
J. Chem. Phys. 154, 234105 (2021); https://doi.org/10.1063/5.0038174 154, 234105

© 2021 Author(s).

Maximum likelihood estimates of diffusion
coefficients from single-particle tracking
experiments
Cite as: J. Chem. Phys. 154, 234105 (2021); https://doi.org/10.1063/5.0038174
Submitted: 19 November 2020 • Accepted: 20 May 2021 • Published Online: 17 June 2021

Published open access through an agreement with Max Planck Institute of Biophysics

 Jakob Tómas Bullerjahn and  Gerhard Hummer

ARTICLES YOU MAY BE INTERESTED IN

Optimal estimates of self-diffusion coefficients from molecular dynamics simulations
The Journal of Chemical Physics 153, 024116 (2020); https://doi.org/10.1063/5.0008312

Systematic errors in diffusion coefficients from long-time molecular dynamics simulations
at constant pressure
The Journal of Chemical Physics 153, 021101 (2020); https://doi.org/10.1063/5.0008316

Chemical physics software
The Journal of Chemical Physics 155, 010401 (2021); https://doi.org/10.1063/5.0059886

https://images.scitation.org/redirect.spark?MID=176720&plid=2023708&setID=378408&channelID=0&CID=740896&banID=520944490&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=3baaf36e92ffc5850302086a0099c51d2f33b374&location=
https://doi.org/10.1063/5.0038174
https://doi.org/10.1063/5.0038174
http://orcid.org/0000-0002-2459-219X
https://aip.scitation.org/author/Bullerjahn%2C+Jakob+T%C3%B3mas
http://orcid.org/0000-0001-7768-746X
https://aip.scitation.org/author/Hummer%2C+Gerhard
https://doi.org/10.1063/5.0038174
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0038174
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0038174&domain=aip.scitation.org&date_stamp=2021-06-17
https://aip.scitation.org/doi/10.1063/5.0008312
https://doi.org/10.1063/5.0008312
https://aip.scitation.org/doi/10.1063/5.0008316
https://aip.scitation.org/doi/10.1063/5.0008316
https://doi.org/10.1063/5.0008316
https://aip.scitation.org/doi/10.1063/5.0059886
https://doi.org/10.1063/5.0059886


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Maximum likelihood estimates of diffusion
coefficients from single-particle
tracking experiments

Cite as: J. Chem. Phys. 154, 234105 (2021); doi: 10.1063/5.0038174
Submitted: 19 November 2020 • Accepted: 20 May 2021 •
Published Online: 17 June 2021

Jakob Tómas Bullerjahn1 and Gerhard Hummer1,2,a)

AFFILIATIONS
1 Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
2 Institute of Biophysics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany

a)Author to whom correspondence should be addressed: gerhard.hummer@biophys.mpg.de

ABSTRACT
Single-molecule localization microscopy allows practitioners to locate and track labeled molecules in biological systems. When extracting
diffusion coefficients from the resulting trajectories, it is common practice to perform a linear fit on mean-squared-displacement curves.
However, this strategy is suboptimal and prone to errors. Recently, it was shown that the increments between the observed positions provide
a good estimate for the diffusion coefficient, and their statistics are well-suited for likelihood-based analysis methods. Here, we revisit the
problem of extracting diffusion coefficients from single-particle tracking experiments subject to static noise and dynamic motion blur using
the principle of maximum likelihood. Taking advantage of an efficient real-space formulation, we extend the model to mixtures of subpopu-
lations differing in their diffusion coefficients, which we estimate with the help of the expectation–maximization algorithm. This formulation
naturally leads to a probabilistic assignment of trajectories to subpopulations. We employ the theory to analyze experimental tracking data
that cannot be explained with a single diffusion coefficient. We test how well a dataset conforms to the assumptions of a diffusion model and
determine the optimal number of subpopulations with the help of a quality factor of known analytical distribution. To facilitate use by practi-
tioners, we provide a fast open-source implementation of the theory for the efficient analysis of multiple trajectories in arbitrary dimensions
simultaneously.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0038174

I. INTRODUCTION

Single-particle tracking methods are routinely used to mon-
itor the erratic motion of labeled macromolecules in their native
environment, such as molecular motors moving along the cytoskele-
tal network,1,2 transcription factors binding to DNA,3 or receptor
proteins diffusing in cell membranes.4 The mode of transport and
associated transport coefficients are inferred from the measured tra-
jectories using microscopic models mimicking the globally observed
behavior, which can range from ordinary to anomalous and confined
diffusion, as well as active transport.5

The simplest mode of transport in a dense fluid medium is
free diffusion, which is fully characterized by a diffusion coeffi-
cient D. However, single-particle tracking experiments are plagued
by static localization errors and dynamic motion blur, which have

to be properly accounted for when estimating diffusion coefficients.
Static errors originate from various noise sources in the experimen-
tal setup, such as spatial resolution of the instrument and noise in the
detection and processing electronics,6 and are commonly modeled
via additive Gaussian noise.7–9 Motion blur arises from the camera’s
finite frame integration time, during which the particle position is
smeared out. This effect depends on the illumination profile of the
shutter, which in most cases is uniform,8 but can, in general, be rep-
resented by any non-negative function s(t) that integrates to unity
over the frame integration time.9

Traditionally, the estimation of diffusion coefficients has relied
on the fact that the slope of the mean-squared displacement (MSD)
is directly proportional to D.10 This procedure, however, has some
serious drawbacks. For instance, the most common estimator for
the MSD of finite time series introduces correlations between the
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MSD values at different time lags, which, in turn, cause the esti-
mate to suffer if too many MSD values are used for the fit.11,12

To remedy these shortcomings, one can either consider the opti-
mal number of MSD values for the fit12 or explicitly account for
the above-mentioned correlations in the fit procedure.13 Depart-
ing from the idea that the MSD is needed to determine D, one
arrives at the highly efficient covariance-based estimator (CVE),14

which is based on the much simpler statistics of the position incre-
ments between two observations. Even before, Berglund9 used the
sparse covariance matrix of the increments to construct an approx-
imate maximum likelihood estimator (MLE) operating in discrete
Fourier space. This estimator asymptotically approaches the exact
MLE in the limit of infinitely long trajectories. It was later shown15

that replacing the Fourier transform with a discrete sine trans-
form results in an orthogonal basis in which the MLE of Ref. 9 is
exact.

Despite the fact that the CVE is orders of magnitude faster than
likelihood-based methods,14 the latter can still be beneficial, e.g., to
incorporate prior knowledge of the parameters in a Bayesian manner
or to globally analyze trajectories of different lengths. The latter issue
is common in single-particle tracking because individual molecules
stochastically disappear as a result of photobleaching. Importantly,
MLEs are minimally affected by blinking events and other inter-
ruptions of the trajectory recording, in the sense that the estimates
and their uncertainty depend almost exclusively on the number of
observed particle positions, and not the number of trajectories. We
note, though, that the CVE can also overcome missing positions in
the trajectory by lumping together increments of the resulting tra-
jectory segments.16 However, correlations in longer trajectories may
reveal deviations from regular diffusion.

Here, we revisit the problem of minimizing the negative log-
likelihood, but instead of transforming the data, we work in real
space and exploit the symmetries of the increment covariance matrix
to develop a fast and reliable numerical solution scheme. We develop
MLEs of the mean-squared positional uncertainty a2 in single-
particle tracking and of the diffusional spread σ2 during a single time
step Δt,

σ2
= 2DΔt, (1)

from which one obtains the MLE of the diffusion coefficient as
D = σ2

/(2Δt), irrespective of the dimension d. The MLEs can also
be used to analyze molecular dynamics simulation trajectories by
setting the motion blur coefficient to B = 0. The coefficient a2 then
accounts for fast non-diffusional spread in the particle position.

We extend the likelihood formulation to a mixture model,
which assumes that the trajectories to be analyzed originate from
different subpopulations, each characterized by a distinct diffusion
coefficient. In comparison to some established models, such as those
that account for diffusion in inhomogeneous media17–24 or those
allowing for multiple diffusive regimes within a single trajectory,25–29

our approach may seem somewhat restrictive. However, what it
lacks in generality it makes up with speed, efficiency, and com-
pactness. Furthermore, we provide rigorous statistical tests to assess
whether the data comply with the theory assumptions or if more
demanding models are needed to explain the data.

This paper is structured as follows. In Sec. II A, we review
the minimal stochastic model of Ref. 9 for diffusive trajectories
smeared out by static localization noise and dynamic motion blur.

Section II B is dedicated to the negative log-likelihood of the trajec-
tory increments and the efficient O(N)-algorithm used to numeri-
cally minimize it. To test the assumptions of the underlying diffu-
sion model, we introduce a quality factor in Sec. II C that can be
inspected either visually or via a non-parametric test, such as the
Kolmogorov–Smirnov (KS) test or Kuiper’s test. In Sec. II D, we gen-
eralize the likelihood function to a mixture of subpopulations, each
with a distinct diffusion coefficient. We minimize this joint likeli-
hood with an expectation–maximization (EM) algorithm. A novel
selection criterion for the optimal number of subpopulations, based
on quality factor statistics, is introduced and tested on synthetic data
in Sec. II E. Section III A explores ways to determine whether a
small sample of short trajectories is governed by diffusive dynamics
or not. In Sec. III B, we use the mixture MLEs to analyze single-
molecule tracking experiments30 reporting on the diffusive dynam-
ics of human mission elapsed time (MET) receptor tyrosine kinase
in live cells. An outlook on possibilities to incorporate elements of
Bayesian analysis into the theory is presented in Sec. IV. Our find-
ings are summarized in Sec. V and implemented in a data analy-
sis package written in Julia.31 Detailed derivations and background
information on the theory can be found in Appendixes A–D.

II. THEORY
A. Microscopic model

A detailed stochastic model capturing the effective dynam-
ics observed in single-particle tracking experiments was introduced
by Savin and Doyle8 for a uniform illumination profile and later
generalized to arbitrary profiles by Berglund.9 In what follows, we
review the model by Berglund, on which we then build the MLE in
Sec. II B.

Consider a freely diffusing particle in one dimension with
diffusion coefficient D whose dynamics is described with a time-
continuous Wiener process Y , satisfying

Ẏ(t) =
σ
√

Δt
ξ(t). (2)

Here, a dot indicates the time derivative and ξ(t) denotes Gaus-
sian white noise fully characterized by ⟨ξ(t)⟩ = 0 and ⟨ξ(t)ξ(t′)⟩
= δ(t − t′), with δ(t) being the Dirac δ-function. The particle
motion is captured by using a camera with frame integration time Δt,
during which the camera shutter may be fully or partially open. This
gives rise to the shutter function s(t) ≥ 0 that smears out the particle
position over the integration time Δt, resulting in the process

Zi = ∫

Δt

0
dτ s(τ)Y(τ + iΔt),

∫

Δt

0
dτ s(τ) = 1

(3)

for i = 1, 2, . . .. Furthermore, we assume that each frame is affected
by additional measurement noise, which we model as Gaussian
with variance a2

/2. The observed motion of the particle is therefore
described by the following stochastic process:

Xi = Zi +
a
√

2
Ri, (4)
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where R is a normal distributed random variable with ⟨Ri⟩ = 0 and
⟨RiRj⟩ = δi,j, and δi,j is the Kronecker delta that evaluates to one if
i = j and zero otherwise. Note that due to linearity, the Gaussian
nature of ξ and R is inherited by processes X, Y , and Z.

According to Eqs. (2)–(4), the observed mean-squared dis-
placement (MSD) is given by

⟨(Xi − X0)
2
⟩ = a2

+ σ2
(i − 2B), (5)

which is, in comparison to ⟨[Y(iΔt) − Y(0)]2⟩ = iσ2, corrupted
by the static error a2 and the dynamic error 2σ2B. The latter is
characterized by the motion blur coefficient

B =
1

Δt∫
Δt

0
dτ S(τ)[1 − S(τ)], (6)

where S(t) gives the relative amount of exposure up to the time t,
namely,

S(t) = ∫
t

0
dτ s(τ) ∼

⎧⎪⎪
⎨
⎪⎪⎩

0, t = 0

1, t = Δt.

For uniform illumination, we have s(t) = Δt−1, which results in a
motion blur coefficient of B = 1/6. Generally, 0 ≤ B ≤ 1/4 must hold.
In the case of (near-)perfect time resolution, e.g., when analyzing
molecular dynamics trajectories, one has B = 0.

B. Maximum likelihood estimation
The probability to observe a one-dimensional time series

X⃗ = (X0, X1, X2, . . . , XN)
T is given by the Gaussian joint probability

distribution function p(X⃗) ∝ exp(−[X⃗ − ⟨X⃗⟩]TΣ−1
X [X⃗ − ⟨X⃗⟩]/2),

which can be reinterpreted as a likelihood function for the param-
eters a2 and σ2. These enter the dense covariance matrix ΣX whose
inversion requires O(N3

) operations and therefore make the varia-
tion of a2 and σ2, when maximizing the likelihood, computationally
expensive.

The likelihood function can be expressed more economically in
terms of the position increments Δi = Xi − Xi−1, with i = 1, 2, . . . , N.
Like Xi, they are also Gaussian distributed, their expectation val-
ues read ⟨Δi⟩ = 0, and the elements of the corresponding covariance
matrix Σ are given by

Σi,j = a2Σ′i,j + σ2Σ′′i,j, (7)

Σ′i,j = δi,j −
δi−1,j

2
−

δi,j−1

2
, (8)

Σ′′i,j = (1 − 2B)δi,j + B(δi−1,j + δi,j−1), (9)

i.e., Σ is a linear combination of the constant tridiagonal matri-
ces Σ′ and Σ′′. The likelihood of observing the increments
Δ⃗ = (Δ1, Δ2, . . . , ΔN)

T in one dimension thus has the form

ℓ(Δ⃗ ∣ a2, σ2
) =

√
1

(2π)N ∣Σ∣
exp(−

1
2

Δ⃗TΣ−1Δ⃗), (10)

which results in the following negative log-likelihood (up to a
negligible constant):

L(Δ⃗ ∣ a2, σ2
) =

1
2

Δ⃗TΣ−1Δ⃗ +
1
2

ln(∣Σ∣). (11)

Because Σ is tridiagonal, Eq. (11) can be evaluated in an efficient
manner. For example, the Thomas algorithm32 and a three-term
recurrence relation33 can be used to calculate Σ−1Δ⃗ and ∣Σ∣, respec-
tively, in O(N) operations. Yet, due to the fact that the covariance
matrix here is also a symmetric Toeplitz matrix, the recurrence
relation can be solved analytically (see Appendix A), giving

ln(∣Σ∣) = N ln(α) + (N + 1) ln(
1 + q

2
)

+ ln
⎛

⎝
1 − [

1 − q
1 + q

]

N+1
⎞

⎠
− ln(q). (12)

Here, q =
√

1 − 4β2/α2 ≥ 0, with α = a2
+ σ2
(1 − 2B) and β = −a2

/2
+ σ2B. If q→ 0, which implies either σ → 0 or a→ 0 with B = 1/4,
the expression above reduces to

lim
q→0

ln(∣Σ∣) = ln(N + 1) +N ln(α/2). (13)

Equations (12) and (13) can be modified to account for non-
symmetric tridiagonal Toeplitz matrices, as demonstrated in
Ref. 34.

A global analysis of M d-dimensional trajectories of different
lengths Nm + 1 is realized by minimizing

L({Δ⃗m,n}
n=1,...,d
m=1,...,M

∣ a2, σ2
) =

1
2

M

∑
m=1

d

∑
n=1
[Δ⃗T

m,nΣ−1
m Δ⃗m,n + ln(∣Σm∣)]

(14)

with respect to the same one-dimensional parameters a2 and σ2 as
before due to the assumption of isotropic motion. Here, the quan-
tities Δ⃗m,n and Σm are defined as before, except that they vary with
the trajectory (m = 1, . . . , M) and dimension (n = 1, . . . , d), respec-
tively. In general, the minimization has to be conducted numeri-
cally, but thanks to the linear dependence of Σ on the parameters,
it becomes analytically tractable on the boundaries, where either a2

or σ2 becomes zero. The remaining parameter can then be estimated
as follows:

a2
∣σ2=0 =

1
dNM

M

∑
m=1

d

∑
n=1

Δ⃗T
m,nΣ′−1

m Δ⃗m,n, (15)

σ2
∣a2=0 =

1
dNM

M

∑
m=1

d

∑
n=1

Δ⃗T
m,nΣ′′−1

m Δ⃗m,n, (16)

where NM = ∑
M
m=1Nm denotes the total number of considered incre-

ments and Nm is the number of entries in the vector Δ⃗m,n, indepen-
dent of n. Note that the vector-matrix products are all strictly posi-
tive because matrices Σ′, Σ′′, and Σ, as well as their inverses, are all
positive definite (see Appendix B). If both a2 and σ2 are greater than
zero, Eq. (14) can effectively be reduced to a one-dimensional opti-
mization problem in the vein of Ref. 14, where the sine-transformed
counterpart of Eq. (11) was considered. We thereby introduce the
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new parameters a2 and ϕ = σ2
/a2, which make the covariance matrix

and the log-likelihood function separable, i.e., Σm = a2Σ̃m(ϕ) ∀m
and

L({Δ⃗m,n} ∣ a2, ϕ) =
1
2

M

∑
m=1

d

∑
n=1
[

1
a2 Δ⃗T

m,nΣ̃−1
m Δ⃗m,n

+Nm ln(a2
) + ln(∣Σ̃m∣)]. (17)

The determinants ln(∣Σ̃m∣) can be evaluated via Eqs. (12) and (13)
by replacing α and β with α̃ = 1 + ϕ(1 − 2Bm) and β̃ = −1/2 + ϕBm,
respectively. Equation (17) gets minimized with respect to a2 for

a2
=

1
dNM

M

∑
m=1

d

∑
n=1

Δ⃗T
m,nΣ̃−1

m Δ⃗m,n (18)

and therefore reduces to

L({Δ⃗m,n} ∣ ϕ) =
dNM

2
ln(

M

∑
m=1

d

∑
n=1

Δ⃗T
m,nΣ̃−1

m Δ⃗m,n) +
d
2

M

∑
m=1

ln(∣Σ̃m∣),

(19)

except for an additive constant dNM/2 − dNM ln(dNM)/2, which
can be neglected because it is independent of a2 and σ2. Minimiz-
ing Eq. (19) with respect to ϕ is a nonlinear one-dimensional opti-
mization problem, which can be tackled conveniently using robust
derivative-free algorithms, such as Brent’s method35 or golden-
section search.36 The Julia data analysis package31 makes use of an
implementation of Brent’s method provided by the Optim pack-
age.37

To assess the uncertainty of the estimates, we turn to the stan-
dard errors δθ =

√
var(θ) of the model parameters θ ∈ {a2, σ2

}.
These are bounded from below by the Cramér–Rao bounds, which
are computed from the Fisher information corresponding to the
likelihood as

δa2
∣σ2=0 ≥

√
2

dNM
a2
∣σ2=0,

δσ2
∣a2=0 ≥

√
2

dNM
σ2
∣a2=0,

δa2
≥

¿
Á
ÁÀ

I2,2

I1,1I2,2 − I2
1,2

,

δσ2
≥

¿
Á
ÁÀ(a

2)2I1,1 − 2ϕa2I1,2 + ϕ2I2,2

I1,1I2,2 − I2
1,2

.

(20)

The matrix elements Ii,j of the Fisher information matrix I(a2, ϕ)
are specified in Appendix C along with a detailed derivation of
the above equations. The bounds in Eq. (20) become tight in the
limit NM →∞ because the estimators are asymptotically unbi-
ased (see Fig. 1). For extremely sparse datasets, where the lower
bounds of Eq. (20) vastly underestimate the standard errors, other
methods have to be employed to estimate the uncertainty, such as
bootstrapping.

FIG. 1. Estimating relative bias in the diffusion coefficient MLE with respect to the
trajectory length. We analyzed M simulated trajectories of equal lengths N + 1,
either separately or collectively, using Eqs. (15), (16), (18), and (19). We con-
sidered two cases: a signal-to-noise ratio of (a) σ2

/a2
= 1/2 and (b) σ2

/a2
= 2.

The resulting average diffusion coefficient (blue solid line), which was determined
from the single-trajectory estimates and compared to the simulation input value
Dexact, was either over- or under-estimated, respectively, for N ≲ 20. As indicated
by the guides to the eye (black solid lines), the bias is O(N−3/2

), which becomes
O(N−3/2

M ) for the global MLE estimates (red dashed line for M = 10 and green
dashed-dotted line for M = 100). This is why the latter are virtually unbiased for
almost all trajectory lengths. All results were averaged over multiple realizations to
reduce noise.

It is worth mentioning that the formalism of Refs. 9 and 15,
which treats the problem in discrete sine space (albeit only for
M = d = 1, but the extension to d and M different from one is
straightforward), results in identical numerical values for the param-
eter estimates and standard errors. However, our approach has the
advantage that we obtain closed-form expressions for the standard
errors [Eq. (20)], whereas these same quantities involve finite sums
that grow with the trajectory length in discrete sine space. Working
in real space can therefore be beneficial under certain circumstances,
e.g., in the context of Bayesian inference involving priors based on
the Fisher information matrix (see Sec. IV).

Finally, note that the estimators a2 and ϕ (or, equivalently,
a2 and σ2) are slightly correlated, as seen by the non-vanishing
off-diagonal elements I1,2 = I2,1 of the Fisher information matrix.
Figure 1 explores the bias in estimates of σ2 and the associated dif-
fusion coefficient as a function of the trajectory length N + 1, using
two-dimensional trajectories generated via Brownian dynamics sim-
ulations. The simulations were conducted using discretized versions
of Eqs. (2)–(4) (see Appendix D 1) and analyzed both on a single-
trajectory level and collectively. Our numerical results demonstrate
that a bias of O(N−3/2

) affects single-trajectory estimates of short
trajectories but is virtually non-existent in global estimates, where
the bias scales like O(N−3/2

M ), i.e., with the total number of incre-
ments. This is in good agreement with analytical results obtained in
Ref. 14, which show that the estimators in discrete sine space are
unbiased up to O(N−1

). However, the authors of Ref. 14 claimed
that next to the said above-mentioned bias, which originates from
the asymmetry of the likelihood function, there should be an addi-
tional O(N−1/2

) bias coming from the fact that the maximum like-
lihood approach requires a2 and σ2 to be positive. The diffusion
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coefficient estimator in real space does not exhibit this second bias,
at least not for the signal-to-noise values considered here.

C. Quality factor analysis
How can we test that we are actually observing free diffu-

sion? According to Eq. (10), for a diffusive process, the elements of
Σ−1/2

m Δ⃗m,n for a fixed n are independent, uncorrelated normal ran-
dom variables with zero mean and unit variance. The sum of their
squares, given by

χ2
m =

d

∑
n=1

Δ⃗T
m,nΣ−1

m Δ⃗m,n > 0, (21)

should therefore be distributed according to a χ2-distribution with
dNm degrees of freedom. Note that we do not correct dNm by the
number of model parameters because the degrees of freedom asso-
ciated with a single trajectory are just a tiny fraction of the overall
number of unconstrained degrees of freedom, dNM − 2.

In principle, we could test whether a sample of M trajectories
adheres to the diffusion model in Eqs. (2)–(4) by verifying the dis-
tribution of the corresponding χ2

m-values, but only if they are all
of equal length. For trajectories that differ in their lengths Nm + 1,
the quadratic forms χ2

m follow different χ2-distributions. To simplify
the analysis, we focus on their corresponding cumulative distribu-
tion functions, which are all uniform on the interval [0, 1). The
associated statistic is given by

(22)

where γ(a, z) and Γ(a) denote the lower incomplete and ordinary
Γ-functions, respectively, that are defined as follows:

γ(a, z) = ∫
z

0
dx xa−1e−x, Γ(a) = lim

z→∞γ(a, z).

This is reminiscent of the discussion in Ref. 13, where a quantity
similar to the one in Eq. (22) is referred to as the quality factor Q,
because its values are uniformly distributed whenever the elements
of Σ−1/2

m Δ⃗m,n are truly independent. The main difference between
Eq. (22) and traditional quality factors, such as the one in Ref. 13, is
that the latter consider χ2-statistics computed by summing over the
weighted squared differences between data and model predictions.
Here, the model makes predictions about the distribution of χ2

m of
individual trajectories m and, in turn, of , into which the param-
eters a2 and σ2 enter via the covariance matrix. To highlight this
distinction, we make use of the archaic greek letter qoppa, instead
of Q, to denote this (somewhat unorthodox) quality factor.

To test whether a set of quality factor values
follows the uniform distribution on [0, 1) expected for diffusive pro-
cesses, we employ a variation of the Kolmogorov–Smirnov statistic
called the Kuiper statistic.38,39 Kuiper’s variant measures the largest
vertical deviations of the empirical distribution function above and
below the cumulative distribution function and is defined as their
sum. In our case, it thus reads

(23)

for a list of -values, m = 1, 2, . . . , M, sorted in ascending order.
Ideally, we have κ ≈ 1, but significantly larger κ-values arise when
the underlying assumption of Σ−1/2

m Δ⃗m,n being normal distributed
is violated. This is the case for heterogeneous data arising from
subpopulations with differing diffusion coefficients, as discussed in
Sec. II D.

Finally, it should be mentioned that one can construct a right-
tailed p-value from the sampling distribution of κ. Asymptotically, it
takes the form

pM→∞
∼ 2

∞
∑
m=1
(4m2κ2

− 1)e−2 m2κ2

, (24)

where the sum has to be truncated at some large value, e.g., at
m = 100 or m = 1000, if used in practice. The associated probabil-
ity p can be helpful to determine whether a κ-value is reasonable or
not. For sparse datasets, tables can be used to look up the p-value.40

D. Analysis of mixtures of subpopulations
In situations where a single diffusion coefficient cannot

describe the observed dynamics in a sample of trajectories, the
single-population analysis of Sec. II B breaks down. Here, we extend
the model by introducing K distinct subpopulations, each charac-
terized by a set of parameters {a2

k, σ2
k}, k = 1, 2, . . . , K. Every tracked

particle is assumed to belong to one of these subpopulations, but
the exact assignment is not known a priori. Particles are not allowed
to switch between populations and therefore have a fixed diffusion
coefficient, depending on which subpopulation k they belong to. The
task of parameter fitting now becomes twofold: The parameters of
each subpopulation have to be varied to find their optimal values,
while the particle trajectories have to be assigned to the subpopula-
tions they most likely belong to. Problems like these can be treated
with the help of the EM algorithm,41 as outlined below.

To analyze data from a mixture of K subpopulations with
distinct diffusive dynamics, we consider the following likelihood
function with latent mixing fractions Pk:

ℓ({Δ⃗m,n} ∣ {Pk, a2
k, σ2

k}k=1,...,K
) =

M

∏
m=1

K

∑
k=1

Pk

d

∏
n=1

ℓk(Δ⃗m,n ∣ a2
k, σ2

k).

(25)

The one-dimensional likelihoods ℓk(Δ⃗m,n ∣ a2
k, σ2

k) are given by
Eq. (10), where the subscript k indicates that the covariance matrix
Σ = Σm is evaluated using the subpopulation parameters a2

k and σ2
k .

Now, due to the sum appearing in ℓ({Δ⃗m,n} ∣ {Pk, a2
k, σ2

k}), its neg-
ative log-likelihood remains intractable. This is where the EM algo-
rithm comes in: Instead of minimizing−ln(ℓ) explicitly, we consider
the upper bound

L({Δ⃗m,n} ∣ {Pk, a2
k, σ2

k})

= −
M

∑
m=1

K

∑
k=1

Tk,m ln(
Pk

Tk,m

d

∏
n=1

ℓk(Δ⃗m,n ∣ a2
k, σ2

k))

≥ −
M

∑
m=1

ln(
K

∑
k=1

Tk,m
Pk

Tk,m

d

∏
n=1

ℓk(Δ⃗m,n ∣ a2
k, σ2

k))

= − ln(ℓ({Δ⃗m,n} ∣ {Pk, a2
k, σ2

k})), (26)
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which follows from Jensen’s inequality. In principle, such upper
bounds can be constructed for arbitrary coefficients Tk,m > 0 whose
interpretation becomes clearer in what follows. If we were able to
choose Tk,m such that equality holds in Eq. (26) for all parameter
tuples {Pk, a2

k, σ2
k}k=1,...,K , then it would not matter if we minimized

−ln(ℓ) or L, given a known set of Tk,m. This is exactly the case
whenever

Pk

Tk,m

d

∏
n=1

ℓk(Δ⃗m,n ∣ a2
k, σ2

k) = const.,

so by requiring that the coefficients Tk,m are also normalized, we
finally obtain

Tk,m = [
K

∑
k′=1

Pk′
d

∏
n′=1

ℓk′(Δ⃗m,n′ ∣ a2
k, σ2

k)]

−1

Pk

d

∏
n=1

ℓk(Δ⃗m,n ∣ a2
k, σ2

k).

(27)

It now becomes apparent that Tk,m corresponds to the probability of
trajectory m belonging to the kth subpopulation.

The EM algorithm is a two-step algorithm, where in the first
step, the current values of {Pk, a2

k, σ2
k} are used to update the classifi-

cation coefficients Tk,m via Eq. (27). In the second step, the latter are
plugged into the upper bound [Eq. (26)], which can be rewritten as

L({Δ⃗m,n} ∣ {Pk, a2
k, σ2

k})

=
M

∑
m=1

K

∑
k=1

Tk,m[
d

∑
n=1

L(Δ⃗m,n ∣ a2
k, σ2

k) − ln(
Pk

Tk,m
)]. (28)

Here, L(Δ⃗m,n ∣ a2
k, σ2

k) is defined in Eq. (11) for Σ = Σm. Minimiz-
ing Eq. (28) with respect to {Pk, a2

k, σ2
k} updates the estimate for

the parameters, and the first step is repeated. The minimization can
mostly be done analytically because Eq. (28) is separable and there-
fore susceptible to the methods applied in Sec. II B. For the mixing
fractions, we get

Pk =
1
M

M

∑
m=1

Tk,m. (29)

On the boundary, the solutions read

a2
k∣ σ2

k=0 =
1

Ck

M

∑
m=1

Tk,m

d

∑
n=1

Δ⃗T
m,nΣ′−1

m Δ⃗m,n, (30)

σ2
k ∣ a2

k=0 =
1

Ck

M

∑
m=1

Tk,m

d

∑
n=1

Δ⃗T
m,nΣ′′−1

m Δ⃗m,n,

Ck = d
M

∑
m=1

Tk,mNm.

(31)

Using the parameter representation (a2
k, ϕk), with ϕk = σ2

k/a
2
k,

Eq. (28) is minimized for

a2
k =

1
Ck

M

∑
m=1

Tk,m

d

∑
n=1

Δ⃗T
m,nΣ̃−1

m Δ⃗m,n, (32)

ϕk = arg min
ϕk

Ck

2
ln(

M

∑
m=1

Tk,m

d

∑
n=1

Δ⃗T
m,nΣ̃−1

m Δ⃗m,n) +
d
2

M

∑
m=1

Tk,m ln(∣Σ̃m∣).

(33)

The high-dimensional minimization problem therefore reduces to a
series of analytic expressions [Eqs. (29)–(32)] and a handful of inde-
pendent one-dimensional optimization problems [Eq. (33)], which
can be solved numerically in an efficient way. The algorithm is
implemented in a Julia data analysis package.31

Finally, we would like to mention that one could also consider
a continuum of a2 and σ2 values as an alternative to discrete sub-
populations. If only a2 is allowed to vary between trajectories, a
latent variable model could be considered. In general, a Bayesian
formulation would naturally lend itself to a continuous-parameter

FIG. 2. Verifying the effectiveness of quality factor statistics as a selection cri-
terion. (a) Determining the optimal number K of subpopulations. We generated
300 + 400 + 300 = 1000 synthetic trajectories of different lengths (uniformly dis-
tributed on [4, 101]) via Brownian dynamics simulations, using the parameter
values listed in the table under “truth.” After analyzing the data with the EM algo-
rithm for K = 1, 2, . . . , 6, the corresponding Kuiper statistic [Eq. (23), blue solid
line] was computed. For K ≥ 3, κ remained below κ ≈ 1.42 (black dashed line),
corresponding to p-values greater than 0.25. Accordingly, we chose K = 3 (blue
circle) as the optimal number of subpopulations. The associated parameter esti-
mates are listed in the table under “estimates” and are in excellent agreement with
ground truth. The red and green circles denote the corresponding BIC (red dashed
line) and ICL (green dashed-dotted line) predictions. (b) Statistics of predictions
for 20 distinct datasets, each containing 110 + 30 + 70 + 80 + 190 + 230 + 110
+ 120 + 60 = 1000 trajectories sampled from a complex mixture of nine sub-
populations (a2

k=1,2,...,9 = 0.04, 0.04, 0.05, 0.13, 0.06, 0.09, 0.20, 0.35, 0.99 and

σ2
k=1,2,...,9 = 0.08, 0.0005, 0.009, 0.02, 0.18, 0.32, 0.10, 0.34, 0.72) and following

the same length distribution as in (a). The data were analyzed for K = 1, 2, . . . , 15,
and the predictions of BIC (red) and ICL (green) were determined by the positions
of their minima. In contrast, the novel selection criterion (blue) relied on the first
instance where κ went below a threshold value of either κ ≈ 1.75 (p = 0.05) or
κ ≈ 1.42 (p = 0.25). In the event of the threshold not being reached, which hap-
pened more frequently for the lower threshold, the position where κ got minimized
was chosen.

J. Chem. Phys. 154, 234105 (2021); doi: 10.1063/5.0038174 154, 234105-6

© Author(s) 2021

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

treatment, in which a prior distribution would be updated into a
posterior distribution in light of the observed data.

E. Selection criterion for optimal number
of subpopulations

As the number of subpopulations K is increased, the fit to het-
erogeneous data gradually gets better. Because the regularity con-
ditions for conventional criteria, such as the Bayesian information
criterion (BIC), do not hold for finite mixture models,42 we propose
to rely on a quality factor analysis for model selection. This is done
as follows: After repeated fitting of a dataset via the EM algorithm
for a fixed K, the classification coefficients Tk,m that (along with the
optimal parameter values {Pk, a2

k, σ2
k}) minimize Eq. (28) are used to

assign each trajectory m to the subpopulation k it most likely belongs
to, according to

k = arg max
i

Ti,m. (34)

The associated quality factors are then determined using
the subpopulation-specific parameters a2

k and σ2
k , resulting in a set

that is finally plugged into Eq. (23)
to evaluate the Kuiper statistic κ. Figure 2(a) serves as a proof of
concept for this selection procedure, where κ is plotted as a func-
tion of K for a simulated heterogeneous dataset with three distinct
subpopulations. The estimates for K = 3 are in excellent agreement
with the input parameter values of our simulations for three sub-
populations and result in κ ≈ 1.13. Note that the slight increase in
κ for K > 3 is due to stochasticity in the EM optimization, which
becomes more pronounced as the number of subpopulations is
increased (for details on our implementation of the EM algorithm,
see Appendix D 2). Also note that we are not interested in the global
minimum of κ with respect to K, but in the smallest K where κ ≈ 1.
In practice, this can be realized by a threshold value for κ, below
which κ is considered sufficiently close to one to accept the asso-
ciated K as the optimal number of subpopulations. We recommend
practitioners to choose a threshold somewhere between κ ≈ 1.75 and
1.42 (corresponding to the p-values 0.05 and 0.25, respectively) that
reflects their confidence in the quality of the data.

For comparison, we show predictions of two established selec-
tion criteria, namely, the BIC and the integrated completed likeli-
hood (ICL) criterion,42 in Fig. 2(a). The former can be evaluated for

FIG. 3. Testing for diffusivity in FBM subject to static noise and dynamic motion blur. Using B = 1/6 and a2
= σ2

= 1, where σ2 is the variance of the normal random
variable used as input for the circulant method, we generated 1000 trajectories with lengths uniformly distributed on [4, 101] governed by subdiffusive (left panels), diffusive
(center panels) and superdiffusive (right panels) dynamics and compared them to reference data made up of 105 diffusive trajectories. We considered the (a) distributions
of single-trajectory σ2-estimates, distributions of quality factors calculated for the FBM data (insets), and (b) distributions of KS statistics, which test for varying diffusivity
within the trajectories. The gray histograms are associated with the FBM data, whereas the colored histograms belong to the reference data. The arrows at the bottom of
the plots in (a) indicate the global σ2-estimates. For the superdiffusive data, we saw clear deviations in all three distributions, thus confirming that the process under scrutiny
was non-diffusive. However, for H = 1/4, the results were more subtle: we only detected clearly noticeable deviations in the distribution of σ2, which, in combination with
the fact that the other two distributions fit the reference data, hinted at non-diffusive behavior.
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our model as follows:

BIC =
2L({Δ⃗m,n} ∣ {Pk, a2

k, σ2
k}) + (3 K − 1) ln(dNM)

NM
, (35)

where the likelihood is given by Eq. (28). The ICL is formulated in
an almost identical manner as the BIC, except that the classifica-
tion coefficients Tk,m in front of the square brackets in Eq. (28) are
replaced by

T̃k,m =

⎧⎪⎪
⎨
⎪⎪⎩

1 arg maxiTi,m = k
0 otherwise.

Whereas the BIC overestimates the number of subpopulations, the
ICL and the Kuiper statistics criteria produce reliable results for the
mixture of three subpopulations. However, for more complex mix-
tures, also the ICL fails. Figure 2(b) visualizes the prediction statis-
tics of BIC, ICL, and the Kuiper statistics criterion when applied
to datasets composed of trajectories sampled from nine distinct
subpopulations. Although the distributions of predicted K-values
are fairly broad, probably due to the trajectories being so short
and few, the biases of BIC and ICL are clear, thus confirming the
claim that traditional selection criteria cannot be relied on in our
particular case.

III. APPLICATION TO EMPIRICAL DATA
To illustrate the use and effectiveness of the above theory, we

applied it to simulations and experimental data. Comparisons to the
former are primarily intended to gauge the limits of the theoreti-
cal framework, while the analysis of experimental data is meant to
demonstrate its use in practice.

A. Simulated diffusion data
As mentioned earlier, there are multiple modes of transport

possible in microbiological systems, and a diffusion coefficient
estimate is only reliable when the data satisfy the assumptions
of the model. In this regard, we generated one-dimensional syn-
thetic trajectories imitating fractional Brownian motion (FBM)43

and diffusion in inhomogeneous media,44 two processes that devi-
ate from regular diffusion distinctly, and tested whether the the-
ory was able to detect their non-diffusive behavior. This was real-
ized by analyzing three well-defined quantities: the distribution of
quality factors, the distribution of single-trajectory σ2-estimates,
and the distribution of statistics resulting from a two-sample
Kolmogorov–Smirnov (KS) test, which estimates how likely it is
for early parts of a trajectory to be governed by the same diffu-
sion dynamics as its later parts. The distributions were extracted

FIG. 4. Comparing position-dependent diffusion to mixture models. (a) Analogous to Fig. 3, we compared PDD data (gray histograms) to diffusive reference data (blue
histograms) in terms of their distributions of single-trajectory σ2-estimates (left panel), quality factors (inset), and KS statistics (right panel). The PDD data were generated
via a stochastic process X satisfying Eqs. (36), (3), and (4), resulting in 1000 non-diffusive trajectories with lengths uniformly distributed on [4, 101]. The reference data
consisted of 105 trajectories following the same length distribution as the non-diffusive data and were generated using B = 1/6, and a2 and σ2 extracted from a global
analysis of the PDD data (the arrow indicates the global σ2-estimate). The non-uniform quality factor distribution and strong deviations between the σ2-distributions clearly
indicate a non-diffusive behavior in the PDD data. (b) After analyzing the non-diffusive data via mixture models, we used the parameters for the minimal model best
describing the data in (a) (arrows indicate the σ2-estimates, and their relative opacities indicate the respective mixing fractions) to generate the 105 trajectories behind the
red histograms. Insets: Quality factor distributions for the PDD data. The associated -values [Eq. (22)] were calculated using (a) the parameters of a single-population fit
and (b) the fit parameters of a mixture model with K = 3.
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from the non-diffusive data and compared visually to their diffusive
counterparts.

FBM is a Gaussian process with stationary increments, simi-
lar to the Wiener process in Eq. (2). However, the increments of
FBM need not be independent and therefore give rise to a MSD
that grows proportional to t2H , with H ∈ (0, 1) being the so-called
Hurst index. For H = 1/2, we retrieve the Wiener process, whereas
the cases H < 1/2 and H > 1/2 result in sub- and super-diffusion,
respectively, due to negative and positive correlations. We gener-
ated realizations of FBM via the circulant method45 and added static
noise and dynamic motion blur by replacing Y(t) in Eqs. (2)–(4)
(or their discretized counterparts; see Appendix D 1) with the real-
izations. The resulting trajectories were analyzed both individually
and globally using Eqs. (15), (16), (18), and (19), where the solu-
tion that resulted in the lowest negative log-likelihood value was
chosen in each case. We used the global estimates for a2 and σ2, on
the one hand, to calculate the corresponding -values [Eq. (22)]
and, on the other hand, as input parameters for simulations of reg-
ular diffusion, i.e., Eqs. (2)–(4), which we considered as reference
data. For further details on the Brownian dynamics simulations,
see Appendix D 1. The above-mentioned KS test was achieved by
splitting Σ−1/2

m Δ⃗m in half (dropping the last entry if the number
of elements in Δ⃗m was uneven) and forming two empirical distri-
bution functions that were then compared. Note that d = 1, so we
have dropped the index n in Δ⃗m,n. The covariance matrices Σm were
evaluated using the global parameter estimates. The above proce-
dures gave rise to the samples {σ2

m}, , and {Sm} for m = 1,
2, . . . , M of single-trajectory σ2-estimates, quality factors, and KS
statistics, respectively, whose distributions are plotted in Fig. 3. Here
and in the following, reference simulations were sampled exten-
sively such that the statistical scatter in the reference histograms is
negligible.

Overall, the data sparsity and strong static noise, which in
most cases lead to a low effective signal-to-noise ratio σ2

/a2, made
the non-diffusive nature of FBM somewhat difficult to detect. For
example, in the case of H = 1/4, the only significant discrepancy
between the data and reference was found in the distribution of
single-trajectory estimates of σ2. Yet, this turned out to be a clear
indication for non-diffusive dynamics in light of the fact that the
other two quantities did not deviate from their diffusive counter-
parts. For H = 3/4, where discrepancies were found in all considered
quantities, the situation was more definitive. A possible reason for
the vastly different outcomes for H = 1/4 and H = 3/4 is that the lat-
ter case results in a slower decay of correlations between increments
than H = 1/4. The two cases are therefore by no means symmetric,
as one might naively assume.

The second non-diffusive process we considered allows for
a position-dependent diffusion (PDD) profile D(z) = σ(z)2

/2Δt.
One thereby has to replace Eq. (2) with the following stochastic
differential equation:

Ẏ(t) =
σ(Y)σ′(Y)

Δt
+

σ(Y)
√

Δt
ξ(t), (36)

which is to be interpreted in the sense of Itô. Here, f ′(z) denotes
the derivative of f (z) with respect to z. The resulting process is gen-
erally not Gaussian due to the presence of multiplicative noise. For

our simulations, we chose σ(z) = σ0[1 − 0.9e−(z/z0)2/2
] to mimic the

diffusion around a diffusivity well, and the initial positions Y0 were
drawn from a uniform distribution on the interval [−5z0, 5z0]. Anal-
ogous to the FBM data, the lengths of the trajectories were uniformly
distributed on [4, 101] and a total of 1000 non-diffusive trajectories
were considered.

Our results for a2
= σ2

0 = 1 and z0 = 3 are given in Fig. 4(a).
Again, we compared our results to reference data simulated using
the global MLE estimates of a2 and σ2 obtained from an analysis of
the PDD data. The fact that the quality factor distribution is anything
but uniform clearly indicates that the process cannot be described
by a single diffusion coefficient. This is also mirrored in the lack of
overlap between the PDD data and the reference seen in the distribu-
tion of single-trajectory σ2-estimates. Only the KS statistics seemed
consistent between the two datasets. We also fitted the non-diffusive
data with mixture models and found a decent match (κ ≈ 1.40) for
K = 3 and the parameters a2

k=1,2,3 ≈ 0.97, 1.03, 1.03, σ2
k=1,2,3 ≈ 0.29,

FIG. 5. Assessment of a model with a single diffusion coefficient against single-
molecule localization microscopy experiments. Shown are the distributions of
single-trajectory diffusion coefficients estimated from the experiment (gray his-
tograms) and from synthetic trajectories generated via a single-population model
(colored histograms). (a) The global fit parameters a2

= (3.51 ± 0.03) × 10−3 μm2

and D = (1.21 ± 0.01) × 10−1 μm2 s−1 (red arrow) were used to simulate 105

independent trajectories following the same length distribution as the experimental
data for cell 2. The distribution of single-trajectory diffusion coefficients (red his-
togram) turned out to be too narrow to explain the experimental observations. (b)
Same as in (a), except that for cell 5, the parameters underlying the brown his-
togram are a2

= (3.09 ± 0.03) × 10−3 μm2 and D = (1.062 ± 0.009) × 10−1 μm2

(brown arrow). Insets: Distributions of quality factors corresponding to the exper-
imentally observed trajectories, evaluated using the respective global single-
population fit parameters. Their horned shapes strongly deviate from the expected
uniform distribution on [0, 1) (black dashed lines), which highlights the fact that
the experimental data cannot be properly described by a single-population model.
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0.86, 0.03 and Pk=1,2,3 ≈ 0.17, 0.71, 0.12. As a test for consistency
and to see if diffusion in inhomogeneous media can be distinguished
from heterogeneous mixtures using samples of short trajectories, we
then used the estimated parameters to generate new synthetic data.
These data, drawn from the mixture model best describing the PDD,
are compared to the PDD data in Fig. 4(b). Overall, the data from
the mixture model and PDD process are fairly similar, thus making
it impossible to distinguish between the processes, at least for the
PDD profile considered here.

In conclusion, it can be challenging to distinguish between dif-
fusive and non-diffusive processes when the samples are made up
of extremely short trajectories. In addition, the presence of static
noise and dynamic motion blur muddies the waters, especially when
the (effective) signal-to-noise ratio is poor. We recommend that
practitioners investigate the three above-mentioned distributions,
compare their results to Brownian dynamics simulations, and even
consider further tests, such as the goodness-of-fit test proposed in
Ref. 14.

B. Experimental data
We also applied the above theory to single-molecule tracking

data for human MET receptor tyrosine kinase, bound to labeled

3H3-Fab antibody fragments within the plasma membrane of HeLa
cells.30 In the original study, tracking in two dimensions was con-
ducted for multiple cells using the super-resolution imaging proto-
col uPAINT46 and imaging fluorescence correlation spectroscopy.47

Next to “resting” MET, realized with the above-mentioned Fab anti-
bodies, the authors of Ref. 30 also considered internalin B-bound
MET. Here, we limit our analysis to the Fab-data recorded via
uPAINT for ten randomly chosen cells. To account for the fact that
each cell might be influenced by its local environment, we refrained
from pooling together data measured in different cells. The tempo-
ral resolution of the experiment was Δt = 0.02 s, and we assumed a
blurring coefficient of B = 1/6 for all trajectories.

Each trajectory of a given cell was first analyzed separately,
analogous to the simulation data in Sec. III A. This gave rise to
M diffusion coefficients per cell (M = 1280, 1943, 1567, 1709, 1840,
874, 1165, 1582, 1178, and 1357 for cells 1 through 10), i.e., one for
each trajectory, and allowed us to sieve out the trajectories of essen-
tially immobile particles, which we defined as those having D < 1
× 10−6 μm2 s−1. This is in line with the original analysis of the
data,30 but, alternatively, one can explicitly account for the immobile
fraction in the modeling.48 We then analyzed globally the remain-
ing trajectories to estimate a2 and σ2 for each cell. The normalized

FIG. 6. Multi-mixture models compared to experimental data. (a) The Kuiper statistic [Eq. (23)] for each cell as a function of the number K of subpopulations in the mixture.
The black dashed lines mark the thresholds κ ≈ 1.42 and κ ≈ 1.75, below which there is a > 25% and > 5% chance, respectively, to obtain quality factor results at least as
extreme as actually observed. Three cells clearly cross the lower threshold, and a fourth one narrowly misses it. [(b)–(d)] Comparison between experimental single-trajectory
diffusion coefficient distributions (gray histograms) and results from Brownian dynamics simulations. The 105 synthetic diffusion coefficients making up each of the colored
histograms were obtained in almost the same way as in Fig. 5, except that different parameters a2

k and σ2
k were used for each mixture component, and the mixing fractions

Pk determined their frequency of occurrence. The arrows indicate the diffusion coefficients behind the subpopulations and their relative opacities indicate the respective
mixing fractions, both of which are tabulated in Table I. Insets: Distributions of quality factors, after sorting the trajectories according to the subpopulations they most likely
belong to.
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TABLE I. Fit parameters for specific cells obtained via the EM algorithm. The number of trajectories M, mean trajectory length
⟨N + 1⟩, and standard deviation (SD) of the trajectory lengths are listed for each cell. The units of the diffusion coefficients
Dk and static noise amplitudes a2

k are μm2 s−1 and μm2, respectively.

Cell 6 Cell 8 Cell 9
M = 874 M = 1582 M = 1178
⟨N + 1⟩ = 26 ⟨N + 1⟩ = 30 ⟨N + 1⟩ = 30

SD = 44 SD = 56 SD = 49

D1 (5.4 ± 0.4) × 10−1 (6.2 ± 0.1) × 10−1 (5.3 ± 0.5) × 10−1

a2
1 (2.5 ± 0.2) × 10−2 (4.3 ± 0.3) × 10−3 (2.8 ± 0.2) × 10−2

P1 0.09 0.223 0.06

D2 (5.0 ± 0.2) × 10−1 (5.7 ± 0.4) × 10−1 (5.0 ± 0.2) × 10−1

a2
2 (4.7 ± 0.5) × 10−3 (2.0 ± 0.1) × 10−2 (7.3 ± 0.4) × 10−3

P2 0.11 0.052 0.17

D3 (2.7 ± 0.1) × 10−1 (2.83 ± 0.07) × 10−1 (4.4 ± 0.2) × 10−1

a2
3 (2.0 ± 0.2) × 10−3 (3.4 ± 0.1) × 10−3 (1.8 ± 0.3) × 10−3

P3 0.11 0.184 0.12

D4 (6.2 ± 0.4) × 10−2 (1.55 ± 0.05) × 10−1 (2.01 ± 0.06) × 10−1

a2
4 (7.9 ± 0.3) × 10−3 (2.3 ± 0.1) × 10−3 (2.6 ± 0.1) × 10−3

P4 0.11 0.089 0.16

D5 (6.1 ± 0.3) × 10−2 (5.8 ± 0.5) × 10−2 (6.8 ± 0.3) × 10−2

a2
5 (1.9 ± 0.1) × 10−3 (1.42 ± 0.05) × 10−2 (2.5 ± 0.1) × 10−3

P5 0.06 0.046 0.05

D6 (5.6 ± 0.9) × 10−2 (5.7 ± 0.2) × 10−2 (2.6 ± 0.2) × 10−2

a2
6 (2.3 ± 0.1) × 10−2 (1.58 ± 0.05) × 10−3 (9.2 ± 0.3) × 10−3

P6 0.03 0.065 0.04

D7 (1.8 ± 0.1) × 10−2 (2.2 ± 0.1) × 10−2 (2.4 ± 0.1) × 10−2

a2
7 (1.19 ± 0.06) × 10−3 (5.1 ± 0.1) × 10−3 (2.02 ± 0.06) × 10−3

P7 0.07 0.053 0.06

D8 (6.9 ± 0.7) × 10−3 (1.18 ± 0.04) × 10−2 (5.8 ± 0.3) × 10−3

a2
8 (6.0 ± 0.2) × 10−3 (1.51 ± 0.03) × 10−3 (1.54 ± 0.03) × 10−3

P8 0.08 0.080 0.10

D9 (3.5 ± 0.3) × 10−3 (4.1 ± 0.3) × 10−3 (2.6 ± 0.3) × 10−3

a2
9 (2.15 ± 0.05) × 10−3 (3.77 ± 0.08) × 10−3 (3.81 ± 0.09) × 10−3

P9 0.13 0.045 0.07

D10 (9.2 ± 0.7) × 10−4 (1.64 ± 0.08) × 10−3 (5.8 ± 0.4) × 10−4

a2
10 (1.49 ± 0.03) × 10−3 (1.38 ± 0.02) × 10−3 (1.34 ± 0.02) × 10−3

P10 0.12 0.103 0.12

D11 (5.6 ± 0.8) × 10−4 (3.3 ± 0.3) × 10−4 (3.8 ± 0.3) × 10−4

a2
11 (9.9 ± 0.3) × 10−4 (9.2 ± 0.2) × 10−4 (6.7 ± 0.1) × 10−4

P11 0.05 0.044 0.05

D12 (4.2 ± 0.8) × 10−4 (2.6 ± 0.5) × 10−4

a2
12 (2.90 ± 0.08) × 10−3 (5.7 ± 0.2) × 10−4

P12 0.04 0.012

D13 (7 ± 5) × 10−5

a2
13 (3.4 ± 0.3) × 10−4

P13 0.004
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histograms of single-trajectory diffusion coefficients for two distinct
cells are depicted in Fig. 5, next to Brownian dynamics simulation
results for a single-population model. The simulations were con-
ducted using discretized versions of Eqs. (2)–(4) (see Appendix D 1),
where a2 and σ2 were set equal to the global cell parameter estimates
and the length of each trajectory was drawn from the observed length
distribution of the respective cell.

Figure 5 clearly illustrates that the experimentally determined
distributions are too broad to be explained by a single set of diffu-
sion parameters. To verify this conclusion, we computed the corre-
sponding quality factors [Eq. (22)], one for each considered trajec-
tory, and inspected visually, as well as with the help of the Kuiper
statistic [Eq. (23)], whether they were uniformly distributed on the
interval [0, 1). Unsurprisingly, this was not the case, as seen in
the insets of Fig. 5. We therefore proceeded to fit the data with
a mixture of K = 1, 2, . . . , 15 subpopulations via the EM algorithm
of Sec. II D, starting from multiple different random initial values
for {a2

k, σ2
k}k=1,...,K , and uniform mixing fractions Pk = 1/K∀k. This

was done to increase the chance of finding the global minimum of
Eq. (28). Further details on our implementation of the EM algorithm
can be found in Appendix D 2.

Although our results for the live-cell data were not entirely
unambiguous, the general trend of κ decreasing with increasing K
was still observed [see Fig. 6(a)]. Depending on the choice of thresh-
old, we ended up with either six or three cells, for which the null
hypothesis that their single-trajectory diffusion coefficient distribu-
tions originated from a finite mixture of fast and slowly diffusing
particles could not be rejected. Furthermore, the three cells that
crossed the more stringent threshold of κ ≈ 1.42 all gave κ-values
with associated p-values [Eq. (24)] well above 0.5. For cells 6 and
9, the same optimal K-values were predicted for both thresholds,
whereas the optimum shifted somewhat upward for cell 8.

The results for the lower threshold suggest that the trajectories
of cells 6, 8, and 9 should be sorted into 11 to 13 distinct subpopula-
tions [see Figs. 6(b)–6(d)] whose relevant parameters are tabulated
in Table I. However, it should be noted that some of the populations
can be lumped together if we solely focus on the diffusion coeffi-
cient. In addition, the last two subpopulations of cell 8 are extremely
underrepresented and can, in principle, be neglected. While this may
not be apparent from the corresponding Pk-values, it becomes clear
when the classification coefficients Tk,m are inspected: It turns out
that for the parameters presented here, only 9 and 6 trajectories out
of a total of 1349 mobile ones get assigned to the 12th and 13th sub-
populations, respectively. This might be an indication of an overly
stringent threshold and that cell 8 is better described with K = 11
subpopulations. In conclusion, the effective number of subpopula-
tions within each cell might therefore be somewhat smaller than the
output of the EM algorithm seems to imply, but certainly not two or
three.

For completeness, in Fig. 7, we plot the KS distributions for cells
6, 8, and 9, as well as for the multi-population simulation data of
Fig. 6. In comparison to single-population reference data, we can
see that both the cell data and multi-population simulation data
are shifted and have a slightly broader tail than the reference. The
qualitative agreement between the cell data and the simulation data
strengthens our working hypothesis that the measured trajectories
originate from a heterogeneous mixture of fast and slowly diffusing
particles. However, in light of our results in Sec. III A, we cannot

FIG. 7. Distributions of Kolmogorov–Smirnov statistics for the cells analyzed in
Fig. 6. Using global single-population estimates for a2 and σ2, we estimated how
likely it is for early parts of a trajectory to be governed by the same diffusion dynam-
ics as its later parts via two-sample KS tests. The results for (a) cell 6, (b) cell 8,
and (c) cell 9 (gray histograms) are consistent and show shifted weights toward
smallerSm-values and broader tails than the corresponding reference distributions
(colored histograms). Insets: Analogous plots for Brownian dynamics simulation
data generated using the mixture model parameters in Figs. 6(b)–6(d) (see also
Table I). We considered 105 trajectories with lengths distributed in the same way
as in the experiments.

exclude the possibility that the experimental data originate from an
underlying intricate PDD profile.

Note that there appears to be a weak negative correlation
between the average trajectory length and the diffusion coefficient
associated with each subpopulation. This means that the trajec-
tories of fast diffusing populations are generally shorter than the
trajectories of slow diffusing populations. We can rule out effects
due to the trajectory-length bias of the MLEs (see Fig. 1) because
there is virtually no bias in global estimates of trajectories of
length N + 1 ≥ 5 and the experimental datasets contain exclusively
trajectories of length 8 or greater. The correlation is possibly
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FIG. 8. Spatial distribution of fast and slowly diffusing MET receptor tyrosine kinases. Using the classification coefficients [Eq. (27)], we assign each trajectory to an
appropriate subpopulation. Depending on their diffusion coefficients (see also Table I), the subpopulations have been color-coded from blue (slow) to red (fast). As in Fig. 6,
we focus on the three cells whose diffusion coefficient distributions are well described with the mixture model, namely, (a) cell 6, (b) cell 8, and (c) cell 9. [(d)–(f)] Diffusivity
landscapes inferred from mobile and immobile particles using the software platform TRamWAy. The localization uncertainty was estimated as a ≈ 0.05 μm from the values
in Table I, and the results seemed independent of the value chosen for the regularization factor. Note that the resolution of the diffusivity landscape is lower than the trajectory
representation in (a)–(c), which also results in the more moderate diffusion coefficient values.

explained by the fact that tracking algorithms have difficulties stitch-
ing together trajectories of fast diffusing particles with large displace-
ments between frames and are therefore more likely to split them up
into shorter trajectories.

Finally, we want to demonstrate how the information encoded
in the classification coefficients Tk,m can be employed, such as
specifically picking out trajectories belonging to a certain subpop-
ulation for further analysis. Figures 8(a)–8(c) visualize the trajec-
tories of mobile particles in cells 6, 8, and 9. We indicate increas-
ing receptor diffusivity with a color code from blue to red. The
resulting map of confined blue and spread-out red trajectories is
reminiscent of the diffusivity landscapes mapped out by Gaus-
sian propagators in Refs. 20 and 23. Motivated by this observa-
tion, we applied the TRamWAy open-source software platform
for analyzing single biomolecule dynamics23 to the tracking data
of our best-behaving cells. We thereby relied on the diffusion-
only (standard.d) inference mode with the hyperparameter of
the diffusivity prior (diffusivity_prior) and the minimum
number of assigned (trans-)locations (min_location_count)
both set to 1 and a nearest neighbor assignment by a count
(from_nearest_neighbors) of 10. The localization precision
(localization_precision) was chosen as the geometric average
of the a2-values reported in Table I, giving 0.05. The results are
depicted in Figs. 8(d)–8(f). All in all, the inferred diffusivity land-
scapes do not have the same resolution as Figs. 8(a)–8(c), where
immediately adjacent trajectories can have vastly different diffu-
sion coefficients, and therefore do not cover the same range of

diffusivity as the mixture model does. Furthermore, TRamWAy does
not consider a2 as a parameter to infer, but a constant specified by
the user. Whereas it could be insightful to analyze the data in Fig. 8
also in the context of corralled diffusion,49 we leave a more definitive
analysis of the spatial patterning of cell-surface receptor diffusion for
future studies.

IV. OUTLOOK: TOWARD BAYESIAN INFERENCE
We want to point out that both the single-population log-

likelihood [Eq. (14)] and the mixture log-likelihood [Eq. (28)] can
be paired with priors Π(a2, σ2

) to construct posterior distributions
via Bayes’ theorem. This affects not only the numerical values of
the parameter estimates but also their interpretation because in a
Bayesian setting, the model parameters are assumed to be randomly
distributed. A Bayesian prior can, e.g., be used to allow for varia-
tions in the localization uncertainty a2 for each recorded particle
individually.

The priors can be chosen as either (weakly) informative, where
definite information about a parameter is taken into consideration,
or uninformative. We expect informative prior information (if any)
to exist for a2, which can often be estimated empirically, e.g., via
auxiliary experiments involving immobilized labeled particles. Its
estimated mean a2

emp and uncertainty δa2
emp can be incorporated into

an informative prior, such as

Π(a2
) ∝ exp(−

(a2
− a2

emp)
2

2(δa2
emp)

2 ),
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which then enters the joint prior Π(a2, σ2
) as follows:

Π(a2, σ2
) = Π(σ2

∣ a2
)Π(a2

).

The remaining prior Π(σ2
∣ a2
) should be chosen as uninformative if

no substantial information on σ2 is available. The Jeffreys prior50 is a
classic uninformative prior, which is proportional to the square root
of (the determinant of) the Fisher information and therefore invari-
ant under coordinate transformations. Using the coordinates a2 and
ϕ, the Jeffreys prior for a fixed a2 corresponds to the square root of
the I2,2-element of the matrix I(a2, ϕ) (see Appendix C), namely,

Π(ϕ ∣ a2
) =

¿
Á
ÁÀ−

d
2

M

∑
m=1

d2 ln(∣Σ̃m∣)

dϕ2 ≡ Π(ϕ),

and is, in fact, independent of a2. Alternatively, one can assume a
uniform prior for ϕ, i.e.,

Π(ϕ ∣ a2
) = const.

If no information is available on any of the two parameters, the
priors can be chosen to either differ between parameters or be of the
same type. The two-parameter Jeffreys prior is given by

Π(a2, ϕ) =
√

det(I(a2, ϕ)),

where an analytic expression for the Fisher information matrix
I(a2, ϕ) can be found in Appendix C. While it is usually not rec-
ommended to use Jeffreys prior on anything other than single-
parameter models, it turns out that for the present problem, the
preferred alternative, the so-called reference prior,51,52 coincides
with the bivariate Jeffreys prior. This might be due to the fact that
the Jeffreys prior becomes separable when treated in the (a2, ϕ)-
coordinates or because both parameters are scale parameters.

Bayesian estimates are, in comparison to MLEs, often more
sharply distributed and thus have smaller uncertainties. However,
poorly chosen priors introduce biases. For uninformative priors,
the bias vanishes as the sample size goes to infinity, but differ-
ent priors result in different biases. In addition, the specific choice
of the estimator affects the size of the bias and the way it scales
with the sample size. We therefore recommend that practitioners
gauge which uninformative priors work best with their estimator of
choice.

V. CONCLUSIONS
In this paper, we have derived a numerically efficient maximum

likelihood estimator to extract diffusion coefficients from single-
molecule tracking experiments subject to static noise and dynamic
motion blur. To estimate diffusion coefficients from molecular
dynamics simulations, one sets the blur coefficient to B = 0. The esti-
mator is based on the statistics of trajectory increments in real space
and therefore complements the theory presented in Refs. 9 and 15,
where an estimator operating in discrete sine space was developed.
Fourier representations are computationally efficient and naturally
lead, e.g., to a power spectral analysis of the diffusion process.14

Our approach has the benefit of delivering closed-form expressions
for some quantities, such as the accompanying Fisher information

matrix. Compared to other diffusion coefficient estimators, the max-
imum likelihood estimator has several advantages, e.g., it allows for
the inclusion of prior knowledge in a Bayesian manner, makes the
error analysis for trajectories of different lengths straightforward,
and naturally leads to a quality factor analysis, which helps us to
assess whether the data satisfy the underlying assumptions of the
diffusion model or not.

In the case of heterogeneous data, the theory can be extended
to a mixture model, where the overall numerical efficiency is
retained for each subpopulation. Minimizing the corresponding
negative log-likelihood is then achieved with the help of the
expectation–maximization algorithm. To demonstrate its applica-
bility and effectiveness, we first considered sparse quantities of non-
diffusive synthetic data to test whether the theory was able to detect
any deviations from regular diffusion. Our results highlight the dif-
ficulty in distinguishing between diffusive and non-diffusive pro-
cesses, especially when the trajectories are overwhelmingly short and
corrupted by static noise and dynamic motion blur. We then used
the framework to analyze single-molecule tracking data for “resting”
MET receptor tyrosine kinase, recorded in ten different cells.30 As
the fit gradually got better with the increasing number of subpop-
ulations K, we relied on the distribution of quality factors, which
are a measure of how well a dataset conforms to the assumptions
of the underlying diffusion model, to determine the optimal value
of K. Although our results varied significantly between the cells, we
found solutions for four of the ten cells, where the null hypothesis
that the tracking data originated from a mixture model could not be
rejected. All these fits involved fairly large K-values, so we ruled out
models containing only a few subpopulations. However, the effective
number of subpopulations can often be reduced, e.g., by neglecting
sparsely represented subpopulations or by lumping together sub-
populations with similar diffusion coefficients. Overall qualitative
agreement between the experimental data and simulations suggests
that the broad distributions of diffusion coefficients observed in
the experiment are a result of heterogeneous mixtures, although
position-dependent diffusion as an underlying process cannot be
ruled out. In fact, for short trajectories that probe only local regions,
position dependence and heterogeneity in diffusion are intertwined.

We believe that our results provide practitioners of single-
molecule tracking techniques with valuable tools to analyze their
data. To facilitate their use, we have implemented the theoretical
formulations in a Julia data analysis package.31 The general formula-
tion and efficient evaluation of the likelihood functions should also
pave the way for more elaborate analysis methods in the future, e.g.,
involving Bayesian statistics.

SUPPLEMENTARY MATERIAL

See the supplementary material for detailed information on the
trajectory-length distribution for the ten cells analyzed, the model
parameters and their uncertainties from fits with different numbers
K of subpopulations, and the results of the quality factor analysis in
terms of the Kuiper statistic κ and the associated p-value.
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APPENDIX A: ANALYTIC CALCULATION
OF DETERMINANT

Consider an N ×N tridiagonal matrix with main, super-,
and sub-diagonal elements {α1, α2, . . . , αN}, {β1, β2, . . . , βN−1}, and
{γ1, γ2, . . . , γN−1}, respectively. Its determinant can be computed
using the following three-term recurrence relation:33

fn = αn fn−1 − βn−1γn−1 fn−2,
f−1 = 0, f0 = 1.

(A1)

The covariance matrix Σ of the main text [Eq. (7)] is not only tridi-
agonal but also a symmetric Toeplitz matrix, which is why we have
αi = α and γi = βi = β∀i. Multiplying both sides of Eq. (A1) with zn

and summing over n results in the generating function

w(z) =
∞
∑
n=0

fnzn
=

1
1 − αz + β2z2 (A2)

whose coefficients f n satisfy Eq. (A1). The denominator of Eq. (A2)
can be factored, and the resulting expression is rewritten as follows
via partial fraction decomposition:

w(z) =
1

r+ − r−
[

r+
1 − r+z

−
r−

1 − r−z
],

where r± = (α ±
√

α2 − 4β2)/2. Each term can be further expanded
into a geometric series of z to finally reveal that f n has the functional
form

fn = αn (1 + q)n+1
− (1 − q)n+1

2n+1q
, (A3)

with q =
√

1 − 4β2/α2. The determinant of an N ×N symmetric
tridiagonal Toeplitz matrix is given by f N , which finally results in
Eq. (12) of the main text.

APPENDIX B: POSITIVE DEFINITENESS
OF THE COVARIANCE MATRICES

An N ×N matrix M is said to be positive definite if x⃗TMx⃗
> 0 ∀x⃗ ∈ RN

/0⃗, which implies that all of its eigenvalues λn must
be strictly positive. The eigenvalues of a symmetric tridiagonal
Toeplitz matrix with diagonal and off-diagonal elements α, β ∈ R,
respectively, are given by

λn = α − 2∣β∣ cos(
nπ

N + 1
) > α − 2∣β∣

for n = 1, 2, . . . , N. The covariance matrices are therefore positive
definite if they are diagonally dominant, i.e., α − 2∣β∣ ≥ 0. This is
obviously the case for Σ′ and Σ′′ [Eqs. (8) and (9)] because 0 ≤ B
≤ 1/4 must hold. Furthermore, because of

1 + ϕ(1 − 2B) − 2∣−
1
2
+ ϕB∣ =

⎧⎪⎪
⎨
⎪⎪⎩

2 + (1 − 4B)ϕ, ϕ > (2B)−1

ϕ, ϕ ≤ (2B)−1,

the matrices Σ and Σ̃ are also positive definite.
Finally, it should be mentioned that the inverse of a positive

definite (nonsingular) symmetric matrix M is also positive definite
because its eigenvalues are the reciprocals of those of the original
matrix. These results guarantee the positivity of Δ⃗TΣ′−1Δ⃗, Δ⃗TΣ′′−1Δ⃗,
and Δ⃗T Σ̃−1Δ⃗ and the associated parameter estimates.

APPENDIX C: THE FISHER INFORMATION
AND ERROR ESTIMATES

By definition, the Fisher information matrix

I(a2, ϕ) = (I1,1 I1,2
I2,1 I2,2

)

equals the ensemble-averaged Hessian of L({Δ⃗m} ∣ a2, ϕ) [Eq. (17)]
with the following elements:

I1,1 = ⟨
∂2L
(∂a2)2 ⟩, I2,2 = ⟨

∂2L
∂ϕ2 ⟩,

I1,2 = I2,1 = ⟨
∂2L
∂a2∂ϕ

⟩.

On the boundary, the Fisher information is a scalar function
given by

I(θ) = ⟨
∂2L({Δ⃗m} ∣ θ)

∂θ2 ⟩,

where L({Δ⃗m} ∣ θ) is defined as L({Δ⃗m} ∣ a2, σ2
) of Eq. (14) with

one of the two parameters set to zero and θ ∈ {a2, σ2
} denotes the

remaining non-zero parameter.
Considering first the scalar case, we have Σ = θΣθ, with Σa2 = Σ′

and Σσ2 = Σ′′, and therefore,

∂2L
∂θ2 =

1
θ3

M

∑
m=1

d

∑
n=1

Δ⃗T
m,n(Σ

−1
θ )m

Δ⃗m,n −
dNM

2θ2 .

Ensemble averages only affect terms dependent on Δ⃗, which are,
in this case, all of quadratic form and can therefore be computed
using ⟨ΔiΔj⟩ = Σi,j = θ (Σθ)i,j. When evaluating the scalar Fisher
information, we encounter a sum of terms of the form

⟨Δ⃗TΣ−1
θ Δ⃗⟩ =

N

∑
i,j=1
(Σ−1

θ )i,j⟨ΔiΔj⟩ = θ
N

∑
i,j=1

δi,j = θN,

which simply reduces I(θ) to

I(θ) =
1
θ2

M

∑
m=1

d

∑
n=1

Nm −
dNM

2θ2 =
dNM

2θ2

and thus gives rise to the following lower bound for the standard
error δθ =

√
var(θ):

δθ ≥
√

1
I(θ)

= θ
√

2
dNM

.
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The general case makes use of the Hessian 2 × 2 matrix whose
components are given by

∂2L
(∂a2)2 =

1
(a2)3

M

∑
m=1

d

∑
n=1

Δ⃗T
m,nΣ̃−1

m Δ⃗m,n −
dNM

2(a2)2 ,

∂2L
∂a2∂ϕ

=
1

2(a2)2

M

∑
m=1

d

∑
n=1

Δ⃗T
m,nΣ̃−1

m Σ′′mΣ̃−1
m Δ⃗m,n,

∂2L
∂ϕ2 =

1
a2

M

∑
m=1

d

∑
n=1

Δ⃗T
m,nΣ̃−1

m Σ′′mΣ̃−1
m Σ′′mΣ̃−1

m Δ⃗m,n

+
d
2

M

∑
m=1

d2 ln(∣Σ̃m∣)

dϕ2

according to the identity dA−1
/dθ = −A−1

(dA/dθ)A−1. The first
diagonal element of the Fisher matrix is calculated in an analogous
way to the scalar Fisher information above, giving

I1,1 =
dNM

2(a2)2 .

For the summands of the non-diagonal elements, we find that

⟨Δ⃗T Σ̃−1Σ′′Σ̃−1Δ⃗⟩ =
N

∑
i,j,k,l=1

Σ̃−1
i,j Σ′′j,kΣ̃−1

k,l ⟨ΔiΔl⟩

= a2
N

∑
i,j=1

Σ̃−1
i,j Σ′′j,i = a2tr(Σ̃−1Σ′′).

With the help of Σ′′ = dΣ̃/dϕ and Jacobi’s formula, which states that

d∣A∣
dθ
= ∣A∣tr(A−1 dA

dθ
)

must hold for an invertible matrix A, we can rewrite the trace as
follows:

tr(Σ̃−1Σ′′) = tr(Σ̃−1 dΣ̃
dϕ
) =

1
∣Σ̃∣

d∣Σ̃∣
dϕ
=

d ln(∣Σ̃∣)
dϕ

.

We therefore get

I1,2 = I2,1 =
d

2a2

M

∑
m=1

d ln(∣Σ̃m∣)

dϕ
.

The last diagonal element of the Fisher matrix can be computed with
the help of

⟨Δ⃗T Σ̃−1Σ′′Σ̃−1Σ′′Σ̃−1Δ⃗⟩

=
N

∑
i,j,k,l,m,n=1

Σ̃−1
i,j Σ′′j,kΣ̃−1

k,l Σ′′l,mΣ̃−1
m,n⟨ΔiΔn⟩

= a2
N

∑
i,j,k,l=1

Σ̃−1
i,j Σ′′j,kΣ̃−1

k,l Σ′′l,i

= a2tr(Σ̃−1Σ′′Σ̃−1Σ′′),

where the identity d tr(A)/dθ = tr(dA/dθ) can be used to
rewrite the trace in terms of derivatives, giving

tr(Σ̃−1 dΣ̃
dϕ

Σ̃−1 dΣ̃
dϕ
) = −

d
dϕ

tr(Σ̃−1 dΣ̃
dϕ
)

= −
d2 ln(∣Σ̃∣)

dϕ2 .

The element I2,2 thus takes the form

I2,2 = −
d
2

M

∑
m=1

d2 ln(∣Σ̃m∣)

dϕ2 .

The derivatives of ln(∣Σ̃m∣) read

d ln(∣Σ̃m∣)

dϕ
=

Nm

α̃
(1 − 2Bm) − F(q̃),

d2 ln(∣Σ̃m∣)

dϕ2 = −
Nm

α̃2 (1 − 2Bm)
2
−

dF(q̃)
dϕ

,

where q̃ = (1 − 4β̃2
/α̃2
)

1/2
≥ 0, α̃ = 1 + ϕ(1 − 2Bm), and β̃ = −1/2

+ ϕBm. Here, we introduced the functions

F(q̃) =
2β̃(Nmq̃ − 1 + (Nm + 1)[α̃(1 − q̃)/2]Nm/∣Σ̃m∣)

α̃3q̃2(1 + q̃)
,

F(0) = lim
q̃→0

F(q̃) =
2β̃Nm(Nm − 1)

3α̃3

and its gradients

dF(q̃)
dϕ

= −
2
ϕ
[F(q̃) − C1F(q̃) + C2F(0) −

ϕ
2

F(q̃)2
],

C1 =
1

4β̃
+

3
2α̃
+

β̃ϕ
α̃3 [

3
q̃2 +

α̃2Nm

2β̃2
], C2 =

3ϕ
4α̃β̃q̃2

,

to condense our expressions.
In the general case, the standard errors emerge from the diag-

onal elements of the inverse Fisher information matrix I−1
(a2, σ2

).
This inverse is related to I−1

(a2, ϕ), which is simply given by

I−1
(a2, ϕ) =

1
I1,1I2,2 − I2

1,2
(

I2,2 −I1,2
−I1,2 I1,1

).

A coordinate transformation then gives us

I−1
(a2, σ2

) = J−1I−1
(a2, ϕ)(J−1

)
T
∣ϕ=σ2/a2 ,

with an inverse Jacobian

J−1
=
⎛
⎜
⎝

∂a2

∂a2

∂a2

∂σ2

∂ϕ

∂a2

∂ϕ

∂σ2

⎞
⎟
⎠

−1

= (
1 0
ϕ a2).

This gives rise to Eq. (20) of the main text.
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APPENDIX D: NUMERICS
1. Brownian dynamics simulations

Interpreting Eqs. (2)–(4) in the sense of Itô, we discretize them
as follows for Δt = Nδt:

Yi+1 = Yi +
σ
√

N
R′i ,

Zi =
N

∑
n=1

δt snYn+iN ,

Xi = Zi +
a
√

2
Ri.

(D1)

Here, Ri and R′i denote independent, normal distributed ran-
dom variables with zero mean and unit variance, and the sn are
normalized, i.e.,

N

∑
n=1

δt sn = 1.

In the case of position-dependent diffusion, the resulting multi-
plicative noise produces a spurious drift term,44 so the first line in
Eq. (D1) must be replaced with

Yi+1 = Yi +
σ(Yi)σ′(Yi)

N
+

σ(Yi)
√

N
R′i .

This is the discretized version of Eq. (36) of the main text.
In this paper, we exclusively chose N = 100 and sn = (Nδt)−1.

All two-dimensional trajectories were generated from two one-
dimensional trajectories of equal length under the assumption of
isotropic diffusion.

2. Implementation of EM algorithm

Starting from P(0)k = 1/K ∀k and a set {a2
k
(0)

, σ2
k
(0)
}k=1,...,K

of the initial parameter values, chosen randomly on a logarithmic
scale, the classification coefficients T(0)k,m are initialized according to
Eq. (27). We then proceed to update the parameters via Eq. (29) and
either Eqs. (30) and (31) or Eqs. (32) and (33), depending on which
solution results in the lowest negative log-likelihood value [Eq. (28)]

L(i) = L({Δ⃗m,n} ∣ {P(i)k , a2
k
(i)

, σ2
k
(i)
}).

The two steps of the EM algorithm are repeated for a fixed number
N local of iteration steps or broken off prematurely if the following
inequality is satisfied for the tolerance threshold ε:

L(i) − L(i−1)

NM
< ε.

The corresponding solution is saved in the “high score,” and the
algorithm is reinitialized with a new set of initial parameters. The
“high score” solution is replaced by the new iteration if the latter
results in a lower negative log-likelihood. The EM algorithm is run
in total for Nglobal times.

We used N local = 500 and Nglobal = 50 with a tolerance threshold
of ε = 10−10 when analyzing the data in Figs. 2, 4, and 6.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request. Requests
for the tracking data should be directed to Professor Dr. Mike
Heilemann, corresponding author of the original publication.

REFERENCES
1J. Gelles, B. J. Schnapp, and M. P. Sheetz, “Tracking kinesin-driven movements
with nanometre-scale precision,” Nature 331, 450–453 (1988).
2A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin,
“Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm
localization,” Science 300, 2061–2065 (2003).
3J. C. M. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T.
Maniatis, and X. S. Xie, “Single-molecule imaging of transcription factor binding
to DNA in live mammalian cells,” Nat. Methods 10, 421–426 (2013).
4M. J. Saxton and K. Jacobson, “Single-particle tracking: Applications to mem-
brane dynamics,” Annu. Rev. Biophys. Biomol. Struct. 26, 373–399 (1997).
5V. Levi and E. Gratton, “Exploring dynamics in living cells by tracking single
particles,” Cell Biochem. Biophys. 48, 1–15 (2007).
6N. Bobroff, “Position measurement with a resolution and noise-limited
instrument,” Rev. Sci. Instrum. 57, 1152–1157 (1986).
7D. S. Martin, M. B. Forstner, and J. A. Käs, “Apparent subdiffusion inherent to
single particle tracking,” Biophys. J. 83, 2109–2117 (2002).
8T. Savin and P. S. Doyle, “Static and dynamic errors in particle tracking
microrheology,” Biophys. J. 88, 623–638 (2005).
9A. J. Berglund, “Statistics of camera-based single-particle tracking,” Phys. Rev. E
82, 011917 (2010).
10H. Qian, M. P. Sheetz, and E. L. Elson, “Single particle tracking. Analysis of
diffusion and flow in two-dimensional systems,” Biophys. J. 60, 910–921 (1991).
11S. Wieser and G. J. Schütz, “Tracking single molecules in the live cell plasma
membrane—Do’s and don’t’s,” Methods 46, 131–140 (2008).
12X. Michalet, “Mean square displacement analysis of single-particle trajectories
with localization error: Brownian motion in an isotropic medium,” Phys. Rev. E
82, 041914 (2010).
13J. T. Bullerjahn, S. von Bülow, and G. Hummer, “Optimal estimates of self-
diffusion coefficients from molecular dynamics simulations,” J. Chem. Phys. 153,
024116 (2020).
14C. L. Vestergaard, P. C. Blainey, and H. Flyvbjerg, “Optimal estimation of
diffusion coefficients from single-particle trajectories,” Phys. Rev. E 89, 022726
(2014).
15X. Michalet and A. J. Berglund, “Optimal diffusion coefficient estimation in
single-particle tracking,” Phys. Rev. E 85, 061916 (2012).
16C. L. Vestergaard, “Optimizing experimental parameters for tracking of diffus-
ing particles,” Phys. Rev. E 94, 022401 (2016).
17G. Hummer, “Position-dependent diffusion coefficients and free energies from
Bayesian analysis of equilibrium and replica molecular dynamics simulations,”
New J. Phys. 7, 34 (2005).
18J.-B. Masson, D. Casanova, S. Türkcan, G. Voisinne, M. R. Popoff,
M. Vergassola, and A. Alexandrou, “Inferring maps of forces inside cell membrane
microdomains,” Phys. Rev. Lett. 102, 048103 (2009).
19D. Kleinhans, “Estimation of drift and diffusion functions from time series data:
A maximum likelihood framework,” Phys. Rev. E 85, 026705 (2012).
20M. El Beheiry, M. Dahan, and J.-B. Masson, “InferenceMAP: Mapping of single-
molecule dynamics with Bayesian inference,” Nat. Methods 12, 594–595 (2015).
21N. Hoze and D. Holcman, “Recovering a stochastic process from super-
resolution noisy ensembles of single-particle trajectories,” Phys. Rev. E 92, 052109
(2015).
22J. Krog and M. A. Lomholt, “Bayesian inference with information content model
check for Langevin equations,” Phys. Rev. E 96, 062106 (2017).
23F. Laurent, C. Floderer, C. Favard, D. Muriaux, J.-B. Masson, and C. L. Vester-
gaard, “Mapping spatio-temporal dynamics of single biomolecules in living cells,”
Phys. Biol. 17, 015003 (2020).

J. Chem. Phys. 154, 234105 (2021); doi: 10.1063/5.0038174 154, 234105-17

© Author(s) 2021

https://scitation.org/journal/jcp
https://doi.org/10.1038/331450a0
https://doi.org/10.1126/science.1084398
https://doi.org/10.1038/nmeth.2411
https://doi.org/10.1146/annurev.biophys.26.1.373
https://doi.org/10.1007/s12013-007-0010-0
https://doi.org/10.1063/1.1138619
https://doi.org/10.1016/s0006-3495(02)73971-4
https://doi.org/10.1529/biophysj.104.042457
https://doi.org/10.1103/PhysRevE.82.011917
https://doi.org/10.1016/s0006-3495(91)82125-7
https://doi.org/10.1016/j.ymeth.2008.06.010
https://doi.org/10.1103/PhysRevE.82.041914
https://doi.org/10.1063/5.0008312
https://doi.org/10.1103/PhysRevE.89.022726
https://doi.org/10.1103/PhysRevE.85.061916
https://doi.org/10.1103/PhysRevE.94.022401
https://doi.org/10.1088/1367-2630/7/1/034
https://doi.org/10.1103/PhysRevLett.102.048103
https://doi.org/10.1103/PhysRevE.85.026705
https://doi.org/10.1038/nmeth.3441
https://doi.org/10.1103/PhysRevE.92.052109
https://doi.org/10.1103/PhysRevE.96.062106
https://doi.org/10.1088/1478-3975/ab5167


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

24A. Frishman and P. Ronceray, “Learning force fields from stochastic
trajectories,” Phys. Rev. X 10, 021009 (2020).
25F. Persson, M. Lindén, C. Unoson, and J. Elf, “Extracting intracellular diffusive
states and transition rates from single-molecule tracking data,” Nat. Methods 10,
265–269 (2013).
26M. Ott, Y. Shai, and G. Haran, “Single-particle tracking reveals switching of the
HIV fusion peptide between two diffusive modes in membranes,” J. Phys. Chem. B
117, 13308–13321 (2013).
27N. Monnier, Z. Barry, H. Y. Park, K.-C. Su, Z. Katz, B. P. English, A. Dey, K.
Pan, I. M. Cheeseman, R. H. Singer, and M. Bathe, “Inferring transient particle
transport dynamics in live cells,” Nat. Methods 12, 838–840 (2015).
28M. Lindén and J. Elf, “Variational algorithms for analyzing noisy multistate
diffusion trajectories,” Biophys. J. 115, 276–282 (2018).
29R. C. Falcao and D. Coombs, “Diffusion analysis of single particle trajectories in
a Bayesian nonparametrics framework,” Phys. Biol. 17, 025001 (2020).
30M.-L. I. E. Harwardt, P. Young, W. M. Bleymüller, T. Meyer, C. Karathanasis,
H. H. Niemann, M. Heilemann, and M. S. Dietz, “Membrane dynamics of resting
and internalin B-Bound MET receptor tyrosine kinase studied by single-molecule
tracking,” FEBS Open Bio 7, 1422–1440 (2017).
31See https://github.com/bio-phys/DiffusionMLE for a Julia implementation of
our results.
32A. Quarteroni, R. Sacco, and F. Saleri, Numerical Mathematics (Springer-Verlag,
New York, 2000).
33M. E. A. El-Mikkawy, “On the inverse of a general tridiagonal matrix,” Appl.
Math. Comput. 150, 669–679 (2004).
34F. Qi and A.-Q. Liu, “Alternative proofs of some formulas for two tridiagonal
determinants,” Acta. Univ. Sapientiae, Matem. 10, 287–297 (2018).
35R. P. Brent, Algorithms for Minimization Without Derivatives (Prentice-Hall,
Englewood Cliffs, NJ, 1973).
36J. Kiefer, “Sequential minimax search for a maximum,” Proc. Am. Math. Soc. 4,
502–506 (1953).
37P. K. Mogensen and A. N. Riseth, “Optim: A mathematical optimization
package for Julia,” J. Open Source Software 3, 615 (2018).
38N. H. Kuiper, “Tests concerning random points on a circle,” Nederl. Akad.
Wetensch. Proc. Ser. A 63, 38–47 (1960).

39M. Tygert, “Statistical tests for whether a given set of independent, identically
distributed draws comes from a specified probability density,” Proc. Natl. Acad.
Sci. U. S. A. 107, 16471–16476 (2010).
40H. Arsham, “Kuiper’s P-value as a measuring tool and decision procedure for
the goodness-of-fit test,” J. Appl. Stat. 15, 131–135 (1988).
41A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from
incomplete data via the EM algorithm,” J. R. Stat. Soc. Series B Stat. Methodol.
39, 1–22 (1977).
42C. Biernacki, G. Celeux, and G. Govaert, “Assessing a mixture model for clus-
tering with the integrated completed likelihood,” IEEE Trans. Pattern Anal. Mach.
Intell. 22, 719–725 (2000).
43B. B. Mandelbrot and J. W. van Ness, “Fractional Brownian motions, fractional
noises and applications,” SIAM Rev. 10, 422–437 (1968).
44N. G. van Kampen, “Diffusion in inhomogeneous media,” J. Phys. Chem. Solids
49, 673–677 (1988).
45A. T. A. Wood and G. Chan, “Simulation of stationary Gaussian processes in
[0,1]d ,” J. Comput. Graphical Stat. 3, 409–432 (1994).
46G. Giannone, E. Hosy, F. Levet, A. Constals, K. Schulze, A. I. Sobolevsky, M.
P. Rosconi, E. Gouaux, R. Tampé, D. Choquet, and L. Cognet, “Dynamic super-
resolution imaging of endogenous proteins on living cells at ultra-high density,”
Biophys. J. 99, 1303–1310 (2010).
47N. Bag and T. Wohland, “Imaging fluorescence fluctuation spectroscopy:
New tools for quantitative bioimaging,” Annu. Rev. Phys. Chem. 65, 225–248
(2014).
48G. J. Schütz, H. Schindler, and T. Schmidt, “Single-molecule microscopy
on model membranes reveals anomalous diffusion,” Biophys. J. 73, 1073–1080
(1997).
49M. J. Saxton, “Single-particle tracking: Effects of corrals,” Biophys. J. 69,
389–398 (1995).
50H. Jeffreys, “An invariant form for the prior probability in estimation
problems,” Proc. R. Soc. London, Ser. A 186, 453–461 (1946).
51J. M. Bernardo, “Reference posterior distributions for Bayesian inference,” J. R.
Stat. Soc.: Ser. B 41, 113 (1979).
52J. O. Berger, J. M. Bernardo, and D. Sun, “The formal definition of reference
priors,” Ann. Stat. 37, 905–938 (2009).

J. Chem. Phys. 154, 234105 (2021); doi: 10.1063/5.0038174 154, 234105-18

© Author(s) 2021

https://scitation.org/journal/jcp
https://doi.org/10.1103/physrevx.10.021009
https://doi.org/10.1038/nmeth.2367
https://doi.org/10.1021/jp4039418
https://doi.org/10.1038/nmeth.3483
https://doi.org/10.1016/j.bpj.2018.05.027
https://doi.org/10.1088/1478-3975/ab64b3
https://doi.org/10.1002/2211-5463.12285
https://github.com/bio-phys/DiffusionMLE
https://doi.org/10.1016/s0096-3003(03)00298-4
https://doi.org/10.1016/s0096-3003(03)00298-4
https://doi.org/10.2478/ausm-2018-0022
https://doi.org/10.1090/s0002-9939-1953-0055639-3
https://doi.org/10.21105/joss.00615
https://doi.org/10.1016/s1385-7258(60)50006-0
https://doi.org/10.1016/s1385-7258(60)50006-0
https://doi.org/10.1073/pnas.1008446107
https://doi.org/10.1073/pnas.1008446107
https://doi.org/10.1080/02664768800000020
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1109/34.865189
https://doi.org/10.1109/34.865189
https://doi.org/10.1137/1010093
https://doi.org/10.1016/0022-3697(88)90199-0
https://doi.org/10.1080/10618600.1994.10474655
https://doi.org/10.1016/j.bpj.2010.06.005
https://doi.org/10.1146/annurev-physchem-040513-103641
https://doi.org/10.1016/s0006-3495(97)78139-6
https://doi.org/10.1016/s0006-3495(95)79911-8
https://doi.org/10.1098/rspa.1946.0056
https://doi.org/10.1111/j.2517-6161.1979.tb01066.x
https://doi.org/10.1111/j.2517-6161.1979.tb01066.x
https://doi.org/10.1214/07-aos587

