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Abstract. The slow neutron capture process (s-process) is responsible for producing
about half of the elemental abundances heavier than iron in the universe. Neutron capture
cross sections on stable isotopes are a key nuclear physics input for s-process studies. The
72Ge(n, γ) cross section has an important influence on production of isotopes between Ge
and Zr during s-process in massive stars and therefore experimental data are urgently
required. 72Ge(n, γ) was measured at the neutron time-of-flight facility n_TOF (CERN)
for the first time at stellar energies. The measurement was performed using an enriched
72GeO2 sample at a flight path of 185 m with a set of liquid scintillation detectors (C6D6).
The motivation, experiment and current status of the data analysis are reported.

1 Introduction

The main ideas of stellar nucleosynthesis were proposed around 60 years ago by Cameron [1] and
Burbidge, Burbidge, Fowler and Hoyle [2], who introduced two neutron-driven processes for the
formation of heavy elements between Fe and Bi. Half of these abundances are formed in the slow
neutron capture process (s-process), which happens at low neutron density nn of up to 1011 n

cm3 , in
which case faster radioactive β-decays guide the reaction path along the valley of stability. Neutrons
are provided mainly by two source reactions: 13C(α, n)16O and 22Ne(α, n)25Mg. With understanding
the abundance pattern, different components of the s-process were introduced.
The main component contributes to all abundances from Fe to Bi, but mainly isotopes between Zr
and Bi. It occurs in low - and intermediate mass TP-AGB (thermally pulsing asymptotic giant branch)
stars at temperatures of (0.1 − 0.3) · 109 K. A sufficient neutron exposure establishes a reaction flow
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equilibrium, which means that the product of cross section times abundance is constant (details can
be found in Ref. [3]).
The weak component of the s-process, which dominantly contributes to abundances of isotopes
up to A = 90 takes place in massive stars (M > 8M�). The s-process occurs during convective
helium-core burning around T = 0.3 · 109 K and in subsequent convective carbon-shell burning
around T = 1.0 · 109 K.
Neutrons are thermalised in these hot stellar environments and follow a Maxwell-Boltzmann velocity
distribution. The effective stellar neutron capture cross section for the s-process is therefore a
Maxwellian Average Cross Section (MACS), at the corresponding neutron energies of kT ≈ 8, 25
and 90 keV.
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Figure 1:
NETZ-calculation [4] shows that only the
change of one single MACS of 72Ge by an
enhancement factor fenh of 2 or 1

2 produces a
change up to 50 to 70% for the isotope itself,
but as well up to 20% changes for heavier iso-
topes up to A = 125.

In the weak s-process neutron exposures are not high enough to establish a reaction flow equilib-
rium. Therefore, an indivual MACS has influence not only on the abundance of its isotope, but also
on abundances of isotopes following the reaction chain as well [5]. This propagation effect is shown
for the case of 72Ge in Fig. 1. Changes in the abundances up to ± 20% for heavier isotopes up to Te
(A = 125) are observed for enhancement of the 72Ge(n, γ)-MACS by factors of 2 and 1

2 , respectively.
For 72Ge(n, γ) only one measurement above thermal neutron energies exists [6], covering energies up
to a few keV, while no experimental data [7] are available for the astrophysically important higher
keV region. Therefore, experimental data are required for neutron energies up to about 200 keV to
determine MACSs for the entire energy range of interest.

2 Measurement and Data Analysis

The measurement of the 72Ge(n, γ) cross section [8] was performed at the neutron time-of-flight fa-
cility n_TOF, located at CERN. Details of n_TOF are described here [9]. At n_TOF, neutrons over a
large energy range (25 meV to several GeV) are produced by spallation reactions of a highly energetic
(20 GeV/c), pulsed proton beam (from the CERN Proton Synchrotron) impinging on a massive Pb
target, yielding in an instantaneous neutron intensity of ∼ 2 × 1015 neutrons per pulse.
The capture measurement was performed using a 96.59 %-enriched 72GeO2 sample at a distance of
L ≈ 185 m from the spallation target at Experimental Area 1 (EAR-1). The prompt γ rays, following
a neutron capture event, were detected by a set of four liquid scintillation C6D6 detectors, which are
optimized to have an extremely low sensitivity to neutrons scattered from the sample [10, 11]. A
photograph of the setup is shown in Fig. 2a. For each capture event, the neutron energy is determined
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by measuring the time-of-flight tn, i.e. the time difference between production of the neutron and
detection of the capture events, using Eq. 1:

En = mnc2(
1√

1 − β2
− 1) with β =

L
tnc

(1)

The counting spectrum can be transformed to the neutron capture yield using

Y = fN
(C − B)
Φ · ε , (2)

where C is the number of counts measured with the 72GeO2 sample and B is the background, which is
measured with no sample in the beam. The detection efficiency ε depends on the de-excitation path of
the compound nucleus. A detection efficiency independent of the latter can be achieved by applying
the Pulse Height Weighting Technique [12], which requires detailed Monte-Carlo simulations of the
detector response functions, taking into account the experimental geometry. The neutron flux spec-
trumΦ is measured with different detector arrays, e.g. a set of silicone detectors measuring alphas and
tritons after neutron capture on a thin 6Li-target. Finally a normalisation fN to the 4.9 eV resonance
in 197Au(n, γ), which is saturated in the capture yield [13], is applied to determine the yield Y.
In the following, a preliminary counting spectrum is plotted for 72Ge(n, γ) in Fig. 2b, showing a num-
ber of neutron resonances in the stellar energy range. In further analysis, resonances will be analysed
from the neutron capture yield and used to determine the MACS.

3 Summary

The 72Ge(n, γ) was measured for the first time at stellar energies at n_TOF (EAR-1). This cross sec-
tion is of importance to determine abundances produced in the s-process in massive stars.
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Figure 2: (a) Neutron capture setup at EAR-1 shows four C6D6 detectors with the 72GeO2 sample in
the middle. The neutron beam is coming from the left. (b) Preliminary unweighted counting spectrum
of neutron capture on 72GeO2 is plotted in the neutron energy region of interest.
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The experiment was performed using an enriched 72GeO2 sample and a set of liquid scintillation de-
tectors (C6D6) to detect prompt γ rays emitted after neutron capture. The analysis procedure has been
shortly introduced and preliminary counting spectrum was shown. The data are still under analysis
and first experimental results at stellar energies can be expected soon.
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