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 2 

Abstract 24 

One of the major problems in evolutionary biology is to elucidate the relationships between 25 

historical events and the tempo and mode of lineage divergence. The development of relaxed 26 

molecular clock models and the increasing availability of DNA sequences resulted in more 27 

accurate estimations of taxa divergence times. However, finding the link between competing 28 

historical events and divergence is still challenging. Here we investigate assigning constrained-29 

age priors to nodes of interest in a time-calibrated phylogeny as a means of hypothesis 30 

comparison. These priors are equivalent to historic scenarios for lineage origin. The hypothesis 31 

that best explains the data can be selected by comparing the likelihood values of the competing 32 

hypotheses, modelled with different priors. A simulation approach was taken to evaluate the 33 

performance of the prior-based method and to compare it with an unconstrained approach. We 34 

explored the effect of DNA sequence length and the temporal placement and span of competing 35 

hypotheses (i.e. historic scenarios) on selection of the correct hypothesis and the strength of the 36 

inference. Competing hypotheses were compared applying a posterior simulation analogue of the 37 

Akaike Information Criterion and Bayes factors (obtained after calculation of the marginal 38 

likelihood with three estimators: Harmonic Mean, Stepping Stone and Path Sampling). We 39 

illustrate the potential application of the prior-based method on an empirical data set to compare 40 

competing geological hypotheses explaining the biogeographic patterns in Pleurodeles newts. 41 

The correct hypothesis was selected on average 89% times. The best performance was observed 42 

with DNA sequence length of 3500-10000 bp. The prior-based method is most reliable when the 43 

hypotheses compared are not temporally too close. The strongest inferences were obtained when 44 

using the Stepping Stone and Path Sampling estimators. The prior-based approach proved 45 

effective in discriminating between competing hypotheses when used on empirical data. The 46 
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unconstrained analyses performed well but it probably requires additional computational effort. 47 

Researchers applying this approach should rely only on inferences with moderate to strong 48 

support. The prior-based approach could be applied on biogeographical and phylogeographical 49 

studies where robust methods for historical inferences are still lacking. 50 

51 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 17, 2018. ; https://doi.org/10.1101/302539doi: bioRxiv preprint 

https://doi.org/10.1101/302539
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

Introduction 52 

 53 

One of the major problems in evolutionary biology is to elucidate the relationships between 54 

historical events and the tempo and mode of lineage divergence and, ultimately, biological 55 

diversification. The development of methods to estimate substitution rates with relaxed 56 

molecular clock models and the increasing availability of DNA sequences has led to better 57 

estimates of species and higher taxa divergence times (Battistuzzi et al., 2010). However, finding 58 

the link between historical events, such as past geological and climatic changes, and divergence 59 

is still challenging. As phylogeography – and other evolutionary biology disciplines - move away 60 

from narrative and traditional null-hypothesis methods towards multiple hypothesis comparison 61 

approaches (Johnson & Omland, 2004; Dépraz et al., 2008; Bloomquist, Lemey & Suchard, 62 

2010; Carstens et al., 2013), it is necessary to investigate if a hypothesis comparative framework 63 

can also be applied at deeper evolutionary times. 64 

Hypothesis comparison offers a means to draw inferences from a set of multiple 65 

competing hypotheses and to estimate the degree of confidence that can be placed on each of 66 

them (Dépraz et al., 2008; Johnson & Crandall, 2009). Competing hypotheses should be 67 

thoroughly thought through and formulated as a first step in the research process (Anderson, 68 

2008). After data collection and analyses, the competing hypotheses can be compared and ranked 69 

to select which of them best explains the data. This can be accomplished using the Bayes factor 70 

(BF), the ratio of the marginal likelihood of the data from two models, i.e. the posterior 71 

probability of one model to that of another model, divided by the ratio of the prior probabilities, 72 

thus BF measures the change in support for one model versus another given the data (Jeffreys, 73 

1935; Kass & Raftery, 1995; Suchard, Weiss & Sinsheimer, 2001, 2003). 74 
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Here we propose a hypothesis comparison approach to evaluate the influence of historic 75 

events in lineage divergence. Our main aim is to explore if assigning constrained-age priors to 76 

nodes of interest in a time-calibrated phylogeny would serve as a means for hypothesis 77 

comparison. These priors would be equivalent to scenarios for lineage divergence under certain 78 

competing hypotheses. When comparing the likelihood values of such hypotheses, modelled 79 

under different priors, we would be able to select the hypothesis that best explains the data and 80 

assign a level of confidence to evolutionary inferences. This hypothesis comparison approach 81 

has been employed a few times to empirical data with success to discern among competing 82 

temporal biogeographical scenarios in crabs (Klaus et al., 2010; Jesse et al., 2011), and land 83 

snails (Pfenninger et al., 2010). However, the efficiency, accuracy and range of validity of the 84 

approach have as yet not been rigorously tested in a systematic manner.  85 

 86 

METHODS FOR MODEL SELECTION: BAYES FACTORS AND AKAIKE'S 87 

INFORMATION CRITERION. 88 

 89 

Bayes factors allow for hypothesis ranking and evaluation of the relative merits of the competing 90 

hypotheses (Jeffreys, 1935; Kass & Raftery, 1995; Baele et al., 2012), placing BF at the core of 91 

Bayesian theory of hypothesis (Robert & Wraith, 2009). When using BF, the model, or in this 92 

case hypothesis, with the greatest marginal likelihood (for simplicity MLL) is generally 93 

preferred. The marginal likelihood is a weighted average of the likelihood, where the weights 94 

come from the prior (Xie et al. 2011). In a phylogenetic context where the parameter space is 95 

very large, calculating MLL, requires integrating over all possible solutions and is not 96 

analytically feasible.  97 
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Until recently, importance sampling approaches were used to calculate the harmonic 98 

mean estimator (HM) of MLL (Newton & Raftery, 1994), despite the short-comings of the 99 

approach being outlined in the original paper. HM only needs simulations from the posterior 100 

distributions and can be easily calculated from an MCMC sample. Consequently, it has been 101 

widely used in phylogenetics (e.g. MrBayes and implemented in BEAST). However, HM is not 102 

stable and can have infinite variance giving unreliable results for model selection (Lartillot & 103 

Philippe, 2006; Xie et al., 2011). Recent developments aim to improve the exploration of the 104 

relevant model space via guided transitions across a sequence of intermediate distributions 105 

connecting their prior and posterior extremes (Cameron & Pettitt, 2013). Among these methods 106 

are thermodynamic integration (Lartillot & Philippe, 2006), also known as path sampling (PS; 107 

Ogata, 1989; Gelman & Meng, 1998) and the Stepping Stone method (SS; Xie et al., 2011). Both 108 

methods have been implemented in BEAST latest version  (from version 1.7.0; Drummond et al., 109 

2012; Baele et al., 2012), together with a posterior simulation analogue of the Akaike’s 110 

information criterion through MCMC (AICM; Raftery et al., 2007; Baele et al., 2012), forming a 111 

useful set of tools for model selection in phylogenetics. 112 

Here, using a simulation approach, we evaluate the plausibility of using prior information 113 

to compare hypotheses on divergence times between lineages. We apply several model selection 114 

techniques (AICM, HM, SS and PS) and evaluate their performance for prior-based hypothesis 115 

comparison under several conditions. We varied data amount, relative temporal placement, span 116 

and absolute tree location of hypotheses (age priors), but kept the evolutionary and relaxed clock 117 

models constant. Using a reduced set of simulations, we compared the prior-based approach with 118 

a simpler approach to select among competing scenarios. This consists in executing one analysis 119 

to compute the proportion of sampled MCMC steps that fall within date intervals compatible 120 
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with competing historical events or scenarios. In this way, for each scenario, it would be possible 121 

to estimate the posterior probability that a given divergence occurred at the same time as the 122 

historical event. This would enable comparing several competing hypotheses through BF. This 123 

approach does not require applying constraints on the age prior distribution of the nodes of 124 

interest and we refer to it as the “unconstrained” analysis (Uc). 125 

We illustrate the potential application of the prior-based hypothesis approach on an 126 

empirical data set to compare competing geological hypotheses explaining the biogeographic 127 

patterns of Pleurodeles newts in Iberia and Northern Africa (Zhang et al., 2008). 128 

 129 

 130 

Materials and Methods 131 

 132 

A simulation study was carried out to evaluate the performance of the prior-based hypothesis 133 

comparison approach, to investigate what factors could lead to a reliable selection of the correct 134 

hypothesis or scenario and to compare it with Uc. Three sets of simulations were generated. The 135 

main difference among them is the age of the simulated correct hypothesis: “deep” correct 136 

hypothesis (DCH, 4.2-4.7. Ma), “intermediate” correct hypothesis (ICH, 2.7-3.2 Ma) or 137 

“shallow” correct hypothesis (SCH, 1.2-1.7 Ma). The general simulation procedure included 138 

several stages. The first step was to simulate trees with 25 taxa with BEAST v1.6.1 (Drummond 139 

et al., 2006) in which five nodes were age-constrained to the same time interval (e.g. 2.7-3.2 Ma, 140 

the onset of the Northern Hemisphere Glaciation NHG). We constrained this high number of 141 

nodes to facilitate divergence time estimation and reflect a scenario where many nodes in the tree 142 

were affected by a very significant event. Nodes were defined as two-taxa set, with a uniform-143 
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age prior reflecting the age of the event. Trees were built following a birth-death tree prior and a 144 

normal prior with 15 Ma mean for the root age, without sequence data. To test performance 145 

under a variety of tree shapes, trees were sampled at a frequency resulting in up to 100 final trees 146 

from which 20 were randomly selected, using the random.org number generator. All the nodes in 147 

the trees were resolved and the topologies and position of the nodes in the tree are shown in File 148 

S1. Input files to generate the simulated trees are in File S2. 149 

The topologies of the selected trees were used to simulate DNA sequence data with Seq-150 

Gen (Rambaut & Grassly, 1997). Five partitioned DNA-sequences datasets of 3500, 10000 and 151 

20000 bp were simulated for each topology under the Jukes-Cantor substitution model. To reflect 152 

partition rate heterogeneity, we specified a relative rate of evolution for each partition. As 153 

required by SeqGen, the relative rates had a mean of 1.0, but without variation in the substitution 154 

rate among taxa. Number of partitions per data set is shown in Table S1. Each data set was used 155 

to generate input files for BEAST. The age priors for the nodes of interest in these input files 156 

reflect the “correct” hypothesis (i.e. DCH, ICH or SCH), which has the same age priors as those 157 

used to generate the simulated topology. The sequence data was also used to create input files for 158 

BEAST with age priors reflecting the competing hypotheses described in the following sections 159 

(supplementary Table S2, Fig. 1 and Fig. 2). Input files reflecting the correct and competing 160 

hypotheses had additional time calibrations on one or two nodes and the tree root. These nodes’ 161 

age prior follows a normal distribution, whose mean corresponds to the age of that node in the 162 

initial simulated topology. In a similar way, input files were created for the unconstrained 163 

analyses and are included in File S2 to facilitate analysis replication. 164 

The analyses were run under an uncorrelated relaxed molecular clock (UMC). Although 165 

the sequences were generated without variation in the substitution rate among taxa, it has been 166 
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 9 

suggested that UMC reliably estimates parameters even when the data follows a strict molecular 167 

clock, which is indeed a model comprised within the more complex UMC (Drummond et al 168 

2006). Thus we do not consider that this will be detrimental for this study. As the substitution 169 

rate is unknown for most no-model organisms, we consider that it will be more informative to 170 

estimate this parameter from the data.  171 

 172 

EFFECT OF SEQUENCE LENGTH, HYPOTHESIS RELATIVE TEMPORAL POSITION 173 

AND HYPOTHESIS TEMPORAL SPAN. 174 

 175 

In this set of simulations, the correct hypothesis age was fixed to the intermediate time depth (i.e. 176 

ICH, 2.7-3.2) whereas sequence length and position and temporal span of competing hypotheses 177 

varied. Three historical scenarios were compared: 1) nodes split at the time of a 178 

geological/climatic event: the time of the NHG at 2.7-3.2 Ma, and is considered as the correct 179 

hypothesis ICH; 2) split occurred before the geological/climatic event; 3) split occurred after the 180 

geological/climatic event. These scenarios reflect the situation of a researcher who suspects that 181 

a climatic/geological event might have led to a node split in a phylogeny, but would like to know 182 

how much better (or worse) the hypothesis explains the data in comparison to the other 183 

scenarios. 184 

To test sequence length effect of on hypothesis selection, we simulated data sets with 185 

3500, 10000 and 20000 bp and compared ICH to competing scenarios where nodes split before 186 

or after ICH. To explore how temporally close the competing hypotheses and ICH can be to 187 

properly distinguish and select ICH, we used a more or less intermediate data set size (i.e. 10000 188 

bp) and varied the temporal location of the competing hypotheses one or two intervals before and 189 
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after ICH, thus competing hypotheses did not overlap. An interval is defined as equal to the 190 

temporal span of ICH: 0.5 million years (Myr). Another important factor to consider is the 191 

competing hypotheses duration, specifically is it valid to compare hypotheses with different 192 

widths of prior age distributions? To answer this question, we simulated competing hypotheses 193 

where the age priors of the nodes of interest were two times wider than, equal to, or half as wide 194 

as ICH, and were temporally located before and after ICH. 195 

One hundred replicate input files were generated for each type of competing hypothesis 196 

(temporal or duration variation), following the general procedure above described. Input files 197 

were run in BEASTv1.7.1. MCMC length is shown in supplementary Table S1. The comparable 198 

competing hypotheses were run with the same number of iterations.  199 

 200 

EFFECT OF ABSOLUTE AGE OF CORRECT HYPOTHESIS 201 

 202 

To test how correct hypothesis absolute age (i.e. temporal depth) affects hypothesis comparison 203 

and selection, we followed the general simulation procedure. Tree topologies were simulated 204 

where five nodes of interest were constrained with age priors reflecting DCH or SCH. For each 205 

situation, the 20 randomly chosen trees were used to generate DNA-sequence data sets of 10000 206 

bp. DCH was compared to more recent competing hypotheses: 2.7-3.2 Ma and 1.2-1.7 Ma; 207 

whereas SCH was compared to older competing hypothesis: 2.7-3.2 Ma and 4.2-4.7 Ma. 208 

Performance with these two variations of correct hypotheses was compared to performance with 209 

ICH. We removed runs that did not converge to keep the run length equal among simulations 210 

with similar data set size.  211 

 212 
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 11 

HYPOTHESIS SELECTION 213 

 214 

The marginal likelihood under the different priors was estimated using the HM, PS and SS 215 

methods. The natural logs of the Bayes factors were calculated as ln(BF)=Hi-Hj, where Hi and Hj 216 

are the log natural of the competing hypothesis MLL, following the method first implemented in 217 

Tracer (Suchard, Weiss & Sinsheimer, 2003; Rambaut & Drummond, 2007) to calculate BF 218 

based on HM. The strength of evidence was evaluated according to the table provided by Kass 219 

and Raftery (1995) but without multiplying by 2 and without rounding up ln(BF) values). Thus, 220 

ln(BF)<1.10 means weak support for Hi  over Hj , 1.10 < ln(BF) < 2.30 mean moderate support 221 

and a ln(BF) > 2.3 was considered as strong support (BF >10). Regarding selection with AICM, 222 

a ∆ AICM >10 between the best ranked hypothesis and the other hypotheses suggests that the 223 

latter were very unlikely (Burnham & Anderson, 2002). These calculations where performed in 224 

BEASTv1.7.1 with the code of Baele et al. (2012). It is expected that the “correct” hypothesis 225 

will have higher MLL values than the others if our method is effective. 226 

 227 

UNCONSTRAINED ANALYSES 228 

 229 

The frequency of the MCMC steps falling within each of the correct and competing hypotheses 230 

time intervals was calculated to estimate the posterior probability of each hypothesis. We 231 

calculated the prior probability of a hypothesis as its interval length divided by the total interval 232 

length (i.e. the time from its most recent calibrated ancestral node to the present). BFs were 233 

calculated as the ratio of posterior odds to prior odds between the correct hypothesis and a 234 

particular competing hypothesis. This was obtained for each of the five nodes, for each 235 

competing hypothesis only for the treatments comparing against ICH, and with data sets of 3500, 236 
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 12 

10000 and 20000 bp. To make Uc results comparable with the prior-based approach, we 237 

estimated inference strength with this scale: BF<1 false positive; 1< BF <3.01 weak; 3.01 < BF < 238 

10 moderate; BF > 10 strong. The frequency of strong, moderate and weak BF per node was 239 

calculated. We calculated an average frequency of strong, moderate and weak BF for the five 240 

nodes, for each treatment.  241 

 242 

EMPIRICAL DATASET ANALYSIS: SALAMANDERS 243 

 244 

In this section we apply the prior-based approach to compare hypotheses on the time of split 245 

between two species of newts and the influence of geological and climatic events. Zhang et al 246 

(2008) proposed a time-calibrated phylogeny of the family Salamandridae inferred from 247 

mitochondrial genomes (10755 bp). The data set comprises 41 taxa, including representatives of 248 

all recognized genera. The authors calibrated six nodes with fossil records and one using indirect 249 

geological evidence. Based on the results of Bayesian and penalized likelihood analyses the 250 

authors proposed a robust time-calibrated phylogeny and postulated several biogeographic 251 

hypotheses to account for the distribution patterns between taxa in Salamandridae. We re-252 

analysed their data set to compare three previously suggested competing scenarios to explain the 253 

phylogeographic patterns observed in one of the clades, the ribbed newts (Pleurodeles), currently 254 

distributed in Iberia and Northern Africa (Frost, 2011). According to Veith et al (2004) and 255 

Zhang et al. (2008): 1) The split between P. waltl and P. poireti could be consistent with the 256 

Messinian salinity crisis (ca. 5.33 Ma); or 2) The Betic crisis ca. 14 Ma; or 3) the Betic crisis 257 

leading to the split between the north-western and south-eastern populations of P. waltl, rather 258 

than between the two Pleurodeles species, which would imply that the two species split around 259 
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35 Ma. 260 

We used the BEAST input file of Zhang et al. (2008) keeping the original fossil 261 

calibration points but assigning proper priors to all parameters (Baele et al. 2013). In three 262 

independent analyses, age priors were added to reflect the competing scenarios. Analysis 1 263 

included the original calibration points plus a normal age prior for the most recent common 264 

ancestor of Pleurodeles species (from now on referred to as Node P) with mean 5.33 Ma, 265 

reflecting scenario 1. In analysis 2, in addition to the original calibration points, a normal age 266 

prior was assigned to Node P with mean 14.0 Ma, reflecting scenario 2. In analysis 3, the 267 

original calibration points plus a normal age prior with mean 35 Ma, reflecting scenario 3, were 268 

included. To obtain adequate effective sample sizes of the parameters, five independent runs 269 

with 100 million MCMC iterations were executed in BEASTv1.7.1. After MCMC execution, 270 

samples of the prior and posterior were collected for later estimation of MLL with HM, PS and 271 

SS, following suggestions on the BEAST website (beast.bio.ed.ac.uk/Model_selection). Log files 272 

of the five independent runs were combined with LogCombiner of the BEAST package after 273 

removing 10% of the samples as burnin. The combined log files were used to calculate the 274 

AICM and estimate MLL using HM. PS/SS analyses were executed combining the samples of 275 

power posteriors collected at the end of each MCMC. Competing scenario MLLs were then 276 

calculated to select the one that best explains the data.  277 

 278 

Results 279 

 280 

One hundred simulated replicate datasets were analysed per “treatment”. However, convergence 281 

of the MCMC runs for the alternative, the correct hypotheses or/and the unconstrained analyses 282 
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was not always achieved and acceptable effective sample sizes were not obtained. In the prior-283 

based approach, runs that failed to converge and their competing hypotheses (correct or 284 

alternative hypotheses)-even if these converged- were not taken into account to calculate the 285 

effectiveness of the method. An improvement of up to 5% in the frequency of success was 286 

observed when ignoring the runs lacking convergence in comparison to keeping all runs 287 

irrespective of convergence achievement. The PS and SS methods produced similar results under 288 

all the simulations strategies, thus only one graph is shown.  289 

The unconstrained analyses consisted on executing one run to compare the frequency of 290 

MCMC steps falling within the intervals of several competing hypothesis. The Uc analyses were 291 

run for the same number of MCMC iterations as the prior-based approach. However with data 292 

sets of 3500, 10000 and 20000bp, 7%, 39% and 49% of the Uc runs did not reach convergence, 293 

respectively; whereas in average 0%, 8.7% and 18% of the respective competing hypothesis runs 294 

in the prior-based approach did not converge. 295 

 296 

EFFECT OF SEQUENCE LENGTH. 297 

 298 

Sequence length was increased from 3500 bp up to 20000 bp as shown in supplementary Table 299 

S1. With the prior-based approach, all the MCMC runs analysing 3500 bp data sets achieved 300 

convergence. Runs of the correct hypothesis and its competing hypotheses reached convergence 301 

78% and 59% with 10000 bp and 20000 bp data sets, respectively. Increasing sequence length 302 

leads to an increase in the frequency of selecting the correct hypothesis as the best hypothesis 303 

with strong support when using AICM and HM (Fig. 3). However an improvement is not seen 304 

when calculating MLL with PS/SS with data sets larger than 10000 bp (Fig. 3). False positives 305 
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frequency decreases with sequence length from 3500 bp to 10000 bp with all methods (HM: 306 

from 12.5 to 4.6 %; AICM: from 9.5% to 3.9%; SS/PP from 6.5% to 5.9%). Only with AICM 307 

can a reduction in false positives be seen with 20000 bp data sets (3.3%). Nevertheless, strong 308 

inferences frequency is always higher when using PS/SS than with HM, and AICM (Fig. 3). Uc 309 

shows better performance than HM and AICM with 10000 and 20000 bp data sets, but performs 310 

poorly with small data sets. 311 

 312 

EFFECT OF TEMPORAL SPAN OF COMPETING HYPOTHESES. 313 

 314 

Different sizes for the temporal constraint interval of the competing hypotheses were compared. 315 

Regarding the prior based approach, convergence was achieved by 78% of the correct hypothesis 316 

and its competing hypotheses MCMC runs. With the AICM calculation, the correct hypothesis 317 

was selected above 96% of the times, with no strong false positives. HM performs with a similar 318 

rate of success, however the correct hypothesis is selected with strong support more often than 319 

with AICM with only 0.65% of strong false positives. In both cases a better performance was 320 

obtained when the hypotheses span intervals of similar size or when the competing hypothesis 321 

has a narrower temporal range. PS/SS select the correct hypothesis strongly more frequently than 322 

the other two methods (Fig. 4). The correct hypothesis was strongly supported slightly more 323 

often (90%) when the competing hypotheses had narrower intervals than when the competing 324 

hypotheses had an interval as wide as the correct hypothesis (87%; Fig 4). Strong false positives 325 

were obtained at a frequency between 2.6 to 3.9%. It should be noted that the AICM does not 326 

estimate MLL and thus the results are not entirely comparable. Uc performed better than AICM 327 

and HM with all interval sizes and was slightly outperformed by PS/SS.  328 
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 329 

EFFECT OF RELATIVE TEMPORAL LOCATION OF HYPOTHESIS. 330 

 331 

Temporal location of competing hypotheses was also varied. In the prior-based approach, 332 

convergence was achieved in 76% of the correct hypothesis and its competing hypotheses runs. 333 

Our simulations suggest that the closer the competing hypothesis is to the correct hypothesis the 334 

less likely it will be to rank the correct hypothesis as the best hypothesis (Fig. 5). A trend 335 

towards increase in selection accuracy with increase in temporal distance between hypotheses 336 

was observed with all methods. BFs calculated with PS/SS select the correct hypothesis with 337 

strong support more often than HM when the hypotheses are the furthest apart (92% and 86% 338 

respectively). PS/SS produce stronger inferences than HM when the hypotheses are the closest, 339 

although the performance is poor (<50%). Selection of the correct hypothesis with AICM with 340 

moderate to strong support occurs above 78% of the times when hypotheses are the furthest 341 

apart. High frequency (19%) of false positives was observed when applying HM and hypotheses 342 

were very close together, but they are reduced when the hypotheses are further apart (1.9%). 343 

False positives frequency obtained with AICM is reduced from 18% to 2.6 % when hypotheses 344 

are the furthest away. PS/SS produce the highest frequency of false positives when the 345 

hypotheses are close (8.3%), but this is reduced when the hypotheses are temporally apart 346 

(0.64%). Similarly, with Uc it is difficult to select among closely located hypotheses. 347 

 348 

EFFECT OF ABSOLUTE AGE OF THE CORRECT HYPOTHESIS. 349 

 350 

To investigate the effect of the absolute age of correct hypothesis in the tree, two sets of 351 
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simulations were carried out. The first simulated SCH and was compared with less recent 352 

hypotheses. In this case, 90% of the MCMC runs achieved convergence. All four methods 353 

selected SCH as the correct hypothesis 100% of the times with strong support (Fig. 6 A). Strong 354 

false positives occurred only in one case when using PS/SS and HM. When the correct 355 

hypothesis was ICH, AICM and HM tended to perform better when the competing hypothesis is 356 

deeper than ICH, with a higher frequency of strong inferences. PS/SS led to stronger inferences 357 

over more recent hypotheses (Fig. 6 B). No strong false positives were obtained except for one 358 

case when using PS/SS. Only 15% of the runs reached convergence in simulations with DCH. 359 

Among these runs, PS/SS performed better than the other two methods selecting the DCH above 360 

93% of the times with strong support, followed by AICM and HM (Fig. 6 C). 361 

 362 

HYPOTHESIS COMPARISON USING EMPIRICAL DATA 363 

 364 

After combining the MCMC outputs, effective sample sizes above 100 were obtained for all 365 

parameters. The three independent competing analyses resulted in the same topology obtained by 366 

Zhang et al. (2008). Evidence is stronger for Scenario 2 when BFs are estimated based on MLL 367 

calculated with PS, SS and HM methods (Table 1). However, AICM ranks Scenario 3 as the best 368 

hypothesis. The Bayes factors calculated with PS and SS estimates are larger than those obtained 369 

with HM.  ∆ AICM moderately supports Scenario 3 over the other competing hypotheses. The 370 

results from PS, SS and HM are in agreement with results previously obtained with molecular 371 

and fossil evidence, suggesting that the split between these species of ribbed newts is associated 372 

with the Betic crisis  (Zhang et al., 2008). 373 

 374 
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Discussion 375 

 376 

We evaluated the performance of a hypothesis comparison approach that uses prior information 377 

to define competing scenarios of lineage divergence, in which divergence is associated with 378 

historic events like climate or geological change. After calculation of their marginal likelihood or 379 

AICM, it is possible to rank scenarios and select the one that best explains the data. Our 380 

simulation study suggests that under reasonable circumstances, this approach could constitute a 381 

reliable tool to compare temporal scenarios: the correct hypothesis is ranked as the best 382 

hypothesis over 80% of the time under almost all simulation strategies. However, inference 383 

strength varies depending on the method employed to calculate BF or if AICM is used. Most of 384 

the times HM ranks the correct hypothesis as the best hypothesis but the BFs are so low that it is 385 

difficult to place any confidence in the selection. Generally, PS and SS estimates of MLL differ 386 

more strongly between competing hypotheses than HM. We observed that these methods could 387 

also lead to few false positives with strong or moderate support. This may, in part, be because the 388 

data genuinely support the wrong hypothesis by chance (e.g Kuparinen et al., 2007).  389 

Discerning between competing hypotheses is particularly challenging when the 390 

hypotheses are located close to each other in time. Interestingly, it was consistently difficult to 391 

reach convergence when the node of the correct hypothesis was located deeper in the tree 392 

(DCH), especially for runs where the alternative hypotheses were the furthest away from the 393 

correct hypothesis. The accuracy and strength of ranking the correct hypothesis as the best 394 

hypothesis increase slightly with the amount of data with the AICM and HM methods. However 395 

contrary to expectations PS/SS showed a decrease in performance with 20000 bp data sets. There 396 

are several factors that can influence this behaviour, for example the path sampling chain length 397 
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between the prior and the posterior, the number of sample steps and other PS/SS parameters that 398 

would need to be adjusted to a particular data set size. PS/SS are relatively new methods in 399 

phylogenetics and so far there are only a few studies investigating the influence of these 400 

parameters, generally dealing with smaller data sets and number of topologies (Lartillot & 401 

Philippe, 2006; Xie et al., 2011; Baele et al., 2013). The computational demand to investigate the 402 

possible causes of this behaviour is high and at the moment goes beyond the scope of this study. 403 

However, further research is needed especially as the genomic area will allow for the analysis of 404 

increasingly larger DNA sequence data sets. 405 

We did not test how consistent MLL and AICM estimations are among independent 406 

MCMC runs. However Beale et al (2012) found that PS and SS produce consistent estimates 407 

among MCMC runs more often than the other methods. Thus, considering our results in light of 408 

previous studies (Lartillot & Philippe, 2006; Xie et al., 2011; Baele et al., 2012), we suggest that 409 

applying PS and SS would produce more reliable results than HM and AICM. However, 410 

independent of the method of hypothesis comparison used, it is always advisable to rely only on 411 

inferences with moderate to strong support. 412 

The prior-based approach proved effective in discriminating between competing 413 

hypotheses when applied to empirical data (data set by Zhang et al., 2008). The hypotheses 414 

compared reflected scenarios well apart in time and relied on a relatively large data set and a 415 

robust phylogeny. Researchers applying this approach should meet these conditions because 416 

divergence time and tree topology are estimated at the same time with BEAST, thus changes in 417 

topology affect divergence times and vice versa (Heled & Drummond, 2011). Furthermore, as 418 

recently demonstrated, the effect of the rate priors could also affect the estimation of divergence 419 

times and should be investigated in future studies (Reis, Zhu & Yang, 2014).  420 
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In the simulated phylogenies we used a relatively high ratio of constrained/no-421 

constrained nodes (five nodes per hypothesis comparison, plus up to three additional calibrated 422 

nodes out of 24; see input files in S2). It will be necessary to investigate if reducing the number 423 

of constrained nodes could lead to a decrease in the strength of inferences, and if an increase will 424 

improve the accuracy of the divergence estimation and thus benefit hypothesis selection. We 425 

already observed that constraining 7/40 nodes in the empirical data set analyses led to 426 

discrepancies among hypothesis selection methods. This additionally suggests that the direct 427 

comparison between these simulated and empirical data analyses should be taken with caution. 428 

We executed unconstrained analyses that need to be run only one time to compare several 429 

hypotheses simultaneously. Most of the times, Uc was slightly outperformed by PS/SS. However 430 

the unconstrained MCMC runs reached convergence less often than the prior-based approach 431 

runs. Thus, there might not be a computational benefit in running one very long MCMC instead 432 

of several shorter parallel runs reflecting competing hypotheses. Another potential problem with 433 

just running a single run and counting the visits to each hypothesis, as we did in the 434 

unconstrained analyses, is that if the hypotheses are really disjoint, it will be necessary to throw 435 

away MCMC iterations for the times outside the hypotheses. If the hypotheses were overlapping 436 

it would be necessary to correct for this when estimating a time that could belong to different 437 

hypotheses which is an extra challenge. 438 

The development of new methods for model selection, and future research on their 439 

performance, will add confidence to inferences led by hypothesis comparison. This could have 440 

implications for biogeographical and phylogeographical studies where robust methods for 441 

historical inferences are still lacking. Depending on the location of the nodes of interest, the 442 

approach here evaluated could also be applied in cases where not only divergence between two 443 
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taxa, but instead a diversification event is suspected. At this scale, it could complement the 444 

traditional method of testing the hypothesis of shifts or heterogeneity in diversification rates 445 

against the null hypothesis of constant rates through time and among lineages (Pybus & Harvey, 446 

2000; Chan & Moore, 2002; Ricklefs, 2007; Moore & Donoghue, 2009; Steeman et al., 2009; 447 

Silvestro, Schnitzler & Zizka, 2011). It would also allow testing the association of such shifts 448 

with climate or geological change (Hines, 2008; Schuettpelz & Pryer, 2009). 449 

 450 
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Supplementary Information 564 

 565 

Table S1. Characteristics of simulation treatments. 566 

Table S2. Properties of competing hypotheses (see also Figures 1 and 2). 567 

File S1. Tree topologies used to generate sequence data. 568 

File S2. xml files used as input in simulations. Available from: 569 

https://drive.google.com/open?id=0B7P6iuJv3fpiczBrQ3FDcFRGc1E 570 

 571 
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Table 1. Comparison between hypothesised scenarios for the time of split between Pleurodeles, 572 

using Bayes Factors calculated based on HM, PS, SS Marginal Likelihood estimates and Δ 573 

AICM. A value 0 indicates the best ranked hypothesis. 574 

 575 

 576 

Scenario 
Bayes 
Factors 

(PS) 

Bayes 
Factors 

(SS) 

Bayes 
Factors 
(HM) 

Delta 
AICM 

1 -9.96 −11.06 −0.12 −1.50 

2 0 0 0 −2.72 

3 −13.8 -15.53 −0.31 0 
 577 

578 
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 579 

 580 

Figure 1. Competing hypotheses. Lines represent the temporal location and span of competing 581 

hypotheses. ICH= correct hypothesis; H1-H14 competing hypotheses (see also Table S2); 582 

Ma=million years ago. 583 
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 585 

Figure 2. Variations in temporal depth of correct hypotheses. Lines represent the temporal 586 

location of the deep (DCH), intermediate (ICH) and shallow (SCH) correct hypotheses, with 587 

their respective competing hypotheses shown in the same row. 588 
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 590 

Figure 3. Effect of sequence length on selecting the correct hypothesis. Bars represent the 591 

average frequency of ranking ICH as the best hypothesis and strength of inference according to 592 

the method employed. 593 
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 595 

Figure 4. Effect of temporal span (relative interval size) of competing hypotheses on selecting 596 

the correct hypothesis. Bars represent the average frequency of ranking ICH as the best 597 

hypothesis and strength of inference according to the method employed. Interval=0.5 Million 598 

years (Myr). 599 
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 600 

 601 

Figure 5. Effect of temporal location of competing hypothesis on selecting the correct. Bars 602 

represent the average frequency of ranking ICH as the best hypothesis and strength of inference 603 

according to the method employed Interval=0.5 Myr 604 
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 605 

Figure 6. Effect of absolute age (temporal depth) of the correct hypothesis. A) Frequency of 606 

selecting the shallow age correct hypothesis (temporal position 1) over deeper competing 607 

hypotheses (temporal position 2 and 3). B) Frequency of selecting the intermediate age correct 608 

hypothesis (temporal position 2) over a shallower (temporal position 1) and a deeper competing 609 

hypothesis (temporal position 3). C) Frequency of selecting the deep age correct hypothesis 610 

(temporal position 3) over shallower competing hypotheses (temporal position 1  611 
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