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Mihály Bányai, Andreea Lazar, Liane Klein, Johanna Klon-Lipok,
Wolf Singer, Gergő Orbán
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1 Probabilistic inference in a hierarchical generative model

To obtain an insight into the way bottom-up and top-down information is inte-
grated during inference in a hierarchical generative model, we derive how the
posterior distribution of a mid-level latent variable can be obtained. The gen-
eral approach to specify the internal mental model of an animal is to define a
probabilistic generative model, the parameters of which are fitted to a database
natural images. Then the statistics learned over latent model variables can be
used to predict neuronal responses in populations that are thought to represent
the given variables. This approach has proven lucrative to predict mean and vari-
ance of responses in V1 (Olshausen & Field, 1996; Schwartz & Simoncelli, 2001;
Orbán et al., 2016) with a single layer of latent variables. Introducing stimulus-
dependence to V1 correlations necessitate a hierarchical model. The specific form
of predicted inter-neuron correlations strongly depends on the structure of the in-
ternal model being implemented in the brain. This poses a serious challenge, since
our knowledge is limited as to the precise form of such a hierarchical generative
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model. Therefore we aim to derive predictions that are invariant over the structure
of a wide class of hierarchical generative models.

We define a hierarchical generative model in which the stimulus x is a result of a
hierarchical stochastic process (Fig. 1A). High-level complex features, z, define
how low-level features, y, are combined (Fig. 1A). These combinations define
how likely a particular low-level feature is given a set of high-level latent activa-
tions, P(y | z). Activations of low-level features, y, determine the combinations of
pixel intensities (Fig. 1B) and define how likely a particular image is if we assume
that a particular setting of low-level features underlies the image, P(x |y).

Once the prior probability of high-level activations, P(z), is defined, the model
can be specified by formulating the joint distribution of the model variables:

P(x,y, z) = P(x |y) P(y | z) P(z) (S1)

Inference can be performed in this model by establishing the posterior probability
for different variables. We are interested in the posterior of the low-level vari-
able, y, given that we observe the stimulus x. Since we cannot experimentally
access the activities of the variables at the topmost layer, the relevant posterior is
marginalized over them: P(y |x). This can be expanded based on the dependen-
cies of the generative model and marginalizing over z:

P(y |x) = P(x |y) P(y)
P(x)

=

∫
P(x |y) P(y | z) P(z) dz

P(x)
(S2)

This form demonstrates how the prior of y is dependent on high-level variables
z, thus we see that intermediate inferences depend not only on the stimulus x but
also on higher level inferences. However, the integral over the prior of the topmost
variable, z, makes this relationship obscure, therefore we intend to obtain a more
transparent form.

We aim for an explicit expression on how y depends on observations, x, and high-
level inferences z. In other words, we want to formulate the distribution over y
conditioned on both the parent and children variables:

P(y |x, z) = P(x |y) P(y | z) P(z)
P(x, z)

=
P(x |y) P(y | z)

P(x | z)
(S3)
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Rearranging Eq. S3 and substituting it into Eq. S2 we obtain

P(y |x) =

∫
P(y |x, z) P(x | z) P(z) dz

P(x)
=

=

∫
P(y |x, z) P(z |x) dz (S4)

This is the exactly the form of posterior we used to predict stimulus-dependent
correlation patterns.

Further insgiht can be obtained by assuming a specific simple model structure,
namely that the high-level variable, z, is discrete and that the distribution of high-
level features is described by a categorical distribution. In such a case the integral
in Eq. S4 is simplified to a sum:

P(y |x) =
∑
i

P(y |x, zi) P(zi |x) dz, (S5)

which is a weighted sum over possible configurations of z (Fig. 1).

In the visual cortex, activity of neurons at different levels of hierarchy (e.g. V1
and V2) represent different levels of latent variables of an internal model. Fea-
tures these variables are activated by determine the selectivity of the neurons.
During perception inferences are assumed to be made in this hierarchical internal
model, which determines how the mean, variance and correlations change when
the stimulus changes. Critically, the term P(y |x, zi) is a product of two terms
conveying bottom-up and top-down information-respectively:

P(y |x, zi) = P(y |x) P(y | zi) . (S6)

Both of the terms contribute to setting the mean activations of the low-level neu-
rons, y. The correlation between a pair of low level neurons, y1 and y2 does
not depend on the stimulus identitiy in a large class of generative models, thus
the first term does not contribute to stimulus-dependent correlations. The second
term, however, determines how the two low-level variables covary in the context
of one value of the high-level variable or the other. If high-level variables are
identified with texture-sensitive neurons in V2 then it becomes clear that differ-
ent textures imply different covariations between low-level feuatures represented
in the lower layer, V1. Thus, such a scheme predicts that correlations will be
stimulus-dependent if different stimuli induce different configurations of high-
level variables being active.
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Figure S1. Related to Fig. 3. Stimulus-specificity of response correlation pat-
terns, alternative measures. (A) Natural images used in the experiment. (B) Pair-
wise spike count correlation values compared for spiking activity recorded under
two conditions. Left: Trials recorded for one particular image (shown on panel A)
were randomly assigned to two subsets, spike count correlations were calculated
for both of the subsets and these values were plotted against each other. Right:
Same as left but the subset of trials belonged to responses evoked by different
stimuli. Numbers show the Pearson correlation between spike count correlation
values obtained for the two conditions. (C) Same as Fig. 3F but the comparison
is made on a stimulus-by-stimulus basis rather than on a pair-by-pair basis. This
comparison yields the same degrees of freedom for the test that we obtain when
comparing mean correlations on Fig. 3E. (D) Dissimilarity of correlation matrices
measured by Kullback-Leibler (KL) divergence.
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Figure S2 (continued on following page).



Figure S2 (preceding page). Related to Fig. 4. Testing firing rate difference-
matching on synthetic data. (A) Using a network of neurons in which the activity
statistics of membrane potentials was defined through diverse mean membrane
potentials and a covariance matrix, we tested dissimilarity of firing rates and cor-
relations under different conditions. Upper and lower triangles of correlation ma-
trices show the correlation structure of membrane potentials in response to differ-
ent stimuli (identified by different color frames around the triangles). Horizontal
and vertical bar graphs show mean activation levels of model neurons. Without
loss of generality, the population of neurons is ordered according to the mean acti-
vation levels in response to one of the stimuli. In condition A the two stimuli elicit
responses with the same mean activity and same correlation structure. (B–D, In
condition B three scenarios are demonstrated. First, membrane potential means
differ while keeping the correlation structure intact (B). Second, the membrane
potential means are identical but the correlation structure changes (C). Third,
both mean membrane potential and membrane potential correlations are differ-
ent across stimuli (D). (E–G) Correlation dissimilarity of spike count correlation
distributions measured in the three conditions of B–D, when firing rate changes
are not controlled (left column) and when these are matched across conditions
(right column). Changes in mean activation levels alone result in apparent differ-
ences in the spike count correlation structure (e, left panel) and similar changes in
spike count correlation dissimilarity are present in the other two conditions (F, G,
left panels). Matching of firing rate differences eliminates the difference in corre-
lation dissimilarity caused by mean activation differences (E, right panel) but not
that caused by differences in the correlation structure (F, G, right panels).
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Figure S3. Related to Fig. 5. Stimulus statistics. (A) Natural stimuli used in one
of the recording sessions. (B) Distribution of pixel intensities in the stimuli, error
bars indicating mean and standard deviation. (C) Spatial frequency spectrum of
the stimuli. (D) Synthetic stimuli used in the same recording session. (E–F), the
measures presented in (B and C) calculated for the synthetic stimuli.


