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1. Information about Pool-Seq data 

1.4. Extended Material & Methods 

Pool-Seq data was mapped  with BWA using the bwa mem algorithm (v0.7.10-r789, Li & Durbin 

2009). By increasing the minimum seed length to 30, we managed to obtain highest stringency (as 

recommended for Pool-Seq, Kofler et al. 2011a) while improving mapping success (Supporting Table 

S1.1) and drastically speeding up the analysis. The resulting bam-files were processed according to 

recommendations for the PoPoolation2 pipeline: sorting (Picard v1.119, available at 

http://picard.sourceforge.net), removal of duplicates (Picard), removing of low quality alignments 

(SAMtools utilities v1.1, Li et al. 2009), combining all Pool-Seq data sets to one overall sync-file, and 

subsampling the sync-file to a minimum coverage of 20X. 

1.5. Extended Results 

 
Supporting Figure S1.1: Geographic distribution of C. riparius populations sampled for this study 

along a climatic gradient across Europe. Climate variation is plotted as annual mean temperatures 

based on WorldClim climate data “bio1” (Hijmans et al. 2005). Population codes refer to Supporting 

Table S1.1 and are coloured in regard to their phenotypic temperature adaptation (warm to cold adap-

tation from orange to light blue, cf. Manuscript Figure 1).  
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Supporting Table S1.1:  

Mapping statistics of Pool-Seq data to C. riparius draft genome (accession number) with bwa mem 

(-k 30). 

population 
European  

region 

coordinates  

(lat, long) 

mean cov-

erage 

% mapped 

reads 

MG Hessen (GER) 50.1680610, 9.0819270 26.7 81.09 

NMF Lorraine (FRA) 49.1765430, 6.2156670 55.3 77.57 

MF Rhône-Alpes (FRA) 45.8616760, 4.8865000 41.0 78.03 

SI Piemont (IT) 45.4036180, 8.3473320 40.2 77.88 

SS Andalusia (SP) 37.399080, -4.5267980 36.9 80.92 
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2. Environmental association analysis with LFMM 

2.1. Extended Material & Methods 

To generate the environmental input data, we extracted the complete set of current climate conditions 

for each sample location from WorldClim (Hijmans et al. 2005). To obtain meaningful, low dimen-

sional environmental parameters, we performed a PCA (principal component analysis, software 

package PAST v. 3, Hammer et al. 2001) on all parameters (WorldClim data including BioClim data, 

approx. 1950-2000, Hijmans et al. 2005). 

2.2. Extended Results 

 
Supporting Figure S2.1: 

Disribution of Eigenvalues (%) of components (blue line) after principal component analysis (PCA) 

with 57 climatic variables (WorldClim data) from 21 locations of documented C. riparius occurrence 

(including the five natural populations of this study, Oppold et al. 2016a). Red line marks the random 

distribution of Eigenvalues (broken stick analysis). Components under this curve are expected to be 

non-significant. 
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Supporting Figure S2.2: 

PCA loading of the significant components: PC1 – cold temperatures (top), PC2 – precipitation (mid-

dle), PC3 – warm temperatures (bottom). See Supplementary Tab. S1 for a list of the climate varia-

bles.  
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Supporting Table S2.1: 

Climate variables (WorldClim data) with highest PCA loadings of the three significant components. 

PC1 PC2 PC3 

tmin1 prec9 tmin7 

tmax1 bio12 tmin8 

tmin2 prec10 prec8 

tmax2 
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2.1 LFMM Workflow box 

1. 149474 loci of 5 populations (extended to 20 individuals each), associated to 3 environ-

mental variables 

2. lfmm runs with 5 repetitions and emits a z.score per locus per env.variable, we take the 

median z.score of the separate lfmm runs 

3. the genomic inflation factor lambda (should be close to 1) is estimated based on the 

z.scores with the chisq distribution as null model, this factor is meant to correct for non-

neutral patterns that result from confounding factors (demography) 

4. the z.scores are converted to p-values and corrected with lambda 

5. fdr correction of adjusted p-values with Benjamini Hochberg algorithm 

 

zs = z.scores(lfmm.extended, K=5, d=1)   #d=1 for first env.variable 

zs.median = apply(zs, MARGIN=1, median) 

lambda = median(zs..median^2)/qchisq(0.5, df=4) #degrees of freedom = 4 (=n-1) 

 

lambda.1  0.7076576     #lambda “cold temperatures” 

lambda.2  0.6743437     #lambda “precipitation” 

lambda.3  0.7067992     #lambda “warm temperatures” 

 

 

   
Box-Figure 2.1: Frequency distribution of adjusted p-values (adjusted with respective lambda) 

after association to three different environmental variables: warm temperatures, precipitation, cold 

temperatures (from left to right). 

 

#these distribution are fine, since we enriched for fixed loci by extracting the 99% Fst-quantile 

(this explains the peak at 1), otherwise flat p-value distribution 

 

#Benjamini-Hochberg correction with fdr level of 5% 

 

candidates.1  22959    # ~23k loci associated to cold temperatures 

candidates.2  19720    # ~20k loci associated to precipitation 

candidates.3  16956    # ~17k loci associated to warm temperatures 
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3. Life-Cycle experiments 

3.1. Extended Material & Methods 

We recorded mortality, mean emergence time (EmT50), sex ratio, number of clutches per female, num-

ber of eggs per clutch, and fertility of clutches (successful early embryonic development of at least 

half of the eggs per clutch) to finally calculate the population growth rate (PGR), as integrative fitness 

measure, based on a simplified Euler-Lotka calculation (Vogt et al. 2007b). Life-cycle parameters 

were analysed with two-way ANOVA to test for the effect of temperature, population, and the interac-

tion of both in GraphPad Prism® (v5, GraphPad Software, San Diego, USA). 

3.2. Extended Results 
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Supporting Figure S3.1:  

Correlation of C. riparius population growth rates from life-cycle experiments at three different test 

temperatures (14, 20, 26 °C) with annual mean temperatures at respective population sites as proxy for 

the climate gradient across Europe. Population growth rates at 26 °C show large variation, especially 

in populations that experience strong seasonal temperature differences (Rhône-Alpes, Piemont), thus, 

correlation shows a weak tendency. Population growth rates at 14 °C show a strong tendency in corre-

lation to annual mean temperatures. 

 



9 

 

0

20

40

60

80

100
A P x T p<0.01

P p<0.001
T ns

m
o
rt
a
lit
y
(

%
, 
m

in
 t
o
 m

a
x
)

10

20

30

40

B P x T p<0.05
P p<0.001
T p<0.001

E
m

T
5
0
 (

d
a
y
s
, 
m

in
 t
o
 m

a
x
)

14 20 26 

0.0

0.5

1.0

1.5

Rhône-Alpes (MF)

Piemonte (SI)

Lorraine (NMF)

Hessen (MG)

Andalucia (SS)

C P x T p<0.01
P p<0.001
T p<0.001

test temperature (°C)

fe
rt
ile

 c
lu

tc
h
e
s
 p

e
r 
fe

m
a
le

 
Supporting Figure S3.2:  

Life-cycle parameters of the natural C. riparius populations at the different test temperatures, shown 

as Box-Whiskers ranging from minimum to maximum: (A) mortality, (B) mean emergence time, (C) 

fertile clutches per female. P-value thresholds of two-way ANOVA shown in the box: effect of popu-

lation (P), temperature (T), and interaction of both factors (P × T). 
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Supporting Table S3.3: Matrices with significance thresholds of two-way ANOVA with Bonferroni 

post-test for the different life-cycle parameters (A: mortality, B: mean emergence time, C: number of 

fertile clutches per female) at three test temperatures in five natural C. riparius populations. The popu-

lation codes correspond to the legend in Supplemental Figure S1. 

A:mortality MG NMF MF SI SS 

MG 

14°C ns 0.001 0.01 0.01 

20°C ns ns 0.05 0.001 

26°C 0.05 ns ns ns 

NMF 

ns 14°C 0.001 0.05 0.01 

ns 20°C ns ns 0.001 

0.05 26°C ns ns 0.01 

MF 

0.001 0.001 14°C 0.001 ns 

ns ns 20°C ns 0.05 

ns ns 26°C ns ns 

SI 

0.01 0.05 0.001 14°C ns 

0.05 ns ns 20°C ns 

ns ns ns 26°C ns 

SS 

0.01 0.01 ns ns 14°C 

0.001 0.001 0.05 ns 20°C 

ns 0.01 ns ns 26°C 

B:EmT50 MG NMF MF SI SS 

MG 

14°C ns 0.001 ns 0.05 

20°C ns 0.001 ns ns 

26°C ns 0.001 0.05 ns 

NMF 

ns 14°C 0.001 ns 0.05 

ns 20°C 0.01 ns ns 

ns 26°C 0.001 ns ns 

MF 

0.001 0.001 14°C ns 0.001 

0.001 0.01 20°C ns 0.05 

0.001 0.001 26°C ns 0.05 

SI 

ns ns ns 14°C 0.001 

ns ns ns 20°C ns 

0.05 ns ns 26°C ns 

SS 

0.05 0.05 0.001 0.001 14°C 

ns ns 0.05 ns 20°C 

ns ns 0.05 ns 26°C 

C:clutches MG NMF MF SI SS 

MG 

14°C ns 0.05 ns 0.01 

20°C ns ns ns ns 

26°C ns ns ns ns 

NMF 

ns 14°C 0.001 ns 0.001 

ns 20°C ns ns ns 

ns 26°C ns ns ns 

MF 

0.05 0.001 14°C 0.05 ns 

ns ns 20°C ns ns 

ns ns 26°C ns ns 

SI 

ns ns 0.05 14°C 0.01 

ns ns ns 20°C ns 

ns ns ns 26°C 0.05 

SS 

0.01 0.001 ns 0.01 14°C 

ns ns ns ns 20°C 

ns ns ns 0.05 26°C 
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4. MSMC analysis 

4.1. Extended Material & Methods 

Whole genome individual resequencing 

DNA of adult midges was extracted using the DNeasy Blood & Tissue Kit (QIAGEN, Hilden, Germa-

ny). DNA concentration was measured with the Qubit® dsDNA BR Assay Kit in a Qubit® fluorometer 

and quality was assessed by gel-electrophoresis. As the total amount of DNA per individual was below 

1 µg, preparation of 150 bp paired-end libraries was performed with the KAPA HyperPrep Kit 

(KR0961, KAPA Biosystems). Libraries were sequenced to an expected mean coverage of 25X on an 

Illumina HiSeq4000 (BGI sequencing facility, Hongkong).  

Raw sequences were trimmed and clipped with TRIMMOMATIC 

(ILLUMINACLIP:adapters.fa:2:30:10:8 CROP:145 LEADING:10 TRAILING:10 

SLIDINGWINDOW:4:20 MINLEN:50; v0.32, Bolger et al. 2014) and afterwards inspected with 

FASTQC (v0.11.2; http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). 

The phased data per scaffold of two populations and mappability mask of the respective scaffold were 

combined into one MSMC2 input per scaffold (comprising 2 populations x 4 individuals, i.e. 16 haplo-

types). Therefore, ten alternative population-pairs were independently analysed concerning their re-

spective cross coalescence. 

Approach to decrease uncertainties in coalescence estimates 

Since the script to generate the MSMC input (generate_multihetsep.py) cannot deal with missing data, 

there is a slight variation in the combination of sites between different pairs. This also slightly affects 

the Ne estimation of each population in a respective pair. To overcome this potential bias, the estima-

tions were averaged per time index over the four independent runs per population. 

Contrasting to studies with human or Drosophila genome sequences, there is no high-quality haplo-

type data available for C. riparius. It is hence not possible to estimate the actual phasing error in terms 

of the switch error rate (SER). To alternatively decrease uncertainties in the coalescence estimates, we 

only used time slices with a minimum number of ten coalescence events for downstream analyses. 

Since C. riparius and Drosophila melanogaster share similar genetic properties (µ, Ne (Oppold & 

Pfenninger 2017), chromosome number), we additionally used the conservative SER of 2.1 % from 

Drosophila (Bukowicki et al. 2016), corresponding to our sequencing coverage of approximately 20X 

in a data set with 20 unrelated individuals. To infer the expected mean haplotype length (MHL), ge-

nome-wide heterozygosity was estimated as an average of all individuals (number of diallelic SNPs 

per callable site of the genome). The MHL together with the Drosophila autosomal recombination rate 

of r = 2.1 cM Mb-1 (Mackay et al. 2012) enabled the calculation of an approximated time horizon (as 

time to the most recent common ancestor – tMRCA) below which phasing error precludes coalescence 

rate estimates: �ܯ��� = ͳʹ ∙ � ∙ ܮ�ܯ

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/


5. Simulation Study

5.1 Adjustment of Effective Population Size

To account for different generation times in our populations, we adjusted population sizes for recent epochs:

N
adjust
E = NE

Ga

Gm

,

where N
adjust
E is the adjusted population size, Ga is the number of generations per year and Gm is the mean

number of Generations per year over all populations (Table S5.1, (Oppold et al. 2016)).

We refrained from adjusting population sizes in the distant past, as additional information on local climate
and the spacial distribution of the population is not readily available (or even possible to obtain).

Table S5.1: Populations with generations per year

Population Abbreviation Generations per year θ (Migrate Analysis)

Hessen (G) MG 7.85 0.0316
Metz (F) NMF 7.7 0.197
Lyon (F) MF 9.07 0.396
Piemont (I) SI 10.57 0.031
Andalucia (S) SS 14.86 0.025
mean 10.01

1



5.2 Models in Detail

General settings, consistent in all models:

Number of simulations per model: 200,000 Number of populations: 5
Number of samples: 20 per population
Length of sequence: 1,000 base pairs
Mutation rate per site and generation µ: 4.1 × 10−9

Recombination rate: 0
Transition bias: 0.595

Simulations were performed using fastsimcoal v. 2.5.2 (Excoffier and Foll 2011).

Migration pathways

In all models migration between neighboring populations is allowed (Fig. S5.1 and Table S5.2).

MG

NMF

SI

MF

SS

Figure S5.1: Locations of populations and possible migration routes between them (Kahle and Wickham
2013).

2



Table S5.2: Matrix of possible migration between neighboring populations.

MG NMF MF SI SS

MG 0 possible 0 0 0
NMF possible 0 possible 0 0
MF 0 possible 0 possible possible
SI 0 0 possible 0 0
SS 0 0 possible 0 0

Constant Demography Model

As the simplest option we chose a population split model of constant population sizes and migration rates
constant over time (Fig. S5.2, Table S5.3). Migration rates and population sizes are based on the results of
the Migrate-n analysis (Beerli and Felsenstein 2001; Beerli 2006).

125

present MG SINMF MF SS

Figure S5.2: Graphical representation of demographic model: constant demography model (time scales in
thousand generations).

Table S5.3: Population sizes in constant demography model. N
adjust
E and N initial

E give number of individuals
at present and 125,000 generations ago.

Population Abbreviation N
adjust
E N initial

E

Hessen (G) MG 1000857 0
Metz (F) NMF 6120294 0
Lyon (F) MF 14491648 28983
Piemont (I) SI 1322063 0
Andalucia (S) SS 1498905 0

3



Table S5.4: Migration matrix in constant demography model.

MG NMF MF SI SS

MG 0 9.1 × 10−4 0 0 0
NMF 9.1 × 10−4 0 2.5 × 10−5 0 0
MF 0 9.1 × 10−4 0 3.0 × 10−5 9.1 × 10−4

SI 0 0 1.9 × 10−5 0 0
SS 0 0 1.5 × 10−5 0 0

Population Growth Model

125

present MG SINMF MF SS

Figure S5.3: Graphical representation of demographic model: population growth model (time scales in
thousand generations).

All parameters of this model are the same as in the Constant Demography Model, except for the addition of
a population expansion (Fig. S5.3). The growth rate is r = 1.0 × 10−5 and population growth is given by:

Nt = N0ert,

where Nt equals population size in generation t and N0 is the initial population size (Excoffier and Foll 2011).

4



Approximated Demographic Model

Based on the results of our MSMC2 analysis (Schiffels and Durbin 2014) we developed an approximated
demographic model (Fig. S5.2 of main article) of population split, shrinkage and following expansion.
Migration rates change over time, first decreasing to near isolation and then rising again, mirroring inferences
on cross-coalescence rate from the MSMC2 analysis (Fig. S5.4, Table S5.4).

125

90

50

5

2

present MG SINMF MF SS

Figure S5.4: Graphical representation of demographic model: approximated population model (time scales in
thousand generations).

Table S5.4: Population sizes at different time points (in generations) and migration rates (MIG) in these
epochs.

present 2000 5000 20000 50000 90000 125000

MG 282318 39211 18037 16000 20000 27000 0
NMF 615385 38462 16923 12000 19000 25000 0
MF 308072 47117 18122 13000 20000 26000 29000
SI 253427 26399 15839 18000 25000 30000 0
SS 504735 37113 14845 8000 15000 18000 0
MIG 1.02 × 10−5 2.7 × 10−4 3.0 × 10−4 3.7 × 10−3 5.1 × 10−3 2.9 × 10−3 0

5.3 Calculation of FST values

Pairwise FST values are used to detect short term genetic distances between populations (Excoffier and
Lischer 2010; Reynolds, Weir, and Cockerham 1983; Slatkin 1995). We calculated these for all models as
well as the empirical data, generated density functions and compared them (Fig. S5.5). Computation was
performed with arlsumstat, the command-line version of Arlequin 3.5 (Excoffier and Lischer 2010).

Kruskal-Wallis tests showed significant differences in all pairings (Hollander, Wolfe, and Chicken 2013).

5



Figure S5.5: Comparisons of density functions of pairwise FST values between all pairs of populations
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6. Analyses of population differentiation 

 

 
Supporting Figure S6.1:  

Size distribution of divergence regions (joined adjacent 1 kb outlier windows above 5 % FST threshold) 

for all pairwise comparisons. 

 

 
Supporting Figure S6.2:  

Distribution of distances among divergence regions on the same scaffold. 
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Supporting Table S6.1: Estimated migration rates between C. riparius populations across Europe. 

direction 
geographic 

distance(km) 

migration rate 

per generation 

MG→NMF 233.73 9 × 10-4 

MG←NMF 233.73 9 × 10-4 

NMF→MF 380.84 2 × 10-5 

NMF←MF 380.84 9 × 10-4 

MF→SI 274.25 3 × 10-5 

MF←SI 274.25 2 × 10-5 

MF→SS 1224.41 9 × 10-4 

MF←SS 1224.41 2 × 10-5 

 

 

Supporting Table S6.2: Statistics of pairwise FST from empirical Pool-Seq data of C. riparius popula-

tions.  

population 

pair 

geographic 

distance 
median FST mean FST max FST 

MF:MG 572.25 0.030 0.034 0.643 

MF:NMF 380.84 0.031 0.035 0.551 

MF:SI 274.25 0.074 0.083 0.862 

MF:SS 1224.41 0.060 0.071 0.905 

MG:NMF 233.73 0.029 0.032 0.415 

MG:SI 532.58 0.078 0.088 0.926 

MG:SS 1824.44 0.066 0.078 0.918 

NMF:SI 1390.2 0.079 0.089 1.000 

NMF:SS 1532.18 0.067 0.078 0.905 

SI:SS 1387.39 0.097 0.111 1.000 
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Supporting Table S6.3: Comparisons of FST from Pool-Seq data (empirical) and simulation data 

(three different models). FST above 99 % threshold from empirical data was taken as threshold (high-

lighted in grey), above which we exclude the effect of drift. Numbers of highly diverged windows 

above this threshold before and after error correction are given. 

population 

pair 

99 % FST-threshold 
number of  

windows above 

empirical 99 % 

FST threshold 

number of 

windows 

after FDR 

correction 

empirical 

data 

constant 

model 

growth 

model 

approximated 

model 

MF:MG 0.118 0.028 0.267 0.232 428 402 

MF:NMF 0.115 0.028 0.264 0.204 437 399 

MF:SI 0.260 0.034 0.397 0.224 407 407 

MF:SS 0.250 0.034 0.269 0.211 519 519 

MG:NMF 0.100 0.027 0.109 0.211 287 235 

MG:SI 0.283 0.035 0.463 0.274 426 426 

MG:SS 0.274 0.039 0.533 0.258 519 519 

NMF:SI 0.278 0.034 0.461 0.248 444 444 

NMF:SS 0.269 0.039 0.532 0.230 533 533 

SI:SS 0.360 0.043 0.479 0.259 476 476 
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7. Tajima’s D analysis 

 

Box 7: Molecular signatures of selection in divergent outlier windows 

To analyse evolutionary forces acting on the identified outlier windows, we estimated Tajima’s D 

(TD) in 1 kb windows in each of the five Pool-Seq data sets. Relative deviations from the muta-

tion-drift equilibrium (measured as TD) are expected to result from non-neutral evolution. With 

focus explicitly on highly divergent outlier regions, selection can be expected to be the major pro-

cess contributing to divergence, whereas demographic effects can be neglected. 

Method 

We used the PoPoolation tool package (Kofler et al. 2011a) with high stringency settings for 

TD estimation. TD per population for significant 1kb outlier windows (according to the upper 1 % 

of the FST distribution) were extracted and compared to TD per population for a random subset of 

the remaining 1kb windows that fell below the statistical threshold of neutral divergence (hereafter 

named “genome-wide average 1kb windows”). Summary statistics were calculated in GraphPad 
Prismv5. 

TD values ±1 were defined as threshold above/below which we expected selective processes. This 

strict threshold simplifies the complex situation of genome-wide divergence processes; however, 

for our data it was more conservative (see upper 5 % values in Box-Table 6.1) than the upper 5 % 

TD distribution threshold suggested in Feulner et al. (2015). We considered the following scenari-

os for a comparison with n populations (modified from Pfenninger et al. 2015): (i) negative TD in 

one to n-1 populations indicate that the site has evolved under positive selection in the respective 

population, (ii) negative TD in all populations is indicative for strong purifying selection, (iii) posi-

tive TD is indicative for balancing selection in the respective population. With Chi2 tests in R we 

compared the occurrences highly divergent outlier windows with signatures of positive or balanc-

ing selection in population-pairs and afterwards applied the Benjamini-Hochberg correction for 

multiple testing (p.adjust in R). 

Results & Discussion 

TD of genome-wide average 1 kb windows of all populations levelled around zero (medians in a 

range of -0.116 and 0.165, Box-Table 6.1), indicating the major influence of neutral processes in 

shaping the genome. While the overall range of the TD distribution was similar in 1 kb windows of 

divergent outliers and the genome-wide average (Box-Figure 6.1), median (as well as mean) TD 

values in outlier regions were shifted towards negative values except for the MF population 

(Rhône-Alpes). These negative shifts are consistent with selection as major mechanism driving 

divergence in these genomic regions (Feulner et al. 2015).  
 

Box-Table 7.1: Summary statistics of TD in outlier and genome-wide average 1 kb 

windows. Population-means of the two categories are given in the first two columns. 

 outliers 
mean 

neutral 
mean 

outliers 
MF 

neutral 
MF 

outliers 
MG 

neutral 
MG 

outliers 
NMF 

neutral 
NMF 

outlier 
SI 

neutral 
SI 

outlier 
SS 

neutral 
SS 

Minimum -1.527 -1.589 -1.476 -1.548 -1.583 -1.606 -1.537 -1.626 -1.485 -1.557 -1.554 -1.610 

Maximum 1.423 1.704 1.441 1.700 1.490 1.734 1.379 1.684 1.419 1.752 1.385 1.652 

Median -0.080 -0.015 -0.029 -0.0872 -0.121 -0.116 -0.107 -0.087 -0.003 0.165 -0.140 0.0484 

Mean -0.095 -0.028 -0.0424 -0.0960 -0.1193 -0.1254 -0.1160 -0.0989 -0.027 0.1453 -0.168 0.0357 

lower 5% -1.020 -0.710 -0.9018 -0.7154 -1.028 -0.8197 -0.9937 -0.7268 -0.960 -0.564 -1.218 -0.722 

upper 5% 0.835 0.603 0.8154 0.4881 0.8090 0.5352 0.7979 0.4855 0.8734 0.7825 0.8785 0.7260 
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Box-Figure 7.1: Distribution of TD in 1 kb windows of highly divergent out-

lier windows and all remaining neutral windows. 

Applying the three mutually exclusive scenarios to TD values ±1, we were able to quantify the 

relative contribution of different selection mechanisms in the divergent outlier 1 kb windows. Pu-

rifying selection was found to act on the majority of outlier windows (note that this value cannot 

be inferred population-wise). Number of highly divergent 1 kb windows evolved by positive and 

balancing selection differed among populations (Box-Figure 6.2). Northernmost and southernmost 

populations (MG, NMF, SS) showed major impact of positive selection (significantly different to 

MF and SI, Box-Table 6.2). Balancing selection was significantly increased in the two Southern 

populations (SI, SS, see Box-Table 6.2 for p-values). 
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Box-Figure 7.2: Occurrences of molecular signatures of selection in diver-

gent outlier 1 kb windows (statistical comparisons in Box-Table 6.2). 
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Box-Table 7.2: Statistical p-values (Chi2-tests, Benjamini-Hochberg correction 

for multiple testing) of numbers of molecular signatures of selection displayed 

in Box-Figure 6.2: (A) occurrences of positive selection among populations,   

(B) occurrences of balancing selection among populations. 

A:  

positive 

selection 

MG NMF MF SI SS 

MG   0.5543 0.0082 6.67E-04 0.2976 

NMF 0.5543   0.0448 0.0043 0.0939 

MF 0.0082 0.0448   0.4414 2.11E-04 

SI 6.67E-04 0.0043 0.4414   6.11E-06 

SS 0.2976 0.0939 2.11E-04 6.11E-06   

B: balanc-

ing selec-

tion 

MG NMF MF SI SS 

MG   1 0.4231 0.0002 0.0368 

NMF 1   0.4231 0.0002 0.0368 

MF 0.4231 0.4231   0.0053 0.2317 

SI 0.0002 0.0002 0.0053   0.1499 

SS 0.0368 0.0368 0.2317 0.1499   

Since we can exclude a significant difference in Ne between populations (Fig. 3A), this pattern 

suggests that positive selection has been playing a major role in populations at the outer margins 

of the investigated climatic gradient. Referring back to the hypothesis that populations expanded 

from central France, i.e. the centre of the thermal cline, might provide an explanation for this spa-

tial pattern of positive selection. According to the surfing mutation phenomenon, mutations occur-

ring at the edge of the range expansion are lost at a reduced rate and can more easily be driven to 

fixation (Klopfstein et al. 2006). Therefore, the time of population range expansion is an evolu-

tionary important period, where mutations can accumulate and contribute to adaptation processes. 

However, the existence of spatial and even temporal heterogeneity in the intensity and direction of 

selection is known from other species (Bergland et al. 2014; Charbonnel & Pemberton 2005). This 

could furthermore explain the observed spatial difference in the proportion of balancing selection. 
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8. Functional enrichment analysis 

 

Supporting Figure S8.1:  

Venn diagrams (produced online at http://bioinformatics.psb.ugent.be/webtools/Venn/) of intersected 

candidate gene lists: (A) candidate genes for clinal adaptation correlated to the three environmental 

variables, (B) gene hits annotated to the significant outlier 1 kb-windows from pairwise population 

comparisons (99 % FST threshold) and candidate genes for clinal adaptation, and (C) detailed compari-

son of gene hits from population comparisons with the three environmental variables separately. 

 

http://bioinformatics.psb.ugent.be/webtools/Venn/
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Supporting Table S8.1:  

Results of enrichment analysis on the level of biological functions (GO terms) and molecular path-

ways (KEGG pathways). The amount of genes involved in the respective adaptation pattern is given 

against the complete annotation of 13,093 protein coding genes. Gene hits for populations integrate all 

hits that result from comparison of the respective population with the others (gene hits in significant 

outlier 1 kb-windows). Gene hits correlated to environmental variables result from the locus-specific 

environmental association study with LFMM. Note that the number of significantly enriched GO 

terms and KEGG pathways is relative to input genes. Therefore, there can be less significant hits on 

the superior level compared to subgroups (e.g. 9 GO terms among overall candidates for local adapta-

tion against 19 GO terms among local candidates of SS). 

  

gene hits from 

comparisons 

with all other 

populations 

% of all genes 
enriched 

GO terms 

KEGG 

pathways 

MG 669 5.1 16   

NMF 728 5.6 7   

MF 708 5.4 6   

SI 603 4.6 14   

SS 656 5.0 19   

candidates for  

local adaptation 
999 7.6 9 77 

significant clinal  

candidates 
162 1.2 10 23 

all environmental candi-

dates 
1389 10.6 6 87 

"cold temperatures" 

candidates 
47 0.4 4 20 

"precipitation" 

candidates 
49 0.4 4 2 

"warm temperatures" 

candidates 
196 1.5 6 114 
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