction is used to model the transition between the two phases of matter which
not only results in the appearance of a mixed phase within the phase diagram,
but also the appearance of a critical point at finite high temperature and large
density.

Within this framework three EOS models have been developed which span
the allowed space of the mass–radius diagram as constrained by current astro-
nomical observations. In the left panel of Fig. 6.1 we highlight the regions per-
taining to the individual models that, together, result in the utilized hybrid EOS
framework. Here the three EOS models (Soft, Inter, and Stiff) are shown in
order to emphasize their discrepancies which are quite significant given the pres-

q MTOV M1 M2 R1 R2 Λ̃ fmer f3 f2,1 f2,2 tBH

[M�] [M�] [M�] [km] [km] kHz kHz kHz kHz [ms]

Soft q10 1.0 2.02 1.37 1.37 12.37 12.37 537 1.77 4.00 1.44 2.92 9.5

Soft q07 0.7 2.02 1.64 1.15 12.42 12.24 517 1.63 3.80 1.55 2.80 5.8

Soft q10-NPT 1.0 2.06 1.37 1.37 12.37 12.37 537 1.76 4.00 1.62 2.85 > 37

Soft q07-NPT 1.0 2.06 1.64 1.15 12.42 12.24 517 1.64 3.85 1.47 2.79 11

Inter q10 1.0 2.14 1.37 1.37 12.45 12.45 565 1.74 4.00 1.51 2.73 > 35

Inter q07 0.7 2.14 1.64 1.15 12.56 12.30 543 1.63 3.70 1.42 2.67 > 37

Stiff q10 1.0 2.34 1.37 1.37 12.58 12.58 617 1.74 3.90 1.39 2.49 > 37

Stiff q07 0.7 2.34 1.64 1.15 12.76 12.38 591 1.59 3.50 1.39 2.48 > 38

Table 6.1: Here we tabulate the analyzed binary configurations to include the mass ratio q; the
maximum non-rotating mass for the given EOS MTOV; the component gravitational masses; the
component stellar radii; the binary tidal deformability; the instantaneous gravitational wave fre-
quency at the maximum strain amplitude; characteristic frequencies of the post-merger phase
f3 , f

2,1, and f2,2; and the post-merger time when the remnant collapsed to a BH (tBH) for the
models that collapsed within the simulation time. This table was reused from [62]
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sure is plotted in a log scale. Furthermore, a strong first order phase transition is
denoted by dashed lines at intermediate energy densities. The associated mass–
radius curve for each EOS model is shown in the right panel of Fig. 6.1 where
we see the Stiff model being at the edge of the constraint set by the X-ray bi-
nary 4 U 1702-429 [178] whereas the Soft EOS is near the minimum allowed
MTOV = 2.0M� set by PSR J0740+6620 [174], [175]. Finally, all the models are
well within the constraint set by GW170817 such that Λ̃ < 720 and with sound
speed profiles consistent with the recent general sound speed parameterization
inside of a NS [128].

6.2 Methods

To explore the Soft, Inter, and Stiff EOS models, we have chosen to use
the event GW170817 as a basis for this work. The measured chirp mass from
GW170817 was Mchirp = 1.186M� where the chirp mass is related to the total
binary mass M∞ and the mass ratio q by

Mchirp =

[
q

(1 + q)2

]3/5

M∞ . (6.1)

Due to the degeneracy in measuring the mass ratio and spin, we choose to use
q ∈ {0.7, 1} with χ1 = χ2 = 0 in order to explore the influence mass asymmetry
has on the merger remnant and quark production. The resulting binary configu-
rations along with the binary tidal deformability Λ̃ and the related MTOV for each
EOS model considered can be found in Tab. 6.1. Within Tab. 6.1 are two models
labeled with -NPT which do not include a phase transition to quark matter. These
configurations will be discussed in Sec. 6.3.4 during the discussion of the lifetime
of the Soft model. Furthermore, Tab. 6.1 includes characteristic frequencies of
the binary merger which will be discussed during the GW analysis in Sec. 6.3.2.

The BNS initial data has been generated using the FUKA ID solvers described
in Ch. 2 with the inclusion of eccentricity reduction performed using 3.5PN es-
timates as discussed in Sec. 2.5. Additionally, we have used the same evolution
scheme as described in Appendix C where a finest grid spacing of ∆HR := 221m
has been used. The use of this resolution is the result of a convergence study
based on the gravitational wave spectra and production of quark matter which
will be discussed in Sec. 6.3.3. In their current form the EOS models utilized
do not include the relevant microphysics in order to describe neutrino radiation;
therefore, the leakage scheme within FIL has not been used nor have magnetic
fields been introduced.

6.2.1 Extraction radii of thermodynamic quantities

As a first estimate of the distribution of quark formation during a BNS merger,
the location of quark matter is computed in post–processing as a function of nb,
T , and Ye which can be used to construct 2D plots for a qualitative understanding
of the distribution of quark matter. In order to obtain a more quantitative result,
we instead compute the average amount of quark matter within three extraction
radii of 3km, 6km, and 9km which we label as inner core, outer core, and inner crust
respectively; which are centered at (nb)max for t < tmerge and at the center-of-mass
for t & tmerge. Furthermore, as shown in Fig. 6.2, these radii roughly correspond to
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Figure 6.2: The green contours de-
fine the extraction radii for thermo-
dynamic quantities in as described in
6.2.1 which have been overlayed with
the 2D slice in the xy–plane of the
computed density profile of the HMNS
remnant 31.9ms post-merger for the
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that an evolution resolution of ∆MR =
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spectively. This figure has been reused
from [62].

3ns, 2ns, and 1ns respectively based on the late post–merger of the Inter q10-MR

simulation, however, we have verified a similar density distribution is observed
for the Soft and Stiff models for both mass ratios considered. It is important
to stress that these radii do not always align with these densities especially dur-
ing the violent merger process. Instead these radii serve as a reference point for
discussion and analysis. Only in the limit of a long–term stable remnant do these
radii approximately line up with the previously mentioned densities.

We can extend the utility of these extraction radii by including the ability to
compute the average of various thermodynamic quantities within each radii

〈f〉 :=
1

A

∫

Ω

fd2x , A :=

∫

Ω

d2x . (6.2)

Using Eq. (6.2) we can compute timeseries of the average quark volume produced
within each extraction radii. It is important to note that in this simplistic expres-
sion the average is computed over a volume assuming a flat spacetime metric
determinant. We have verified that even with the inclusion of the computed met-
ric determinant during a simulation the results are minimally influenced due to
the fact that, by averaging over the volume, the contribution of the computed
metric determinant more–or–less cancels during the averaging procedure. We
leave it to future work to not only enable the real–time computation of the quark
fraction during a numerical simulation, but to do so using the computed metric.
These advancements will allow for accurate 3D analysis of the quark volume and
its distribution. Finally, when discussing the maximum temperature Tmax and
density (nb)max, these values are measured within these annuli.

6.3 Results

In this section we will explore the results from the previously described BNS
configurations using the three EOS models. Specifically, we will analyze the
(post-)merger dynamics and quark formation with a focus on when quarks are
formed and their dependence on the temperature T and density nb as will be dis-
cussed in Sec. 6.3.1. In Sec. 6.3.2 we will analyze the influence of quark formation
on the gravitational wave spectra to determine consistency with the lifetime from
GW170817 as well as how future GW detectors will be able to ascertain whether
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Figure 6.3: The measured maximum temperature Tmax, the maximum number density
(nb)max normalized by ns, and the average quark fraction 〈Yquark〉 as measured within the three
extraction radii for the three EOSs considered. The vertical black dashed lines in the upper-right
panel correspond to the time slices used to produce Fig. 6.4. Finally, we characterize the stages
of quark formation as hot quarks (HQ), warm quarks (WQ), and cold quarks (CQ) based on the
temperature profile. This figure has been reused from [62].

or not a merger remnant has undergone a phase transition to quark matter. Along
this line, in Sec. 6.3.4 we will focus on the remnant lifetime and how this compares
to the expected 1s lifetime of GW170817. Finally, we include a convergence study
in Sec. 6.3.3 which provides the basis for the resolution used in our numerical
simulations to obtain the GW spectra and lifetime results.

6.3.1 Merger dynamics and quark formation

When exploring a numerical simulation for the first time it is useful to gain
some initial insights into the characteristics of the binary and the merger remnant
by analyzing the 1D timeseries of interesting thermodynamic quantities. Given
Yquark is a function of nb and T , we begin by analyzing these quantities as well
as computing the average quark fraction 〈Yquark〉 for the six configurations of in-
terest. In the case of Yquark we choose to look at 〈Yquark〉 instead since this will
provide some insight into the magnitude of quark production at a given time.
Furthermore, we are interested in (nb)max and Tmax to see how 〈Yquark〉 is corre-
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characteristic post-merger times for the Soft q07 configuration that highlight the stages of HQ,
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lated to these maximum values. The plot of these timeseries are shown in Fig. 6.4
where the red, green and blue shaded regions correspond to the production of
hot quarks (HQ), warm quarks (WQ), and cold quarks (CQ) respectively which
will be discussed next.

At the time of merger we see a clear correlation between the formation of
quarks and the maximum temperature for all of the models considered. For this
reason, we will denote the quarks produced during this stage as hot quarks (HQ)
since they appear at the extremely hot shock interface that forms between the two
NSs at merger. In the Soft model we consistently observe a much higher produc-
tion of HQ which we attribute to having higher compactness (i.e., higher density
profile) for the same gravitational mass as compared to Inter and Stiff models.
Similarly, the asymmetric models also result in a higher amount of HQ produc-
tion both due to the higher compactness of the more massive object as well as
the additional heating mechanisms due to the asymmetry in the system. Interest-
ingly, in the asymmetric cases we find that quark formation is no longer limited
to the inner core, but are now seen in the outer core and inner crust as well.

As the formation of the HMNS attempts to equilibrate, a bar–mode instability
is present due to the resulting differential rotation. As the remnant begins to settle
down due to loss of angular momentum, matter not only begins to cool, but a
slight breathing in (nb)max appears. In the Soft model we find there is a sensitive
interplay between T and nb such that the appearance of an intermediate stage of
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quarks is produced which we denote as warm quarks (WQ). In our simulations,
we only find the production of WQ for the Soft model, however, we deduce
that the formation of WQ is likely for the Inter and Stiff models in the case of
heavier binaries which will be the subject of future work.

As the remnant continues to cool and transitions to a more uniformly rotating
configuration, the density profile increases while the temperature decreases. In
the case of the Inter and Stiff models, the remnant settles into a meta–stable
remnant for the remainder of the evolution (Sec. 6.3.4 will revisit their lifetime);
however, both configurations from the Soft model result in an early collapse at
t − tmerge =: ∆tmerge = 9ms for q = 1 and ∆tmerge = 6ms for q = 0.7. Prior to
the collapse of the Soft configurations, we see a steady growth of (nb)max leading
to a large production of quarks within the cold, dense core of the NS. Intuitively,
we refer to this as the cold quark (CQ) stage which results in a phase-transition-
triggered collapse (PTTC) to a black hole which has been observed in previous
studies[63].

To further explore these quark production stages we choose characteristic
times of high quark production from the Soft q07 simulation. The time slices
chosen are also denoted by vertical dashed black lines in Fig. 6.3 (upper-right
panel). At the defined times of ∆tmerge ∈ {1.4, 3.3, 5.6}ms we plot 2D profiles of
the density nb, temperature T , and Yquark in the xy-plane as shown in Fig. 6.4.
In all of the presented profiles we include contours of constant Yquark to high-
light the regions pertaining to quark production. For ∆tmerge = 1.4ms, we find
that the production of HQs overlap with the hottest regions of the remnant. At
∆tmerge = 3.3ms, we see that the production of WQs is in a region near the core
that is neither the hottest nor the most dense. Finally, at ∆tmerge = 5.6ms, we
find that the highest concentration of CQs overlaps with the coldest and most
dense region of the remnant, however, there is a small, low-concentration region
of quarks that forms towards the outer core which appears to form under simi-
lar conditions as quarks in the WQ stage. Furthermore, the appearance of a pure
quark core results in a PTTC. Interestingly, the appearance of a cold core is in con-
trast with [187] where the core is hot, however, this is not unexpected since they
use the standard Γth law which results in the temperature scaling rather simply
with the density and ignores the change in the composition.

With this in mind we turn now to see how the composition of matter in the
BNS remnant probes the phase diagram of the Soft model. Shown in Fig.6.5 (left)
is the phase diagram for the Soft model in the T and nb/ns space along with the
measured values of Tmax, (nb)max, and Y max

quark which appear as square, star, and
circle markers respectively. Furthermore, the color of the markers of red, green,
and blue correspond to specific post–merger time periods of peak quark produc-
tion. Given the composition of matter will go out of β–equilibrium, we include
dashed and dotted lines which denote the phase boundaries for the minimum
(maximum) Ye = 0.05 (0.09) measured in the HMNS. During the HQ (red) stage,
we see Y max

quark overlap with Tmax and at later times overlap with (nb)max as the
system transitions to the WQ stage. Note that it appears necessary for the mixed-
phase to be out of beta–equilibrium as shown by the dotted and dashed lines
for Y max

quark at low densities in order for HQ and WQ to form for certain markers.
In the WQ (green) stage, we see a complete disconnect of Y max

quark from Tmax and
(nb)max while at the same time WQs lie exactly on the phase boundary further
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quark as measured from these three time slices. This
figure has been reused from [62].

highlighting the sensitive interplay between T , nb, Ye and the remnant dynamics.
Finally, during the CQ (blue) stage Y max

quark and (nb)max predominantly overlap as
expected.

With a firm understanding with how Y max
quark probes the phase diagram, it is im-

portant to understand the distribution of Yquark as a function of T and nb which
can be seen in Fig.6.5 (right). Here we capture the entire domain of quark produc-
tion by utilizing 126 × 35 bins with equal size in linear space, in the [ns, 10ns] ×
[0, 140 MeV] region of the number density–temperature (nb, T ) plane. Further-
more each bin is evaluated independently such that in each bin, Nquark is com-
puted as

Nquark =
∑

j

VjYquark,jnb,j , (6.3)

where the sum is over all Yquark within the jth grid cell with volume Vj encap-
sulated by each bin for a fixed time slice. Finally each row represents the quark
distribution normalized by the global maximum, Nmax

quark, as a function of T and nb
at the same characteristic times used for the 2D plots in Fig. 6.4. In the HQ stage
(top) we see the local maximum (green star) of quark production at T ≈ 50MeV
and the bulk of quarks being produced between T ≈ [30, 60]MeV and at lower
densities of nb/ns ≈ [2, 3.5]. Next, during the WQ stage (middle) we see a signifi-
cant drop in temperature where the local maximum occurs at around T ≈ 10MeV
with a span of T ≈ [5, 30]MeV and nb/ns ≈ [2.7, 4]. Finally, we see in the CQ
stage (bottom) the local maximum of Yquark occurs at nb/ns ≈ 8 , T . 5MeV,
but the distribution of Yquark spans T ≈ [0, 50]MeV and nb/ns ≈ [2.3, 9]. The
quark distribution during the CQ stage further highlights that, although the bulk
of the quarks produced are located in the coldest and most dense regions, there
are regions of quark production that take place at higher temperatures and lower
densities similar to the WQ stage.
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6.3.2 Gravitational wave analysis

Given the primary signature of a binary merger event is the gravitational
waveform, it is imperative to quantify the influence the EOS models may have
on the GW signature. To do so we use the Newman-Penrose formalism [154],
[188] such that we can relate the obtained Weyl curvature scalar ψ4 to the second
time derivative of the polarization amplitudes of the gravitational wave strain
h+,×

ḧ+ + iḧ× = ψ4 :=
∞∑

`=2

m=∑̀

m=−`

ψ`,m4 −2Y `,m , (6.4)

where sY`,m(θ, φ) are spin-weighted spherical harmonics of weight s = −2. To this
end, we have sampled ψ4 during our simulations with a frequency of ≈ 26 kHz
from a spherical surface with a radius of ≈ 440 km centred at the origin of our
computational domain. The integration is performed using the fixed frequency
method derived in [189] to obtain an accurate waveform from our numerical sim-
ulations. Furthermore, we extrapolate the result to the estimated luminosity dis-
tance of 40 Mpc of the GW170817 event [190]. Additionally, we fix the angular
dependence of the spherical harmonics part by the viewing angle θ = 15◦ de-
termined from the jet of GW170817 [191]. Finally, we set φ = 0◦ without loss of
generality.

In addition to analyzing the features of the raw strain, it is advantageous to in-
tegrate over the signal to obtain its power spectral density (PSD) such that promi-
nent frequencies can be identified. To do so, we follow [192] and compute the PSD
as

h̃`,m(f) :=
1√
2

( ∣∣∣∣
∫

dt e−2πifth`,m+ (t)

∣∣∣∣
2

+

∣∣∣∣
∫

dt e−2πifth`,m× (t)

∣∣∣∣
2)1/2

. (6.5)

A complementary mode of analysis to the PSD is that of spectrogram analysis
which highlights the GW frequency distribution as a function of time. To do
so the spectrogram is computed using time-windows of 3ms centred at every
≈ 0.04 ms of our waveform data.

A last method of analysis includes the computation of the phase frequency
which is a function of the phase difference between h2,2

× and h2,1
×

fGW :=
1

2π

dφ

dt
, φ := arctan

(
h2,2
×

h2,2
+

)
, (6.6)

from which we can measure the merger frequency fmer := fGW(∆tmerge = 0).
By carrying out the previously mentioned calculations, we show in Fig. 6.6

the +–polarization of the ` = m = 2 mode of the gravitational wave strain, the
power spectral density as computed from Eq. (6.5) for the (`,m) = (2, 1) , (2, 2)
modes and the spectrogram of h2,2

+ where the white curve shows the magnitude
of the spectrogram as a function time. For the raw strain, the stages of HQ, WQ,
and CQ are highlighted with red, green, and blue backgrounds respectively.

Focusing first on the raw strain, we see a very similar behavior for all the bi-
naries up to merger which is expected since they all have essentially identical
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Figure 6.6: Left: The +–polarization of the ` = m = 2 mode of the gravitational wave strain.
Center: The power spectral density as computed from Eq. (6.5) for the (`,m) = (2, 1) , (2, 2). Here
the dark dotted line shows the contribution from the inspiral for the (2, 2) mode only. Included
are the sensitivity curves related to the current sensitivity of advanced LIGO and the Einstein
Telescope respectively [60], [61]. Right: The spectrogram of h2,2

+ where the white curve shows the
magnitude of the spectrogram as a function of time. Note: In the right two columns the orange
and blue dashed lines correspond to the peak frequencies f2,1 and f2,2 for the (`,m) = (2, 1) , (2, 2)
respectively whereas the dashed yellow line corresponds to the f3 frequency measured from the
spectrogram. The red star denotes merger frequency, fmer. This figure has been reused from [62].

prescriptions for the cold, β–equilibrium portion of their models at low densities.
In the post–merger the most prominent feature is the early collapse for both of the
binaries using the Soft model. We find that this collapse can be understood as a
PTTC which is attributed to the core of the HMNS remnant undergoing a rapid



80 6.3. Results

softening due to the transition to pure quark matter. It is important to note that
similar collapse behavior has also been observed in models that include hyper-
ons [193]–[195]. For the Soft q10 and Soft q07 configurations we estimate the
time of black hole formation (tBH) at the onset of exponential decay of the strain
amplitude which is indicative of the black hole ringdown. For the remaining con-
figurations that do not collapse within the evolution time, we use the time at the
end of the medium resolution simulations as a lower bound on tBH. These times
are included in Tab. 6.1.

Within the tabulated PSDs there are two curves associated with the (`,m) =
(2, 2) mode such that the dark dotted line shows the contribution of the inspiral
to the PSD (i.e., the PSD is integrated from t = 0 up to ∆tmerge = 10ms) and the
solid line (i.e., the PSD that is integrated from ∆tmerge = [0, 10]ms). As we can
see, the portion of the inspiral is again, essentially identical for all the models
considered for a given q. Below the PSD for the (`,m) = (2, 2) is the subdominant
(`,m) = (2, 1) mode which we see is roughly an order of magnitude weaker for
q = 0.7 and nearly two orders of magnitude weaker for q = 1. In each PSD,
the dashed orange line denotes the f 2,1 peak frequency for (`,m) = (2, 1), the
dashed blue line denotes the f 2,2 peak frequency, and the yellow line denotes
the f3 frequency as measured from the spectrogram. The red star denotes the
merger frequency fmer. Upon comparing the q = 0.7 , 1.0 configurations for the
three models we see a similar behavior overall with a systematic shift in both
peak frequencies which we attribute to the differences in stiffness. For q = 1 this
is less apparent for f 2,1 given the (2,1) mode is prone to numerical errors due to
its small values.

Similarly, in the right column of Fig. 6.6 are the spectrograms where lines de-
noting f 2,1, f 2,2, and f3 have been included as well as the star denoting fmer.
We note that although f3 is similar among the EOS models, there is a system-
atic dampening of the f3 frequency going from the Soft to the Stiff model for
q = 0.7. For q = 1 no such observation can be made. Furthermore, we note that
f 2,1 and f 2,2 line up especially well with the f1 and f2 peaks in the spectrogram,
however, no apparent peak is found in the PSD that lines up with the f3 frequency
which is only measured in the spectrogram.

6.3.3 Convergence analysis

Based on the results shown in Sec.6.3.1-6.3.2, it is important to ascertain the in-
fluence evolution resolution has on the obtained results. We know already from
Ch.2 that the influence of the ID on the evolution will be sub-dominant, there-
fore, we can logically extend this result to the current study since the ID is only
dealing with the cold β–equilibrium slice of the EOS models. With this in mind,
we choose to perform additional simulations to ascertain the influence of evo-
lution resolution on the GW strain as well as the production of quark matter.
For this, we perform three simulations up to 10ms post-merger using resolutions
of ∆LR = 369m (Soft q10-LR), ∆MR = 295m (Soft q10-MR), and ∆HR = 221m
(Soft q10) where ∆HR is the resolution used for the results discussed in the pre-
vious sections. We note that in our simulations we use a constant courant factor
C = 0.2, therefore, the temporal resolution increases as the spatial resolution in-
creases.

In Fig.6.7 (left) we show the +–polarization of the (`,m) = (2, 2) mode of the
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Figure 6.7: Left: Convergence analysis of the h22
+ gravitational wave strain for the three different

evolution resolutions considered. We note a slight phase difference in the inspiral and a differ-
ence in the post–merger amplitude, however, the collapse time is robust across these resolutions.
Right: The average quark abundance measured for the three resolutions considered. Our results
highlight the need for higher resolutions to capture fine-structure details such as the appear-
ance of WQ which is only seen for the highest resolution considered. This figure has been reused
from [62].

gravitational wave strain for the three resolutions mentioned aligned at merger
(i.e., the strain maximum). Here we note a small phase difference to the inspiral
waveforms, but with nearly equal amplitude up to merger. In the post–merger we
do notice discrepancies in the amplitude, but the phase is essentially the same and
the computed collapse time is robust across the resolutions considered. There-
fore, the early collapse of the Soft configurations is a feature that needs to be
analyzed more closely which is discussed further in Sec. 6.3.4.

In Fig.6.7 (right) we show the time series for 〈Yquark〉for ∆LR (top), ∆MR (mid-
dle), and ∆HR (bottom). We find that the time of quark production seen in ∆LR

is mostly retained, however, with increasing resolution we find that the abun-
dance of quarks not only increases in magnitude, but also in time. This includes
the appearance of WQ only for the ∆HR resolution. Furthermore with increased
resolution we also see regions of constant quark production (e.g., 6-9ms) start to
form independent peaks in ∆HR (e.g., ∆tmerge = 6.5ms). Finally, with higher res-
olution we also identify the regions of quark production in the outer core further
emphasizing the need for high resolution.

Although these convergence results give confidence to the results presented
thus far, a future study will focus on identifying the convergent regime of these
models. Specifically, a more sophisticated computation of the quark fraction dur-
ing the numerical simulation (as opposed to post-processing) is needed in order
to enable a full 3D analysis of the quark distribution in order to quantify the con-
vergent regime.

6.3.4 Remnant lifetime

Based on the convergence analysis performed in Sec. 6.3.3, we are confident
that the early collapse of the Soft models are not an artifact of evolution reso-
lution and, as such, poses an important question as to the degree to which the
phase transition to quark matter has an impact on the result. To that end, we
have performed two additional simulations for q ∈ {0.7, 1} for the Soft model
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Figure 6.8: The results for the long–term simulations of the Inter and Stiff configurations
which have been performed using ∆MR. Overall, the results are comparable to the simulations
performed at high resolution in the early post–merger phase and provide a lower limit on the
collapse to a black hole which is the end of the simulation time ∆tmerge ≈ 35ms. This figure has
been reused from [62].

where the phase transition to quark matter is artificially suppressed. We denote
these configurations in Tab. 6.1 and Fig. 6.6 as Soft q07-NPT and Soft q10-NPT

respectively.
For the equal–mass configuration we can see in Fig. 6.6 (row 5 and 6) that

the PSDs of Soft q10-NPT and Soft q10 are quite similar as to be expected with
the only discrepancy being a shift in the f 2,1 frequency. The frequency shift is
attributed to the PTTC which causes a softening of the EOS. Furthermore, Soft -

q10-NPT did not collapse within the simulation time ∆tmerge ≈ 15ms, however,
for Soft q07-NPT a collapse to a black-hole occurs at ∆tmerge ≈ 11ms. Even so, the
PTTC of Soft q07 occurs≈ 5ms prior to Soft q07-NPT. In spite of the Soft model
being consistent with current constraints on the EOS, the soft configurations stud-
ied here are in tension with the expected lifetime of GW170817. Although there
are many uncertainties of the mass ratio and spin of the GW170817 binary, this
result shows that future multi–messenger detections can help to constrain the
V–QCD model.

In contrast, the same cannot be said for the Inter and Stiff models which
did not collapse within the evolution time. However, the convergence results
in Sec. 6.3.3 indicate that the impact of performing evolutions with a resolution
of ∆MR may be sufficient to ascertain the long-term stability of the Inter and
Stiff models. As such, we repeated the simulations for the Inter and
Stiff configurations with an evolution resolution of ∆MR to ascertain the sta-
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bility of the remnant; the results of which are shown in Fig. 6.8. We note with
this resolution that for the Inter configurations the measured 〈Yquark〉 is fairly
similar to the ∆HR evolutions, however, the very small quantities of quarks pro-
duced during the Stiff evolutions no longer appear. Overall, the results from
this show stable remnants that will survive long after the current simulation
time of ∆tmerge & 35ms. However, given the current models do not yet include
the microphysic quantities to compute the influence of neutrino cooling and
weak interactions, long–term evolutions of these binaries to ascertain their fate
is not reasonable as such processes play an import role on these timescales. Fur-
thermore, the current simulations do not include magnetic fields which are also
important for long–term evolutions given the growth in the magnetic field can
influence the overall stability of the remnant.

6.4 Summary

In this work we performed an explorative analysis of the influence a phys-
ically motivated EOS with a physically motivated first order phase transition
can have on the (post-)merger dynamics and gravitational wave spectra. Given
there were many unknowns at the beginning of this research such as where and
when quark formation would occur, the approximate distribution of quark mat-
ter, and the resolution needed to perform these simulations; the choice of using
GW170817 as a test case made for multiple exciting observations.

First, three stages of quark formation have been observed. The HQ stage dur-
ing the violent merger process where temperatures in excess of 50MeV can cause a
mixed–phase of quark and nuclear matter. Next, the WQ stage can appear during
relaxation of the HMNS remnant as it loses its differential rotation thus causing an
increase in density and a reduction in temperature. Finally, the CQ stage appears
when the cold dense core of the HMNS begins to form pure quark matter starting
once it reaches densities of roughly 6ns at which point the strong softening of the
EOS causes the core to saturate with pure quark matter reaching densities in ex-
cess of 9ns prior to a PTTC to a BH. The appearance of quark production during
the HQ and WQ stage is likely to appear in other models, however, the produc-
tion of CQ is in strong contrast to previous results such as [187] as the use of the
Γth law results in the formation of a hot quark core.

Secondly, the impact to the gravitational wave spectra when comparing the
three models was minimal and is largely attributed to the differences in stiffness.
Interestingly, even though the Soft q07 configuration produces a large quantity
of quarks up to its PTTC, there is no imprint on the waveform when compared to
Soft q07-NPT. However, the primary feature that separated the Soft model from
the Soft model without a phase transition was the early PTTC. Although this is
outside of the detectable range even for an ideal candidate such as GW170817,
the detection of the post–merger waveform by future GW detectors will shed
considerable light on the EOS as we’ve seen in this study.

Finally, future GW detections with an electro-magnetic counterpart resulting
from a long–lived HMNS remnant formed from a heavy BNS merger will shed
further insights into the possible parameter space available within the V–QCD
model. Although the Soft model cannot be fully ruled out based purely on
GW170817 due to the uncertainties in its configuration and lifetime, we have
shown that GW events can provide valuable insights into the model. For in-
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stance, if we use the tension between the Soft model and GW170817 to constrain
the V–QCD parameter space, this would imply that the critical point would ap-
pear at a critical temperature Tc < 130MeV as the Soft model had the highest Tc
of the models studied in this work[129].
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Chapter 7

Conclusion

This works explores for the first time a broad range of the available parameter
space of highly asymmetric (q << 1) and spinning (χ1 6= 0) binary neutron
star configurations using GR(M)HD numerical simulations where the equation of
state of nuclear matter has been modeled by finite temperature equations of state
consistent with current pulsar observations and GW170817. The results from this
work has a direct and meaningful impact on understanding not only the influ-
ence q and χ have on the resulting dynamics, but also to ascertain the extent the
resulting dynamics have on multi–messenger signatures.

To enable this work we first describe in chapter 2 the initial value problem
(IVP) as it relates to numerical relativity specifically for the generation of initial
conditions for binary black holes, binary neutron stars, and black-hole neutron
star binaries. Furthermore, we have described our numerical solution to the IVP
which has resulted in the FUKA (Frankfurt University/Kadath) suite of elliptic
solvers for BBH, BNS, and BHNS initial data. FUKA is based on the KADATH spec-
tral library and have been made publicly to enable further exploration into the
vast parameter space of BNS and BHNS configurations. For binaries that include
a NS, a considerable level of uncertainty exists not only in q and χ, but also the
equation of state. FUKA is the first public code to provide a robust solution to
obtain highly asymmetric and spinning binary initial data to include the abil-
ity to utilize tabulated equations of state as well as perform iterative eccentricity
reduction. For such extremal configurations eccentricity reduction proves to be
invaluable as the resulting orbital velocity obtained from quasi–equilibrium as-
sumptions results in highly eccentric inspirals. We have found that even the use
of 3.5th order post-Newtonian corrections to the orbital velocity and radial in-
fall velocity results in eccentricities up to two–orders of magnitude lower than
the inspiral using quasi–equilibrium initial data. Finally, we have shown that
the obtained initial data solutions not only show exponential convergence as ex-
pected for spectral solvers, but we have also analyzed realistic mass asymmetric
and spinning binary test cases that exemplify the resulting eccentricity reduction
capabilities and convergence of the initial data solution on the evolution.

In chapter 3 we explored the impact of mass asymmetry q ∈ [0.6, 1.0] and ex-
tremal spins χ1 ∈ [0.3, 0.6] for super–critical binaries with a total binary mass
Mtot ∈ [1.025, 1.109]M1 ,0

th , where M1 ,0
th is the equal-mass irrotational threshold

mass to prompt collapse for a given EOS. We find that both the mass ratio q
and spin of the primary neutron star χ1 can have a significant influence on the
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mass of the dynamical ejecta, the disk mass, and the lifetime of the remnant
hyper–massive neutron star. Interestingly, configurations with an extremal spin
of χ1 = 0.6 result in an average electron fraction 〈Ye〉 < 0.06 independent of the
EOS which points to a more neutron rich ejecta. Additionally, the influence of χ1

and q on the mass of the dynamical ejecta and disk mass has shown to be very
non–linear in the parameter space explored where, for instance, at extremal spins
the minimum of the produced dynamical (unbound) ejecta is at q ≈ 0.8 with a
maximum for q = 1. This is an important result as shown in Fig. 3.6 as we see the
peak luminosity (bottom) reflects the relation between dynamical ejection, q, and
χ. Furthermore, the influence of χ1 on the remnant lifetime results in a later time
for peak luminosity. Conversely, we have analyzed the influence of q and χ1 on
the resulting gravitational wave spectra by computing the power spectral density
of the (`,m) = (2, 2), (2, 1) modes of the gravitational wave strain. Surprisingly,
we find that configurations with q = 0.8 produce the most prominent peak in the
(`,m) = (2, 1) even though these configurations do not survive nearly as long as
the q = 0.6 configurations with equivalent χ1. This further highlights the sensi-
tive interplay between asymmetry and spin in the resulting merger dynamics.

A parallel effort to chapter 3 was the study of the influence of spin and
mass asymmetry on the threshold to prompt collapse which we present in
chapter 4. In this work we systematically explored BNS configurations with
q ∈ {0.5, 0.7, 0.9, 1} and χ ∈ {−0.3, 0, 0.3} in order to measure the threshold mass
to prompt collapse using three purely hadronic, finite temperature equations of
state. From our analysis we concluded that a quasi–universal relation exists inde-
pendent of the EOSs explored and we recover the well defined universal relation
for the threshold mass for equal–mass irrotational configurations obtained in
[42]. Additionally we have shown that long–lived binaries that are either heavy
and (or) have strong anti–aligned spins provide the strongest constraints on the
nuclear EOS which is consistent with previous works[43], [44].

A final test case for extremal configurations is the comparison of high–mass
binary neutron star and low–mass black hole-neutron star binaries where a po-
tential overlap exists. In this study we use two purely hadronic, finite tempera-
ture equations of state to explore binary configurations with a fixed total mass of
M∞ = 3.6M�, q ∈ [0.486, 0.714] and χ̃ ∈ [0.00, 0.35]. We find that the most distin-
guishing characteristic of a BNS merger is the production of a second ejection tail
that is absent in the BHNS simulations. F Furthermore, the low-spin configura-
tions result in the secondary ejecta tail producing dynamical ejecta with velocities
v ∈ [0.4, 0.8] which could result in a bright kilonova precursor. However, for the
one high–spin configuration examined with χ̃ = 0.35, the ejecta profile is simi-
lar between the BHNS and BNS configurations with the second tidal tail being
significantly suppressed compared to the low–spin configurations. Overall, the
low–spin prior configurations show the possibility for distinguishing a BNS from
a BHNS configuration, however, in the high–spin regime, these events are chal-
lenging to distinguish even numerically.

Finally, in chapter 6 we examine for the first time a novel EOS framework
based on V–QCD which provides a physically motivated description of matter
consistently from low density nuclear matter up to the extremely high densities
resulting in quark matter. To build this framework the description of nuclear
matter is enabled by the DD2 and APR equations of state for the low–density
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regime while the solution for cold, high density matter above nuclear saturation
are computed using the V–QCD model and matched to lattice QCD results. Fur-
thermore, using a van der Waals construction this framework extends the cold
solution of the equation of state of quark matter to finite temperature. Finally, by
using a Gibbs construction a consistent description is obtained for the transition
from nuclear matter to a mixed-phase, and finally to pure quark matter. A natu-
ral consequence of this hybrid framework is the appearance of a critical point at
finite high temperature and large density in the phase–diagram. The appearance
of a critical point opens many questions as to how binary neutron star mergers
probe the phase diagram of this hybrid model and to what extent astronomical
observations such as GW170817 could provide constraints to the V–QCD model
and, as a consequence, provide insights on the location of the critical point.

To this end three EOS models based on the hybrid framework with varying
stiffnesses have been used which are consistent with current mass and radius
constraints set by pulsar observations and the tidal deformability constraint set
by GW170817. These models were used to perform numerical simulations of ir-
rotational BNS mergers consistent with GW170817 for q ∈ {0.7, 1.0} , χ1 = χ2 = 0
to determine how quarks are formed during the merger of the two NSs and if the
lifetime of the HMNS remnant agrees with the ∼ 1s lifetime of GW170817. From
our analysis we identify three stages of quark production related to hot quarks
which form during the violent merger, warm quarks which form during the relax-
ation of the hyper–massive remnant, and cold quarks which form prior to a phase
transition triggered collapse. Most interesting is that of the Soft EOS which, for
both mass ratios considered, collapses to a black hole within tBH < 12ms. To as-
certain the influence of the transition to quark matter, a second EOS model was
constructed that suppresses the transition to quark matter and was used to per-
form the same numerical simulations. Overall we found that the collapse to a
black hole is responsible due to the transition to quark matter in the cold dense
core of the neutron star. Furthermore, the only prominent impact on the GW
spectra is in fact the early collapse to a BH. Therefore, future detectors capable
of accurately detecting the collapse time to a BH will play a crucial role in de-
termining whether or not the EOS includes a 1st–order phase transition to quark
matter.

In addition to providing valuable insights into the extremal regime of BNS
mergers and the influence novel EOS model on the GW specta, many avenues of
exploration are still open for consideration. In the realm of initial data construc-
tion, the current solvers within FUKA could be extended to include alternatives
to classical relativity such as scalar/tensor theories in order to gain insights into
the influence scalarization has on the (post-)merger dynamics and the resulting
GW spectra. Furthermore, considerable interest exists in the field of boson star
binaries which still utilizes super–imposed initial data construction which can
not only lead to large constraint violations, but also unphysical pertubations[64].
Finally, binary initial data including a BH could also be extended to alternative
approaches that allow for the generation of extremal spinning black holes with
χ ≈ 0.99. This has been previously done for BBHs[89], BHNS[4], and charged
black holes with spin[196] (only ID for low spins are shown); however, these
codes are not publicly available which is prohibitive to enable further exploration
of extremal binaries.
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Secondly, the results from chapter 3 and chapter 5 focus on critical mass bina-
ries above the threshold mass with extremal spins and small mass ratios which
has been limited to two purely hadronic equations of state (BHBΛΦ and TNTYST).
A more rigorous sampling of the parameter space in q, χ, total binary mass M∞,
and EOS would be valuable in order to characterize the relation between these
parameters and the resulting disk mass, dynamical ejecta, and ejecta composi-
tion specifically in the regime where fast ejecta (i.e., , v > 0.6) is found. This could
be valuable for kilonova and precursor modeling in preparation for future multi–
messenger observations. Furthermore, rigorous analysis of these results could
highlight patterns useful for distinguishing BNS from BHNS binaries in the high
mass regime. Finally, such an exploration would also provide further details to
enable accurate GW modeling as these models suffer from a lack of high resolu-
tion simulations especially for BNS and BHNS mergers due to the computational
expense.

Third, chapter 4 provided a first look into the threshold to prompt collapse
as a function of EOS, q and χ. Since the original publication, multiple parallel
works have also been published (see [65], [66]) that have thoroughly probed the
parameter space of q and EOS to include EOSs with a 1st–order phase transition
to quark matter. Therefore, it would be important to conduct a follow–on work
that more thoroughly examines the spin parameter space in order to obtain a
more reliable fit for the quasi–universal relation discussed in this work.

Finally, chapter 6 presented the first BNS simulations using an finite tempera-
ture EOS with a description of quark matter based on the V-QCD model. Initially,
it will be important to adapt our numerical codes to allow for computation of the
quark fraction across the numerical domain during the evolution thus allowing
for accurate 3D post–processing. These advancements will provide important in-
sights into the distribution of quark matter throughout the (post-)merger as well
as enable a study to quantify the convergent regime for numerical simulations.
Furthermore, we could extend the studies conducted in chapters 3-5 to include
the EOS models generated using the hybrid V–QCD framework so as to deter-
mine the impact on the resulting GW spectra, ejecta composition, and collapse
behavior.
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Appendix A

Variables and Units

Quantity SI dimension Geometric dimension Factor

Length (L) [L] [L] 1

Time (t) [t] [L] c

Mass (M ) [M] [L] Gc−2

Velocity (v) [L t−1] 1 c−1

Angular Velocity (Ω , ω) [t−1] [L−1] c−1

Acceleration (a) [L t−2] [L−1] c−2

Energy (E) [M L2 t−2] [L] Gc−4

Energy Density (e) [M L−1 t−2] [L−2] Gc−4

Angular Momentum (S , J) [M L2 t−1] [L2] Gc−3

Pressure (p) [M L−1 t−2] [L−1] Gc−4

Density (ρ) [M L−3] [L−2] Gc−2

Table A.1: SI and Geometric dimensions provided for relevant quantities utilized or inferred
within this text. This table was modified from [197] to include only relevant quantities to this
work.
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Appendix B

post-Newtonian Estimates

The focus in this body of work is to perform numerical calculations on high per-
formance computers in order to obtain solutions to EFE either at some arbitrary
initial timeslice or to compute the evolution of this initial data to further under-
stand the dynamics that result from the evolution of spacetime in vacuum and in
the presence of NSs. However, such computations are extremely expensive and,
therefore, are restricted to the late inspiral through the post-merger phase. The
inspiral, however, has seen a wealth of theoretical modeling support of which
the most successful is that of post-Newtonian corrections. For a thorough re-
view the reader is referred to [198] and the references therein. Here we describe
only the features of 3.5th order post-Newtonian corrections that are used to per-
form eccentricity reduction within initial data generation B.1. Furthermore, 4th
order post-Newtonian corrections that describe the binding energy of an inspi-
raling compact object binary are utilized to determine the consistency of quasi-
equilibrium initial data within section 2.7.2.

B.1 Circular orbit estimates

In order to compute the necessary corrections to obtain a more circular in-
spiral using post-Newtonian corrections, we follow the formulation described in
Ref. [198], Sec 7.4, whose formulation describes the circular motion of a binary
measured in the COM, co-rotating frame. Specifically, the corrections relevant to
generating eccentricity reduced ID are the quantities ȧ and Ω which are defined
as

ȧ3.5PN =
1

r

[
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M3ν
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(
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(
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where µ := M1M2/M∞ is the reduced mass, ν := q/(1 + q)2 = µ/M∞ is the
symmetric mass ratio, r is the (coordinate) separation between the centres of the
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two compact objects, and r0 is the logarithmic barycentre defined by,

ln r0 :=
1

M∞
(M1 ln r1 +M2 ln r2) , (B.3)

where r1 and r2 are the separation distance of each object to the center-of-mass.

B.2 Equilibrium binding energy estimate

A common benchmark for determining the consistency of initial data that has
been generated using the assumption of quasi-equilibrium is to compare against
post-Newtonian estimates which have been shown to be quite accurate up until
the late inspiral so long as a sufficiently high order post-Newtonian estimate is
utilized. To this end, we document the formulations for binding energy that have
been utilized to obtain the results shown in 2.7.2

Eb,3.5PN = −µx
2
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+
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Eb,4PN = Eb,3.5PN +−µx
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where x := Ω2/3 and e4 is the 4PN coefficient given by

e4 := −123671

5760
+

9037

1536
π2 +
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15
ln 2 +

896

15
e . (B.6)
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Appendix C

Evolution Setup

Within this work a considerable number of numerical simulations have been
performed. This Appendix documents the relevant details that are consistent
throughout these simulations such that only the discerning details will be dis-
cussed within the relevant chapters.

The simulations performed in this work have leveraged the open-source and
community driven evolution framework, the Einstein Toolkit. Within the
Einstein Toolkit, a fixed-mesh box-in-box refinement driver Carpet is used. A
key advantage of using the Einstein Toolkit is the diverse catalog of commu-
nity provided ”thorns” to compute relevant surfaces and quantities throughout
the evolution. In this work we have made extensive use of AHFinderDirect thorn
in order to find the apparent horizon during the evolution of binaries that include
or result in the formation of a BH. Additionally, we utilize QuasiLocalMeasures

in order to compute the quasi-local irreducible mass, Christodoulou mass, and
spin angular momentum on the apparent horizon of binaries including a BH.

In order to evolve the initial data generated with FUKA, a separate code is
required that implements the evolution equations of our Cauchy problem. In
this work we have exclusively used the Frankfurt/IllinoisGRMHD (FIL) to solve
the general relativistic magnetohydrodynamics equations which implements a
fourth order finite difference scheme and includes the ability to handle polytropic
and tabulated equations of state. FIL also includes a simple neutrino leakage
scheme that takes into account neutrino driven cooling and weak interactions.

FIL is paired with a separate module Antelope which handles the spacetime
evolution of EFE which can be acheived using the BSSNOK[67], CCZ4[68], or Z4c[69]
formulations. Unless otherwise stated, Antelope has been used to handle the
spacetime evolution using the Z4c formulation.

EOS M
TOV

R
TOV

C
TOV

τTOV R1.4 C1.4 M
1,0

th M
1,0

th

[M�] [km] [µs] [km] [M
TOV

] [M�]

TNTYST+ 2.23 10.17 0.32 66.12 11.15 0.18 1.298 2.894
BHBΛΦ 2.10 11.64 0.26 83.31 12.65 0.16 1.503 3.156
DD2 2.42 11.94 0.30 80.60 12.65 0.16 1.364 3.301

Table C.1: Within this thesis the following EOSs have been used in one or more works. Here we
provide a central location of the important quantities for the TNTYST [137], BHBΛΦ [139], and the
DD2[171] EOSs. The listed TOV quantities were previously reported in [42].
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