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Abstract 1

Co-infections by multiple pathogens have important implications in many aspects of 2

health, epidemiology and evolution. However, how to disentangle the contributing 3

factors of the immune response when two infections take place at the same time is 4

largely unexplored. Using data sets of the immune response during 5

influenza-pneumococcal co-infection in mice, we employ here topological data analysis 6

to simplify and visualise high dimensional data sets. 7

We identified persistent shapes of the simplicial complexes of the data in the three 8

infection scenarios: single viral infection, single bacterial infection, and co-infection. 9

The immune response was found to be distinct for each of the infection scenarios and we 10

uncovered that the immune response during the co-infection has three phases and two 11

transition points. During the first phase, its dynamics is inherited from its response to 12

the primary (viral) infection. The immune response has an early (few hours post 13

co-infection) and then modulates its response to finally react against the secondary 14

(bacterial) infection. Between 18 to 26 hours post co-infection the nature of the immune 15

response changes again and does no longer resembles either of the single infection 16

scenarios. 17

Author summary 18

The mapper algorithm is a topological data analysis technique used for the qualitative 19

analysis, simplification and visualisation of high dimensional data sets. It generates a 20

low-dimensional image that captures topological and geometric information of the data 21

set in high dimensional space, which can highlight groups of data points of interest and 22

can guide further analysis and quantification. 23

To understand how the immune system evolves during the co-infection between 24

viruses and bacteria, and the role of specific cytokines as contributing factors for these 25

severe infections, we use Topological Data Analysis (TDA) along with an extensive 26

semi-unsupervised parameter value grid search, and k-nearest neighbour analysis. 27

We find persistent shapes of the data in the three infection scenarios, single viral and 28

bacterial infections and co-infection. The immune response is shown to be distinct for 29

each of the infections scenarios and we uncover that the immune response during the 30
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co-infection has three phases and two transition points, a previously unknown property 31

regarding the dynamics of the immune response during co-infection. 32

Introduction 33

Co-infection is the simultaneous infection of a host by two or more phathogens. We are 34

continuously exposed to multiple potential pathogens; many people are chronically (e.g. 35

HIV) or latently (e.g. herpes viruses) infected, and we all carry potential pathogens in 36

our colonising microbial flora. This means that nearly every new infection is some sort 37

of co-infection, and globally, co-infections are the norm rather than the exception [1]. 38

There is an impressive number of combinations of pathogens that derive synergy 39

from contemporaneous infection of a host. These include viral-bacterial (e.g. influenza 40

with pneumococcus or HIV with Mycobacterium tuberculosis), viral-viral (e.g. Hepatitis 41

B with Hepatitis C), bacterial-bacterial (e.g. Borrelia burgdorferi with Anaplasma 42

phagocytophila in Tick-borne illnesses) and pathogen-pathogen (e.g. Malaria with 43

Dengue, Chikungunya, Filaria or Helminth) co-infections, to name a few. Although 44

most studies to date have been focused on co-infections between two pathogens, 45

infections with multiple pathogens are now becoming active topics of research [2]. 46

Co-infections have effects on health at multiple levels: Co-infections can increase or 47

decrease the rate of transmission of other infections [3], modulate the host immune 48

response [4], create protection and resilience or susceptibility to further infections [5, 6], 49

alter the performance of diagnostic tests and antimicrobial chemotherapy [7, 8], and 50

even create opportunities for the emergence of new pathogens [9, 10]. In other words, 51

some co-infections can have detrimental or even beneficial, outcomes. 52

The harmful effects of chronic co-infections, such as tuberculosis or Hepatitis B and 53

C in association with HIV for example, are well established. However, generally and 54

especially in acute infections, the mechanisms of co-pathogens with the host immune 55

system and the possible consequences, ranging from insignificant, harmful or beneficial, 56

are still largely unknown and difficult to dissect. The development of mathematical 57

approaches that characterise the immune responses in the host have offered important 58

steps for studying pathogen - pathogen interactions [11]. Interpretation of data sets 59

with modern mathematical and machine-learning strategies can provide a 60

comprehensive understanding of co-infections and their relevance/significance. 61

Topological Data Analysis (TDA) is a collection of computational tools derived from 62

the mathematical subject of Algebraic Topology, that can help in identifying the 63

behaviour of a biological system from a global perspective, guide detailed quantitative 64

investigations and aid tailor further experimental settings. In fact, algorithms from 65

topological data analysis have started to play important roles in novel interdisciplinary 66

fields in biomedical sciences, including cancer genomics [12], diabetes [13], 67

neuroscience [14], infectious diseases [15,16], and in biology in general [17,18]. 68

Among the different TDA techniques for the qualitative analysis, the mapper 69

algorithm [19] has shown a potential to simplify and visualize of high dimensional data 70

sets. It generates a simple description of the data in form of a combinatorial object 71

called a simplicial complex, that captures topological and geometric information of the 72

point cloud in high dimensional space. The algorithm uses a (combination of) function(s) 73

that map the data to a metric space, and builds an informative representation based on 74

the clustering of subsets (which are associated to the values of the function(s)) of the 75

data set. In the simplest case, this method reduces high dimensional data sets to a 76

network whose nodes correspond to clusters in the data and edges to the existence of 77

points in common between clusters. The aim of this algorithm is not to obtain a fully 78

accurate representation of a data set, but rather a low-dimensional image which can 79

highlight areas of interest, possibly for further analysis and quantification. 80
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Using the mapper algorithm and data of malaria infection in mice, it was shown that 81

the global shape of the stages a host infected with malaria goes through is circular; 82

indicating a natural path infected individuals go through as they travel from health to 83

sickness and back to recovery or death [15]. In [20] the authors developed a novel 84

analytical tool based on persistent homology that helps to describe the geometric 85

structure of the airways inside the lungs and can help in creating a more detailed 86

classification of chronic obstructive pulmonary disease stages. 87

Motivated by the obvious potential of topological investigations in biomedical 88

sciences, in the present study we seek to understand the evolution of the immune 89

system as it responds to co-infection between virus and bacteria. Mathematical 90

modeling research in influenza-pneumococcal co-infections has been a growing field 91

within last years [4, 21–24]. These previous approaches are based on differential 92

equations constructed based on biological reasoning. While they are suitable tools to 93

test different hypothesis, these models are susceptible to bias by the designer and model 94

complexity rapidly limits the reliability in the parameter fitting procedures [25]. 95

Here, we use the co-infection data sets from [4] where we investigated the 96

hierarchical effects of pro-inflammatory cytokines on the post-influenza susceptibility to 97

pneumococcal co-infection by assessing the early and late kinetics of pro-inflammatory 98

cytokines in the respiratory tract. In the experimental part of this study mice were 99

divided into three groups and given either a single viral infection (with IAV strain 100

A/PR8/34), a single bacterial infection (S. pneumoniae strain T4) or a co-infection (IAV 101

+ T4). The experimental readouts were the bacterial burden, viral titers and cytokine 102

concentrations in the lung. Our previous work [4] used mathematical modelling that 103

suggested a detrimental role of IFN-γ alone and in synergism with IL-6 and TNF-α in 104

impaired bacterial clearance. We now use the mapper algorithm to investigate the 105

global shape of the immune response under the three above infection scenarios, 106

illustrated in Fig. 1. 107

Results 108

Persistent shape of the data in the three infection groups 109

We used the mapper algorithm to study four data sets. To start with, we gathered 110

together the data for the three infection groups.The Kepler Mapper, a library 111

implementing the mapper algorithm in Python, was employed [26]. Additionally, we 112

wrote a semi-unsupervised algorithm that built all simplicial complexes for various 113

metrics, lenses and ranges of values for the lens intervals and percentage overlap, and 114

which chose simplicial complexes to represent the data. More specifically, using our 115

semi-unsupervised algorithm, we tested the cosine, euclidean and correlation metrics, 116

along with different epsilon values for the clusterer. Furthermore, all analysis was done 117

using two lenses and we tested different combinations of the following: projections to 118

the features of the data sets (i.e. the values of the pathogen load or the concentrations 119

of the cytokines), the distance to the two nearest neighbours, the first two dimensions of 120

various linear and non-linear dimensionality reduction algorithms and projections to 121

(the image of) functions that reveal interesting geometric and statistical information 122

about the data, such as density, eccentricity or centrality. We tested between 2 and 30 123

intervals for each lens and 10 different values for the percentage overlap of the lens’ 124

intervals and the epsilon parameter of the clusterer. This resulted in almost 1 billion 125

simplicial complexes being generated, from which, using properties of graphs such as the 126

number of connected components, the algorithm chose complexes that were persistent in 127

shape and that showcased important information about the immune response. 128

A detailed presentation of our semi-unsupervised algorithm and a discussion on how 129
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Fig 1. Predictions about the behaviour of the immune system in response
to co-pathogenesis in the lung. Topological data analysis and nearest neighbour
analysis reveal that initially the immune system inherits its behaviour from its response
to the primary infection; it goes through a swift transition early in the co-infection (i.e.
soon after the onset of the secondary infection) and it is consequently and temporarily
driven mainly by its response to the secondary infection; There is a second transition
point in the behaviour of the immune system and from there, it no longer resembles a
standard response associated to either of the two single infections but rather it shapes
its behaviour to respond to the co-infection itself.
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Fig 2. Simplicial complexes of data set consisting of all infection groups.
The vertices of the simplicial complexes are color coded according to the infection group
of the data points in the clusters. The legend shows which colors correspond to which
infection group. Clusters that contain data points belonging to more than one infection
group are colored by the average color value for members in that node.

the representative simplicial complexes are chosen and how we came to the conclusion 130

that those (simplicial complexes) are persistent in their shape is included in 131

supplemental material S1. Of note during the parameter value search we obtained 132

consistent results to those presented here with the same lenses and metric (correlation) 133

and different parameter values for the number of intervals and percentage overlap. We 134

also obtained similar results with the same metric but other pairs of lenses that 135

included also linear and non-linear dimensionality reduction algorithms. Finally, we 136

obtained similar results also with the cosine metric. 137

For the sake of clarity, we discuss only the results obtained by using the correlation 138

metric with the following two types of lenses: lens 1 is the distance to the first 139

neighbour and lens 2 is a projection to one of the features. Figs 2 and 3 illustrate the 140

representative simplicial complexes that we discuss in more detail here (Table 1 in 141

supplemental material S1 lists the parameter values specific for these simplicial 142

complexes). Fig 2 corresponds to the data set that consists of all infection groups 143

together, and Fig 3 shows the simplicial complexes for the individual infection groups 144

separately. The columns in both figures indicate the projection for lens 2. 145

These analyses revealed persistence in the shape of the data. For example, in Fig 2 146

all the simplicial complexes generated with the different projections for lens 2 can be 147

divided into three regions, two in yellow and one in purple/teal, where the circles (or 148

vertices) in the yellow regions belong to time points 26 and 31 hours post co-infection 149

(hpc) in the IAV + T4 infection group, and the circles in purple/teal belong to the IAV, 150

T4 single-infection groups and early (1.5, 6, 18 hpc) time points in the IAV + T4 151

co-infection group. This is illustrated more explicitly in the simplicial complex 152

generated by lens 2 = IL-6. The fact that the same shape is generated regardless of the 153

projection used indicates that the shape is likely to represent the data. 154

Similar observations can be made for the simplicial complexes of the individual 155

infection groups in Fig 3. For example, the simplicial complexes of the IAV infection 156

group (second row) generated with the cytokines can all be divided into two regions, 157

green vertices versus blue vertices. The simplicial complexes of the single bacterial 158

infection (T4 infection group) generated with the bacterial burden and the cytokines 159

IL-6, MCP-1 and IFN-γ are also all persistent in shape and, unlike the simplicial 160
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Fig 3. Decoupling simplicial complexes of the immune response to virus,
bacteria and co-infection. Five simplicial complexes are generated for the single
viral (top row) and single bacterial (middle row) infection groups and six simplicial
complexes are generated for the co-infection group (bottom row) and. The vertices of
the simplicial complexes are color (see legends) coded according to the hour post
infection or co-infection in the clusters. Clusters that contain data subsets belonging to
more than one time point are colored by the average color value for members in that
node.
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complexes for the other data sets, these ones do not highlight particular groups of nodes. 161

The bottom row of Fig 3 corresponds to the simplicial complexes of the co-infection 162

group (IAV + T4) alone. The time course can be clearly distinguished by the simplicial 163

complexes generated with lens 2 being the two pathogens burden and the concentration 164

of the cytokines IL-6 and MCP-1, as is indicated by the gray arrow (from early to later 165

time points). 166

The simplicial complexes reveal different persistent shapes for the three infection 167

groups - in IAV the later time points are segregated from the earlier time points; in T4 168

the simplicial complexes are homogeneous and do not reveal special areas; in IAV + T4 169

the time course of the infection is elucidated. Together this indicates that the immune 170

system behaves differently in the three infection scenarios. 171

Transition points in the immune response 172

We originally applied the mapper algorithm to all infection groups together in order to 173

see whether the three infection groups would be clearly separated. However, the result 174

illustrated in Fig 2 contains far more information. Taking the complex generated with 175

the projection to IL-6 as the representative shape of the data, we observe that it has 176

three regions: two in yellow and one in purple/teal. The yellow vertices of the simplicial 177

complex correspond exclusively to all the late (26 and 31 hpc) time points of the 178

co-infection group (IAV + T4), and the vertices in purple/teal correspond to the early 179

(1.5, 6 and 18 hpc) data points of the co-infection group and to all the data points of 180

the single viral (IAV) and single bacterial (T4) infection groups. As observed before, the 181

simplicial complexes that are generated using the projection to the other features also 182

highlight these regions. This indicates that in the later (26 and 31 hpc) time points of 183

the co-infection the immune system behaves differently compared to its behavior in the 184

single infection groups or at earlier time points during co-infection. This may imply a 185

level of similarity in the behaviour of the immune system during the earlier time points 186

in the co-infection and in the single infection groups. Together, from these two 187

observations we can conclude that the topological data analysis has highlighted a 188

transition in the nature of the immune response during a co-infection sometime between 189

18 and 26 hours post co-infection. 190

In order to interpret more precisely why the mapper algorithm is highlighting the 191

specific regions illustrated inside the yellow circles, we calculated the p-values between 192

groups of data points at consecutive time points, for each feature of the data (Table 1); 193

we also made box plots to compare the data belonging to the two groups separated by 194

the simplicial complex in Fig 2 corresponding to lens 2 = IL-6 (Fig 6 and Section 2.4 in 195

S1 Text). The p-values show that, in the co-infection scenario, there is a strong change 196

in the concentration of the cytokines TNF-α, MCP-1 and IL-6 (as well as in the viral 197

load) between 18 and 26 hpc. The boxplots clearly revealed that data points of IAV + 198

T4 from 26 and 31 hours post co-infection are separated by the simplicial complex from 199

the earlier data points and that 18 and 26 hpc represent a transition point for the 200

system, since at both time points there are data subsets that belong to both groups in 201

the simplicial complex (the yellow and the teal/purple). It is possible that the shape of 202

the simplicial complexes in Fig 2 is exactly mirrowing the dramatic change in the 203

concentration of the cytokines (and possibly the viral load) that is revealed by the 204

p-values. 205

Fig 4A shows the k-nearest neighbours for the data sets in the three infection groups, 206

with metric correlation and 30 neighbours. The rows and columns indicate each data 207

points and dark regions indicate the 30 closest neighbours of each data point. The 208

labels show which points belong to which infection group and time point. The bottom 209

right panel, inside the orange dotted box, corresponds specifically to the data points of 210

the co-infection group (IAV + T4). The data sets in this region can be divided into 211
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Table 1. Statistical study to data sets belonging to consecutive time points
(columns) for each feature (row).

Infection group Feature 1.5 - 6 6 - 18 18 - 26 26 - 31
IAV viral load lung 0.912720 0.336585 0.607451 0.124077

IFN-γ 0.925580 0.425324 0.685015 0.233908
TNF-α 0.521103 0.673792 0.428918 0.489646
MCP-1 0.951823 0.747659 0.812167 0.241850
IL-6 0.725286 0.017479* 0.143132 0.097698

T4 bacterial burden lung 0.256184 0.409712 0.484568 0.683890
IFN-γ 0.077142 0.186519 0.433551 0.963571
TNF-α 0.382180 0.432187 0.012964** 0.005679
MCP-1 0.815624 0.618153 0.871879 0.900667
IL-6 0.246575 0.634608 0.236886 0.928624

IAV + T4 Viral load lung 0.113336 0.202011 0.000101*** 0.200436
Bacterial burden lung 0.009209** 0.006859** 0.104765 0.958299
IFN-γ 0.748814 0.269034 0.161643 0.320453
TNF-α 0.520351 0.120874 0.016524* 0.766774
MCP-1 0.411175 0.353125 0.000691*** 0.859898
IL-6 0.879291 0.425412 0.019389* 0.994039

p-values below 0.05 (*), 0.01 (**) and 0.005 (***) are indicated.

three groups: the early period (1.5 hpc), the transition period (6 hpc) and the later 212

period (between 18 and 31 hpc). This is illustrated by the fact that within the orange 213

dotted box, the data sets at 1.5 hpc are neighbours with only data sets at 1.5 and 6.0 214

hpc, the data sets in 6 hcp have neighbours in both the early and the later groups and 215

data sets at 18, 26 and 31 hpc have neighbours only at 6 hpc and late time points. This 216

can be seen more clearly in Fig 4B which shows the correlation coefficients between 217

data points in the co-infection data set. Data sets at 1.5 hpc are closely correlated to 218

themselves, data sets at 6 hpc have close correlation to points in both the early and 219

later periods, the later data sets (18, 26 and 31 hpc) are closely correlated to themselves 220

only. Data sets between the early and later groups are not correlated. 221

In Fig 4A, now looking at the neighbours of the co-infection data subsets outside of 222

the orange dotted box and inside the green dotted boxes (i.e. along the rows), we can 223

see that co-infection data sets at early times also have neighbours exclusively in the IAV 224

single infection group and co-infection data sets at late times also have neighbours 225

exclusively in the T4 single infection group. In other words, the early co-infection data 226

sets are closely correlated with the data sets in the IAV single infection group and the 227

late co-infection data sets are closely correlated with the data sets in the T4 single 228

infection group. Putting these three observations together, we can conclude that the 229

immune response in the co-infection inherits its early response from the primary viral 230

infection but at 6 hpc it undergoes a shift and quickly shapes its response to defend 231

against the secondary bacterial infection. 232

In the simplicial complexes illustrated in Fig 3 in both the T4 single infection and 233

co-infection (IAV + T4) groups the simplicial complexes generated with the TNF-α 234

projection draw attention to the later time points in both infection scenarios. 235

Specifically, for T4, the points correspond to time 26 hpc and in IAV + T4 the data sets 236

correspond to times 26 and 31 hpc. Table 1 highlights that in both the single bacterial 237

infection and in the co-infection, the concentration of the TNF-α cytokine changes 238

significantly between 18 and 26 hours post the onset of the bacterial infection. Our 239

previous analysis [4] of experimental results for TNF-α showed levels were increasingly 240

and significantly elevated in co-infected mice from 18 hpi on. Therefore the simplicial 241

complexes in Fig 3 of the single bacterial infection and the co-infection generated by the 242
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Fig 4. K-nearest neighbour analysis of co-infection. A) 30-nearest neighbours
of all data sets in the three infection scenarios, with the correlation as metric. The
infection groups and the time points for each infection group are indicated on the axes.
The dark regions indicate the 30 neighbours of each data point. Inside the orange dotted
box are the neighbours of co-infection data within the co-infection scenario. Inside the
green dotted boxes are the neighbours of the co-infection data in the IAV single infection
and T4 single infection groups. B) Correlation distance matrix of the co-infection group.
The color-bar on the right indicates the correlation distance values between data sets.
White indicates closely correlated and dark blue indicates not correlated.

projection to TNF-α are exactly revealing this dramatic change in the concentration of 243

this cytokine at this late stage in the course of the co-infection. 244

Discussion 245

The relative contributions of the immune system during co-infections and how they can 246

help in laying out the evolution of the immune system in response to co-infections are 247

largely fragmented. The complexity of multi-pathogen infections makes detailed 248

dissection of contributing mechanisms and stages of the immune response, which may 249

be non-linear and occur on different time scales, challenging. Recently, in conjunction 250

with experimental data, theoretical approaches have been able to uncover infection 251

control mechanisms, establish regulatory feedback, connect mechanisms across time 252

scales, and determine the processes that dictate different disease outcomes [27]. In this 253

study we aimed at continuing this effort and we used TDA and data of co-infection 254

experiments [4] to investigate how the immune system evolves between different 255

infections. 256

Using the Mapper Algorithm (Figs 2 and 3) in combination with nearest neighbour 257

analysis (Fig 4) we have shown that the immune response during 258

influenza-pneumococcal co-infection consists of three stages (Fig 1): It is initially 259

shaped by the inherited response to the primary influenza infection. We call this phase 260

1 of the immune response. Subsequently, the system undergoes an abrupt transition at 6 261

hours post onset of the secondary bacterial infection as it quickly modulates itself and 262

starts responding predominantly to the bacterial infection; this is phase 2 of the 263

immune response. There is a second transition stage between 18 and 26 hours post 264

co-infection after which the immune response does no longer resemble the behaviour 265

under a single viral or bacterial infection, but presumably shapes its response to the 266

August 2, 2019 9/15

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 5, 2019. ; https://doi.org/10.1101/723957doi: bioRxiv preprint 

https://doi.org/10.1101/723957
http://creativecommons.org/licenses/by-nc-nd/4.0/


co-infection itself; this stage we call phase 3. 267

In [4], kinetics of bacterial growth and clearance in the respiratory tract and blood 268

following IAV-S. pneumoniae co-infection revealed a turning-point between 6 and 18 269

hours post onset of the secondary bacterial infection. In this study we have narrowed 270

down the time of the turning point specifically to 6 hours post co-infection. 271

Experimental results [4] for IFN-γ showed that the co-infection led to an increase as 272

early as 1.5 hpc and 6 hpc compared to the single IAV infection. The levels of IFN-γ 273

remained constant compared to the underlying IAV infection for the later time points, 274

but a significant increase was observed when compared to the single T4 infection. 275

Finally, overshooting concentrations of IL-6 in the co-infected mice were also detected 276

experimentally at 26 hpc and 31 hpc compared to the single T4 infection. The 277

chemokine MCP-1 was experimentally found to be significantly increased in the IAV+ 278

T4 group compared to the single T4 infected group and marginally increased to the IAV 279

only group at 26 hpi and 31 hpi. 280

The simplicial complexes illustrated in Fig 3 perfetly matches these observations. 281

More specifically, the experimental observations made in [4] regarding the temporal 282

changes in concentrations of the cytokines throughout the co-infection coincide with the 283

special regions highlighted by the simplicial complexes. We observe that the simplicial 284

complexes generated by the mapper algorithm with a projection to the features could 285

be representing exactly those dramatic changes in the values of the features and that 286

the algorithm is able to separate data points with high relative concentrations of 287

cytokines away from other data points. In the simplicial complexes illustrated in Fig 3 288

in both the T4 and IAV + T4 infection groups the simplicial complexes generated with 289

the TNF-α projection draw attention to the later time points in both infection scenarios. 290

Specifically, for T4, the data sets correspond to time 26 and in IAV + T4 the data 291

correspond to times 26 and 31. We could further interpret these results as further 292

supporting evidence that the immune response at this stage of the co-infection is 293

primarily responding in a way that is similar to its response in the single bacterial 294

infection. 295

The simplicial complex of the co-infection generated with the projection to IFN-γ in 296

Fig 3 segregates data points at early times 1.5 and 6 hpc (in purple) away from the 297

clusters of the other data sets, resembling the experimental observations regarding the 298

concentration of IFN-γ in the co-infection compared with the single viral and bacterial 299

infections. The simplicial complexes of the co-infection scenario generated by the 300

projections to IL-6 and MCP-1 (and to the viral load and bacterial burden) reproduced 301

the timeline of the infection course. It is interesting to contemplate the possibility that 302

the simplicial complexes of the co-infection imply that the cytokines IL-6 and MCP-1 303

play a consistent role through the whole infection course in the co-infection scenario. 304

Looking in more detail at the simplicial complex corresponding to the projection to 305

IL-6 on the top row of Fig 2, we can see that the two groups of yellow circles are 306

sprouting from different regions in the complex; one yellow group sprouts from vertices 307

in purple and the other from vertices in teal. Recall that the vertices of the simplicial 308

complex represent clusters of points of the data set and edges between vertices indicate 309

that there are data in common between clusters. Therefore, after further analysis of the 310

data sets that are in common between the purple and yellow vertices (clusters) and teal 311

and yellow vertices, we could elucidate that, in fact, the purple vertices have data sets 312

exclusively in the single viral infection at early time points and vertices in teal have all 313

the data sets in the single bacterial infection and some data sets in the late stages of the 314

single viral infection. In other words, the yellow region emanating from the purple 315

vertices is connected exclusively to early time points in the single viral infection and the 316

other yellow region to the single bacterial infection and late time points in the viral 317

infection. 318
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We may speculate the connections between the late-stage co-infection data and the 319

early-stage single viral infection data are hinting at a rebound in viral titre after 320

bacterial infection is established, which is a property of the co-infection that was been 321

observed in other studies (for example) [28]. 322

In [4] mathematical modelling, we proposed IFN-γ as a key and sufficient modulator 323

in the impairment of bacterial clearance and other detrimental effects specifically for 324

IL-6 and TNF-α in bacterial clearance. At the current stage of application of the 325

mapper algorithm for this particular data set, we are not able to draw specific 326

conclusions regarding causal roles of the cytokines in the co-infection. We can only 327

allude to possible involvement of cytokines at specific stages in the infection course (as 328

we have done, for example, with TNF-α, IL-6 and MCP-1.) In other words, TDA can 329

dissect the potential of the different cytokines to represent the whole data set during 330

co-infections, however, it can not point out or reject a key role of a specific cytokine for 331

the susceptibility to bacterial co-infections. 332

The simplicial complexes generated for T4 single infection with projections to all the 333

features show a homogenous structure where no specific group of data points are 334

segregated or highlighted. We believe this is due to a trichotomy of pneumococcal 335

outcomes discovered using stability and bifurcation analysis in [24]. Additionally, the 336

immune response has been found to go through three stages during its response to 337

single pneumococcal lung infections [29]. 338

In [15] the simplicial complex of the stages a host infected with malaria goes through 339

is circular and serves as a map of the loop an individual goes through on its way from 340

health, through sickness and recovery and back to health. It is to be expected that a 341

topological approach to study infectious diseases where hosts recover would also reveal 342

circular topological simplicial complexes. This is not the case for the data set we have 343

used. For the three infection groups, the data sets do not contain information for the 344

full course of the infections. More specifically, the data set of the single IAV infected 345

group is based on data starting from day 7 post the onset of the viral infection. The 346

data set for the co-infected groups is incomplete towards the end of the infection course 347

because for ethical reasons the mice that developed a high morbidity had to be 348

euthanized before the bacterial infection is resolved naturally. Nevertheless, we found 349

hints of looping behaviour in the co-infection, as discussed in supplemental material. 350

It has been difficult to uncover the implications in the biological context with 351

certainty respect to the structures of the simplicial complexes. For example, we 352

speculate that the segregation of specific data sets represents striking changes in feature 353

values - i.e. changes in concentration of cytokine of pathogen load from one time point 354

to the others. This seems indeed to be the case as explained earlier in this discussion. 355

However, for example, striking changes in bacterial burden and viral load in the 356

co-infection are shown in Table 1, where the bacterial burden changes significantly 357

between 1.5 and 6 hpc and between 6 and 18 hpc and the viral load changes 358

significantly between 18 and 26 hpc. However, it is not clear exactly how these changes 359

are represented in the simplicial complexes of Fig 3. Therefore further quantification is 360

required in order to understand in more detail the information that the choice of lenses 361

provide in the biological context. 362

Mechanistic modeling studies investigating stages of the immune system in response 363

to co-infections have been done previously [4, 21,22,29]. While under specific 364

assumptions these models can highlight relevant mechanism, the design of mechanistic 365

models and the abstraction complexity remain largely debatable. Here, TDA is 366

presented as an additional tool to abstract high dimension data sets during 367

co-infections, thereby significantly extending current knowledge and building a basis for 368

translating improved mathematical models into potential therapies. 369

August 2, 2019 11/15

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 5, 2019. ; https://doi.org/10.1101/723957doi: bioRxiv preprint 

https://doi.org/10.1101/723957
http://creativecommons.org/licenses/by-nc-nd/4.0/


Methods and Materials 370

Experimental data 371

We consider the murine data that we first presented in [4]. In short, 7-8 weeks old 372

C57BL/6J wild type mice were divided into three groups: single viral infection (IAV), 373

single bacterial infection (T4) and co-infection (IAV + T4). The mice were anesthetized 374

and intranasally infected with either a sublethal dose of IAV (A/PR8/34) or a bacterial 375

infection with the S. pneumoniae strain T4 on day 7, or both, depending on the 376

infection group. Following infection, mice were monitored daily for morbidity and 377

mortality. Bronchoalveolar lavage (BAL), post-lavage lung and blood were collected at 378

1.5, 6, 18, 26 and 31 hours post bacterial infection (hpi) or post bacterial co-infection 379

(hpc). Lungs were homogenized, and the supernatants were used to determine virus 380

titers, immune cell populations, and cytokine and chemokine concentrations. Kinetic 381

measurements for viral titers (mRNA by real-time PCR), bacterial counts (colony 382

forming units (CFU)) as well as the following cytokines were considered: IFN-γ, TNF-α, 383

IL-6, IFN-β, IL-22 and the chemokines MCP-1 and GM-CSF. The materials and 384

methods are described in detail in [4]. 385

For the analysis done in this study we took the measurements collected from the 386

post-lavage lung. For the T4 and AIV + T4 infection groups, at 18 hpi and 18 hpc, 387

respectively, the measurements had to be repeated. As it is a cross-sectional study (each 388

measurement is coming from a mouse), we allocate high values of bacterial burden to 389

rows that contain high values of cytokines. Mice were naive, we replaced N/A values 390

(under level of detection) in the bacterial burden (in the single IAV infection group) and 391

viral load (in the single T4 infection group) with the value 0. For each infection group, 392

for time points that have less than five missing values in one feature, we replaced the 393

missing values with the average value of the feature for that specific time point. For 394

infection groups that have missing values at one single time point for one particular 395

feature, we performed a linear interpolation between the mean values of the previous 396

and the next time points and replaced the missing values with the predicted value for 397

that time point. 398

Data Analysis 399

Figs 2 and 3 were generated by performing topological data analysis (the Mapper 400

Algorithm) on the single viral and bacterial infection and co-infection data sets using 401

the Keppler-Mapper Python library [26]. Nodes in the simplicial complex represent 402

clusters of infected mice, and edges connect nodes that contain samples in common. 403

Nodes are colored by the average value of their samples for the variables listed in the 404

Figs’ legends and color maps. 405

Three types of parameters are needed to generate a topological model: First is a 406

notion of similarity, called a metric, which measures the distance between two points in 407

some space (in our case, the points are the rows in the data and the space is a 408

multidimensional space that can be plotted using the quantitative measurements of 409

disease symptoms as axes, such as the pathogen load or cytokine concentration, i.e. the 410

features of the data set). The metric we used is the correlation distance. Second are 411

lenses, which are functions that describe the distribution of data in a space. A lens is a 412

mathematical mapping (function) that converts a data set into a vector, in which each 413

row in the original data set contributes to a real number in the vector; i.e. a lens 414

operation turns every row into a single number. Metrics are used with lenses to 415

construct the simplicial complex output. Multiple lenses can be used in each analysis. 416

In this case, Keppler-Mapper handles them mathematically by considering the 417

Cartesian product. Third is the resolution, which controls the number of bin partitions 418
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that will be created within the range of selected lens values, known as the number of 419

intervals, and the amount of oversampling between bins, known as the percentage 420

overlap. Clustering then takes place within the bins, forming the final vertices of the 421

simplicial complex; and clusters are connected with an edge whenever they share data 422

points within the region that are over-sampled according to the percentage overlap. 423

Therefore increasing the number of bins increases the number of vertices and increasing 424

the percentage overlap results in an increased number of edges. The metric, lenses, 425

resolution, and clusterer used to generate the topological graphs in Figs 2 and 3 are as 426

indicated in Table 1 in S1 Text. 427

K-Nearest Neighbour Analysis was implemented using the KNeighborsClassifier from 428

the Scikit Learn Python library [30], with the correlation metric. T-tests were done 429

using the ttest ind function from the SciPy Python library. 430

Supporting information 431

S1 Text. Supplementary Text. Detailed description of the computational 432

methodology implemented in this study and presentation of further supporting material 433

for the results and discussion sections. This includes the following supplementary figures 434

and table: S1 Fig. 1, S1 Fig. 2, S1 Fig. 3, S1 Fig. 4, S1 Fig. 5, S1 Fig. 6, S1 Table. 1. 435
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