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Abstract

The intersection of recent advancements in generative artificial intelligence and blockchain
technology has propelled digital art into the spotlight. Digital art pricing recognizes that
owners derive utility beyond the artwork’s inherent value. We incorporate the consumption
utility associated with digital art and model the stochastic discount factor and risk premiums.
Furthermore, we conduct a calibration analysis to analyze the effects of shifts in the real and
digital economy. Higher returns are required in a digital market upswing due to increased
exposure to systematic risk and digital art prices are especially responsive to fluctuations in
business cycles within digital markets.
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1 Introduction

Conspicuous consumption of valuable goods is a
means of reputability to the gentleman of leisure

Thorstein Veblen (1899)

Digital art can be defined as an art form that involves the use of digital technology, such as
computers, graphics tablets, and software, to create or manipulate images, animations, videos,
and other forms of visual and audio-visual media. Developments in digital art are happening
fast. Recently, a large variety of artificially intelligent (AI) art generators have become available,
widely accessible to anyone, and currently creating a new generation of artists. An AI-generated
artwork, “Théâtre D’opéra Spatial”, has won the first prize at the Colorado State Fair’s annual
art competition.1 Further growth can be expected, with Mark Zuckerberg, for example, declaring
that his aim for Meta is to become a leader in generative AI. A particular type of digital art,
non-fungible tokens (NFTs), which are verified on a blockchain network, grabbed headlines in
prior years as its market capitalization grew from about 100 million USD in 2019 to 17 billion
USD in 2021.2

Similar to traditional art, valuing digital art is not straightforward. Mandel (2009) highlights
that the determinants of an artwork’s value are distinct from assets such as equity as art is also a
consumption good. Art owners take pleasure in the aesthetics of an artwork or derive enjoyment
from the signal of wealth resulting from owning a particular artwork. As such, the conspicuous
consumption, which refers to consumption that is unrelated to the intrinsic value, of high-priced
luxuries leads to “utility dividends”. Relatedly, Lovo and Spaenjers (2018) highlight “emotional
dividends” governing owners’ consignment decisions. For bidders, their willingness to pay for art
is the sum of the present value of the expected stream of emotional dividends until resale and the
present value of the expected revenues of resale.

The perceived benefits of owning digital art are not restricted to the signaling of wealth or the
aesthetics of an owned artwork (in fact, non-owners can enjoy looking at the same digital asset).
After Vignesh Sundaresan purchased an NFT artwork by the artist Beeple for over $69 million
(at the time the third highest auction record of all time by a living artist), he declared that “the
point was to show Indians and people of color that they, too, could be patrons, that crypto was an
equalizing power between the West and the Rest, and that the global south was rising.”3 Prestige
in crypto communities can also bring utility, and owning particular NFTs can be a requirement
for entering communities in the blockchain ecosystem.

1https://www.nytimes.com/2022/09/02/technology/ai-artificial-intelligence-artists.html.
2Data retrieved from nonfungible.com/market-tracker. Zuckerberg made the statement during Meta’s 2022

fourth quarter earnings call.
3https://decrypt.co/62019/anonymous-buyer-of-69-million-beeple-nft-has-been-unmasked.
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Our paper aims to provide a better understanding of how to price digital art. We build on the
work of Mandel (2009), who models luxuries like arts as assets. We extend his work to the era of
digital art, and derive Euler equations for both traditional and digital art. In our setup, status is
not limited to a wealth condition but links to a broader prestige, such as a group of people that
are not (necessarily) rich by their wealth but who, for example, want to be seen as sophisticated
in artificial intelligence or in blockchain technologies.

We first model the intratemporal substitution between traditional and digital art, which is depen-
dent on a preference parameter based on the perceived benefits of owning digital art. The relative
price between digital art and traditional art depends on the relative strength of two preferences.
Digital art prices rise whenever consumers are inclined to identify themselves as digital consumers
and collectors. The ratio of consumption expenditure between digital art and traditional art is
the second decisive component, reflecting a demand-driven effect on pricing. We find that when
the relative price of digital art increases, the expenditure share for digital art increases even more
strongly.

The derived stochastic discount factor (SDF) features additivity. It comprises two separate parts.
The first part is the required payoff from the digital art investment for future basic consumption
by giving up one unit of current basic consumption. The second part relates to the required payoff
from the digital art investment for future digital art consumption. These two distinct SDFs in
conjunction with the art returns characterize two separate covariance risks. The risk premium is
also subject to two independent covariance risks. One covariance risk reflects the investment gain
that negatively correlates with the intertemporal marginal rate of substitution of consumption.
The other covariance risk is harnessed for the utility dividend and partly offsets the required risk
premium. As a result, the risk premium hinges on which covariance risk predominates. When
digital art investors possess higher utility dividends than conventional art investors and digital
art markets fluctuate more severely than traditional art markets, the risk premium on digital art
will be higher.

The definition of digital art sets it apart from traditional art: digital art is created in the digital
realm, whereas traditional art is created with physical material (such as paint, canvas and clay).
The definition, relying on digital technology being used as part of the creative or presentation
process, also highlights that digital art can take many different forms, from still images and
digital prints to interactive installations and immersive experiences. For some of our analyses,
we focus specifically on one subset of digital art, which are NFTs. Art NFTs are digital assets
with an artistic function and with identifying information documented in smart contracts. These
digital contracts allow terms contingent on decentralized consensus that are tamper-proof and
typically self-enforcing through automated execution, i.e., programs stored on a blockchain that
run when predetermined conditions are met. On the blockchain, NFTs have a unique digital
identifier that points to a digital file such as an image or video. The blockchain allows the data
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to be verifiable and NFTs to be traded, and this happens on the Ethereum blockchain, which
makes cryptocurrency risk is relevant. We model this risk and find that NFT investors require
an additional currency risk premium as compensation for bearing the variance risk of currency
returns as long as they prefer to have their basic consumption in a fiat currency such as U.S.
dollars.

We empirically examine our framework in a setting that links to NFTs as we use the wealth
in the Ethereum ecosystem. Our calibration analysis is established in the Markov environment
comprising four states: an expansion and recession state for the real economy and an expansion
and recession state for the digital economy. Art prices are highly determined by the growth rate
of wealth, particularly the growth rate of the wealthiest individuals (Mandel; 2009; Goetzmann
et al.; 2011). However, in the context of digital art, an added dimension emerges—the necessity
to account for wealth growth within the digital economy. The overall wealth in the Ethereum
ecosystem is quantified through its market capitalization, and adjusted for user adoption measured
by non-zero balance addresses encoded in the blockchain transaction logs. Using the wealth data
from two respective economies, we derive the closed-form representation of the digital art asset
price.

We find that the expansion state is less persistent for the digital economy than for the real
economy, with a higher probability of transitioning to a recession state. During transitions from
economic expansion to recession in the real economy, digital art prices exhibit a subsequent
decrease of 5.26%. By comparison, when a market downturn occurs within the digital economy,
prices experience a more pronounced decline of approximately 8.43%. It indicates that digital art
prices are more responsive to fluctuations in business cycles within the digital markets. When
both economies concurrently experience downturns, we estimate a more substantial drop in prices,
reaching 13.25%. In our analysis, 2021 stands out as a highly prosperous year for the digital art
market, driven by significant wealth growth of the wealthiest investors and a surge in the digital
markets. When only one of the markets is in expansion, prices are affected negatively, especially
when the real economy thrives while the digital economy falters.

Our analysis further indicates a higher exposure to systematic risk during upward market con-
ditions compared to market downturns. Interestingly, during the recession of the real economy,
systematic risk turns negative, implying a positive covariance risk. Digital art displays strong
countercyclical behavior during market downturns. We also delve into the price of risk, a ratio of
the variance of SDFs to the expected SDFs. The price of risk is elevated during recession periods
in both sectors. It is important to note that higher returns are required in the market upswing
due to increased exposure to systematic risk, rather than the price of risk. Digital art investors
require digital currency risk premiums of about 12% during periods of expansion in the digital
economy, and approximately 5% when the economy experiences a recession.
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The paper is outlined as follows. Section 2 focuses on preferences, substitutability and expenditure
shares of traditional and digital art. Asset pricing implications for digital art are discussed in
Section 3. Section 4 provides the calibration results and Section 5 concludes.

2 Traditional and Digital Art

2.1 Intratemporal substitutability between traditional art and digital
art

Suppose an agent consumes two types of goods, the standard and basic bundle of goods c that most
households regularly consume and the conspicuous goods Z = (A, N). Z is a set of conspicuous
goods including traditional art and digital art. In this study, we refer to “art” as traditional art
(denoted A) to distinguish itself from digital artworks (denoted N). We treat traditional art as
the numeraire in the economy and represent digital art by this numeraire. Note that A is not
restricted to artworks but can denote any non-digital format of conspicuous goods. Likewise,
N can have wider representability for goods being digitalized and traded in non-conventional
marketplaces.

We allow nonhomothetic preferences between two consumable goods, c and Z, and impose the
following assumption.4

Assumption 1. γ > ϕ is assumed to reflect that agents are more risk averse to basic than
conspicuous consumption.

We characterize an additively separable utility like Mandel (2009), but agents possess different
risk preferences on two kinds of goods.5 Assuming two marginal utilities in the power-utility form,
we pin down the additively separable utility

U(c, Z) = c1−γ

1 − γ
+ V (Z)1−ϕ

1 − ϕ
. (1)

In particular, in (1) we introduce V (Z), the agent’s intratemporal utility for traditional art and
digital art. In a multi-good economy, intratemporal substitutions between multiple goods play a
pivotal role, and their magnitude indirectly affects the intertemporal substitution. In this study,
we focus on the intratemporal substitutions between the non-digital and the digital asset, and
both fall into the class of conspicuous goods Z.

4Ait-Sahalia et al. (2004) and Wachter and Yogo (2010) model the utility of luxury goods (also adopting
nonhomothetic preferences) and obtain evidence consistent with Assumption 1.

5From an econometric aspect, nonhomothetic utility mitigates statistical bias (Pakoš; 2011).
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The agent’s intratemporal utility for traditional art and digital art is given by

V (Z) =
[
α
(
PNN

)η
+ (1 − α)

(
PAA

)η]1/η
(2)

where PN and PA are the price of digital art and traditional art, respectively. η is the substitution
parameter between traditional art and digital art. η varies between 0 and 1, with η = 1 referring
to perfect substitution. The substitution effect refers to agents reducing their investment in tra-
ditional art given an additional investment in digital art. α is the preference parameter governing
the proportion between the two conspicuous goods.

One could associate α with several of the benefits derived from possessing digital art. Digital art
has addressed issues that have affected the traditional art market for decades, such as provenance
and authenticity. Li et al. (2023) show that for traditional art, provenance information increases
both the artwork’s probability of being sold and the accompanying price. Digital wallets, which
play a role in the world of digital art, provide a way to store, manage, and trade digital artworks
and related assets. They can be linked to blockchain technology, allowing for the verification and
tracking of ownership of digital art through decentralized ledgers. This feature helps establish
provenance and authenticity, which are crucial aspects of digital art ownership. Digital wallets
also allow collectors to showcase and enjoy their digital art on various platforms and devices,
providing status to the owner. In addition, digital art allows for a deeper involvement of buyers.
There are online communities around digital art collections, often on social networks such as
Twitter and Discord. The digital artists are present in these communities, which provides people
with incentives to buy a piece of a specific collection to also become part of such a group (and get
access to the creators). As such, there is a network effect around digital art. A larger network
effect will mean a greater α. Similarly, the fraction parameter α reflects any of the other possible
benefits of owning digital art.

2.2 Expenditure shares of digital art and traditional art

The consumption allocations on the conspicuous goods are determined by the properties of in-
tratemporal utility in (2). Let q denote the relative price of N in units of A. Hence, optimal
relative consumption of the two conspicuous goods is determined by the first-order condition:

VN

VA

= δN

δA

= q, (3)

where VN ≡ ∂V (At,Nt)
∂Nt

and VA ≡ ∂V (At,Nt)
∂At

. δN = αP η
NNη−1 and δA = (1 − α)P η

AAη−1.
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The relative price is derived by

q = α

1 − α

(
PN

PA

)η(
N

A

)η−1

. (4)

The relative price rests on the preference parameter, α, governing the relative strength of two
preferences. The relative price of digital art rises whenever consumers are inclined to identify
themselves as digital consumers or collectors. The relative price also increases with PN

PA
, the price

ratio between these two, amplified by the degree of substitution η. The ratio of the consumption
expenditure between digital and traditional art is the second decisive component, reflecting a
demand-driven effect on the relative price.

Let C = c + Q(N + A) denote total consumption expenditure. Q is the relative price of aggre-
gated conspicuous goods in units of basic consumption goods c. By (1), the first-order condition
of optimal consumption leads to Q = V −ϕ

c−γ . Following (3), we rewrite the total consumption
expenditure

C = c + QNN + QAA,

where QN = δNQ, QA = δAQ. We can express the relative price of an individual conspicuous
good to basic consumption and obtain the relative price of digital art and traditional art in terms
of c. The first-order condition (3) implies that the expenditure shares for digital and traditional
art are, respectively:

QNN

C
= 1

1 + Q
1
γ

−1
N N

ϕ
γ

−1δ
−(1+ϕ)

γ

N + q−2
(5)

QAA

C
= 1

1 + Q
1
γ

−1
A A

ϕ
γ

−1δ
−(1+ϕ)

γ

A + q2
. (6)

The expenditure share to the aggregated conspicuous goods increases with the total consumption
as long as γ > ϕ (stated in Assumption 1), i.e., consumers are more risk averse to basic consump-
tion. Given an increasing expenditure share in the class of conspicuous goods, the relative growth
rate of (5) and (6) is less clear. From the above two equations, both conspicuous goods feature
an increasing share but with different gradients. The gradient is subject to q, the relative price
between the two conspicuous goods. If the price of digital art relative to that of traditional art
increases, the share of digital art will increase more strikingly than that of traditional art. In the
special case of q = 1, two goods increase their shares at the same speed.
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3 Asset Pricing Models for Digital Art

3.1 Stochastic discount factors

In a multiple-good economy, a representative agent optimizes consumption expenditure C over
basic consumption and two conspicuous goods given an endowment or wealth. As stated before,
the value of conspicuous goods decides the resulting utility. An agent maximizes the expected
discounted value of utility flows subject to wealth Wt

max
c,N,A

E0
[ ∞∑

t=0
βtU(ct, Nt, At)

]
s.t ct = Wt − PN,tNt − PA,tAt,

ct+1 = Wt+1 + PN,t+1Nt + PA,t+1At,

ct + Nt + At ≥ 0.

where U(ct, Nt, At) ≡ U(ct, Zt) is specified in (1). Assuming that the maximum of the objective
is finite, we can rewrite the optimization as a dynamic program.

The first-order and envelope conditions imply,

PN,tu
′(ct) = VN,tPN,t + βEt

[
u′(ct+1)PN,t+1︸ ︷︷ ︸

capital gain

+ VN,t+1PN,t+1︸ ︷︷ ︸
utility dividend

]
(7)

PA,tu
′(ct) = VA,tPA,t + βEt

[
u′(ct+1)PA,t+1︸ ︷︷ ︸

capital gain

+ VA,t+1PA,t+1︸ ︷︷ ︸
utility dividend

]
(8)

where
∂V (At, Nt)

∂Nt

= VN,tPN,t,
∂V (At, Nt)

∂At

= VA,tPA,t

and,
VN,t ≡

[
α
(
PNN

)η
+ (1 − α)

(
PAA

)η] 1−η−ϕη
η αP η−1

N,t Nη−1
t

VA,t ≡
[
α
(
PNN

)η
+ (1 − α)

(
PAA

)η] 1−η−ϕη
η (1 − α)P η−1

A,t Aη−1
t .

Note that the utility dividends for the digital and the non-digital assets are encapsulated into VN,t

and VA,t, respectively. It shows a trade-off faced by the representative agent between the con-
temporaneous marginal utility of consumption and the future conspicuous consumption dividend,
and capital gains from art investments.

We establish the necessary conditions in the following proposition for the intratemporal utility
function in (2) to be concave such that the digital investors possess risk aversion. They could
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instead be risk-seeking if the conditions are violated.

Proposition 1. For non-risk seeking investors with a risk aversion coefficient ϕ > 1, the concavity
of (2) is subject to η, the substitution parameter between traditional art and digital art. The
second derivative of (2) turns more negative, implying a high concavity, if digital and non-digital
art exhibit substitutability, say if η ≥ 0.5.

In what follows, the first-order and envelope conditions imply the conditional moment restriction,

PN,t = βEt

[
u′(ct+1) + VN,t+1

u′(ct) − VN,t

PN,t+1

]
(9)

= βEt

[
MN,t+1PN,t+1

]
(10)

PA,t = βEt

[
u′(ct+1) + VA,t+1

u′(ct) − VA,t

PA,t+1

]
(11)

= βEt

[
MA,t+1PA,t+1

]
. (12)

The stochastic discount factor (SDF) of digital art features an additive property,

MN,t+1 = u′(ct+1) + VN,t+1

u′(ct) − VN,t

= M
(c)
N,t+1 + M

(d)
N,t+1 (13)

where
M

(c)
N,t+1 = u′(ct+1)

u′(ct) − VN,t

, M
(d)
N,t+1 = VN,t+1

u′(ct) − VN,t

.

The denominator of MN,t+1 is the difference between two marginal utilities as we are in a world
with a multiple-good economy. In addition to the standard consumption bundle for basic consump-
tion, we consider the consumption of luxuries and conspicuous goods. The preferences attached
to the heterogeneous consumption goods are different. The insight of u′(ct) − VN,t resembles the
intratemporal substitution between two consumption goods (in the form of a difference instead
of a ratio).

The derived SDF features additivity, comprising two separate parts. M
(c)
N,t+1 measures the required

payoff from the digital art investment for future basic consumption by giving up one unit of current
basic consumption (adjusted for intratemporal substitution). M

(d)
N,t+1 captures, by giving up one

unit of current basic consumption, the required payoff from the digital art investment for future
digital art consumption. In aggregation, MN,t+1 measures the required payoff from the digital art
investment for future basic and digital art consumption by giving up one unit of current basic
consumption.
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Analogously, one obtains the SDF for art,

MA,t+1 = u′(ct+1) + VA,t+1

u′(ct) − VA,t

= M
(c)
A,t+1 + M

(d)
A,t+1 (14)

where
M

(c)
A,t+1 = u′(ct+1)

u′(ct) − VA,t

, M
(d)
A,t+1 = VA,t+1

u′(ct) − VA,t

.

The admissible SDF requires u′(ct) > VA,t, or the SDF will blow up. The same conditions hold
true for digital art and can be guaranteed by Assumption 1. A non-negative SDF implies the
absence of arbitrage and non-negative payoffs or positive prices.

3.2 Risk premiums

An interesting question is whether the risk premium on art investment, as documented by Mandel
(2009), remains low when digitalized counterparts exist. We start with the covariance risk between
the featured pricing kernels and the excess return.

Denoting the gross return of digital art RN,t+1 = PN,t+1
PN,t

, and the return of art RA,t+1 = PA,t+1
PA,t

, and
the risk-free asset Rf , we formalize the pricing formula for both digital and non-digital assets as
follows

0 = βEt

[
MN,t+1

(
RN,t+1 − Rf,t+1

)]
(15)

0 = βEt

[
MA,t+1

(
RA,t+1 − Rf,t+1

)]
. (16)

These two Euler equations look similar to those used to characterize conventional financial assets.
However, the specifications of the SDFs entail distinct properties because these are not purely
investment assets. The insights can be elicited by the covariance risk between the SDFs and
excess return. By rearranging, we characterize the expected excess return on the two types of
assets by the covariate risk between the specified SDFs in (13) and the corresponding excess
return. For digital art, it becomes

Et

[
RN,t+1 − Rf,t+1

]
=

−Covt

(
MN,t+1, RN,t+1 − Rf,t+1

)
EtMN,t+1

(17)

=
−Covt

(
M

(c)
N,t+1, RN,t+1 − Rf,t+1

)
EtMN,t+1

+
−Covt

(
M

(d)
N,t+1, RN,t+1 − Rf,t+1

)
EtMN,t+1

. (18)

By (13), we show that the risk premium is subject to two independent covariance risks. One
covariance risk involves M

(c)
N,t+1 and is standard as it reflects the investment gain negatively cor-

relating with the intertemporal marginal rate of substitution of consumption. In bad times, one
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observes higher negative covariance risk, hence a higher risk premium. The other covariance risk
M

(d)
N,t+1 is harnessed for the utility dividend, being derived when its price is high, captured by

VN,t. Whenever the positive shocks to income and wealth increase the demand, VN,t rises, and so
does M

(d)
N,t+1. Such a positive covariance likely offsets the required risk premium. As a result, the

risk premium hinges on which covariance risk predominates.

Similarly, the non-digital artworks entail the same covariance risk structure

Et

[
RA,t+1 − Rf,t+1

]
=

−Covt

(
MA,t+1, RA,t+1 − Rf,t+1

)
EtMA,t+1

(19)

=
−Covt

(
M

(c)
A,t+1, RA,t+1 − Rf,t+1

)
EtMA,t+1

+
−Covt

(
M

(d)
A,t+1, RA,t+1 − Rf,t+1

)
EtMA,t+1

. (20)

Going further from risk premium to Sharpe ratio, we articulate how the variance of the SDFs
imposes the upper bound of the Sharpe ratio of the art assets, including the digital and non-
digital classes. We employ the notation σ(X) for the volatility of a random variable X and show
that the Sharpe ratio of digital art is upper bounded by the aggregated volatility risk of SDFs

Et

[
RN,t+1 − Rf,t+1

]
σt

[
RN,t+1 − Rf,t+1

] ≤
σt

(
M

(c)
N,t+1

)
+ σt

(
M

(d)
N,t+1

)
EtMN,t+1

. (21)

Likewise, the Sharpe ratio of art has a similar form of the upper bound

Et

[
RA,t+1 − Rf,t+1

]
σt

[
RA,t+1 − Rf,t+1

] ≤
σt

(
M

(c)
A,t+1

)
+ σt

(
M

(d)
A,t+1

)
EtMA,t+1

. (22)

The volatility risks of the SDF, mainly from the kernel governing the utility dividend, set the
scale of bounds. One way to understand this is that, according to Mandel (2009), if artworks act
as a type of insurance or more generally as countercyclical assets, σt

(
M

(c)
A,t+1

)
will be small, i.e.,

M
(c)
A,t+1 fluctuates mildly. By contrast, the kernel governing the utility dividend might fluctuate

because the utility dividend is shrunk due to a price tumble, or inflated due to a price soar. What
can be inferred is that, if digital art investors possess higher utility dividends than conventional
art investors do, and if digital art markets fluctuate more severely than traditional art markets, it
is very likely that σt

(
M

(d)
N,t+1

)
≥ σt

(
M

(d)
A,t+1

)
. One might infer a higher bound of the digital assets

and a higher risk premium being asked as a consequence, compared to non-digital art assets.
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3.3 Digital currency risk premium

In this subsection, we focus on digital currency risk, which could be relevant to the pricing of
digital assets, such as NFTs. An NFT is a unit of non-transferable data stored in a blockchain,
a type of digital ledger. More specifically, an NFT is a type of ERC721 token in the Ethereum
(ETH in short) blockchain. The ERC-721 standard does not facilitate multiple token transactions
within a single transaction. As a result, selling an NFT necessitates two separate transactions:
one for the NFT itself and another for the exchange of ETH. The Ethereum network uses the
ETH as the denominated currency for pricing and transactions. A relevant aspect of NFTs is thus
cryptocurrency risk, i.e., the currency risk between the ETH and any fiat currency, such as the
U.S. dollar. This risk is non-negligible due to the fact that ETH prices are highly volatile.6

Relevant research questions regarding this aspect include whether the risk premium of possessing
NFTs will encompass the currency risk of ETH. Moreover, how do we characterize the pricing
kernel reflecting such currency risk, and how are the kernels with and without currency risk linked?
To answer these research questions, one requires to refine the Euler equation and elicit the utility
dividend potentially contaminated by cryptocurrency risk. We define the nominal exchange rate
et in U.S dollar per ETH:

P$,t = PN,tet.

One can convert the ETH-denominated NFTs to the dollar-denominated ones P$,t and derive the
capital gains and dividend yield in dollars. By introducing currency conversion, we revisit the
intratemporal utility in (2):

V e(Z) =
[
α
(
PNetN

)η
+ (1 − α)

(
PAA

)η]1/η
. (23)

We assume that at this moment, the substitution parameter η remains, although it is likely to
shrink in the presence of currency risk. Note that we have superscript e on V e(Z) to make a
distinction from the one denominated by ETH.

We represent the Euler equation and the SDFs in the dollar-denominated correspondence. The
first-order condition with respect to Nt or At, given the intertemporal currency converter et and
et+1, leads to

PN,tetu
′(ct) = V e

N,tPN,tet + βEt

[
u′(ct+1)PN,t+1et+1︸ ︷︷ ︸

capital gain

+ V e
N,t+1PN,t+1et+1︸ ︷︷ ︸

utility dividend

]
, (24)

6Biais et al. (2023) show that cryptocurrency prices even fluctuate when fundamentals are constant. Kong and
Lin (2022) observe that the price of an NFT is influenced by the cryptocurrency market and that buyers assess
their NFT investments in USD. Ante (2022) finds a strong correlation between the NFT market and the Bitcoin
and Ethereum cryptocurrencies.
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where
∂V e(At, Nt)

∂Nt

= V e
N,tPN,tet

and
V e

N,t ≡ α
[
α
(
PNetN

)η
+ (1 − α)

(
PAA

)η] 1−η−ϕη
η (PN,tetNt)η−1.

Not only capital gains but also utility dividends are augmented by currency rewards, which are
caused by ETH appreciation relative to the dollar. The NFT possessor enjoys the compounded
beneficiary from the appreciation of his or her collection but also an appreciation of the digital
currency, the medium used for purchase. The resulting utility dividend is likely to be strengthened
due to that currency reward.

We arrive at, given the first-order condition, the pricing formula in dollars:

P$,t = βEt

[
u′(ct+1) + V e

N,t+1

u′(ct) − V e
N,t

P$,t+1

]
(25)

0 = βEt

[
M$

N,t+1(R$,t+1 − Rf,t+1)
]
, (26)

where R$,t+1 = P$,t+1
P$,t

= RN,t+1 × Re,t+1 with Re,t+1 = et+1
et

for the currency return of holding

ETH. M$
N,t+1 = u′(ct+1)+V e

N,t+1
u′(ct)−V e

N,t
denotes the pricing kernel denominated in dollars. With currency

risk, M$
N,t+1 is no longer equivalent to the one defined in (13). When markets are complete, the

stochastic discount factor is unique .

MN,t+1 = M$
N,t+1 × et+1

et

. (27)

There is resemblance to international finance theory connecting the domestic kernels and the
foreign kernels in international trades. The two kernels are linked to the currency risk between
the decentralized and the centralized marketplace. It implies that, if markets are complete, the
pricing kernel in the decentralized market and the one in the centralized market can be mutually
inferred by using the currency converter.

The risk premium under currency risk exposure is

Et

[
R$,t+1 − Rf,t+1

]
=

−Covt

(
M$

N,t+1, R$,t+1 − Rf,t+1
)

EtM
$
N,t+1

. (28)

Building on the above, we can characterize the logarithmic expected excess return under the
currency risk exposure in the following proposition. Note that we use lowercase letters to denote
logs of capitalized variables, e.g. mN,t+1 = log MN,t+1.

Proposition 2 (The expected log excess return with currency risk). Given (28) and under
the assumptions that (1) asset markets are complete; (2) rN and re are mutually independent
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random variables; (3) mN,t+1 is orthogonal to the currency reward re; and (4) there is a one-
period real interest rate closely related to the conditional mean of the two SDFs, that is, EtmN,t+1 =
Etm

$
N,t+1 = 1

rf,t+1
, the expected log excess return hinges on the variance risk of the currency return.

E[rN,t+1 + re,t+1 − rf,t+1] =
−Covt

(
mN,t+1, rN,t+1 + re,t+1 − rf,t+1

)
Etm

$
N,t+1

+ rf,t+1Vart(re,t+1) (29)

= E[rN,t+1 − rf,t+1] + rf,t+1Vart(re,t+1). (30)

The covariance risk in (30) is linked to the characterized risk premium in (17). The proof and a
more elaborate discussion of the assumptions can be found in the Appendix.

The insights from this proposition are that digital asset investors require an additional currency
risk premium as compensation for bearing the variance risk of the currency return, as long as
they wish to make their basic consumption in dollars.

4 Model calibration

Empirically examining the proposed framework is a challenge due to data availability. Studies on
traditional art have used auction data to study art returns: these data allow for a relatively long
sample period, but a typical painting only appears in the data once every few decades (Goetzmann
(1993); Mei and Moses (2002); Ashenfelter and Graddy (2003); Renneboog and Spaenjers (2013)).
NFT markets offer a potential data source for digital art prices, even though they only represent
a sub-class of digital art. However, NFT data are only available for a relatively short time period,
as the NFT market was limited in size prior to 2021 (Oh et al. (2022)).7 Additional complicating
factors are the presence of wash trades in NFT data (Cong et al. (2022)) and the importance of
selection bias in auction data, as shown by Korteweg et al. (2016) for traditional art and Huang
and Goetzmann (2023) for NFTs. As an alternative, we employ a calibration method to match
blockchain characteristics that reflect the digital adoption cycles, as well as wealth growth in the
real and digital economy. This section explains our calibration procedure and the corresponding
results.

4.1 States and state transition matrix

The digital art price is a stochastic process whose realized value depends on the state of the world
z′ in period t + 1. The state variable z follows a Markov Chain which can take on four values:

7Nonetheless, an analysis could start mid-2017 (as in Kong and Lin (2022)) or in 2018 (as in Borri et al. (2023)).
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(1) expansion in the real economy EB; (2) recession in the real economy RB; (3) expansion in the
digital economy ED; and (4) recession in the digital economy RD. Four states of the world form
the 4×4 state transition probability matrix. For ease of estimation, we decompose the 4×4 state
transition probability matrix into two separate 2×2 matrices for the two markets and consolidate
these two by the Kronecker product.

Estimating the real economy transition probability matrix has been widely undertaken by a large
body of literature. We adopt the estimated matrix from Gupta et al. (2022) using NBER recession
dating data. Estimating the digital economy transition probability matrix is nontrivial due to
the market being nascent. We resort to fitting a Markov Switching model for the linear model
using the Ethereum return series and the total number of addresses with a non-zero balance
on the blockchain. The value of ETH can indicate the exuberance of the digital economy. In
comparison to other prominent digital currencies, ETH stands out for its extensive utility within
decentralized markets, notably within the realm of Decentralized Finance (DeFi) applications.
These applications encompass a diverse range of functionalities such as crowdfunding, lending,
and payments. The non-zero balance addresses in the ETH blockchain serve as an indication of
digital adoption, as they represent users who have staked their coins and actively participate in
the network.8 During 2021-2022, the total number of non-zero balance addresses increases by
approximately 20 million, to about 70 million addresses with a non-zero balance.

Using blockchain data from August 2015 to November 2022, we build a Markov Switching model
for the relation between monthly ETH returns (the response variable) and the monthly growth
rates of non-zero addresses (the explanatory variable). The estimated transition probability ΠD

is reported along with, for comparison, the transition matrix of the real economy ΠB from Gupta
et al. (2022):

ΠD =

z′

z


ED RD

ED 0.783 0.217
RD 0.433 0.567

 ΠB =

z′

z


EB RB

EB 0.877 0.123
RB 0.581 0.419

 .

By comparing the transition matrices of the business cycle in the real and digital economy, we
find notable differences. In the digital economy, the expansion state is found to be less persistent
compared to the real economy, with probabilities of 0.783 versus 0.877. Additionally, there is a
higher probability of transitioning to the recession state in the digital economy (0.217) compared
to the real economy (0.123). Furthermore, the recession state in the digital economy tends to be
more prolonged, with a probability of 0.567, while in the real economy, it is relatively shorter at
0.419. The upper panel of Figure 1 illustrates the evolution of the probability of expansion in the
digital economy.

8Ghost addresses, which have no transaction history, are thus excluded from the analysis.
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Figure 1: Probability of expansion and wealth growth in the digital economy
The top panel displays the evolution of probability of expansion (ED); the bottom one is the wealth growth over

time. The wealth level is calculated from the ETH market capitalization per non-zero balance address.

Consolidating these two separate matrices by the Kronecker product, we arrive at the 4 × 4 state
transition probability matrix:

Π = ΠB ⊗ ΠD =

z′

z


0.687 0.190 0.096 0.027
0.379 0.498 0.053 0.070
0.455 0.126 0.328 0.091
0.251 0.330 0.181 0.238

 .

We note that in this one-period transition matrix, the state space comprises of four tubes (state
pairs):

Z = {(EB, ED), (EB, RE), (RB, ED), (RB, RD)}, ∀z, z′ ∈ Z.

4.2 State-dependent stochastic discount factors

To price digital assets in the digital markets, state prices play a crucial role by serving as pricing
kernels. Building upon the works of Hansen and Jagannathan (1991) and Kozak et al. (2020), we
can express the SDF in the digital economy as a linear span of the characteristics-based factor
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returns denoted by Ft

MD,t = 1 − b′(Ft − EFt),

where b ∈ RH is the vector of the SDF loadings for the H-dimensional characteristics-sorted
factors. Under the no arbitrage condition and a non-singular covariance matrix Σ = E[(Ft −
EFt)(Ft − EFt)′], the SDF loading takes the form

b = Σ−1EFt.

We employ three characteristics-sorted factors in the digital currency markets - the cryptocurrency
market capitalization, size, and momentum factor - constructed from the cross-sectional crypto
returns as in Liu et al. (2022). We then estimate the SDF loading, and from there we infer
the corresponding MD,t. We obtain the estimated SDF loading vector b = [0.265, 0.468, 0.332]′.
The loading on the size-sorted characteristic (0.468) imposes a relatively higher weight than the
market cap (0.265) and the momentum factor (0.322) in determining the pricing kernel in the
digital economy. Figure 2 displays the SDF estimates over time, which inversely comove with the
ETH return (with a correlation of -0.25).

The state-dependent SDFs in the digital economy are pinned down to the state price matrix
MD. We adopt MB, the SDF matrix estimated by Gupta et al. (2022) as the state price matrix
representing real economy. To estimate this matrix, Gupta et al. (2022) match the U.S. risk-free
rate and the equity risk premium in both expansions and recessions.

MD =

z′

z


ED RD

ED 0.829 1.150
RD 1.118 1.220

 MB =

z′

z


EB RB

EB 0.761 2.639
RB 0.262 1.917

 .

Not surprisingly, the state prices are high during market downturns in both economies. The
unified one-period SDF transition matrix is pinned down as

M = MB ⊗ MD =

z′

z


0.63 0.88 2.19 3.04
0.85 0.93 2.95 3.22
0.22 0.30 1.59 2.21
0.29 0.32 2.14 2.34

 .

This calibrated SDF matrix sheds lights on the theoretical characterization of the SDF of digital
art in (13). In particular, during periods of market prosperity, the calibrated SDF resembles the
kernel associated with utility dividends.
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Figure 2: Time variation of the SDF in the digital economy
The top panel displays the ETH return series; the bottom shows the SDFs over time.

4.3 State-dependent wealth growth in a digital market

One stylized fact about conspicuous goods is their price comovement with wealth distribution
(Mandel; 2009; Goetzmann et al.; 2011). In their study, Goetzmann et al. (2011) conducted
a regression analysis of art returns against income fluctuations and established a notable and
positive influence of income changes on art returns. As a representation of social status, the price
of these goods (not necessarily their value) can be viewed as a function of wealth or wealth growth.
We hypothesize that digital art prices increase with income and wealth levels in both economies.
Wealth, particularly for high-income individuals, follows a stochastic process in which the growth
rate realized depends on the state of the world z′ in period t + 1. The stochastic wealth process is
characterized by state-dependent growth rates that determine the true underlying law of motion
responsible for wealth generation:

W j
t+1(z′) = γj

t+1(z′)W j
t ∀j ∈ {B, D}.

Going forward, we formulate the price process of the digital art assets as follows:

PN,t+1(z′) = βγB
t+1(z′)γD

t+1(z′)W B
t W D

t . (31)

The specification above admits that PN,t+1(z′) takes into account the multiplicity of wealth con-
tributors from the two respective economies. β is a linear transformation that maps the wealth
level to the art price, irrespective of state. For simplicity, we set β = 1. Plugging (31) into the
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Euler equation in (10), we derive that the expected price takes the form:

PN,t(W B
t , W D

t , z) =
∑
z′

Π(z′|z)M(z′|z)γB
t+1(z′)γD

t+1(z′)W B
t W D

t , (32)

where Π(z′|z) = ΠB(z′|z) ⊗ ΠD(z′|z), M(z′|z) = MB(z′|z) ⊗ MD(z′|z). One can envisage that the
price of the traditional art assets are the reduced form of the price formalization in (32), in the
sense that only the wealth in the real economy matters:

PA,t(W B
t , z) =

∑
z′

ΠB(z′|z)MB(z′|z)γB
t+1(z′)W B

t . (33)

Proposition 3 (The closed-form representation of the digital asset price). Given the
characterized state-dependent stochastic discount factors, the state probability transition matrix
and the wealth growth under different states and markets, an analytic expression of a digital asset
price is

PN,t(W B
t , W D

t , z) = CB(z) · W B
t + CD(z) · W D

t + d(z) · W B
t · W D

t , (34)

where CB(z) = Π(z)⊙M(z) ·γB(z)′, CD(z) = Π(z)⊙M(z) ·γD(z)′, d(z) = Π(z)⊗M(z) ·
(
γB(z)⊗

γD(z)
)′

. Π(z) and M(z) are a 4 × 4 matrix, while γB(z) and γD(z) are a 4-dimensional vector.
We employ two matrix operators: ⊙ for element-wise multiplication for matrices and · for matrix
dot product.

The derivation is provided in the Appendix.

4.4 Main calibration results

4.4.1 Wealth data in the real and digital economy

The calibration of the digital art price employs wealth time series from both economies, encom-
passing the wealth level and its growth. The real economy’s wealth series is drawn from the annual
World Wealth Reports, published jointly by Merrill Lynch and Capgemini. Commencing in 1996
and extending to 2022, these reports comprehensively document the global count and financial
wealth of high-net-worth individuals (HNWIs). These individuals are defined as possessing a min-
imum of 1 million USD in financial assets. The wealth data is confined to the high-wealth group,
which serves as a proxy for the purchasing capability of collectors with respect to art acquisition.

For the estimation of wealth distribution and dynamics within the digital economy, we capitalize
on the transparency afforded by blockchain technology. This allows us to delve into the transaction
log embedded within the blockchain ecosystem. Blockchains, being immutable ledgers, maintain
a comprehensive record of each transaction. This allows us to search, filter, and aggregate data
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across the entire chain, enabling us to calculate various blockchain characteristics such as the
transaction count, transaction values, active addresses, network activeness, network growth, coin
circulation, block utilization, and transaction fees. The overall wealth in the ETH ecosystem is
quantified through its market capitalization, which is determined by multiplying the current price
of ETH by the circulating supply (the total amount of unspent transaction outputs within the
network). Market capitalization represents the current market value of all coins in circulation
within the ETH network. However, it may not fully capture the actual wealth of coin holders,
particularly those who have staked their coins on the network as an active form of adoption. To
better gauge the wealth of coin holders, we consider the count of non-zero balance addresses,
which represents the population of actual coin possessors. By dividing the market capitalization
by the number of non-zero balance addresses at the time, we obtain a more reflective measure of
the wealth status of users who have actively adopted ETH.

Absolute wealth and wealth growth, which depend on the state of the economy, play a pivotal role
in the price calibration. Employing the NBER recession dating data and the smooth probabilities
(the upper panel of Figure 1) derived from the Markov-switching model in which we estimate
ΠD, we classify the wealth data into four distinct states and report the mean value within each
category in Table 1. When comparing states, the growth rates of wealth within the digital economy
demonstrate a broader range of variation, spanning from the most substantial growth rate at 1.15
to the lowest at 0.83, surpassing the range of growth rates observed in the real economy. Notably,
the wealth level and its growth undergo fluctuations throughout the digital business cycles.

Table 1: Wealth-related parameters and its realizations across states

The wealth series in the real economy (W B) is obtained from the World Wealth Reports, which are annual reports
documenting the wealth of high net worth individuals in trillions of USD. The wealth in the digital economy (W D)
is estimated from the ETH blockchain. It is measured by the monthly logarithmic market capitalization of ETH,
denominated in US dollars, and adjusted for user adoption represented by non-zero balance addresses.

EB RB ED RD

γB 1.08 1.02 1.07 1.03
W B 10.14 10.06 10.22 9.30
γD 1.04 1.02 1.15 0.83

W D 8.41 7.55 8.58 6.11

After detrending, which helps to isolate and analyze the variations in wealth and its growth
that are independent of the long-term trend, Figure 1 illustrates the relationship between wealth
growth (γD) and the probability of expansion in the digital economy. Notably, a significant
surge in wealth growth occurred in 2017, which coincided with the cryptocurrency bubble period.
Another notable period of growth is observed in 2021, when institutional adoption and acceptance
of cryptocurrencies by some major brands provided the sector with a newfound sense of legitimacy.
Additionally, the low-interest-rate environment during the COVID-19 pandemic led to inflation
fears, prompting investors to seek alternative investments like cryptocurrencies. Potentially, the
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increased amount of time people spent online during the pandemic and the subsequent lockdowns
also contributed to the growth in the digital economy.

4.4.2 The calibrated digital art price

The closed-form expression of the digital asset price formulated in Proposition 3 can be explicitly
derived using the wealth parameters in Table 1, i.e., the wealth realizations in the two respective
economies in the distinct states of the world. The calibrated MB and MD capture the state
price, while ΠB and ΠD offer the probabilistic assessments on the future state realization. The
conditional price is the price realization at state z′ conditional on the state of the other market.
The unconditional price is the price realization at state z′ after taking into account all the states
of nature of the counterpart market. One intuition for having the conditional price paired with
the unconditional price is to assess the importance of the conditional information from either
market. If the unconditional price is very close to the conditional one, than information on the
conditioning is less relevant.

The main characteristics of the calibrated prices, calculated under conditional and unconditional
scenarios, are outlined in Table 2. As expected, in the unconditional case, we observe that prices
during a recession state (95.81 and 93.75) are lower than during an expansion state (101.13 and
102.38). During transitions from economic expansion to recession in the real economy, digital art
prices exhibit a subsequent decrease of 5.26%. By comparison, when a market downturn occurs
within the digital economy, prices experience a more pronounced decline of 8.43%. This indicates
that digital art prices are more responsive to fluctuations in business cycles within digital markets.
When both markets experience a recession simultaneously in the case of (RD|RB) or (RB|RD), the
prices further decrease compared to the unconditional case, indicating an approximated 13.25%
price drop. Similarly, when one market is in expansion while the other is in recession, the con-
ditional price is lower compared to the unconditional price. This is particularly noticeable when
the real economy thrives but the digital economy falters. For instance, the price is 101.13 (EB)
at the expansion state of the real economy, but it decreases to 96.12 (EB|RD) given a recession
state in the digital economy.

The proposed pricing theory offers a closed-form solution that allows the price to evolve based on
state transitions and wealth realizations in both markets. In Figure 3, we present the simulated
price evolution over time and states. Notably, 2021 stands out as a highly prosperous year for the
digital art market, driven by significant wealth growth in both sectors. Digital art prices doubled
compared to 2016. This aligns with reports by Forbes Magazine documenting a 40% increase in
wealth among the richest Americans during the pandemic.9 This phenomenon extends beyond the

9see https://www.forbes.com/sites/giacomotognini/2021/10/05/meet-the-44-newcomers-joining-the-forbes-
400-list-of-americas-richest-people/?sh=4d708d0f297d.
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Table 2: Calibrated digital asset prices

Conditional price

(ED|EB) (RD|EB) (ED|RB) (RD|RB)
103.30 95.50 99.81 88.81

(EB|ED) (RB|ED) (EB|RD) (RB|RD)
103.99 99.81 96.12 88.81

Unconditional price

EB RB ED RD

101.13 95.81 102.38 93.75

real economy, as the digital economy experiences a digital bull market fueled by the widespread
adoption of disruptive technologies amidst the pandemic. The combined influence of these two
forces results in an upward push on prices.

4.4.3 Risk premium and Sharpe ratio

Our analysis considers digital art as a combination of consumption and investment. A key ques-
tion is: What would be a fair expected return for this alternative investment? To address this
question, the calibration approach and model-derived prices provide an avenue for evaluating risk
factors, risk premiums, and the Sharpe ratio in the digital economy. This discussion follows the
conventional finance literature concerning risk-return assessment. It is important to note that the
risk factors in the digital economy may differ from those observed in traditional markets or take
on a more complex form. The unique discount factor M = MB ⊗ MD in this study represents
the intersection of the two pricing kernels in both economies. This discount factor serves as a
valuation operator within a marketplace that is sensitive to the health of both the real and digital
economies.

We provide an analysis of exposure to systematic risk, the price of risk, the expected return
with and without digital currency risk premiums, and the Sharpe ratio. These metrics allow for
a comparison of risk-return characteristics with equity or other pure investment assets. Table
3 presents these risk and return estimates. β measures the covariance risk between the SDF
and return series. During the expansion states EB or ED, similar to equity, the covariance is
negative, leading to a positive value of β (2.60 in EB and 2.15 in ED). During the recession of the
digital markets (RD), β remains positive but of lesser magnitude, indicating a higher exposure to
systematic risk during upward market conditions compared to market downturns. This divergence
from equity suggests that the digital (art) market exhibits higher systematic risk during bullish
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Figure 3: Price evolution
The model-implied price is visualized based on (34). Note that the monthly wealth realization in the digital

market is on a monthly basis while the realization in the real economy can only be observed annually. The unit
of y-axis is trillions USD in the bottom panel and the thousand USD in the middle panel.
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periods than bearish ones.

Interestingly, in the recession of the real economy (RB), β turns negative (-0.51), implying a
positive covariance between the pricing kernel and return. This signifies that digital art, akin to
traditional art, displays strong countercyclical behavior during market downturns. It functions as
an asset with insurance-like characteristics, corroborating findings from Mandel (2009).

We now delve into the price of risk, measured by λ = Var[M ]
E[M ] . As expected, the price of risk is

elevated during recession periods in both sectors. With the price of risk and estimates of β, one
can calculate the expected returns E[rN ] = β × λ. It is important to note that higher returns
are required in the market upswing due to increased exposure to systematic risk, rather than the
price of risk itself. Once again, the negative expected returns and risk premiums observed during
the recession of the real economy align with the findings in Mandel (2009). Our results not only
strengthen these findings but also extend them to the realm of digital assets.

When considering the additional exposure to digital currency risk, the expected return must
account for the risk premiums associated with the fluctuation of the conversion rate between fiat
money and any digital currency. For example, the ERC-721 standard, widely used for NFTs, does
not facilitate multiple token transactions within a single transaction. As a result, selling an NFT
necessitates two separate transactions: one for the NFT itself and another for the exchange of
ETH. By utilizing Proposition 2 and equation (30), we calculate the expected return incorporating
the currency risk compensation. The disparity between E[rN + re] and E[rN ] is influenced by the
variance risk of digital currency, denoted as Vart(re). Notably, the variance risk of the digital
currency increases during market booms and decreases during market downturns.

Table 3: Model-implied risk compensations and returns

EB RB ED RD

β 2.60 -0.51 2.15 0.88
λ 0.81 0.87 0.73 1.01

E[rN ] 2.12 -0.44 1.57 0.89
E[rN + re] 2.25 -0.38 1.70 0.94

Vart(re) 0.13 0.06 0.12 0.05
SharpeRatio 0.18 -0.05 0.15 0.08

Lastly, we examine the Sharpe ratio of digital art assets, which serves as a mean-variance perfor-
mance measure. The magnitude and sign of the Sharpe ratio exhibit variations across different
business cycles in the two markets. During the expansion phase of the real economy, the monthly
Sharpe ratio can reach 0.18, while in the digital economy, it can reach up to 0.15. For compari-
son, Renneboog and Spaenjers (2013) find an annualized Sharpe ratio of 0.20 for traditional art
during the period 1957 - 2007, whereas Korteweg et al. (2016) calculate an annualized Sharpe
ratio of 0.11 for their selection-corrected fine art index over the period 1961 to 2013. Annualized
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Sharpe ratios are around 0.3 for bonds and 0.4 for stocks in Renneboog and Spaenjers (2013),
and substantially lower for gold, commodities, and real estate.10 However, the monthly Sharpe
ratio for digital art declines during the recession of the digital economy and even turns negative
during the market downturn of the real economy.

5 Conclusion

This paper aims to provide a better understanding of how to price digital art. Over the last
decade, the size of the digital art market has increased substantially due to the rise of NFTs,
developments in artificial intelligence, and a generally increased interest in digital art. There has
been a huge expansion in the number of buyers purchasing and selling digital art, with more
than 100,000 buyers in 2021 (McAndrew (2022)). The NFT market declined in 2022, but sales
still represent values that were over 70 times the size of the market in 2020. A large variety of
artificially intelligent art generators have become available and companies are investing heavily in
further developments in this area. Overall, a future further transition to a digital economy and
digital artwork is likely.

Besides digital art, our insights are relevant for luxury digital goods. Although other luxury digital
goods have not yet reached the amounts paid for digital art, people have already paid substantial
amounts of money for virtual items, such as $38,000 for an online dog in the multiplayer game
Dota2 in 2013, and $6 million for the virtual planet Calypso in the Entropia Universe in 2011. The
further development of virtual worlds and a metaverse will only increase the attention for such
items. Although we focus on the pricing and valuation of digital art in this paper, the model’s
implications are similar for other digital luxuries.

10Korteweg et al. (2016) find similar Sharpe ratios, with the exception that corporate bonds are associated with
the highest annualized Sharpe ratio during their sample period (0.415).
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Appendix

Proof of Proposition 2. Proof of Proposition 2 requires the necessary assumptions that (1) asset
markets are complete and the law of one price (no arbitrage condition) holds, with a positive
stochastic discount factor that is unique; (2) RN and Re are mutually independent random vari-
ables; (3) MN,t+1 is orthogonal to the currency reward Re; and (4) there is a one-period real interest
rate closely related to the conditional mean of the two SDFs, that is, EtmN,t+1 = Etm

$
N,t+1 = 1

rf,t+1
.

The first assumption is standard in asset pricing theory. The second assumption asserts that the
reward of digital assets in the decentralized market is independent of the value of the currency
used for transactions. In a similar vein, the third assumption posits that the risk perception
of possessing digital assets measured by MN,t+1 reflects the risk assessment in the decentralized
markets, including hacks, fraudulent digital goods, and scams, and should decouple from cur-
rency risk. However, M$

N,t+1 absorbs currency risk. The last assumption imposes no interest rate
differentials in the two separate marketplaces.

By using lowercase letters to denote logs of capitalized variables, e.g. mN,t+1 = log MN,t+1, we do
a log transformation for (27)

m$
N,t+1 = mN,t+1 − re,t+1.

The logarithmic expected excess return with currency risk is

E[rN,t+1 + re,t+1 − rf,t+1] =
−Covt

(
m$

N,t+1, rN,t+1 + re,t+1 − rf,t+1
)

Etm
$
N,t+1

=
−Covt

(
mN,t+1 − re,t+1, rN,t+1 + re,t+1 − rf,t+1

)
Etm

$
N,t+1

=
−Covt

(
mN,t+1, rN,t+1 + re,t+1 − rf,t+1

)
Etm

$
N,t+1

+
Covt

(
re,t+1, rN,t+1 + re,t+1 − rf,t+1

)
Etm

$
N,t+1

= E[rN,t+1 − rf,t+1] + rf,t+1Vart(re,t+1).

The equality is shown under the proposed assumptions. In particular, the first covariance risk is
linked to the characterized risk premium in (17), while the second covariance risk boils down to
the variance risk of the currency return.
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Proof of Proposition 3. To obtain the closed-form solution of the pricing formula, we solve the
partial differential equation that arises from the Bellman equation in (32). The price valuation
function, which represents the recursive future payoff or utility outlined by the Bellman equation,
involves two random variables (W B

t and W D
t ). By solving the partial differential equation, we

obtain an analytical approximation for the unknown valuation function. However, in most cases,
an analytic solution may not exist. Analytic solutions are only possible for specific forms of
differential functions, accompanied by appropriately selected boundary conditions.

Given the model setup, the partial differential equation takes the form

∂PN,t

∂W B
t ∂W D

t

= d(z), (35)

where d(z) = Π(z) ⊗ M(z) ·
(
γB(z) ⊗ γD(z)

)′
. Π(z) and M(z) are a 4 × 4 matrix, while γB(z)

and γD(z) are a 4-dimensional vector. Integrating (35) with respect to W D
t , we obtain

∫ ∂PN,t

∂W B
t ∂W D

t

dW D
t = ∂PN,t

∂W B
t

= CD(z) + d(z)W D
t . (36)

Similarly, we integrate (35) with respect to W B
t to arrive at

∫ ∂PN,t

∂W B
t ∂W D

t

dW B
t = ∂PN,t

∂W D
t

= CB(z) + d(z)W B
t . (37)

As a result, we turn the partial differential equation into two separate ordinary differential equa-
tions in (36) and (37), which is a linear function w.r.t W D

t and W B
t , respectively.

Then, we integrate (36) w.r.t W B
t and (37) w.r.t W D

t to arrive at

PN,t = CB(z) · W B
t + CD(z) · W D

t + d(z) · W B
t · W D

t , (38)

where CB(z) = Π(z) ⊙ M(z) · γB(z)′, CD(z) = Π(z) ⊙ M(z) · γD(z)′.

27



References
Ait-Sahalia, Y., Parker, J. A. and Yogo, M. (2004). Luxury goods and the equity premium, The Journal of Finance

59(6): 2959–3004.

Ante, L. (2022). The non-fungible token market and its relationship with bitcoin and ethereum, FinTech 1: 216–224.

Ashenfelter, O. and Graddy, K. (2003). Auctions and the price of art, Journal of Economic Literature 41: 763–786.

Biais, B., Bisiere, C., Bouvard, M., Casamatta, C. and Menkveld, A. J. (2023). Equilibrium bitcoin pricing, The
Journal of Finance 78: 967–1014.

Borri, N., Liu, Y. and Tsyvinski, A. (2023). The economics of non-fungible tokens, Working paper .

Cong, L. W., Li, X., Tang, K. and Yang, Y. (2022). Crypto wash trading, Working paper .

Goetzmann, W. N. (1993). Accounting for taste: Art and financial markets over three centuries, American
Economic Review 83: 1370–1376.

Goetzmann, W. N., Renneboog, L. and Spaenjers, C. (2011). Art and money, American Economic Review 101: 222–
226.

Gupta, A., Mittal, V. and Van Nieuwerburgh, S. (2022). Work from home and the office real estate apocalypse,
Working paper .

Hansen, L. P. and Jagannathan, R. (1991). Implications of security market data for models of dynamic economies,
Journal of Political Economy 99(2): 225–262.

Huang, D. and Goetzmann, W. N. (2023). Selection-neglect in the NFT bubble, Working paper .

Kong, D.-R. and Lin, T.-T. (2022). Alternative investments in the fintech era: The risk and return of non-fungible
token, Working paper .

Korteweg, A., Kraussl, R. and Verwijmeren, P. (2016). Does it pay to invest in art? a selection-corrected returns
perspective, Review of Financial Studies 29(4): 1007–1038.

Kozak, S., Nagel, S. and Santosh, S. (2020). Shrinking the cross-section, Journal of Financial Economics
135(2): 271–292.

Li, Y., Ma, M. and Renneboog, L. (2023). In art we trust, Management Science forthcoming.

Liu, Y., Tsyvinski, A. and Wu, X. (2022). Common risk factors in cryptocurrency, The Journal of Finance
77(2): 1133–1177.

Lovo, S. and Spaenjers, C. (2018). A model of trading in the art market, American Economic Review 108(3): 744–
74.

Mandel, B. R. (2009). Art as an investment and conspicuous consumption good, American Economic Review
99(4): 1653–63.

McAndrew, C. (2022). The art basel and ubs global art market report, Technical report.

Mei, J. and Moses, M. (2002). Art as an investment and the underperformance of masterpieces, American Economic
Review 92(5): 1656–1668.

28



Oh, S., Rosen, S. and Zhang, A. L. (2022). Investor experience matters: Evidence from generative art collections
on the blockchain, Working paper .

Pakoš, M. (2011). Estimating intertemporal and intratemporal substitutions when both income and substitution
effects are present: The role of durable goods, Journal of Business & Economic Statistics 29(3): 439–454.

Renneboog, L. and Spaenjers, C. (2013). Buying beauty: On prices and returns in the art market, Management
Science 59: 36–53.

Wachter, J. A. and Yogo, M. (2010). Why do household portfolio shares rise in wealth?, The Review of Financial
Studies 23(11): 3929–3965.

29



 

Recent Issues 
All CFS Working Papers are available at www.ifk-cfs.de. 
 
 

No. Authors Title 

715 Alessandro Moro, Andrea Zaghini The green sin: how exchange rate volatility 
and financial openness affect green premia 

714 Hans Gersbach, Hans H. Haller, And 
Sebastian Zelzner 

Enough Liquidity with Enough Capital—and 
Vice Versa? 

713 Volker Brühl Generative Artificial Intelligence (GAI) – 
foundations, use cases and economic 
potential 

712 Isabelle Cathérine Hinsche and  
Rainer Klump 

Mirror, Mirror on the Wall, Who Is 
Transitioning Amongst Them All? 

711 Volker Brühl Big Tech, the platform economy and the 
European digital markets 

710 Andrea Zaghini Unconventional green 

709 Gilbert Fridgen, Roman Kräussl, 
Orestis Papageorgiou, and 
Alessandro Tugnetti 

The Fundamental Value of Art NFTs 

708 Roman Kräussl, Tobi Oladiran, and 
Denitsa Stefanova 

ESG as Protection Against Downside Risk 

707 Roman Kräussl, Joshua Pollet, and 
Denitsa Stefanova 

Closed-end Funds and Discount Control 
Mechanisms 

706 Roman Kräussl, Zsofia Kräussl, Joshua 
Pollet, and Kalle Rinne 

The Performance of Marketplace Lenders 

705 Rainer Haselmann, Christian Leuz, 
Sebastian Schreiber 

Know Your Customer: Informed Trading by 
Banks 

http://www.ifk-cfs.de/en/research/years/working-papers.html

	Introduction
	Traditional and Digital Art
	Intratemporal substitutability between traditional art and digital art
	Expenditure shares of digital art and traditional art

	Asset Pricing Models for Digital Art
	Stochastic discount factors
	Risk premiums
	Digital currency risk premium

	Model calibration
	States and state transition matrix
	State-dependent stochastic discount factors
	State-dependent wealth growth in a digital market
	Main calibration results
	Wealth data in the real and digital economy
	The calibrated digital art price
	Risk premium and Sharpe ratio


	Conclusion



