# The genomic footprint of climate adaptation in Chironomus riparius

Ann-Marie Oppold<sup>1,2</sup>, Andreas Wieser<sup>1,2</sup>, Tilman Schell<sup>1,2</sup>, Simit Patel<sup>2</sup>, Hanno Schmidt<sup>2</sup>, Thomas Hankeln<sup>3</sup>, Barbara Feldmeyer<sup>2</sup>, Markus Pfenninger<sup>1,2</sup>

- 1 Molecular Ecology Group, Institute for Ecology, Evolution & Diversity, Goethe-University, Frankfurt am Main, Hessen, Germany
- 2 Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Hessen, Germany
- 3 Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg-University, Mainz, Rheinland-Pfalz, Germany

\*Corresponding author: <u>Ann-Marie.Oppold@senckenberg.de</u>



### **Supplementary Figure S1:**

Disribution of Eigenvalues (%) of components (blue line) after principal component analysis (PCA) with 57 climatic variables (WorldClim data) from 21 locations of documented *C. riparius* occurrence (including the five natural populations of this study, Oppold et al. 2016a). Red line marks the random distribution of Eigenvalues (broken stick analysis). Components under this curve are expected to be non-significant.



## Supplementary Figure S2:

PCA loading of the significant components: PC1 – cold temperatures (top), PC2 – precipitation (middle), PC3 – warm temperatures (bottom). See Supplementary Tab. S1 for a list of the climate variables.



#### **Supplementary Figure S3:**

Life-cycle parameters of the natural *C. riparius* populations at the different test temperatures, shown as Box-Whiskers ranging from minimum to maximum: (A) mortality, (B) mean emergence time, (C) fertile clutches per female. P-value thresholds of two-way ANOVA shown in the box: effect of population (P), temperature (T), and interaction of both factors ( $P \times T$ ).



#### **Supplementary Figure S4:**

Density functions of pairwise  $F_{ST}$  per 1 kb-windows of empirical data (*C. riparius* Pool-Seq data) and simulated data from three different models (*constant*, *growth*, *approximated*). Each population comparison is plotted separately.



# **Supplementary Figure S5:**

Distribution of Tajima's D in 1 kb-windows of highly diverged (outlier) and remaining neutral windows.



## **Supplementary Figure S6:**

Size distribution of divergence regions (joined adjacent 1 kb outlier windows above 5 %  $F_{ST}$  threshold) for all pairwise comparisons.



### **Supplementary Figure S7:**

Distribution of distances among divergence regions on the same scaffold.



#### **Supplementary Figure S8:**

Venn diagrams (produced online at <u>http://bioinformatics.psb.ugent.be/webtools/Venn/</u>) of intersected candidate gene lists: (A) candidate genes for clinal adaptation correlated to the three environmental variables, (B) gene hits annotated to the significant outlier 1 kb-windows from pairwise population comparisons (99 %  $F_{ST}$  threshold) and candidate genes for clinal adaptation, and (C) detailed comparison of gene hits from population comparisons with the three environmental variables separately.

# Supplementary Table S1:

Mapping statistics of Pool-Seq data to *C. riparius* draft genome (accession number) with *bwa mem* (-k 30).

|   | nonulation  | mean     | % mapped |
|---|-------------|----------|----------|
| ł | μοραιατιστι | coverage | reads    |
|   | MG          | 26.7     | 81.09    |
|   | NMF         | 55.3     | 77.57    |
|   | MF          | 41.0     | 78.03    |
|   | SI          | 40.2     | 77.88    |
|   | SS          | 36.9     | 80.92    |

## **Supplementary Table S2:**

\_

Climate variables (WorldClim data) with highest PCA loadings of the three significant components.

| PC1    |        |       |
|--------|--------|-------|
|        | PC2    | PC3   |
| tmin1  | prec9  | tmin7 |
| tmax1  | bio12  | tmin8 |
| tmin2  | prec10 | prec8 |
| tmax2  |        | bio3  |
| tmin3  |        | bio10 |
| tmax3  |        |       |
| tmin4  |        |       |
| tmax4  |        |       |
| tmin10 |        |       |
| tmax10 |        |       |
| tmin11 |        |       |
| tmax11 |        |       |
| tmin12 |        |       |
| tmax12 |        |       |
| bio1   |        |       |
| bio6   |        |       |
| bio11  |        |       |

**Supplemental Table S3**: Matrices with significance thresholds of two-way ANOVA with Bonferroni post-test for the different life-cycle parameters (A: mortality, B: mean emergence time, C: number of fertile clutches per female) at three test temperatures in five natural *C. riparius* populations. The population codes correspond to the legend in Supplemental Figure S1.

| A:mortality | MG        | NMF   | MF     | SI    | SS    |
|-------------|-----------|-------|--------|-------|-------|
|             | 14°C      | ns    | 0.001  | 0.01  | 0.01  |
| MG          | 20°C      | ns    | ns     | 0.05  | 0.001 |
|             | 26°C      | 0.05  | ns     | ns    | ns    |
|             | ns        | 14°C  | 0.001  | 0.05  | 0.01  |
| NMF         | ns        | 20°C  | ns     | ns    | 0.001 |
|             | 0.05      | 26°C  | ns     | ns    | 0.01  |
|             | 0.001     | 0.001 | 14°C   | 0.001 | ns    |
| MF          | ns        | ns    | 20°C   | ns    | 0.05  |
|             | ns        | ns    | 26°C   | ns    | ns    |
|             | 0.01      | 0.05  | 0.001  | 14°C  | ns    |
| SI          | 0.05      | ns    | ns     | 20°C  | ns    |
|             | ns        | ns    | ns     | 26°C  | ns    |
|             | 0.01      | 0.01  | ns     | ns    | 14°C  |
| SS          | 0.001     | 0.001 | 0.05   | ns    | 20°C  |
|             | ns        | 0.01  | ns     | ns    | 26°C  |
| B:EmT50     | MG        | NMF   | MF     | SI    | SS    |
|             | 14°C      | ns    | 0.001  | ns    | 0.05  |
| MG          | 20°C      | ns    | 0.001  | ns    | ns    |
|             | 26°C      | ns    | 0.001  | 0.05  | ns    |
|             | ns        | 14°C  | 0.001  | ns    | 0.05  |
| NMF         | ns        | 20°C  | 0.01   | ns    | ns    |
|             | ns        | 26°C  | 0.001  | ns    | ns    |
|             | 0.001     | 0.001 | 14°C   | ns    | 0.001 |
| MF          | 0.001     | 0.01  | 20°C   | ns    | 0.05  |
|             | 0.001     | 0.001 | 26°C   | ns    | 0.05  |
|             | ns        | ns    | ns     | 14°C  | 0.001 |
| SI          | ns        | ns    | ns     | 20°C  | ns    |
|             | 0.05      | ns    | ns     | 26°C  | ns    |
|             | 0.05      | 0.05  | 0.001  | 0.001 | 14°C  |
| SS          | ns        | ns    | 0.05   | ns    | 20°C  |
|             | ns        | ns    | 0.05   | ns    | 26°C  |
| C:clutches  | MG        | NMF   | MF     | SI    | SS    |
|             | 14°C      | ns    | 0.05   | ns    | 0.01  |
| MG          | 20°C      | ns    | ns     | ns    | ns    |
|             | 26°C      | ns    | ns     | ns    | ns    |
| NIN 45      | ns        | 14°C  | 0.001  | ns    | 0.001 |
| NIVIF       | ns        | 20°C  | ns     | ns    | ns    |
|             | ns        | 26°C  | ns     | ns    | ns    |
| NAE         | 0.05      | 0.001 | 14°C   | 0.05  | ns    |
| IVIE        | ris<br>na | ns    | 2010   | ns    | ns    |
|             | 115       | ns    | 20 C   | 115   | 0.01  |
| C1          | ris<br>na | ns    | 0.05   | 14°C  | 0.01  |
| 31          | ns        | ns    | ns     | 20 C  |       |
|             | 0.01      | 0.001 | 115    | 20 C  | 14°C  |
| 55          | 0.01      | 0.001 | TIS no | 0.01  | 14 C  |
| 55          | ns        | ns    | ns     | ns    | 2010  |
|             | ns        | ns    | ns     | 0.05  | 26°C  |

| direction | geographic<br>distance(km) | migration rate per generation |
|-----------|----------------------------|-------------------------------|
| MG→NMF    | 233.73                     | $9 \times 10^{-4}$            |
| MG←NMF    | 233.73                     | $9 \times 10^{-4}$            |
| NMF→MF    | 380.84                     | 2 × 10 <sup>-5</sup>          |
| NMF←MF    | 380.84                     | $9 \times 10^{-4}$            |
| MF→SI     | 274.25                     | 3 × 10 <sup>-5</sup>          |
| MF←SI     | 274.25                     | 2 × 10 <sup>-5</sup>          |
| MF→SS     | 1224.41                    | $9 \times 10^{-4}$            |
| MF←SS     | 1224.41                    | 2 × 10 <sup>-5</sup>          |

Supplementary Table S4: Estimated migration rates between *C. riparius* populations across Europe.

**Supplementary Table S5:** Statistics of pairwise  $F_{ST}$  from empirical Pool-Seq data of *C. riparius* populations.

| population<br>pair | geographic<br>distance | median F <sub>st</sub> | $\text{mean } F_{\text{st}}$ | max F <sub>st</sub> |
|--------------------|------------------------|------------------------|------------------------------|---------------------|
| MF:MG              | 572.25                 | 0.030                  | 0.034                        | 0.643               |
| MF:NMF             | 380.84                 | 0.031                  | 0.035                        | 0.551               |
| MF:SI              | 274.25                 | 0.074                  | 0.083                        | 0.862               |
| MF:SS              | 1224.41                | 0.060                  | 0.071                        | 0.905               |
| MG:NMF             | 233.73                 | 0.029                  | 0.032                        | 0.415               |
| MG:SI              | 532.58                 | 0.078                  | 0.088                        | 0.926               |
| MG:SS              | 1824.44                | 0.066                  | 0.078                        | 0.918               |
| NMF:SI             | 1390.2                 | 0.079                  | 0.089                        | 1.000               |
| NMF:SS             | 1532.18                | 0.067                  | 0.078                        | 0.905               |
| SI:SS              | 1387.39                | 0.097                  | 0.111                        | 1.000               |

**Supplementary Table S6:** Comparisons of  $F_{ST}$  from Pool-Seq data (empirical) and simulation data (three different models).  $F_{ST}$  above 99 % threshold from empirical data was taken as threshold (highlighted in grey), above which we exclude the effect of drift. Numbers of highly diverged windows above this threshold before and after error correction are given.

|                    | 99 % F <sub>st</sub> -threshold |                   |                 |                       | number of                                                    | number of                          |
|--------------------|---------------------------------|-------------------|-----------------|-----------------------|--------------------------------------------------------------|------------------------------------|
| population<br>pair | empirical<br>data               | constant<br>model | growth<br>model | approximated<br>model | windows above<br>empirical 99 %<br>F <sub>st</sub> threshold | windows<br>after FDR<br>correction |
| MF:MG              | 0.118                           | 0.028             | 0.267           | 0.232                 | 428                                                          | 402                                |
| MF:NMF             | 0.115                           | 0.028             | 0.264           | 0.204                 | 437                                                          | 399                                |
| MF:SI              | 0.260                           | 0.034             | 0.397           | 0.224                 | 407                                                          | 407                                |
| MF:SS              | 0.250                           | 0.034             | 0.269           | 0.211                 | 519                                                          | 519                                |
| MG:NMF             | 0.100                           | 0.027             | 0.109           | 0.211                 | 287                                                          | 235                                |
| MG:SI              | 0.283                           | 0.035             | 0.463           | 0.274                 | 426                                                          | 426                                |
| MG:SS              | 0.274                           | 0.039             | 0.533           | 0.258                 | 519                                                          | 519                                |
| NMF:SI             | 0.278                           | 0.034             | 0.461           | 0.248                 | 444                                                          | 444                                |
| NMF:SS             | 0.269                           | 0.039             | 0.532           | 0.230                 | 533                                                          | 533                                |
| SI:SS              | 0.360                           | 0.043             | 0.479           | 0.259                 | 476                                                          | 476                                |

**Supplementary Table S7:** Statistical p-values (Chi<sup>2</sup>-tests, Benjamini-Hochberg correction for multiple testing) of numbers of molecular signatures of selection displayed in Figure 4: (A) occurrences of selective sweeps among populations, (B) occurrences of balancing selection among populations.

| A:        |          |        |          |          |          |
|-----------|----------|--------|----------|----------|----------|
| selective | MG       | NMF    | MF       | SI       | SS       |
| sweeps    |          |        |          |          |          |
| MG        |          | 0.5543 | 0.0082   | 6.67E-04 | 0.2976   |
| NMF       | 0.5543   |        | 0.0448   | 0.0043   | 0.0939   |
| MF        | 0.0082   | 0.0448 |          | 0.4414   | 2.11E-04 |
| SI        | 6.67E-04 | 0.0043 | 0.4414   |          | 6.11E-06 |
| SS        | 0.2976   | 0.0939 | 2.11E-04 | 6.11E-06 |          |
| В:        |          |        |          |          |          |
| balancing | MG       | NMF    | MF       | SI       | SS       |
| selection |          |        |          |          |          |
| MG        |          | 1      | 0.4231   | 0.0002   | 0.0368   |
| NMF       | 1        |        | 0.4231   | 0.0002   | 0.0368   |
| MF        | 0.4231   | 0.4231 |          | 0.0053   | 0.2317   |
| SI        | 0.0002   | 0.0002 | 0.0053   |          | 0.1499   |
| 22        | 0 0260   | 0 0269 | 0 2217   | 0 1/100  |          |

## **Supplementary Table S8:**

Results of enrichment analysis on the level of biological functions (GO terms) and molecular pathways (KEGG pathways). The amount of genes involved in the respective adaptation pattern is given against the complete annotation of 13,093 protein coding genes. Gene hits for populations integrate all hits that result from comparison of the respective population with the others (gene hits in significant outlier 1 kb-windows). Gene hits correlated to environmental variables result from the locus-specific environmental association study with LFMM. Note that the number of significantly enriched GO terms and KEGG pathways is relative to input genes. Therefore, there can be less significant hits on the superior level compared to subgroups (e.g. 9 GO terms among overall candidates for local adaptation against 19 GO terms among local candidates of SS).

|                                    | gene hits from<br>comparisons<br>with all other<br>populations | % of all genes | enriched<br>GO terms | KEGG<br>pathways |
|------------------------------------|----------------------------------------------------------------|----------------|----------------------|------------------|
| MG                                 | 669                                                            | 5.1            | 16                   |                  |
| NMF                                | 728                                                            | 5.6            | 7                    |                  |
| MF                                 | 708                                                            | 5.4            | 6                    |                  |
| SI                                 | 603                                                            | 4.6            | 14                   |                  |
| SS                                 | 656                                                            | 5.0            | 19                   |                  |
| candidates for<br>local adaptation | 999                                                            | 7.6            | 9                    | 77               |
| significant clinal<br>candidates   | 162                                                            | 1.2            | 10                   | 23               |
| all environmental<br>candidates    | 1389                                                           | 10.6           | 6                    | 87               |
| "cold temperatures"<br>candidates  | 47                                                             | 0.4            | 4                    | 20               |
| "precipitation"<br>candidates      | 49                                                             | 0.4            | 4                    | 2                |
| "warm temperatures"<br>candidates  | 196                                                            | 1.5            | 6                    | 114              |