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Abstract 

We study the descriptional complexity of cellular automata (CA), a parallel 
model of computation. We show that between one of the simplest cellular models, 
the realtime-OCA. and "classical" models like deterministic finite automata (DFA) 
or pushdown automata (PDA), there will be savings concerning the size of descrip­
ti()U not bounded by any recursive function, a so-called nonrecursive trade-off. 
Furthermore, nonrecursive trade-offs are shown between some restricted classes 
of cellular automata. The set of valid computations of a Turing machine can be 
recognized by a realtime-OCA. This implies that many decidability questions are 
not even semi decidable for cellular automata. There is no pumping lemma and no 
minimization algorithm for cellular automata. . 

1 Introduction 

Giv('u a grammar or automata model, in the theory of formal languages one investi­
gates for C!xample the generative capacity, closure properties or decidability questions 
of the model. Furthermore, questions concerning the descriptional complexity arise. 
How succinctly can a model represent a formal language in comparison with other 
lllodels'? Regarding regular languages, it is known [9] that there are languages being 
recognized by a nondeterministic FA (NFA) with n states, such that every DFA rec­
ognizing these languages will need 271 states. Beyond this trade-off bounded by an 
exponential function, Hartmanis has proved that between deterministic PDA (DPDA) 
and PDA there exists a trade-off not bounded by any recursive function, a so-called 
Ilonreeursive trade-off. Additional nonrecursive trade-offs are known to exist between 
DPDA and unambiguous PDA (UPDA), between UPDA and PDA and many other 
1Il ()( 1 ds . 

The modelH considered so far have in common that they process their input in a se­
quential manner. There are also parallel computational models, among others cellular 
automata. 

A cellular automaton consists of many identical deterministic finite automata. (cells) 
arranged in a lille. The next state of a cell depends on the current Htate of t.he cell 
nud the current stat.es of a bouuded number of neighboring cells. The t.ransitioll rule is 
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applied synchronously to each cell at the same time. One simple model is the realtime 
one-way cellular automaton (realtime-OCA). Here the local transition rule depends 
only on the state of the cell and the neighboring cell to the right. Furthermore, 
the i.nput is processed in realtime. We will define cellular automata (CA) and the 
recognition of formal languages by CA in the next section. 

The intention of this paper is to investigate the descriptional complexity of cellular 
a.ut,omata in comparison with classical automata models and several subclasses of cel­
lular automata. This goal is attained rather easily due to the fact that the set of 
valid computations of a Turing machine can be recognized by a realtime-OCA. This 
allows us to use techniques as presented in the paper by Hartmanis [4]. We can show 
llOnrecursive trade-offs between DFA and realtime-OCA, PDA and realtime-OCA and 
between realtime-OCA and realtime-CA. The recognition of the set of valid computa­
tions by CA has some interesting consequences: "Almost nothing" is decidable for CA, 
there is no pumping lemma for CA languages and there is no minimization algorithm. 

2 Preliminaries and Definitions 

Let E* denote the set of all words over the finite alphabet E, E+ = E* \ {e}. By Iwl 
we dEmote the length of a string w, and the reversal of a word w is denoted by w R . 

Let REG, LCF, CF, RE denote the families ofregular, linear context-free, context-free 
and recursively enumerable languages. In this paper we do not distinguish whether a 
language L contains the empty word € or not. I.e.: We identify L with L \ {€}. We 
a.'!sume that the reader is familiar with the common notions of formal language theory 
a."! presented in [5}. Let S be a set of recursively enumerable languages. Then S is said 
to bCl a property of the recursively enumerable languages. A set L has the property S, 
if L E S. Let Ls be the set {< M > I T(M) E S} where < M > is an encoding of 
a Turing machine M. If,Ls is recursive, we say the property S is decidable; if Ls is 
recursively enumerable, we say the property S is semidecidable. Concerning cellular 
automata we largely follow the notations and definitions as introduced in [7]. 

Definition: A two-way cellular automaton (CA) A is a quintuple A = (Q, #, E, 0, F), 
w}wre 

1. q f:. 0 is the finite set of cell states, 
2. # ~ Q is the boundary state, 
3. E ~ Q is the input alphabet, 
4. F ~ Q the set of accepting cell states and 
5. fJ: (Q U {#}) x (Q U {#}) x (Q U {#}) -7 Q is the local transition function. 

Restricting the flow of information only from the right to the left, we get an one-way 
cellular automaton (OCA) and the local transition fUllction maps from (Q U {# }) x 
(Q U {#}) to Q. To simplify matters we identify the cells by positive integers. 

A configuratioll of a cellular automaton at some time step t 2: 0 is a description of its 
global state, formally a mapping Ct : {1, ... ,n} -+ Q for n E N. The initial configu­
ration at time () is defined hy the input word w = Xl .•. Xn: cO,w(i) = ~r.i, 1 ::::.; i :5 n. 
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During a computation the O(CA) steps through a sequence of configurations whereby 
successor configurations are computed according to the global transition function 6: 
Let Ct. t 2: 0, be a configuration, then its successor configuration is defined as follows: 

C(+l = ~(Ct) {:::=;> 

for CAs and 

CHI (1) = §(#, Ct(1), Ct(2» 
Ct+l (i) = 8(ct(i -1), Ct(i), Ct{i + 1)), i E {2, ... 1 n - 1} 
Ct+l(n) = r5(Ct(n -l),ct(n),#) 

Ct+ 1 = ~ (cd {:::=;> 

Ct+l(i) = r5(ct(i), ct(i + 1)), i E {l, ... In -I} 
Ct+l(n) = 8(ct(n),#) , 

for OCAs. Thus, ~ is induced by o. 
An input string w is accepted by an (O)GA if at some time step i during its computation 
the leftmost cell enters an accepting state from the set of accepting states F ~ Q. 

Definition: Let A = (Q, #, "£, 6, F) be an (O)CA. 

1. A word w E L;+ is accepted by A if there exists a time step i E N such that 
Cj ( 1) E F holds for the configuration Cj = b.. i (co,w). 

2. T(A) = {w E L;+ I w is accepted by A} is the language accepted by A. 
a. Let t: N -1 N, ten) ;:: n, be a mapping and iw be the minimal time step at. which 

A accepts w E T(A). If all w E T(A) arc accepted within iw ~ t(lwl) time steps, 
then T(A) is said to be of time complexity t. 

4. £t(OCA) = {L ~ L;* I L is accepted by an OCA with time complexity t} 
£t(CA) = {L ~ B* I L is accepted by a CA with time complexity t} 

5. If t{n) := n, we say these languages are accepted in realtime; if t{n) = k· n with 
a. rational number k ;:: 1, we say these languages are accepted in lineartinw. The 
corresponding language classes are denoted by £rt(OCA), £rt(CA), £/1(OCA) 
and £It(CA), the corresponding cellular devices arc denoted by realtime.OCA, 
rp.altime~CA, lineartime-OCA and lineartime-CA. 

It is known that REG c LCF C £rt(OCA) and that CF and £rt(OCA) are im:ompa­
rable [13]. .crt (0 CA) is closed under union, intersection, complementation, rev(~rsal, 
and concatenation with regular sets [6]. £rt(CA) is closed under union, intersection, 
and complementation. 

In the sequel we will use the set of valid computations of a Turing machine. Details 
are presented in [4) and [5). 
The set of valid computations of alliring machine M is denoted by VALC[M}, the 
set of invalid computations is denoted by INVALC[M} = A* \ VALCfM) with respect 
to a coding alphabet A. 

To show that some languages are not in .crt(OCA) we will apply the following pumping 
lemma for cyclic strings from [10]. 

Lemma 1 For any L E £rt( OCA), there exists an integer n s?lch that for any string 
11' Ilnd lLny integer k, if wk ELand k > nlwl then there. i.<; art integer 1 ~ Tn ~ nllVI 
such that 10k+j ·m E L for all j ;:: 1. 
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Descriptional complexity 

Concerning the notations and definitions of descriptional complexity we follow the 
pre'sentation in [14]. A descriptional system K is a set of finite descriptors (e.g. au­
tomata or grammars) relating each M E K to a language T(M). The language class 
being described by K is T(K) ;:; {T(M) 1M E K}. For every language L we define 
K(L) :::: {M E KIT(M} = L}. A complexity measure for ]( is a total function 
I_I : K -+ N. Comparing two descriptional systems K1 ,and K2) we assume that 
T(Kd n T(K2) is not finite. We say that a. function f : N -t N, f(n) ~ 71. is an upper 
bound for the trade-off when changing from a minimal description in ](1 for an arbi- , 
trary language to an equivalent minimal description in K2, iffor all L E T(K1}nT(K2 ) , 

the following holds: 

min{IMII ME K2(L)} ~ f(min{IMII ME](l (L))). 

If no recursive function is an upper bound for the trade-off between two descriptional 
systems 1{1 and K2, we say the trade-off is nonrecursive and write K1 n~c K2. 

3 N onrecursive Trade-Offs 

Theorem 1 Let M be a Turing machine. Then two realtime-OCA AI'> A2 can be con­
structed siLch that T(At} :::: VALC[Mj and T(A2 ) = INVALC[Mj. 

Proof: 

In IS} it is shown that INVALC(M] is a context-free language. Taking a close look at 
the construction we can see that INVALC[M] is the union of regular and lineal' eontext­
free languages. Therefore we can construct a linear context-free grammar G such that 
L(O) =: INVALC[M]. Given a linear context-free grammar G, Smith III has shown in 
[12J how to construct a realtime-GCA A such that T(A) = L(G). So, we can construct 
a realtime-GCA A2 such that T(A2) =: INVALC[M] E 'crt(OCA). Since 'crt(OCA) is 
effectively closed under complementation, we can construct a realtime-OCA Al such 
that T(Ar) =: VALC[Mj E 'crt(OGA). 0 

Corollary: A language L is recursively enumerable if and only if there exists a 
homomorphism It and a language L' E 'crt(OCA) such that L = h(L'). 

We are now prepared to prove some nonrecursive trade-offs using the techniques pre­
setlled in (41. 

Theorem 2 Let 1(1 and K2 be two descriptional systems. If for ever?) Turing rria.chine 
~f (l la.rlgl:a~e LM E T(Kd can be effectively constructed such that LM E T(K2) {:? 

T(M) tS jimte, then the trade-off between K1 and K2 is nonrecursive. 

Proof: We assume that the trade-off is not nonrecursive. Then there exists a recursive 
fuuc:tioll J as all upper bOl1ud. I.e.: Let L = T(A) for A E ](1 and L E T(](2), t.hen 
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there exists M E K2 such that L = T(M) and IMI S f(IA!). Assuming A E Kl, we can 
list all Ml, M 2 , .•• ,M", sueh that IMil S f(IAI) for 1 :s; i :s; s. But this implies: T(A) f/. 
l'(K.d {:::::::? T(A) ¥=- T(Md for all I :s; i :s; s. By checking all inputs x E I;* on eaeh Mj, 
a Turing machine can be constructed which stops when T(A) f/. T(K2}. Thus, the set 
R = {A I A E Kl, T(A) f/. T(K2)} is recursively enumerable. Hence we can construct a 
Turing machine lvf' which gets as input an encoding of a Turing machine. We construct 
LM for input < !v! > and check whether LM E R. Therefore, M' stops when l'(A1) is 
infinite. Thu!', the set {M 11M is a Turing machine and T(M) is iufiuite} is rc('nrsiv(~ly 
(murnerable which is a contradiction to Rice's theorem for reeursively enumerable index 
sets [5). Henee the trade-off must have been nonrecursive. 0 

Consequences: 

• realtime-OCA n~c DFA using LAl = INVALC[M). 
• realtime-OCA nonrfc PDA using LM = VALC[M]. 

• realtime-CA nvnrr
c realtime-OCA using LM = Lt[M] where 

LdM] ~ {wlw\! Iw E {#o}VALC[M]{ #d}. 

• lineartime-OCA n~c realtime-OCA using LM = L2 [M] where 
L2tM) ~ {wlw\! ltV E {#dVALC[MJR{#o}}. 

TIH' mllln~cursive trade-offs just elaimcd are verified by the following lemma: 

Lemma 2 Let A1 be (L TtLring machine. Then 

(1) INVALC[M] E REG ¢:> T(M) is finite 

(2) llALC[M] E CF ¢:} T(A1) is finite 
(8) LI [M] E .crt (GCA) ¢:> T(M) is finite 
(4) LJ[M] E .crt ( CA). 
(5) D;.{M] E .crt ( GCA) ¢:> T(M) is finite 
(0) £.;.{M] E .cl •t ( CA). 

Proof: (2) is proved in [5} and (1) is then easy to show. The "if" portion of (.1) 
is ohviolls, since REG is a. subset of .crt(OCA). The "only if" portion is proved by 
using lemma.l. We show that LdM} f$ Lrt(OCA), ifT(M) is infinite: We asS11llW that 
Ll[1\1) E Lrl(OCA). Let n E N be the integer from lemma 1. Since T(M) is iufinite, 
wp call choose 1lJ E {#o}VALC[M}{ #d such that Iwl! > nlwl. Henee 1lI1wl! E Lt[M) 
anel the conditions of the lemma are fulfilled. Therefore, an integer 1 :s; 'In ::; nlwl 
dops exist such that. w1w\!+j-m E LJ[M] for all j E N. Considering j = 1, we have 
wlll'p+m E Lt[MJ. But this is a contr(ldiction, since Iwl! + Tn ::; Iwl! + nlwl < 21wl! < 
(1 7111 + 1) . Iw\!, = (Iwl + I)! is not a factorial and hence no w' E {#o}VALC[M]{#d 
dol'S exist. sueh that Iw'l! = Iw\! + m. 
Tu prove (4) we show how to construct a realtime-CA reeogllizillg Lt[M]. L1[M) is the 
illt(~l'section of the following three languages L 1, £2, La: Let b. = I; U {#o, #1} where 
{#o, #11 n lj = 0. 

Ll ~ {#o1v#lxlw E VALC[M], x E t,,*}, 

L2 ~ {wnlw E {#o}I;*{#d,n E N}, 



L3 ~ {#ow#lxlw E ~*)x E D.*, I#ow#lxl#o = (Iwl + 2)!}. 

SiIH;e Crt(CA) is closed under intersection, it remains for us to show that Li E L.l't(CA) 
for 1 < i < 3. L1 E Crt(CA) is obvious, since VALC[M] E Crt(OCA) and Crt(OCA) is 
closed-under concatenation with regular sets. Considering the language 

L ~ {x E D. * I x :::= Xl #OX2#1 #OX3#l X4 ::::} X2 =1= x3where X2, x3 E ~*, Xl, X,i E D. *}, 

we see that L2 = In {{#o}~*{#t}}*. Since L E LCF C Crt(OCA) and L..,.,,(OCA) 
is closed under intersection and complementation, it follows that L2 E L.rt(OCA) C 

Crt(CA). Now it remains for us to show that L3 E L.rt(CA). We sketch the construc­
tion: We use a cellular automaton where each cell is split into four subcells, so we 
can speak of four tracks. On the first track we are collecting all occurrences of #o's 
from left to right. That means for an input containing the symbol #0 m times, that 
at some time step the first m cells are marked with a special symbol $. This task can 
be done by a realtime-CA. The second track computes the factorials according to the 
construction presented in [8J. We modify the construction slightly: At one step the 
automaton is computing the factorials, in the next step all cells are shifted one cell to 
the right, in the next step the automaton is computing, and so on. Therefore, after 
2· n! steps the n!-th cell from the left can be marked with a special symbol. Now, 
the task of the 'third track is to cooperate with the second track and to mark the 
(iwl + 2)!-t.h cell from the left on the fourth track. This can be done by a realtillle-CA 
within 2 . (lwl + 2)! steps. Now we just have to compare the number of occurrences 
of #0 's being collected in the first track with the marked cell on the fourth t.rack: At 
some time step there is a cell on the first track having as left neighbor $ and as right 
neighbor the endmarker symbol. The state of the cell itself is $. The first time that 
this situation does arise, we look on the fourth track if this cell is marked. If t.his is 
true, we send a signal with maximum speed to the left to accept the input, otherwise 
we send a signal to reject the input. Hence we can construct a realtime-CA accepting 
L:l and (4) is proved. The proof of (5) and (6) is analogous to (3) and (4) considering 
that VALClMJR E Lrt(OCA), since Crt(OCA) is closed under reversal. 0 

The nonrecursive trade-off between the descriptional systems KI and K2 implies that 
t.here exists no algorithm converting a descriptor M E Kl into a descriptor M' E K2' 
J.l'.: For regular and context-free languages there is no algorithm converting a realtime­
OCA into an equivalent DFA and PDA, respectively. For realtime-OCA langui;tges 
there is llO algorithm cOllverting a realtime-CA and lineartime-OCA into an equivalent 
realtime-OCA. An exceptional case are unary languages. It is known that each unary 
realtime-OCA language is a regular language and Seidel shows in [11] that for unary 
languages a realtime-OCA can be c:onverted into an equivalent DFA. The trade-off is 
quadratic. 

The following easy example shows that arbitrary recursive trade-offs can be con­
structed. 

Example: Let f be a recursive function and n E N. Then there exists a regular 
language L(f,n) being recognized by a realtime-OCA having O(n) states, but. every 
DFA l'(lcoguiziug .L(f, n) will need fl(f(n)) states. 

Proof: Let f he a recursive function and n E N a fixed number, then there cxiRts a 
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1\lring machine with unary input and output M which computes J(n). Thus LU, n) == 
VALC[M] consists of one st.ring. This string can be recognized by a DFA which needs 
as many stat(~ as the string is long. HellGC every DFA recognizing LU, n) will need 
S1(f(H)} stat.es. Consider a 1\lring machine M' computing f(n) on every input n. 
According to theorem 1, we can construct a realtime-OOA A recognizing VALC[M/]. 
The size of A with respect to the length of input n is a constant number. If we want 
to modify A to recognize LU, n) for a fixed n, we just have to count the input length 
n. Hence a realtime .. OCA recognizing L(J, n) will need O(n) states. 0 

4 Decidability Questions 

Using reductions of the Post Correspondence Problem Seidel shows in [ll} that the 
qu~tions of theorem 3 and theorem 4 are not decidable. In [3] it is shown that the 
qu~tions of emptiness, universality and equivalence are undecidable. 
Du(! to the fact that the set of valid computations can be recognized by realtime-OCAs, 
we C~Ltl simply prove that many decidability questions for cellular automata are not 
df~idable and not even semidecidablc. We want to summarize the known results in 
theorem 3 and 4, to present short proofs, and to show that the questions are not even 
sClllidecidable. 

Lemma 3 Let M be a Tming machine. Then it is not semidecidable whether T{M) == 
0, T(AI} i8 finite, T(A1) is infinite, T(M) is regular', T(M) is context-free or T(M) E 
'ctd OCA). 

Proof: Except for the property "T(JvI) is infinite" , all the properties are violating the 
conta.inment property of Rice's theorem for recm'sively enumerable index sets !5J. We 
proVl' this for the las t property by using £ == {a2" In::; no} for a fixed number no E N 
aud L':= {a21l 1n EN}, respectively. Since L E 'crt(OCA), £ ~ L' and £1 E RE, 
HiC(~'s theorem implies that £1 E C"t(OCA). But this is a contradiction, since all 
unary languages in 'crt(OCA) are regular languages. Hence the containment property 
iH violated. The non-semideeidability ofthe property "T(M) is infinite" can be SOfm by 
showing that the second condition of Rice's theorem for reeursively enumerable index 
~ets i~ not fulfilled. 0 

Theorem 3 It is not semidecidable for arbitrary realtime .. GCA A, AI whether 

• T(A) = 0, T(A) = 2;* 

• T(A) is finite, T(A) is infinite 
• T(A) = T(AI), T(A) ~ T(A') 

• T(A) E REG, T(A) E CF 

Proof: The technique of proving each statement is quite similar. For C1xamplc, 
we prove that the question "Is T(A) infinite?" is not semidecidable. Let Ai be an 
arhitrary Turing machine. By theorem 1 we can construct a realtinlt'-OCA A ac('(!pting 
VALC[M]. Suppose that the above question is semideddable. Thus it would be 
sPlllideeidable whether T(.M) is infinite. This is a contradiction to lmmna J. 0 
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Corollary: The above questions are not semidecidable for arbitrary automata A, A' 
whkh belong to an automata class containing the realtime-OCAs. 

Theorem 4 It is not semidecidable for arbitrary realtime-CA A whether T(A) E 

.crt ( aCA}. 

Proof: Let M be an arbitrary Turing machine. By lemma 2(4) we can construct a 
realtime-CA A accepting LdM]. Suppose that the above question is semidecidable. 
Then by lemma 2(3) it would be semidecidable whether T(M) is finite. This is a 
contradiction to lemma 3. 0 

Corollary: The above question is not semidecidable for an arbitrary automaton A 
which belongs to an automata class containing the realtime-CAs. 

Corollary: The above question is not semi decidable for L E L:rt(CA) and each 
language class containing .crt ( C A). 

Theorem 5 Let A be a realtime-DCA, h a homomorphism a.nd hE an f.-free homo­
morphism. Then it is not semidecidable whether 

• h(T{A)) E REG, h(T(A)) E CF, h(T(A)) E £rt(OCA) 
• hc(T{A)) E REG, he(T(A)) E CF, h€(T(A)) E .crt(OCA) 

Proof: Let M be a Turing machine. By the corollary to theorem 1 there is a 
realtime-OCA A and a homomorphism h such that h(T(A)) = T(M). If the above 
questions are semidecidable, it is semidecidable whether T(M) is regular, context.-free 
or T(M) E .crt(OCA). This is a contradiction to lemmma 3. 

In [l] it is shown that the closure of .crt(OCA) under E-free homomorphism yields 
.crl(lG·OCA) where 1G-OCA denotes one guess OCAs. Let A' be a l'ealtillle-lG­
OCA. By [1J there is a realtime-OCA A and an f.-free homomorphism he such that 
T(A'} = h, (T(A)). The assumption that the above questions are semidecidable implies 
that. they are sernidecidable for realtime-lG-OCAs. Since .crt(OCA)C .crt{lG-OCA) 
and .crt(CA) ~ .crt(lG-OCA) [1], this is a contradiction to the corollaries t.o t.heorem 
3 and 4. 0 

Corollary~ The above questions are not semidecidable for an arbitrary automaton 
A which belongs to an automata class containing the realtime-OCAs. 

Corollary: The above questions are not semidecidable for L E £!.t(OCA) and each 
language class containing .crt(OCA). 

Example: Automata dasses containing the realtime-OCAs are lineartime-OCAs, 
realtime-CAs, and lineartimc-CAs. Language classes containing £l't(OCA) are .cu(OCA), 
.crl(CA}. and .cll(CA). 
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5 Further Results 

Now, the results of the previous chapter can be applied to show that there is no 
pumping lemma and no minimization algorithm for cellular automata. 
Following [2] we say that a language class C possesses a pumping lemma if the class 
has the following property: For each language LEe there exists a number n E N such 
that for each z E L with Izl > n, there is a partition z = U'I!W such that Ivl 2 1 and 
for infinite many i EN hoMs: ulVitv' E L, where tt' and w' depend on tt, wand i. 

Theorem 6 £'rt( DCA} and each language class containing £'rt( DCA) docs not possess 
a pumping lemma in the above sense. 

Proof: Let A be an arbitrary realtime-OCA. On condition that a pumping lemma 
does exist, we show the following claim: T(A) is infinite <=> 3x E T(A) : Ixl ?::: n. Hence 
we can semidecide whether A accepts an infinite language. This is a contradiction to 
theorem 3. Now we will prove the claim: The "only if' portion is obvious. "if': Let 
x E T(A) such that Ixl ;?, n. Since the conditions of the pumping lemma are fulfiUed, 
we get infinite many words in T(A) by pumping. 0 

Theorem 7 FoT' realtime- OCAs there is no minimization al,qorithm CClnverting an ar­
hitml'1/ 1'(!(L/time- DCA A into (L realtime-OCA A' which aCCe1Jts T(A) and has a minimal 
7l!Lmlier' of states. 

Proof: Obviously, a minimal realtime-OCA A :::::: (Q,#,'E,J,F) recognizing L :::::: 0 
lw('ds \'E\ states and has no accepting states. We suppose that a minimization algorithm 
dons exist. Let A be an arbitrary realtime-OCA. We apply the minimization algodthm 
and receive a lllinimal realtime-OCA A'. We are now checking whether A' has no 
accppting states and IQ'I = I~I. If it is so, then T(A') :::::: T(A) =::: 0. Otherwise, 
if IQ/I = I~I and A' has accepting states, then at least one alphabet symbol is an 
accepting state. But then the recognized language is not empty. Hence we ean deeide 
wlwther an arbitrary realtime-OCA accepts the empty set. This is a contradiction to 
tlWOl'mn 3. 0 

A consequence from the characterization ofRE as the homomorphic: image of L'L(OCA) 
is a criterion for incomparability to other language cla..c;ses: 

Theorem 8 .cl't( OCA) is incomparable to each language class C satisi1ling: CF S 
£, c RE and C is closed under homomorphism. 

Proof: Aecording to Terrier [13], CF is not contained in .Lrt(OCA) and henee CF \ 
Lrt(OCA) ¥= 0. Therefore C \ .Lrt(OCA) ¥= 0. Now we assume that Lrt(OCA) f .c. 
According to the corollary to theorem 1, it follows that RE f ..c. This is a eontradic:tion 
to the assumption that L is a proper subset ofRE. Hence we know that. Lrt(OCA)\C 1: 
0. [] 
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By applying this criterion we can see that £rt(OCA) is incomparable to many known 
and well~investi.gated language classes. Among others there are the language classes 
generated by indexed grammars, certain grammars with controlled derivations, certain 
contextual grammars and certain L-systems, e.g. ETOL. 

6 Conclusion 

We have studied the descriptional complexity of cellular automata. Nonrecursive trade­
offs were shown between sequential automata like DFA and PDA and cellular devices, 
namely the realtime~OCA. Even within cellular automata classes, nonrecursive trade­
offs were proved. The fact that the valid computations of a Turing machine can be 
recognized by realtime-OCAs is a strong property of Lrt(OCA), since this fact leads to 
nonrecursive trade-offs in a straightforward manner and almost no decidability results. 
Therefore, it would be interesting to investigate restricted classes of cellular automata, 
e.g. weaker models than realtime-OCA generating language classes between REG and 
.crL(OCA). 
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