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Abstract 

To characterize the left-ventral occipito-temporal cortex (lvOT) role during reading in a 
quantitatively explicit and testable manner, we propose the lexical categorization 
model (LCM). The LCM assumes that lvOT optimizes linguistic processing by allowing fast 
meaning access when words are familiar and filter out orthographic strings without meaning. 
The LCM successfully simulates benchmark results from functional brain imaging. 
Empirically, using functional magnetic resonance imaging, we demonstrate that quantitative 
LCM simulations predict lvOT activation across three studies better than alternative models. 
Besides, we found that word-likeness, which is assumed as input to LCM, is represented 
posterior to lvOT. In contrast, a dichotomous word/non-word contrast, which is assumed as the 
LCM's output, could be localized to upstream frontal brain regions. Finally, we found that 
training lexical categorization results in more efficient reading. Thus, we propose a ventral-
visual-stream processing framework for reading involving word-likeness extraction followed 
by lexical categorization, before meaning extraction.  
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Introduction 

Reading is a crucial cultural achievement, and efficient recognition of written words is at its core. 
Insights have been gained into the cognitive and brain systems involved in visual word recognition 
(VWR), including the identification of a word-sensitive region of the left-ventral occipito-temporal 
cortex (lvOT). This region is often also referred to as the visual word form area (VWFA1); it is reliably 
activated by written words2, its structure and function are compromised in developmental reading 
disorders3,4, lvOT lesions result in severe reading deficits5, and electrical stimulation of this area impairs 
word recognition6. However, there is at present no agreed-upon mechanistic understanding of which 
process is implemented in lvOT while VWR7. Here, we propose a simple computational model of lvOT 
function during reading, i.e., the lexical categorization model (LCM), which integrates insights from 
neurocognitive and psycholinguistic research to explicitly model the response profile of lvOT to 
different types of orthographic stimuli.  

 The lvOT is part of the ventral-visual processing stream8. It was proposed that lvOT receives 
converging bottom-up visual input from both hemispheres and processes abstract representations of 
recurring letter sequences – including sublexical units and small words1,9. This proposal is in part based 
on the finding that lvOT is sensitive to word-similarity10, in the sense of decreasing lvOT activation 
(measured with functional magnetic resonance imaging/fMRI) with decreasing word-similarity of non-
words. I.e., high activation for non-words containing letter sequences that frequently occur in real words 
(e.g., ‘ous’ in mousa) and low activation for non-words containing illegal letter combinations (e.g., 
mkzsq). Seemingly contradictory, it was reported that more familiar (i.e., more frequently occurring) 
words showed less lvOT activation as compared to seldom, i.e., low frequent words11. In sum, empirical 
data indicate that while word-similarity (in the sense of sub-lexical orthographic similarity) increases 
lvOT activation, word-familiarity (in the sense of word frequency) decreases lvOT activation. This 
seemingly counterintuitive set of results suggests that lvOT responds in a non-linear fashion to the 
‘word-likeness’ of orthographic strings, showing greatest activity for words of intermediate word-
likeness (e.g., words with low word-familiarity and non-words with high word-similarity) and least 
activity both for highly word-like, frequent words as well as for orthographically illegal and rarely co-
occurring (‘word-un-like’) strings of letters (see also12,13).  

 The non-linear response profile of lvOT to different types of orthographic stimuli resembles the 
relationship between word-likeness and behavioral performance in word recognition tasks. Using a 
lexical decision task (categorical word/non-word decisions), Balota and Chumbley14 observed that 
lexical decisions for letter strings with intermediate levels of word-likeness were more difficult (e.g., 
higher error rates) than decisions to very familiar words or very ‘word-un-like’ non-words (see also15,16). 
Based on these results, they proposed that categorical recognition can be achieved for frequently 
occurring words and non-words that are very word-un-like (see above) exclusively on the letter string's 
word-likeness. In contrast, at intermediate word-likeness levels (e.g., for rarely occurring words, words 
of a foreign language, or – as used in psychological experiments – orthographically legal but 
meaningless pseudowords), uncertainty exists concerning the lexical nature of the letter strings. Balota 
and Chumbley14 assume that this ambiguity is reduced by further analytic processing, e.g., based on sub-
lexical unit (e.g., letter) processing or word-spellings.  

We here propose that lvOT implements an analogous process. The core computation is a 
dichotomous lexical categorization primarily informed by the word-likeness of perceived orthographic 
strings. It is thereby yielding fast access for highly familiar words and, at the same time, filtering out 
uninformative non- or unknown, i.e., foreign words preventing further linguistic processing. This 
proposal is consistent with one of the core computational functions of the ventral-visual-stream, i.e., 
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categorizing percepts into different categories of objects. A recent proposal described a hierarchical 
categorization framework of nested, spatially distinguishable cortical levels to differentiate between 
objects17. For example, animate vs. inanimate objects activate separable ventral-stream regions, while 
spatially dissociable sub-regions represent different lower-level features, such as faces or eyes for the 
animate subcategory. This object categorizing architecture is also known to categorize between words 
and non-orthographic objects efficiently6,18,19. Within the framework of hierarchically organized ventral-
stream processing, it is plausible that a categorical distinction between existing words and non-words is 
computed at the next level of resolution (i.e., first categorizing sensory information as, orthographic 
stimulus, etc.; next level, within each category, categorization if it is a word) – preparing subsequent 
lexical, i.e., linguistic processing. 

Here, we assume that the, in the lvOT implemented, lexical categorization computation precedes 
the retrieval of word meaning (i.e., ‘lexical access’). This computation is plausible since one saves 
neuronal resources efficiently enable lexical processing for familiar words. Concurrently, preventing 
attempts of further linguistic processing of non-words and, e.g., start a web search to identify the 
unknown word. Importantly, as reviewed above, lvOT activity does not linearly, but non-linearly reflect 
word-likeness, representing the level of uncertainty associated with the word/non-word categorization. 
We hypothesize that the behavioral pattern shown in lexical decision tasks reflects the processes that 
compute lexical status, thus providing a mechanistic explanation for the observed non-linear activation 
pattern of lvOT. 

To characterize the lvOT’s role for word recognition in a quantitatively explicit and testable 
manner, we implemented this hypothesis in a simple computational model: the lexical categorization 
model (LCM). The LCM predicts the lexical categorization difficulty based on the word-likeness of the 
input letter string. Current conceptions of lvOT functioning in VWR are verbal-descriptive and can be 
divided in models that assume linear or non-linear response profiles. Linear models were the local 
combination detector model that suggests that lvOT activation reflects a presented letter string's overlap 
with stored representations9,10 and the lexicon model assumes a word-frequency-based whole-word 
lexicon search process11,20,21. Non-linear response profiles were suggested besides the LCM by the 
engagement and effort model (E&E) and the interactive account-model (IA). The E&E accounts for a 
lexicon-search process and how strong a given orthographic string engages the lvOT (i.e., learned words 
result in higher engagement than non-words)13 The IA assumes predictive coding22 based orthographic 
processing, i.e., lvOT activation reflects the error related to internally generated predictions12. The main 
advantages of computational implementations are direct quantitative comparisons of alternative models, 
via model simulations, and direct model evaluations via correlations of simulations with empirical data. 

We here evaluate the LCM against implementations from the four alternative models mentioned 
above and a predominant cognitive model, i.e., the Dual Route model23. We include simulations, 
reflecting the activation of the lexical (orthographic lexicon activation) and the sub-lexical route 
(grapheme-to-phoneme activation), both previously associated with lvOT activation (e.g.,13,21,24). In 
simulation studies, we compare all models based on nine benchmark effects reported in the literature. 
fMRI based evaluations allow localizing the lexical categorization computation in neuronal space. After 
that, models can be compared based on their simulations' fit compared to the observed lvOT activations. 
Note, our primary focus is the description of lvOT responses to stimulus as opposed to task differences. 
Our notion here is that it is optimal to understand the activation variance determined by the stimulus 
characteristics, i.e., by a model, before the systematic investigation of different tasks. Our task 
investigation follows this logic (fMRI study 3). Finally, we investigate if training the lexical 
categorization process increases reading efficiency.   
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LCM implementation 

To implement the LCM, we first derived the word-likeness distributions of a large set of orthographic 
strings (Fig. 1a). We estimated word-likeness (OLD2025) of all German five letter words with the first 
letter being uppercase (i.e., nouns and noun-forms; 3,110; example: Augen) and the same number of 
pseudowords (e.g., Augon) and consonant strings (e.g., Zbgtn). The distributions of words and 
pseudowords overlap strongly in intermediate familiarity ranges (Fig. 1a; consistent with14).  

High word-likeness indicates that letter strings are highly likely words, i.e., the gray distribution 
showing words does not overlap with the non-word distributions. Low word-likeness (i.e., OLD20>3), 
in contrast, indicates that letter strings are not word-like, i.e., consonant string non-words (yellow 
distribution). For these strings, word-likeness estimates allow word/non-word categorizations with high 
degrees of certainty. This certainty is reflected in the probabilities of a string being a word or a non-
word based on word-likeness (gray and blue line, respectively, in Fig. 1b). In contrast, at intermediate 
word-likeness levels, lexical status is ambiguous (e.g., probability of being a word/non-word is .5; Fig. 
1b). Correct word/non-word categorization is not possible based on word-likeness only. As described 
by Balota and Chumbly14, lexical categorization needs additional evidence here, e.g., spelling 
information, for a correct result. 

Suppose the lvOT implements a lexical categorization computation, that is hard when word-
likeness distributions of words and non-words overlap and easy when they do not (i.e., for frequent 
words or consonant cluster non-words). In that case, we expect that the non-linear response profile of 
lvOT is very well-described by lexical categorization difficulty. To test this assumption, we 
implemented the LCM using the information-theoretical concept of entropy (Fig. 1b, black line; 
see Methods). 

 

Figure 1. Description of the lexical categorization model (LCM). (a) Word-likeness distributions 
(kernel density estimates), based on the orthographic Levenshtein distance (OLD2025) of 
words (gray), pseudowords (blue), and consonant strings (yellow) including an example for 
each category. (b) Probability that a letter string given an OLD20 value is a word (gray line) or 
a non-word (blue line). The black line represents the estimated entropy (Equation 1), which 
combines the probabilities of being a word or non-word across all possible OLD20 values. The 
LCM’s central hypothesis is that this entropy function reflects lvOT activation across all 
possible levels of word-likeness, effectively representing the lexical categorization difficulty. 
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Results 

Evaluation A: LCM simulations  

We use the LCM, implementations of four alternative neurocognitive models1,12,13,24 and one purely 
cognitive model, the Dual-Route model (DRC)23, to simulate the most frequently discussed published 
lvOT activation contrasts between different types of visually presented letter strings. We implemented 
the LCM simulations by transforming the word-likeness of each letter string into a lexical categorization 
uncertainty via the entropy function (Fig. 1b).  

Figure 2a-e display LCM simulations for different types of letter strings (see Methods) that 
successfully reproduce published fMRI based lvOT activation results: pseudowords>words13; 
words>consonant strings2; pseudowords>words>consonant strings26; pseudohomophones>words and 
pseudohomophones=pseudowords20; pseudowords>words matched on multiple lexical characteristics27; 
word similarity effect: low word similarity<intermediate word similarity<high word similarity=words10; 
increasing lvOT activation with decreasing word frequency11 including pseudowords (note that when 
only words were used, the beta-weight was reduced from -0.40 to -0.17; see also28–30); bigram frequency 
effect: increasing lvOT activation with increasing bigram frequency31. Note that bigram frequency is 
also a measure previously used for estimating word-likeness and is correlated to the OLD20 parameter 
(e.g., see Fig. 2b in16). Therefore, we also present the non-linear bigram frequency effect, resolving the 
inconsistent findings concerning lvOT and bigram frequency previously reported30,31.  

When we simulate these contrasts with all five neurocognitive models and the German version 
of the DRC, one can compare the models based on the number of correctly simulated contrasts (Fig. 2f-
g; Simulations of alternative models1,11–13 in Supplement 1). Note that for the DRC, we investigated the 
activations of the orthographic lexicon, similar as assumed in the lexicon model24, and the activation of 
the grapheme-to-phoneme route, as suggested by21, reflecting letter-by-letter decoding separately. We 
also investigated the DRC simulated response times, but no difference to the orthographic lexicon 
simulations was found. This differentiation allowed us to investigate the two routes as independent 
hypotheses for the cognitive processes implemented in the lvOT (see Supplement 2 for details).  

Only the LCM (Fig. 2a-e) and the IA model (Supplementary Fig. 1f) could simulate all contrasts 
correctly (Fig. 2f). The E&E model, also implementing a non-linear response profile, likewise performs 
better compared to the models assuming a linear response profile and the cognitive models. Thus, given 
that the most noticeable feature, which distinguishes the LCM, IA, and E&E models from the other 
models, pertains to the implementation of a non-linear response profile. All did reasonably well in 
simulating the lvOT contrasts (at least 6/9) and were also positively correlated with each other (Fig. 2g; 
all r's>.4). Thus, we focused empirical fMRI based model comparisons on the LCM, IA, and E&E 
models.  
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Figure 2. Evaluation A of the LCM based on simulations of lvOT benchmark effects from the 
fMRI literature and model comparisons to the lexicon model, local combination detector model 
(CD), effort and engagement model (E&E), the interactive account model (IA; for 
implementations and detailed simulations see Supplement 1), and the orthographic lexicon 
and grapheme to phoneme conversion route of the cognitive Dual-Route model (for detailed 
simulations see Supplement 2). Simulated lvOT activation (in arbitrary units: min = 0; max = 
6) for all groups of letter strings is presented using bar graphs depicting their respective mean 
activation. In addition, horizontal black bars indicate significant differences of the simulation 
results between letter string categories, as derived from linear models (Bonferroni corrected). 
LCM simulated lvOT activation is presented, from left to right, (a) for words (W), pseudowords 
(PW), consonant strings (CS), pseudohomophones (PH), (b) words and pseudowords 
matched on number of syllables, number of Coltheart's orthographic neighbors, frequency of 
the highest frequency neighbor, initial bigram frequency, final bigram frequency, and 
summated bigram frequency (mW, mPW), and (c) the word similarity effect comparing words 
(cmW: comparative matched words) to non-words with high word similarity (matched on 
quadrigram frequency; hWS), to non-words with intermediate word similarity (matched on 
bigram frequency; iWS), and, to non-words with low word similarity (lWS). In addition, (d) the  
word frequency effect (for all words and pseudowords as tested in11) and (e) the bigram 
frequency effect are presented as scatter plots with a linear regression line. For bigram 
frequency also an non-linear regression line was presented. Each dot represents one letter 
string, the more saturated the blue gets, the more letter strings are included. See text for more 
detailed description of the replicated benchmark effects including the specific stimulus sets 
used. (f) Qualitative model comparisons showing the sum of correctly simulated stimulus 
differences (orange bars) and all correct minus all incorrectly simulated effects excluding null 
effects. The LCM and the IA were able to correctly simulate all contrast correctly. (g) 
Correlation matrix of all model parameters included in the model comparison, showing that the 
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non-linear models simulations, i.e., the LCM, E&E, and the IA model were substantially 
correlated (all r’s > .4).  

 
Evaluation B: fMRI measured lvOT activity  
To test whether the quantitative LCM predictions capture activity in lvOT, we use three fMRI studies 
(cf. Methods for acquisition parameters and preprocessing).  
 

Figure 3. Evaluation B: fMRI whole brain analysis. Significant activation clusters using LCM 
simulations as a single predictor (a)  in Study 1 and (d) in Study 3. Significant activation clusters 
using word-likeness represented by the OLD20 as a single predictor (b) in Study 2 and (e) 
Study 3. Words larger than non-words contrast (c) in Study 2 and (f) Study 3 (for OLD20 and 
word > non-word contrasts of Study 1 see Supplement 3). Thresholds for all whole brain 
analyses: voxel level: p < .001 uncorrected; cluster level: p < .05 family-wise error corrected. 

 

 

Figure 4. Significant LCM activation clusters in the lvOT across studies show considerable 
overlap, but no overlap to word-likeness and lexicality contrasts.    
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Figure 5. Simulations for Words (W), 
pseudowords (PW), and consonant 
strings (CS; all medians) used in Study 1 
from (a) the lexical categorization model 
(LCM), (b) the interactive account model 
(IA), and (c) the effort and engagement 
model (E&E). (d) LCM, (e) IA, and (f) 
E&E  simulations for Study 2. (g) LCM, 
(h) IA, and (i) E&E  simulations for Study 
3. Empirically observed lvOT activation 
for W, PW, CS, and scrambled letters 
(SL), extracted from the same peak voxel 
region, i.e., defined in Study 1, of interest 
(ROI) of (j) Study 1, and (k) Study 2. (l) 
For the animal decision and catch trial 
detection task of Study 3 the ROI data 
was extracted from the peak voxel of 
Study 3. We present the percent signal 
change, in arbitrary units, for each 
condition, including the variance across 
participants (horizontal line represents 
the median; box +- 1 standard deviation; 
whiskers +- 2 standard deviations). 
Besides, we present model comparisons 
for the LCM, E&E, and IA models of 
Study 1 (S1) in (m), of Study 2 (S2) in (n), 
and of Study 3 (S3) in (o). We show the 
mean difference between the model 
simulated contrasts and the observed 
contrast differences from the ROI data. 
We standardize these model 
comparisons via the standard deviations 
of the observed data (SD). I.e., the 
difference between simulated and 
observed contrast differences in 
standard deviations of the observed data. 
For Study 1, we summarize three 
contrasts, which can be inspected in 
detail in (p), Study 2 includes only one 
contrast presented in (n), and Study 3 
combines six contrasts shown in detail in 
(q). In the single contrast figures (pq), the 
solid black line and dot show the mean 
observed difference, dashed lines +- 1 
standard deviation, and dotted lines +-2 
standard deviations also from the 
observed differences. Green dots show 
the LCM simulated contrast estimate, 
blue dots the IA contrast estimate, and 
red dots the E&E contrast estimates. In 
(q) the left panel represents the animal 
detection and the right panel the catch 
trial detection task. (r) The linear 
relationship between lvOT activation and 
LCM-simulations in study 3 separated for 
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words and non-words and the two tasks conducted in the study. 

 Study 1: Participants viewed a set of letter strings covering a wide range of word-likeness (i.e., 
words, pseudowords, consonant strings, and strings of scrambled letters) in a block design with 
condition-specific blocks. Participants pressed a button whenever they detected a target (‘#####’). We 
generated the scrambled items by randomly replacing 90% of pixels of the monochrome word images 
(i.e., maximally unfamiliar; low word-likeness assumed). For all stimuli, the predicted lvOT activation 
was equivalent to the lexical categorization difficulty as simulated by the LCM. We used item-specific 
LCM simulations as a continuous predictor for the fMRI data without explicitly accounting for condition 
differences (event of interest: item onsets). 
 If the proposed categorization process is implemented in lvOT, quantitative LCM simulations 
should predict activation in this area. Our results support this prediction: Across the brain, only lvOT 
(Fig. 3a; Fig. 4; Table 1) shows a positive relationship between LCM simulations and BOLD response. 
Also, the detected activation cluster is consistent with previous localizations of the VWFA (including 
published MNI peak coordinates such as -48, -56, -1610). The model simulations for the three non-linear 
models (see simulations in Fig. 5abc) with the same stimulus material resulted in similar qualitative 
patterns (Consonant strings; CS< words; W < pseudowords; PW) for all three models but quantitative 
differences remained. For example, the difference between words and pseudowords was much smaller 
for the LCM compared to the IA and E&E simulations.  

The empirically measured activation patterns at the peak voxel of the lvOT cluster (Fig. 5j) also 
showed the same qualitative differences as simulated by the three models (CS<W<PW; Fig 5a-c). To 
implement a quantitative model comparison between the LCM, IA, and E&E model, we transformed all 
simulations and the peak data on a common scale (z-transformation). Then we compared every model's 
contrast differences with the empirically measured contrast differences (i.e., W vs. PW, W vs. CS, PW 
vs. CS). As a difference measure, we used the standard deviation from the observed contrast (see Fig. 
5m; Fig. 5p for all individual contrasts), allowing a quantitative comparison of the predicted vs. the 
observed contrasts. In sum, the LCM's quantitative predictions predicted the data best, i.e., the lowest 
difference between predicted and observed (i.e., <1 SD; Fig. 5m). In detail, for the W vs. PW and PW 
vs. CS, the LCM predictions were best. Only for the W vs. CS contrast, the E&E model was more 
accurate. Therefore, fMRI study 1 indicated that the LCM characterizes BOLD activation patterns of 
lvOT during VWR. 

Study 2: In study one, letter strings were presented in condition-specific blocks (i.e., 16 items 
of the same category in succession), so that the predictability of the next item concerning word/non-
word categorization was high. Potentially, since the LCM does not account for the experimental context, 
we speculate that the blocked design may have strategically reduced the amount of processing devoted 
to the lexical categorization. Therefore, in the second and third fMRI study, we implemented an event-
related design, randomly intermixing stimulus categories. The second fMRI study presented word-
likeness matched words and pseudowords in random order (a silent reading task with catch trials, i.e., 
detect the German word Taste - button). With this stimulus material, model simulations differed between 
the three models: LCM simulations for these stimuli predicted high lvOT activation for both conditions 
with only subtle condition differences (Words>Pseudowords; Fig. 5d). In contrast, both the IA and E&E 
models predicted a higher activation for pseudowords than words (Fig. 5e,f). In the whole-brain contrast 
investigating larger activation for pseudowords than words, only a difference in the precuneus was found 
(see Table 1). Also, there were no differences in the lvOT, as shown by a region of interest analysis (i.e., 
peak voxel from Study 1). We found positive activation levels with virtually no differences between 
words and pseudowords (see Fig 5k). Model comparisons based on the word, pseudoword contrast 
showed that the LCM predicted the observed lvOT contrast best (i.e., <1 SD; Fig. 5n). 

Study 3: Here, we selected the presented stimuli based on LCM simulations. Our notion was to 
create a dataset that results in a clear distinction between the three alternative models. Qualitatively the 
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LCM-simulated lvOT activation predicted a pattern that was inverted to the pattern predominant in the 
literature (PW>W>CS; Fig. 2 vs. CS>W>PW; Fig. 5g). If a lexical categorization process is 
implemented in the lvOT than the activation should correlate with the simulations but not necessarily 
follow the previously described stimulus category-specific differences.  For an initial finding suggesting 
see Graves et al.32 show word, pseudoword differences only when words were often used but not when 
they were seldom. On the contrary, the simulations of the IA and E&E models (Fig. 5hi) expected 
different patterns (IA: PW>W>CS; E&E: PW>CS>W) with the IA model again expecting the classic 
pattern shown in the literature. 

Besides, we included two tasks: Animal and catch trial detection (AD and CD, respectively). 
Each participant conducted four runs that included either AD, CD, AD, CD or CD, AD, CD, AD, 
presenting the relevant words in the two tasks across participants. We assigned participants randomly 
to the task sequence. With this manipulation, we were able to investigate the task effect on the same set 
of stimuli to estimate the task's influence on the lexical categorization process that can describe the 
variance between stimuli. 

Similar to Study 1, we used the simulated LCM as a single predictor in a whole-brain analysis. 
Again we identified a correlation of lvOT activation and LCM simulations (Fig. 3d; Fig. 4; Table 1). 
We also found weaker correlations in the left and right parietal cortex (Fig. 3d; Table 1). Peak voxel 
activation of the lvOT cluster showed an LCM correlation in both words and non-words and both tasks 
(all t’s(34)>4.3; all p’s< .001; Fig. 5r). In this region of interest analysis, we did not find an interaction 
of condition and task (all t’s<1.47; all p’s>0.14) and no significant differences between stimulus 
categories (all t’s<1.34; all p’s>0.17; Fig. 5l). Still, we found a task effect showing a higher activation 
in the animal detection task (t(34)=-2.2; p<0.03). Besides, we found that the animal detection task was 
harder than the catch trial detection task reflected in more errors (Animal: 4.4%; Catch: 1.5%; GLM 
Estimate: -0.03; SE=0.015; t=2.2) and longer response times (Animal: 644 ms; Catch: 520 ms; LM	
Estimate: -0.2; SE=0.02; t=9.7).  

The model comparisons found that the LCM had, again, the lowest error in predicting the 
contrast pattern (Fig.  5o). Like in Studies 1 and 2, the E&E model simulated the lvOT pattern better 
than the IA model. In detail, from the six contrasts investigated, the LCM had three predicted contrasts 
within one standard deviation of the observed contrast difference, two that fall within two standard 
deviations, and one that was just outside of two (Fig. 5q). In contrast, the E&E (two <1 SD’s & four >2 
SD’s) and the IA (two <2 SD’s & four > 2 SD’s) simulations resulted in much larger differences. Thus, 
the findings of Study 3 again replicated that the lvOT activation, while VWR, is best described by a 
lexical categorization computation, i.e., the LCM.  

Word-likeness and Lexicality effects: Besides the LCM based analyses, we found correlations 
with word-likeness (i.e., represented by OLD20) in all three studies. We localized the word-likeness 
representations predominately to areas posterior to the lvOT, i.e., to occipital and parietal cortex (Fig.  
3be, Fig.  4 panel 5; Supplementary fig. 3; Table 1). Also, we found one area at the precentral gyrus. A 
dichotomous lexicality effect (W>PW), was found most consistently in brain regions upstream to lvOT 
in the inferior frontal cortex (Fig.  3cf; Table 1). In Study 2, we found activation in the Superior frontal 
gyrus and, in Study 3, we found activation in the left superior temporal gyrus and right/left occipital 
pole regions.  

In sum, the lexical categorization computation, represented by LCM simulations, is observed in 
lvOT activation patterns. Across the entire brain, the LCM's simulation predicted activity in the often-
replicated word-sensitive cluster in lvOT. Also, we described the neural correlate of word-likeness in 
posterior regions. Furthermore, we found dichotomous W>PW effects consistently anterior to lvOT 
(e.g., left inferior frontal regions). These results support our LCM proposal. I.e., that lvOT computes a 
dichotomous lexical categorization, using word-likeness as input. 
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Evaluation C: Training based evaluation 
After repeatedly finding that lexical categorization is useful to describe the activation pattern of a highly 
relevant brain area for reading, we here implement a behavioral training paradigm. When lexical 
categorization is relevant to reading performance, training of the process must determine an increase in 
reading speed. To test this, we implemented a training procedure for German language learners that 
started with an incoming assessment and three ~45 min training sessions on consecutive days and ended 
with an outgoing assessment. The core of the LCM training was a lexical decision task, including 
feedback that indicated correct responses. For comparison, we included a dataset with the same stimuli 
(800 words and non-words) and task from a sample of typical readers. 

The analysis of response times from lexical decisions showed a non-linear effect of word 
likeness (i.e., OLD20) for native and non-native readers (Fig. 6a). For the non-native readers, we found 
a significant interaction of the lexical categorization difficulty predictor and training session. This 
finding indicated that the lexical categorization effect increases with training (Estimate: -0.03; SE=0.01; 
t=2.4). Besides, we identified faster response times from session to session (Estimate: -0.04; SE=0.005; 
t=8.0). However, non-native readers only reached the performance of native German readers when 
processing consonant strings (see Fig. 6b; Equivalence test: Upper bound: t(123)=-1.7; p=0.04; Lower 
bound: t(123)=3.7; p<0.001). Next, we extracted the increase of the lexical categorization effect with 
training for each non-native reader based on the response time data from the random slope estimates 
from linear mixed models. This individualized estimate represents how strong the lexical categorization 
effect increased with training and allows us to estimate if the training effect transfers to an increase in 
reading speed (administered by a pre/post-training reading speed test). We estimated a regression 
analysis with reading speed change as the dependent variable and the effect estimates of the individual 
lexical categorization effects and incoming reading speed as independent variables. Note, we also 
included the interaction between the two parameters. We found no significant interaction (GLM 
Estimate: -25.8; SE=13.4; t=-1.9; p=0.058) but a significant main effect of pre-speed (GLM Estimate: -
1.1; SE=0.5; t=-2.3; p=0.022) and the lexical categorization training effect (GLM Estimate: 416.7; 
SE=205.4; t=2.0; p=0.046; see Fig. 6c). Overall, on average, the increase in the reading speed of the 
lexical categorization training was 20% (t(75)=4.5; p=0.001; Fig. 6c, right panel). Thus, this final 
evaluation represents evidence that lexical categorization is a core process in VWR that determines 
efficient reading. 

 

 
Figure 6. Evaluation C: Behavioral training paradigm. (a) Response times in relation to word-
likeness and (b) separated for stimulus categories (W: Words; PW: Pseudowords; CS: 
Consonant strings) from non-native German readers while training lexical categorizations in 
three sessions and one group of native German readers (i.e., typical readers) doing one 
session of a lexical decision task with the same stimuli. (c) Reading speed change correlated 
with the individualized effect estimated for the LCM by training interaction. Right panel boxplot 
shows the overall reading speed increase. For all boxplots the horizontal line represent the 
median, the box +- 1 standard deviation and the whiskers +- 2 standard deviations. 
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Discussion 

Here, we propose that the word-sensitive cortical area in the left-ventral occipito-temporal cortex (lvOT) 
implements a categorization of perceived letter strings into meaningful (i.e., words) or meaningless 
optimizing later linguistic, i.e., lexical processing. The lexical categorization model (LCM), a 
computational implementation of the categorization process, is essential to our investigation. The LCM 
allowed understanding the intricate activation pattern of the lvOT in response to a variety of letter strings 
irrespective of their task context (compare10 and11). The model is capable of simulating multiple 
published fMRI findings and reliably predicts empirical fMRI activations in lvOT. The LCM exceeded 
multiple alternative models9,12,13,23,24, some implemented here for the first time, both in simulation and 
empirical studies. Finally, we found that a behavioral training procedure, based on lexical categorization, 
increased reading speed. Besides, we found that word-likeness, i.e., the basis of the lexical 
categorization, is predominantly represented in posterior occipital/temporal/parietal regions, and word-
specific lexical processing predominantly is implemented in more anterior brain regions (see also33). 
These findings, thus, suggest that during reading, after initial visual processing, word-likeness is 
estimated in posterior occipital/parietal regions. In the following, based on word-likeness, a lexical 
categorization of perceived letter strings is implemented in lvOT, which precedes the extraction of word 
meaning, at downstream cortical sites, including, e.g., left frontal cortex (Fig. 7). 

The LCM is a quantitatively explicit extension of previous VWR models of lvOT1,11,12, allowing 
explicit comparisons to alternative models. The comparisons based on model simulations showed a clear 
advantage for models that considered a non-linear response profile of the lvOT, i.e., LCM, interactive 
account12, and engagement & effort model13. Further, fMRI data-based model comparisons showed that 
the LCM predicted the data best. Besides, our work differs from previous approaches by considering 
letter strings with a wide range of word-likeness and the utilization of an optimal word-likeness estimate 
(OLD2025; see Supplement 5 for LCM model simulations based on alternative word-likeness estimates). 
The OLD20 word-likeness estimate is theoretically meaningful, as it is a reasonable proxy for the 
perceptual familiarity that one acquires while becoming an efficient reader, but potentially lacks 
neuronal plausibility (e.g., see16). Also, OLD20 estimations are based on a word lexicon only (see 
Supplement 6 for simulations with different lexicon sizes). Still, in the entropy estimation, non-word 
distributions are included (for an LCM version without non-word distributions, see Supplement 1b). 
The latter is essential for the model's success, which suggests that the tasks that included both words 
and non-words could influence our expectations of the reading material presented; thus, the non-word 
distributions' inclusion becomes essential. Hence, for further investigations of this and other issues, we 
could use the model implementations combined with the model comparison metrics provided here as a 
tool for the systematic investigations of task and stimulus variance in the activation of the lvOT. 

 At its core, the LCM-simulated activation reflects the difficulty of the lexical categorization. It 
is easy to categorize letter strings as a meaningful word when the word-likeness is high. On the contrary, 
it is also easy to categorize a letter string as meaningless when the word-likeness is low. Both describe 
efficient cases of lexical categorization of letter strings, resulting in fast responses. At intermediate 
word-likeness levels, however, lexical categorization difficulty is high. This results from the 
overlapping word-likeness distributions of words and non-words – which discards word-likeness as the 
sole basis for lexical categorization. As a consequence, the inclusion of additional information is 
required for letter strings with an intermediate word-likeness and resulting in high lvOT activation and 
slow responses. Spelling information was brought forward as a potential source aiding categorization 
when it is hard, based on word-likeness only14. Besides, from the third fMRI study, we learned that a 
parietal network co-activates with lvOT, representing a potential support structure if word-likeness is 
not sufficient. Interestingly, the letter string-sensitive lvOT and left parietal regions' white matter 
connectivity are described even before literacy acquisition34, and the structural connectivity in adult 
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readers35. Thus, the finding of a co-activated well-connected parietal structure potentially indicates a 
support structure for the lexical categorization process, in case word-likeness-based differentiation is 
not possible. The exact specification of the information is represented in these regions' activation has 
yet to be determined. 

 

Figure 7. Schematic description of ventral visual stream processing during visual word 
recognition as assumed in the lexical categorization model, including (i) word-likeness 
estimations in posterior regions, (ii) lexical categorization, and (iii) the extraction of word 
meaning in anterior regions. For the lexical categorization process implemented in lvOT the 
uncertainty is presented, visualizing the assumption that higher degrees of categorization 
uncertainty – in areas of intermediate word-likeness – may require further elaborative 
processing to reach a lexical categorization. 

 

In conclusion, the LCM, which is inspired by the ventral visual processing stream models from 
occipital to anterior temporal and frontal regions - is a simple computationally explicit model that 
reliably describes lvOT activation patterns concerning a wide range of different letter strings. Empirical 
evaluations of the LCM support the following: Word-likeness estimation in posterior lvOT, which is 
then fed forward into lvOT as the basis for lexical categorization. Finally, after non-words are filtered 
out, and familiar words are passed through fast, higher-level cognitive processes, such as word-meaning 
extraction, are postulated to occur in downstream areas, including the frontal cortex. This framework 
(Fig. 7), including the LCM as a central cognitive process, is a significant step towards brain-based 
computational accounts36 for information processing in reading and new interventions helping slow 
readers.  
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Methods 

LCM implementation 

Given that previous work indicated a relationship between lvOT processing and word-similarity10 or 
word-familiarity11, the implementation of the LCM relies on an optimal measure of word-likeness – the 
mean Levenshtein distance over the 20 nearest words (i.e., the 20 words with the lowest distance; 
OLD20)25. Word-likeness distributions were derived for a larger number of orthographic strings by first 
estimating the Levenshtein distance, i.e., a measure of the similarity of any two strings of letters based 
on the number of insertions, deletions, substitutions, and/or transpositions of two adjacent letters37. 
OLD20 is considered superior to other established lexical measures25, such as e.g., Coltheart’s N, as it 
was shown to be the better predictor of behavioral word recognition performance. Also, this measure 
allows us to differentiate between a large range of orthographic stimuli (compare, e.g., Fig. 1a with the 
left panels of Supplement 5). For example, most non-words and a large number of words have zero 
orthographic neighbors. Thus, qualitatively very different letter strings (e.g., words as well as consonant 
strings; Supplement 5) have the same number of neighbors (i.e., zero). In contrast, the OLD20 can 
differentiate between a broader range of letter strings by describing more subtle differences in word-
likeness (see above). The OLD20 is also a useful proxy of perceptual familiarity. E.g., the lexicon's size, 
which is small for beginning readers and large for skilled readers, is the basis for the OLD20 estimation. 
When a reader has a small lexicon, the probability of finding a high number of similar words is very 
low since the estimation includes the 20 nearest words. With more words in the lexicon, one is more 
familiar with the orthography allowing a robust differentiation between words, i.e., relevant language 
items, and non-words, i.e., noise (see Supplement 6 for simulations).  

 OLD20 was estimated for all German five letter uppercase words (n = 3,110; extracted from N 
= 193,236 words of the SUBTLEX database38; estimated using the old20 function of the vwr-package39 
in GNU R). For each of the selected words (e.g., Augen - eye), we also generated a pseudoword by 
replacing vowels to form phonotactically and orthographically legal but meaningless letter strings (e.g., 
Augon). Pseudowords were created automatically by replacing the vowels with other vowels until the 
string could not be found in the SUBTLEX database anymore. Pseudowords were then revised manually 
based on visual inspection in order to identify illegal letter combinations. Consonant strings (i.e., 
orthographically illegal strings of letters; e.g., Zbgtn) were formed by replacing all vowels with 
randomly selected consonants before also computing OLD20 for each item. 

 Figure 1a displays the word-likeness (OLD20) distributions of these three groups of letter 
strings. It displays the variability of this word-likeness estimate (compare Supplement 5 for distributions 
of the same words for alternative word-likeness estimations). Some words like Leben (life) are more 
prototypical, i.e., reflected by a high word-likeness (OLD20 = 1). Others like Fazit (conclusion) are less 
prototypical, which is reflected by a lower word-likeness (OLD20 = 2.3). Note that since the OLD20 is 
a distance measure, higher values represent less word-like letter strings and lower values highly word-
like letter strings. Some pseudowords like Mades (base word Modus/mode) are highly similar to 
existing words (resulting in intermediate word-likeness; OLD20 = 1.6), while most consonants strings 
are dissimilar to the existing words (low word-likeness for Zbgtn: OLD20 = 2.95). Figure 1a 
demonstrates that OLD20 distributions of words (grey) and pseudowords (blue) overlap strongly in 
intermediate familiarity ranges, consistent with the description provided by Balota and Chumbley14. 
Letter strings with the highest word-likeness are words, and, expectedly, consonant string non-words 
(yellow) have the lowest levels of word-likeness. Thus, the LCM rests on the assumption that for these 
items, one can implement lexical categorizations (word non-word decisions) with high certainty. At the 
same time, lexical categorization is harder at intermediate word-likeness levels.  
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 We propose that the information-theoretical concept of entropy40 can describe the non-linear 
response profile of lvOT. We base this proposal on the assumption that lvOT implements lexical 
categorization to filter out perceived letter strings that are not known. Also, we assume that the 
uncertainty associated with this filter function in the face of overlapping distributions at intermediate 
levels of word-likeness reflects the difficulty (i.e., the effort) to implement the lexical categorization. 
Initially, entropy measures were used to determine the information value of an upcoming event in a time 
series. For example, in a binary categorization, if at a time point t the received information already 
allows a perfect categorization, the expected additional information value of t+1 is low (i.e., low 
entropy). In contrast, if previous information is ambiguous and does only allow a categorization around 
chance, the expected additional information at t+1 is high (i.e., high entropy) as this information might 
be critical for a future categorization40. For the current implementation, the previous information is 
defined by all known words – i.e., by the mental lexicon, here approximated by 3,110 five-letter words 
as described above. Each perceived letter string – be it a word or a non-word – can be characterized by 
its word-likeness, which can be quantified relative to the existing lexical knowledge, approximated in 
the present model by the OLD20 measure. The estimated entropy reflects the uncertainty of the lexical 
categorization given the word-likeness of the letter string. Note that these estimations are an 
approximation, based only on a subset of all possible non-words with five letters (i.e., the same number 
of words, pseudowords, and consonant strings: 3,110). Still, these non-words are, to some extent, related 
to words from the lexicon since these were the basis for constructing our non-words. Thus, non-words 
represent a potential source of noise added to a system based only on information from words (e.g., 
OLD20 estimation is related to the word items in the lexicon). 

 As displayed in Figure 1b, real words (grey line), most words have a high probability of being 
categorized as words tend to have high word-likeness (Fig. 1a). On the other hand, non-words (blue 
line) tend to be less word-like and are thus clearly less likely to be categorized as words. As outlined 
above, the lexical categorization uncertainty is particularly high at intermediate levels of word-likeness. 
This relationship between word-likeness and lexical categorization uncertainty is captured well by the 
entropy estimation, represented by the black line in Figure 1b. Entropy is low when the word-likeness 
estimate allows a precise categorization (as either word or non-word). Only when the word-likeness 
estimate indicates a considerable uncertainty concerning the lexical categorization, the entropy is high. 
Of note, the shape of the entropy function over word-likeness strongly resembles the non-linear response 
profile of lvOT discussed in the Introduction section and described behavioral performance14,16. 

 As a consequence, we here propose, as a central postulate of the LCM, that the difficulty of the 
lexical categorization computation (i.e., described by the entropy function; Fig. 1b) drives the neuronal 
activity in lvOT. Critical here is the assumption that the lexical categorization is performed based on the 
word-likeness of a given letter string, only. Importantly, this entropy (Ei) function allows to formalize 
the non-linear activation profile of lvOT: 

Equation 1: 

𝐸! 	= 	−	𝑝!(𝑊|𝑂𝐿𝐷20!) ∙ 𝑙𝑜𝑔"	𝑝!(𝑊|𝑂𝐿𝐷20!) −	𝑝!(𝑛𝑊|𝑂𝐿𝐷20!) ∙ 𝑙𝑜𝑔"	𝑝!(𝑛𝑊|𝑂𝐿𝐷20!)	 

The computational implementation of the LCM consists of the entropy function (Fig. 1b, black 
line) derived from the probability (pi) of a letter string i being a word (W) or non-word (nW) given the 
specific letter string’s OLD20 (𝑙𝑜𝑔"  indicates a logarithm on the basis of 2). 𝑝!(𝑊|𝑂𝐿𝐷20!) was 
derived by (i) taking all letter strings of a given OLD20 (e.g., at an OLD20 of 1.5 this would be 137 
letter strings), (ii) identifying the words, (iii) counting them (n = 116), and (iv) calculating the probability 
of being a word given the OLD20 value (𝑝!(𝑊|𝑂𝐿𝐷20!) = .85; 𝑝!(𝑛𝑊|𝑂𝐿𝐷20!) is the inverse, i.e., 1 
- .85 = .15).  
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Participants  
15, 39, and 35 healthy volunteers (age from 18 to 39) participated in Experiments 1, 2, and 3 of 
Evaluation B (fMRI), respectively. All had normal reading speed (reading score above 20th percentile 
estimated by a standardized screening; unpublished adult version of41), reported absence of speech 
difficulties, had no history of neurological diseases, and normal or corrected to normal vision. In the 
training study of Evaluation C, 76 healthy non-native German speaking and 48 native German 
speaking volunteers (age from 17–74) participated. The non-native German speaking participants were 
all German language learners from diverse background (Arabic, Azerbaijani, Bulgarian, Chinese, 
English, Farsi, French, Georgian, Indonesian, Italian, Japanese, Persian, Russian, Serbo-Croatian, 
Spanish, Turkish, Ukrainian, Hungarian, Urdu, and Uzbek). Also, note that six of the non-native 
participants became literate without the acquisition of an alphabetic script. Overall, the non-native 
participants had a low reading score (i.e., < percentile of 30). Selecting this group was indented as we 
expected that lexical categorization is well established in experienced native German readers. 
Participants gave their written informed consent and received student credit or financial compensation 
(10€/h) as an incentive for participating in the experiments. The research was approved by the ethics 
board of the University of Salzburg (EK-GZ: 20/2014; fMRI studies 1 and 2) and Goethe-University 
Frankfurt (#2015-229; fMRI study 3). 

Materials and stimulus presentation 

Evaluation A. (i) Pseudowords>words contrast was implemented by contrasting LCM simulations of 
the 3,110 words and 3,110 pseudowords presented in Figure 1a. (ii) Words>consonant strings was 
implemented by contrasting LCM simulations of the 3,110 words and 3,110 consonant strings presented 
in Figure 1a. (iii) Pseudohomophones>words and (iv) pseudohomophones=pseudowords contrasts were 
implemented by contrasting LCM simulations of 3,110 words, 3,110 pseudowords, and 52 
pseudohomophones (e.g., Taksi), which encompassed all 5-letter pseudohomophones presented by21. (v) 
Matched pseudowords>matched words were matched on multiple lexical characteristics, i.e., number of 
syllables, number of Coltheart's orthographic neighbors, frequency of the highest frequency neighbor, 
initial bigram frequency, final bigram frequency, and summated bigram frequency (N = 108 vs. 108), 
as described in the original study reporting this benchmark effect27. (vi) Word similarity effect 
simulations are implemented with three non-word conditions including 332 letter strings with low word 
similarity, 4,034 letter strings with intermediate word similarity, and 220 letter strings with high word 
similarity, as well as 267 words. The words and non-words with high word similarity were matched on 
quadrigram frequency, whereas words and non-words with intermediate word similarity were matched 
on bigram frequency. Note that we selected the maximum possible number of items in each group to 
implement the match. (vii) The word frequency effect, i.e., log. counts per million, was implemented as 
described in the original benchmark study11, with N = 3,110 words and pseudowords each; the frequency 
of pseudowords was set to zero. (viii) Bigram frequency effect simulations are implemented including 
3,110 words, pseudowords, and consonant strings each. LCM simulations of lvOT BOLD signal 
strength were computed as described above. 

Evaluation B: Experiment 1. 90 five-letter words, pseudowords, consonant strings, and words of 
scrambled letters were presented. In addition, 90 checkerboards and 16 catch trials consisting of hash 
marks (“#####”) were presented; to which participants responded by a button press and which were 
excluded from the analysis. Words and pseudowords were matched on characteristics like the OLD20, 
the number of syllables, and the mean bi-/tri-gram frequency (based on the SUBTLEX frequency 
database38). In addition, words, pseudowords, and consonant strings were matched on letter frequency. 
Stimuli were presented using Presentation software (Neurobehavioral Systems Inc., Albany, CA, USA) 
in black courier new font on a white background for 350 ms (1,000 ms inter-stimulus interval/ISI), in 
six blocks per stimulus category with 16 items each. After two blocks, a fixation cross was presented 
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for 2 s. In addition, six rest blocks (fixation cross) were interspersed. Each block lasted for 16 s, which 
resulted in approximately 10 min of recording time.  

Evaluation B: Experiment 2. 60 critical five-letter words and pseudowords were presented. In addition, 
120 different pseudowords that underwent a learning procedure and , thus, not analyzed here. 10 practice 
trials, and 30 catch trials consisting of the German word Taste (Button) were presented. Participants 
responded to catch trials by a button press; these trials were excluded from the analysis. All words and 
pseudowords consisted of two syllables and were matched on OLD20 and mean bigram frequency. 
Letter strings were presented by the Experiment Builder software (SR-Research, Ontario, Canada) for 
800 ms (yellow Courier New font on gray background; ISI 2,150 ms). To facilitate estimation of the 
hemodynamic response, an asynchrony between the TR (2,250 ms) and the stimulus presentation was 
established. In addition, 60 null events (fixation cross as in the ISI) were interspersed among trials. The 
sequence of presentation was determined by a genetic algorithm42, which optimized for maximal 
statistical power and psychological validity. The fMRI session was divided in two runs with a duration 
of approximately 8 min each.  

Evaluation B: Experiment 3. We presented 200 critical five-letter words, 100 consonant strings, and 100 
pseudowords. Besides, we presented ten practice trials and 100 catch/animal trials, each consisting of 
the German word Taste (Button) or animal names. Participants responded to catch trials in the catch trial 
task or the animal names in the animal detection task by a button press; we excluded these trials from 
the analysis. We selected the letter strings based on simulations from the LCM, the IA, and the E&E 
model so that the stimulus set allowed to differentiate between the alternative models (i.e., see Fig. 5g-
i). Letter strings were presented by the Presentation software (Neurobehavioral Systems Inc., Albany, 
CA, USA) for 800 ms (black Courier New font on gray background; ISI 2,150 ms; i.e., same as for 
Experiment 3). Also, 100 null events (fixation cross as in the ISI) were interspersed among trials. A 
genetic algorithm again determined the sequence of the presentation42. We divided the fMRI session 
into four runs with a duration of approximately 10 min each. 

Evaluation C: We presented 1,600 5-letter letter strings in the training study, including 800 words, 400 
pseudowords, and 400 consonant strings. These letter strings varied naturally on word-likeness 
(OLD20), word frequency, and others as we randomly drew the words and non-words from the 
distributions presented in Figure 1a. This procedure's motivation is to sample from the full distribution 
as a critical feature of our new training, i.e., preventing artificial sets of stimuli. Thus, participants were 
allowed to learn based on a representative set of words. Stimulus presentation was implemented with 
the Experiment Builder software (SR-Research, Ontario, Canada) using mono-spaced Courier-New 
font, with a visual angle of approximately 0.3° per letter. The letter string presentation was randomized 
for each participant and each of the three training sessions. After each trial, participants got feedback if 
their response was correct or not. Before and after the training sessions, we assessed reading speed by a 
standardized screening. The latter allowed us to estimate the transfer effect of the LCM training on 
reading speed. Note that we combined this dataset from three studies. Note that all stimuli including 
lexical characteristics will be available on the Open Science Framework. 

 
Data acquisition and analysis 
LCM simulations. Statistical comparisons of the simulations presented in Figure 2 were implemented 
with the lm function in R and p-values were Bonferroni-corrected for multiple comparisons. In total, 
nine benchmark effects were tested of which the contrast pseudowords>words>consonant strings26 was 
a combination of the pseudowords>words13 and the words>consonant strings2 contrast. Significant 
differences were marked in Figure 2 (also implemented for alternative models presented in the 
Supplement 1 and 5 with a black horizontal bar when the direction of the effect was expected from the 
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literature and a red bar when the expected effect direction was violated. Figures 1, 2, 5 and 6 were 
implemented using ggplot2 in R. 

fMRI data; Experiments 1, 2 &3. A Siemens Magnetom TRIO 3-Tesla scanner (Siemens AG, Erlangen, 
Germany) equipped with a 12-channel head-coil (Experiment 1), a 32-channel head-coil (Experiment 
2) or an 8-channel head-coil (Experiment 3) was used for functional and anatomical image acquisition. 
The BOLD signal was acquired with a T2*-weighted gradient echo-planar imaging (EPI) sequence (TR 
= 2250 ms; TE = 30 ms; Experiment 1&2: Flip angle = 70°, Experiment 3: Flip angle = 90°; Experiment 
1&3: 64 x 64 matrix; FoV = 210 mm; Experiment 2: 86 x 86 matrix; FoV = 192 mm). Thirty-six 
descending axial slices with a slice thickness of 3 mm and a slice gap of 0.3 mm were acquired within 
the TR. In addition, for each participant a gradient echo field map (Experiment 1&2: TR = 488 ms; TE 
1 = 4.49 ms; TE 2 = 6.95 ms; Experiment 3: TR = 650 ms; TE 1 = 4.89 ms; TE 2 = 7.35 ms) and a high-
resolution structural scan (T1-weighted MPRAGE sequence; Experiment 1&2: 1 x 1 x 1.2 mm; 
Experiment 3: 1 x 1 x 1 mm) was acquired. Stimulus presentation was implemented, in Experiment 
1&2, by an MR-compatible LCD screen (NordicNeuroLab, Bergen, Norway) and, in Experiment 3, by 
a Sanyo PLC-XP41-projector (SANYO Electric Co., Osaka City, Japan), both with a refresh rate of 60 
Hz and a resolution of 1024x768 pixels. 

For experiment 1 and 2 the SPM8 software (http://www.fil.ion.ucl.ac.uk/spm), running on 
Matlab 7.6 (Mathworks, Inc., MA, USA), was used for preprocessing and statistical analysis. Functional 
images were realigned, unwarped, corrected for geometric distortions by use of the FieldMap toolbox, 
and slice-time corrected. In Experiment 1 the high-resolution structural image was pre-processed and 
normalized using the VBM8 toolbox (http://dbm.neuro.uni-jena.de/vbm8). The image was segmented 
into gray matter, white matter and CSF, denoised, and warped into MNI space by registering it to the 
DARTEL template of the VBM8 toolbox using the high-dimensional DARTEL registration algorithm43. 
Based on these steps, a skull-stripped version of the structural image was created in native space. The 
functional images were co-registered to the skull-stripped structural image and then the parameters from 
the DARTEL registration were used to normalize the functional images to MNI space. In Experiment 2 
the images were co-registered to the high-resolution structural image, which was normalized to the MNI 
T1 template image. The functional images were further resampled to isotropic 3 × 3 × 3 mm voxels in 
Evaluation B, Experiment 1, and 2 × 2 × 2 mm voxels in 2, Experiment 2, and smoothed with a 6 mm 
full width half maximum Gaussian kernel. For Experiment 3, we first set up the fMRI data in the BIDS 
format44, which allowed us to use the fMRIPrep preprocessing pipeline45. 

For statistical analysis, in Experiment 1, 2, & 3, a two-stage mixed effects model was used. The 
first level is subject–specific and models stimulus onsets with a canonical hemodynamic response 
function and its temporal derivative. Movement parameters from the realignment step and catch trials 
were modeled as covariates of no interest. A high-pass filter with a cut off of 128 s was applied to the 
functional imaging data and an AR(1) model46 corrected for autocorrelation. In Experiment 3, we used 
the Python-based nistats package for statistical analysis and the nilearn package to create figures47 to 
model the fMRI statistics as in the SPM software. For the statistical analysis of ROI data, LMMs48 were 
calculated in R (see below). 

Training data. Linear mixed model (LMM) analysis is a linear regression analysis that is 
optimized to estimate statistical models with crossed random effects for items48. These analyses result 
in effect size estimates with confidence intervals (SE) and a t-value. t-values larger than 2 are considered 
significant since this indicates that the effect size ±2 SE does not include zero49. 

For the training data, we used LMMs to analyze the response time data from the LCM training 
task (i.e., a lexical decision with feedback). First, we excluded response times below 300 ms and above 
4000 ms. Second, we log. transformed the response times to account for the ex-gaussian distribution 
that typically results from response times measurement. For the regression model, which we used to 
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estimate the change of the entropy effect with training, the core term was a three-way interaction of 
training session, entropy, and word-likeness (i.e., OLD20). Besides, we controlled for the following 
covariates: word frequency, lexicality, trial index (i.e., at which position in the training session the letter 
string was presented), and if the response was erroneous or not. Random effects were the intercepts of 
letter string and participant.  
 For this secondary analysis, i.e., correlating individual LCM training effects with reading speed 
increase, we estimated the random slope of the interaction of entropy with training on the participants. 
With this individualized interaction estimate, we now have a predictor that can investigate if the LCM 
specific training effects translate to a reading speed increase. For this analysis, we estimated a linear 
regression model that predicted the reading speed increase in percent. As predictors, we included the 
pre-training reading speed and the individual LCM training estimate plus the two parameters' 
interaction.   
 
Data and Code availability 
Data and code will be published at the Open Science Framework when accepted.    

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 9, 2020. ; https://doi.org/10.1101/085332doi: bioRxiv preprint 

https://doi.org/10.1101/085332
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 21 

References 

1. Dehaene, S. & Cohen, L. The unique role of the visual word form area in reading. Trends 
Cogn. Sci. 15, 254–262 (2011). 

2. Cohen, L. et al. Language‐specific tuning of visual cortex? Functional properties of the Visual 
Word Form Area. Brain 125, 1054–1069 (2002). 

3. Richlan, F., Kronbichler, M. & Wimmer, H. Functional abnormalities in the dyslexic brain: A 
quantitative meta-analysis of neuroimaging studies. Hum. Brain Mapp. 30, 3299–3308 (2009). 

4. Linkersdörfer, J., Lonnemann, J., Lindberg, S., Hasselhorn, M. & Fiebach, C. J. Grey Matter 
Alterations Co-Localize with Functional Abnormalities in Developmental Dyslexia: An ALE Meta-
Analysis. PLOS ONE 7, e43122 (2012). 

5. Pflugshaupt, T. et al. About the role of visual field defects in pure alexia. Brain 132, 1907–
1917 (2009). 

6. Hirshorn, E. A. et al. Decoding and disrupting left midfusiform gyrus activity during word 
reading. Proc. Natl. Acad. Sci. 113, 8162–8167 (2016). 

7. Wandell, B. A., Rauschecker, A. M. & Yeatman, J. D. Learning to See Words. Annu. Rev. 
Psychol. 63, 31–53 (2012). 

8. Haxby, J. V. et al. Dissociation of object and spatial visual processing pathways in human 
extrastriate cortex. Proc. Natl. Acad. Sci. 88, 1621–1625 (1991). 

9. Dehaene, S., Cohen, L., Sigman, M. & Vinckier, F. The neural code for written words: a 
proposal. Trends Cogn. Sci. 9, 335–341 (2005). 

10. Vinckier, F. et al. Hierarchical Coding of Letter Strings in the Ventral Stream: Dissecting the 
Inner Organization of the Visual Word-Form System. Neuron 55, 143–156 (2007). 

11. Kronbichler, M. et al. The visual word form area and the frequency with which words are 
encountered: evidence from a parametric fMRI study. NeuroImage 21, 946–953 (2004). 

12. Price, C. J. & Devlin, J. T. The Interactive Account of ventral occipitotemporal contributions 
to reading. Trends Cogn. Sci. 15, 246–253 (2011). 

13. Taylor, J. S. H., Rastle, K. & Davis, M. H. Can cognitive models explain brain activation 
during word and pseudoword reading? A meta-analysis of 36 neuroimaging studies. Psychol. Bull. 
139, 766–791 (2013). 

14. Balota, D. A. & Chumbley, J. I. Are lexical decisions a good measure of lexical access? The 
role of word frequency in the neglected decision stage. J. Exp. Psychol. Hum. Percept. Perform. 10, 
340–357 (1984). 

15. Bentin, S. & Frost, R. Processing lexical ambiguity and visual word recognition in a deep 
orthography. Mem. Cognit. 15, 13–23 (1987). 

16. Gagl, B. et al. An orthographic prediction error as the basis for efficient visual word 
recognition. NeuroImage 214, 116727 (2020). 

17. Grill-Spector, K. & Weiner, K. S. The functional architecture of the ventral temporal cortex 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 9, 2020. ; https://doi.org/10.1101/085332doi: bioRxiv preprint 

https://doi.org/10.1101/085332
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 22 

and its role in categorization. Nat. Rev. Neurosci. 15, 536–548 (2014). 

18. Ben-Shachar, M., Dougherty, R. F., Deutsch, G. K. & Wandell, B. A. Differential Sensitivity 
to Words and Shapes in Ventral Occipito-Temporal Cortex. Cereb. Cortex 17, 1604–1611 (2007). 

19. Glezer, L. S. & Riesenhuber, M. Individual Variability in Location Impacts Orthographic 
Selectivity in the “Visual Word Form Area”. J. Neurosci. 33, 11221–11226 (2013). 

20. Kronbichler, M. et al. Taxi vs. Taksi: On Orthographic Word Recognition in the Left Ventral 
Occipitotemporal Cortex. J. Cogn. Neurosci. 19, 1584–1594 (2007). 

21. Schurz, M. et al. A dual-route perspective on brain activation in response to visual words: 
Evidence for a length by lexicality interaction in the visual word form area (VWFA). NeuroImage 49, 
2649–2661 (2010). 

22. Rao, R. P. N. & Ballard, D. H. Predictive coding in the visual cortex: a functional 
interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2, 79–87 (1999). 

23. Coltheart, M., Rastle, K., Perry, C., Langdon, R. & Ziegler, J. DRC: A dual route cascaded 
model of visual word recognition and reading aloud. Psychol. Rev. 108, 204–256 (2001). 

24. Wimmer, H. & Ludersdorfer, P. Searching for the Orthographic Lexicon in the Visual Word 
Form Area. in Reading and Dyslexia: From Basic Functions to Higher Order Cognition (eds. 
Lachmann, T. & Weis, T.) 57–69 (Springer International Publishing, 2018). doi:10.1007/978-3-319-
90805-2_3. 

25. Yarkoni, T., Balota, D. & Yap, M. Moving beyond Coltheart’s N: A new measure of 
orthographic similarity. Psychon. Bull. Rev. 15, 971–979 (2008). 

26. Mano, Q. R. et al. The Role of Left Occipitotemporal Cortex in Reading: Reconciling 
Stimulus, Task, and Lexicality Effects. Cereb. Cortex 23, 988–1001 (2013). 

27. Richlan, F. et al. Fixation-Related fMRI Analysis in the Domain of Reading Research: Using 
Self-Paced Eye Movements as Markers for Hemodynamic Brain Responses During Visual Letter 
String Processing. Cereb. Cortex 24, 2647–2656 (2014). 

28. Carreiras, M., Riba, J., Vergara, M., Heldmann, M. & Münte, T. F. Syllable congruency and 
word frequency effects on brain activation. Hum. Brain Mapp. 30, 3079–3088 (2009). 

29. Fiebach, C. J., Friederici, A. D., Müller, K. & Cramon, D. Y. von. fMRI Evidence for Dual 
Routes to the Mental Lexicon in Visual Word Recognition. J. Cogn. Neurosci. 14, 11–23 (2002). 

30. Graves, W. W., Desai, R., Humphries, C., Seidenberg, M. S. & Binder, J. R. Neural Systems 
for Reading Aloud: A Multiparametric Approach. Cereb. Cortex 20, 1799–1815 (2010). 

31. Binder, J. R., Medler, D. A., Westbury, C. F., Liebenthal, E. & Buchanan, L. Tuning of the 
human left fusiform gyrus to sublexical orthographic structure. NeuroImage 33, 739–748 (2006). 

32. Graves, W. W., Boukrina, O., Mattheiss, S. R., Alexander, E. J. & Baillet, S. Reversing the 
Standard Neural Signature of the Word–Nonword Distinction. J. Cogn. Neurosci. 29, 79–94 (2016). 

33. Lerma-Usabiaga, G., Carreiras, M. & Paz-Alonso, P. M. Converging evidence for functional 
and structural segregation within the left ventral occipitotemporal cortex in reading. Proc. Natl. Acad. 
Sci. U. S. A. 115, E9981–E9990 (2018). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 9, 2020. ; https://doi.org/10.1101/085332doi: bioRxiv preprint 

https://doi.org/10.1101/085332
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 23 

34. Saygin, Z. M. et al. Connectivity precedes function in the development of the visual word 
form area. Nat. Neurosci. 19, 1250–1255 (2016). 

35. Bouhali, F. et al. Anatomical connections of the visual word form area. J. Neurosci. Off. J. 
Soc. Neurosci. 34, 15402–15414 (2014). 

36. Forstmann, B. U., Wagenmakers, E.-J., Eichele, T., Brown, S. & Serences, J. T. Reciprocal 
relations between cognitive neuroscience and formal cognitive models: opposites attract? Trends 
Cogn. Sci. 15, 272–279 (2011). 

37. Levenshtein, V. I. Binary codes capable of correcting deletions, insertions, and reversals. Sov. 
Phys. Dokl. 10, 707–710 (1966). 

38. Brysbaert, M. et al. The Word Frequency Effect. Exp. Psychol. 58, 412–424 (2011). 

39. Keuleers, E. vwr: Useful functions for visual word recognition research. (2013). 

40. Cover, T. M. & Thomas, J. A. Elements of Information Theory. (John Wiley & Sons, 2006). 

41. Auer, M., Guber, G., Wimmer, H. & Mayringer, H. Salzburger Lese-Screening für die 
Klassenstufen 1-4. (Hogrefe, Verlag für Psychologie, 2005). 

42. Wager, T. D. & Nichols, T. E. Optimization of experimental design in fMRI: a general 
framework using a genetic algorithm. NeuroImage 18, 293–309 (2003). 

43. Ashburner, J. A fast diffeomorphic image registration algorithm. NeuroImage 38, 95–113 
(2007). 

44. Gorgolewski, K. J. et al. The brain imaging data structure, a format for organizing and 
describing outputs of neuroimaging experiments. Sci. Data 3, 1–9 (2016). 

45. Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 
16, 111–116 (2019). 

46. Friston, K. J. et al. Classical and Bayesian Inference in Neuroimaging: Applications. 
NeuroImage 16, 484–512 (2002). 

47. Abraham, A. et al. Machine learning for neuroimaging with scikit-learn. Front. 
Neuroinformatics 8, (2014). 

48. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using 
lme4. J. Stat. Softw. 67, 1–48 (2015). 

49. Kliegl, R., Wei, P., Dambacher, M., Yan, M. & Zhou, X. Experimental effects and individual 
differences in linear mixed models: estimating the relationship between spatial, object, and attraction 
effects in visual attention. Front. Psychol. 1, 238 (2011). 

  
 

Author contributions 
B.G., J.S. and C.F. conceptualized the model and wrote the manuscript. B.G. implemented the model, 
model simulations and alternative models. B.G., S.E., F.R. and P.L. designed, conducted, and analyzed 
the fMRI experiments. B.G. and K.G. designed, conducted, and analyzed the training study.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 9, 2020. ; https://doi.org/10.1101/085332doi: bioRxiv preprint 

https://doi.org/10.1101/085332
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 24 

Acknowledgements 

We thank Anne Hoffmann, Jan Jürges, and Rebekka Tenderra for help with fMRI data acquisition and 
Benjamin Peters for help with the entropy formulation. In addition, we thank Sophia Haan for helpful 
comments on a previous version of the manuscript. The research leading to these results has received 
funding from the European Community's Seventh Framework Programme (FP7/2013) under grant 
agreement n° 617891 awarded to CJF and from the European Community's Horizon 2020 Programme 
(2016) under grant agreement n° 707932 awarded to BG. 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 9, 2020. ; https://doi.org/10.1101/085332doi: bioRxiv preprint 

https://doi.org/10.1101/085332
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 25 

Supplementary material 

Supplementary figure 1. Detailed depiction of simulated lvOT activation from computational 
implementations of alternative models:  (a) the LCM (similar as in Fig. 2, adding boxplot 
figures), (b) an LCM variant that included only the distributions of words, (c) the local 
combination detector model (LCD), (d) the lexicon model, (e) the engagement and effort model 
(E&E), and (f) the interactive account model (IA). Above each subplot, horizontal black bars 
indicate simulations that resulted in the expected condition difference between letter string 
categories, as derived from linear models. Red bars indicate contrasts opposite to the 
expected direction. In the following the details of each alternative model will be described, 
which allow to evaluate the LCM in contrast to alternative models of lvOT function. We 
implemented multiple accounts based on the verbal proposals11,201,9 and a variant of the LCM 
which was not described previously. The critical difference between the LCM variant and the 
LCM presented previously (Fig. 1) is that in the variant, we used only the word-likeness 
distribution of words as the basis for the entropy estimation. This implementation's primary 
motivation was that it would be reasonable to test if the entropy function can be implemented 
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based on words only. If the variant LCM is better in simulating lvOT activation contrasts, one 
could argue that the representations in the lvOT are, to a great extent, words. Alternatively, 
i.e., if the LCM model described in the main text results in more accurate simulations, one 
could argue that the representations in the lvOT are, to a great extent, pre-lexical.  

 For the implementation, we used the cumulative probability of words based on word-
likeness to estimate the probability of a sting being a word/pseudoword. In other words, we 
took all 3110 words and estimated the probability of all words starting with the highest word-
likeness level. 

Supplementary equation 1: 

𝑝#$%& 	= 	1 −
𝑁'().		#$%&,-!./0/11

𝑁(--	#$%&1
	 

In the following, we repeated this procedure for all word likeness levels to estimate the 
probability for a word for each bin. In the end, the cumulated probabilities are 1. 

Supplementary equation 2: 

𝑝	#$%& 	= 	1 − 6
𝑁)

𝑁(--	#$%&1)2'!0.→	'().		#$%&,-!.0/11

= 0 

The inverse of this probability for the string being a word is again the probability of being 
a non-word. After that, we can use the same equations as presented in the methods to estimate 
the entropy, i.e., the simulated activation of the lvOT. The simulation results show that the 
simulations of this words-only LCM are only correct for four benchmark effects (Supplementary 
Fig. 1b; 4/9 effects simulated correctly). Thus, we learn here that the non-words distributions 
are a necessity for the LCM, suggesting that representations are, to some extent, pre-lexical 
in nature (see also10).  

As an adequate test case for the LCM, we implemented four alternative models, i.e., 
two linear models: lexicon and LCD model, and two non-linear models, the E&E and the IA 
model. Here we focused on implementing the verbally described relationships between lvOT 
activation and the word characteristics central to the respective model. For the E&E and the 
IA models, we implemented more variants, but we only present those with the best fit. Overall, 
only the LCM and the IA were able to predict all nine benchmark contrasts. For qualitative 
model comparisons and model performance, see Figure 2f. 

The LCD model1 postulates that lvOT stores pre-lexical and lexical multi-letter 
representations (up to a length of about four letters). When a letter string is presented that 
contains these multi-letter combinations, their neural representations are activated irrespective 
of the lexicality of the string. Therefore, higher activations (𝐴-456 ) are predicted for often-
occurring letter combinations in contrast to rare letter combinations. As formalized in Suppl. 
Equation 3, this is modeled by a linear increase of 0.4 per log quadrigram frequency (of a 
string). The specific value for this increase function was read out from Figure 4 of10 (left 
hemisphere, y = -56;).  

Supplementary equation 3: 

𝐴-456 	= 	𝑙𝑜𝑔	𝑄𝑓17%!08 ∙ 0.4	 
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This ‘(sub-) lexical storage/activation’ model of lvOT accounts for four benchmark 
contrasts (Supplementary Fig. 1c). The LCD model predicts increased activation for words 
relative to consonant strings, as well as effects of word similarity and bigram frequency.  

The lexicon model24 conceptualizes the processes implemented in lvOT as a search in 
an orthographic lexicon. This lexicon is arranged by word frequency; accordingly, frequent 
words are found fast, resulting in fast response times and low lvOT activation, whereas it takes 
substantially longer to identify infrequent words, resulting in prolonged response times and 
high activation. lvOT activation (𝐴-456; cf. Supplementary equation 4) decreases linearly by 
about 1 activation level (arbitrary unit) per 1 log frequency (𝑓17%!08) unit (read out from Figure 
2: Midfusiform/Posterior fusiform in11; 𝑓17%!08: frequency of the letter string, with frequencies of 
pseudo- and nonwords set to zero11; 𝑓'(): highest frequency in the lexicon).  

Supplementary equation 4: 

𝐴-456 	= 	𝑙𝑜𝑔	𝑓'() 	− 	 𝑙𝑜𝑔	𝑓17%!08	 

As shown in the upper panel of Supplementary Figure 1, the implementation of this 
model can account for five benchmark effects. Specifically, this ‘frequency ordered lexical 
search’ model obviously accounts for the word frequency effect but also for the lower activation 
for words in contrast to pseudowords irrespective if they were matched for OLD20 or not (black 
lines in Suppl. Fig. 1d).13 None of the benchmark effects including consonant strings or word 
similarity manipulations (i.e., bigram frequency and word similarity effect) could be captured 
by this model. 

None of the benchmark effects explained by the lexicon model could be explained by 
the LCD model and vice versa. Note that the patterns of predictions generated by these two 
models do not depend on the numeric values chosen for the change in activation, which were 
read out from the results figures of the original publications. Given that these two models are 
simple linear transformations of the respective lexical measure, the effect directions would be 
similar irrespective of which specific constant number would be used to predict lvOT activation 
in Supplementary Equations 3 and 4. In the following we present two models implementing a 
non-linear relationships as the basis for the activation pattern in the lvOT in response to words.  

The engagement and effort model13 combines two processes. One relates to the 
engagement of brain regions in visual word recognition. Engagement is high for letter strings 
that are likely words and low for i.e., consonant strings that violate basic rules for constituting 
orthographic stimuli (e.g., no vocals present). The second process is concerned with the effort 
one needs to recognize a word, e.g., a seldom word is more effortful to decode then a 
frequently used word. Here we used OLD20 to implement the engagement process, as the 
OLD20 parameter can differentiate between non-words. Note that we have to invert the OLD20 
as it is a distance measure. Then a high value indicates a high word likeness, i.e., a high 
engagement of the region. To model the reduction of activation with reduced effort in 
processing, we subtracted word frequency from the engagement variables (i.e., both 
parameters were z-transformed). The result of this estimation is a non-linear response function 
of the lvOT with low activation for non-words with a low word-likeness, a high activation for 
pseudowords, and a reduced activation for words with a high frequency.  

Supplementary equation 5: 

𝐴-456 =	 (𝑊𝐿$-&"9 ∗ −1) −	𝑙𝑜𝑔	𝑓17%!08 
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The simulations show that the E&E model could simulate six benchmark effects 
correctly. This finding indicates that the non-linear models are better in explaining lvOT 
activation in response to various letter strings.  

The interactive account of Price and Devlin12 adopts a predictive coding perspective 
and postulates that lvOT activation reflects an interaction between top-down and bottom-up 
processes, in the sense of a prediction error that represents difference between, in the case 
of single word presentation, non-strategic general expectations derived from general word 
knowledge and the actual bottom-up visual orthographic input. Here we implement this by 
assuming bottom-up information as word frequency (i.e., often seen words are more likely 
expected). This reflects that bottom-up information, in standard single word presentations, is 
determined by predictions based on our orthographic knowledge (e.g., see16 for an example 
and more deep discussion on this issue). This is as for seldom words or non-words sensory 
information cannot be predicted to a high extent resulting in a large prediction error. In contrast, 
predictions are more precise for frequent words and therefore the prediction error is reduced. 
In their paper, Price and Devlin state that this in only the case for letter strings that follow the 
basic rules of orthography. I.e., consonant strings, that do not fall in this category therefore 
should not activate the lvOT. As a consequence this model also assumes a non-linear 
response function of the lvOT.  

Supplementary equation 6: 

𝐴-456 	= log 𝑓'() −	𝑙𝑜𝑔	𝑓17%!08	 

[𝐴-456 	= 0]	𝑖𝑓	[𝑠𝑡𝑟𝑖𝑛𝑔 = 	𝑐𝑜𝑛𝑠𝑜𝑛𝑎𝑛𝑡	𝑠𝑡𝑟𝑖𝑛𝑔] 

 Besides the LCM, the IA model, is, the second model approach that is able to simulate 
all benchmark effects. This finding once more, indicates that the lvOT follows a non-linear 
response profile but also strongly suggests that we need experimental data to distinguish 
between the LCM and the IA model (see Evaluation B).  
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Supplemental figure 2. 
Simulations from the Dual-
Route Model of reading aloud 
(DRC; Coltheart et al., 2001) 
separated for activation from 
(a) the orthographic lexicon 
and (b) the grapheme-to-
phoneme conversion route of 
the DRC. We estimated the 
activation per word by the 
normalized correlation of 
model cycles and the 
activation level. This metric 
results in a low activation 
when the orthographic lexicon 
activation rises fast. The 
former reflecting easy access, 
and the latter reflecting hard 
access to the lexical item. We 
applied the same logic to the 
grapheme-to-phoneme route. 
Here a fast activation rise 
indicates that the letter string 
can be decoded fast based on 
the letter-by-letter decoding 
process. Again a fast 

activation rise of that route is reflected in a low correlation. In contrast, a slow rise is 
reflected by a high correlation, i.e., assumed high activation. 
Interestingly, the orthographic lexicon activation resulted in a simulated activations 
pattern that mimicked the lexicon model, and the grapheme-to-phoneme route the local 
activin detector model simulations. All but the high activation for pseudohomophones 
could be simulated by either the orthographic lexicon or the grapheme-to-phoneme 
route. Thus, one can conclude that the DRC can, when orthographic lexicon and 
grapheme-to-phoneme route are both implemented in lvOT, explain most of the pattern 
found in the lvOT by one or the other route of the model. Still, when using the reaction 
times from the model, i.e., the simulations using both routes, the expected contrast 
differences could not be simulated better than the orthographic lexicon results. 
Nonetheless, the simulated activation for pseudohomophones was lower than one 
would expect from the literature pattern. I.e., simulated activations were lower than 
words, pseudowords, and consonant stings in both routes. 
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Supplementary Figure 3. Word-likeness and lexicality effects for fMRI study 1 (Evaluation B). 
In the main text, we reported an effect of word likeness in occipito-temporal regions posterior 
to the word-sensitive lvOT cluster in our second fMRI experiment (event-related single trial 
design; Fig. 3l). While the blocked design of fMRI study 1 was not primarily designed to 
demonstrate such stimulus-specific effects, we nevertheless also subjected this data set to 
an event-related analysis of word-likeness. Word-likeness, modeled as a continues factor, 
produced a more widespread activation effect in fMRI study 1, distributed over occipital 
regions of left and right hemisphere, with greater activity for more word-like letter strings (two 
significant clusters: Cluster 1: peak voxel at x = -12, y = -73, z = 1; Left lingual gyrus; T 
=7.34; 514 voxels; Cluster 2: peak voxel at x = -6, y = -88, z = 37; Left precuneus; T = 4.0; 67 
voxels). From the ventral view of the left hemisphere it is visible that the cluster extended into 
the posterior lvOT, which is not the case in the right hemisphere (Activation effects are 
visualized at voxel level p < .001 uncorrected; cluster level p < .05 family-wise error 
corrected). In addition, we tested the words > pseudowords contrast: no significant activation 
difference between words and pseudowords was found. Only when neglecting the cluster 
correction, a small activation cluster was found in left frontal cortex (x = -39, y = 38, z = 25; 
Left frontal pole; T = 3.7; 7 voxel). To summarize, consistent with the second fMRI 
experiment, an effect of word-likeness on brain activation was found posterior to lvOT, while 
the (weak) lexicality effect was observed anterior to lvOT, i.e., in downstream regions of the 
frontal lobe. 
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Supplementary Figure 5. LCM implementations on the basis of three alternative word-
likeness measures, plus the simulations of benchmark effects from the literature (Evaluation 
1). In the main text, we report an implementation of the LCM using OLD2025 as a measure of 
word likeness that has been reported in the literature to outperform other measures of word 
likeness REF. However, it is also possible to implement the LCM based on alternative 
measures of word-likeness. Here, we report three simulations of the benchmark effects 
tested in Evaluation 1 (cf. Figure 2), using (a) Coltheart’s neighbors, (b) trigram frequency, 
and (c) quadrigram frequency, as bases for the LCM simulations. The left-most columns 
show the distributions of the respective word-likeness measure for different types of letter 
strings as well as the probabilities of being a word or not and the resulting entropy 
(categorization uncertainty), analogous to Figure 1 in the main text. It is visible that all three 
measures are less well able to distinguish between words, pseudowords, and consonant 
strings than OLD20 (Fig. 1a) does. As a result, the resulting entropy function has a different 
shape than the one derived from OLD20. The LCM implementation based on OLD20 (Fig. 1 
and 2) clearly outperformed (in terms of correctly predicted effects and estimated effect 
sizes) these models based on alternative word-likeness measures. When inspecting the 
pseudoword > words13 contrast, only the model based on Coltheart’s N (Suppl. Fig. 5a) was 
able to predict this difference; on the other hand, this was the only model that did not predict 
the contrast words > consonant strings2. For description of labels see Figure 1 and 2.  
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Supplementary figure 6. Effect of lexicon size on word-likeness estimations and LCM 
simulations. We assumed that lexicon size influences word-likeness estimations (i.e. the 
number of items in the lexicon to which e.g. the OLD20 is estimated) and LCM simulations. 
First, word-likeness distributions for words, pseudowords, and consonant strings, which were 
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used for the LCM model (see Fig 1 & 2; see Materials section), are presented for lexica 
consisting of the most frequent 100, 1,000, 10,000 and 100,000 words of the SUBTLEX 
database. When comparing the word-likeness distributions, it becomes obvious that 
increasing the size of the lexicon results in a better differentiation between letter string 
categories (e.g., stronger differentiation between words and consonant strings). Simulations 
from LCM models derived from these distributions (compare to Figure 1 & Supplement 
Figure 5), in the lower panels (line graphs show median LCM simulated activation), showed 
that the model predicted no difference between categories with very small lexicons. Lexicons 
with intermediate size already allow a differentiation between consonant strings (yellow) and 
the other stimulus categories. Starting from lexicons with 10,000 words, clearer differentiation 
between words (gray) and pseudowords (blue)/pseudohomophones (green) was present. In 
part, besides established effects such as acquired letter knowledge or grapheme to phoneme 
conversion (for example13), these simulations demonstrate that the increasing lexicon size 
may account for critical patterns of developmental change during literacy acquisition; our 
present work, in this context, suggests that the lvOT may be an important mediator of such 
developmental processes. 
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