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1 Supplementary Material to Methods 1

1.1 Topological Data Analysis 2

In this section we give a brief and intuitive introduction to the mapper algorithm and 3

the algebraic topology concepts behind it. We also present in detail our methodology 4

for using the mapper algorithm to investigate influenza in co-infection with bacteria. 5

For further details, we refer the reader to the following resources: the original paper of 6

the mapper algorithm is [1]. The paper presenting the Kepler-Mapper Python Library 7

that we used to implement the mapper algorithm computationally is [2]. We 8

recommend [3] as an introductory book to computational algebraic topology (albeit it 9

does not include the mapper algorithm) and [4] for a thorough treatment of the 10

mathematical subject of algebraic topology. 11

1.1.1 Summary of steps for the implementation of the mapper algorithm 12

The mapper algorithm is a method of replacing a topological space by a simpler one, 13

known as a simplicial complex, which captures topological and geometric features of the 14

original space. The purpose of doing this is not only to obtain a visualization of high 15

dimensional data sets in 3-d, but also because mathematical properties of simplicial 16

complexes allow for the implementation of algebraic calculations that facilitate the 17

classification of the topological features of the complex, and by extension, of the original 18

topological space. 19

The algorithm begins with a data set of interest that consists of a point cloud X 20

containing N points x ∈M sampled from a space M whose topology we want to 21

elucidate. We define a real valued function f : X → R (referred to in the literature as a 22

lens or filter) whose value is known for the N data points. Next, we find the range I of 23

the function f that is restricted to the points in X. We divide this range into a set S of 24

smaller intervals of the same size, that overlap. This results in two parameters that can 25

be used to control how detailed a representation of the data, i.e. the “resolution”, 26

namely the number l of the smaller intervals and the percentage overlap q between 27

successive intervals. 28

For each interval Ij ∈ S, we find the set Xj = {x|f(x) ∈ Ij}, i.e. the points in X 29

that form its domain. For each set Xj we form clusters {Xjk}, where xk ∈ Xj and 30

k >= 1. We treat each cluster as a vertex in the resulting simplicial complex and draw 31
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Data set sampled from an 
(unknown) topological 
space

Function: 

Filter range: [-1.5,1.5]

Interval length: 1

Overlap percentage: 0.1

Image of function f
Domain of function f at 
each interval

Simplicial complex 
revealing topology of 
original space - namely a 
circle

Clustering algorithm: DBSCAN with Euclidean 
metric, epsilon = 5 and min_samples = 5.
Clustering ran on domain of each interval, to 
create vertices.
Vertices connected whenever two clusters have 
points in common (due to percentage overlap).

S1 Fig. 1. Visualisation of the steps of the mapper algorithm being applied to a set of points
sampled from the 2-dimensional circle. Parameter p in the function used as a lens is the leftmost point in the
data. Example adapted from [1].

an edge between vertices whenever Xjk ∩Xlm 6= ∅, for Xjk 6= Xlm (i.e. when different 32

clusters have non-empty intersection). S1 Fig. 1 illustrates these steps for the 33

construction of a topological network from data sampled from a 2-dimensional circle. 34

The steps implemented computationally using the Kepler mapper python library [2]. 35

1.1.2 Simplicial complexes 36

To arrive at a precise definition of a simplicial complex and to understand it is not 37

required for the context of this paper. Instead, here it is sufficient to think of simplicial 38

complexes as a generalisation of networks that include higher dimensional elements. 39

That is, simplicial complexes can be thought of as combinatorial objects consisting of 40

vertices (0-d), edges (1-d), triangles (2-d), tetrahedra (“triangular pyramid”) (3-d) and 41

higher-dimensional (n-d for n >= 0) convex polyhedra. S1 Fig.2 illustrates this visually 42

with a simple example. 43

In practical terms regarding the mapper algorithm, when we use one lens to 44

construct a simplicial complex, the maximum dimension of the simplices is 1, i.e. the 45
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S1 Fig. 2. A simple simplicial complex. A simplicial complex can be thought of as a generalisation of a
network, that also includes triangles, tetrahedra and higher dimensional convex polyhedra.

complex is made up of vertices and edges and is thus a standard network. When we use 46

two lenses to construct a simplicial complex, the maximum possible dimension of the 47

simplices is 4, meaning it is made of vertices, edges, triangles and tetrahedra. Section 48

3.2 in the original paper of the mapper algorithm [1] describes explicitly how simplicial 49

complexes are built with 2 lenses and how this can be generalised to more lenses and 50

higher dimensional simplicial complexes. 51

1.1.3 Choosing the metric space(s) 52

The important aspect about the choice of metric for the purposes of the mapper 53

algorithm is to have a notion of distance between two data points. 54

Although the mapper algorithm is less sensitive to the choice of metric than other 55

methods that aim creating simpler representative objects of spaces in high dimensions 56

(e.g. dimensionality reduction algorithms) [1] we still wanted to make sure that our 57

investigation was not biased by the choice of metric. Therefore we tested three metrics 58

that “appeared suitable” for our data sets. These were the Euclidean, cosine and 59

correlation metrics. We chose the Euclidean metric as it is the most intuitive to work 60

with. Next, we wanted to investigate whether looping is a recurrent property in our 61

data sets. In [5], where looping was indeed found to be a motif in their data set (of an 62

infection from which patients can recover, such as in our study), the cosine metric was 63

used, so we also decided to test this metric. Finally, we regarded the correlation metric 64

to make the most biological sense. So we also tested this one. 65

Specifically, the distance is defined as follows for the three metrics we work with: 66

Euclidean: if x = (x1, ..., xn) and y = (y1, ..., yn) are two points in Euclidean 67

n-space, then the Euclidean distance between them is given by the Pythagorean formula: 68

d(x, y) =

√√√√ n∑
i=1

(yi − xi)2

Computationally, this is done using the 69

sklearn.metrics.pairwise.euclidean_distances function from Scikit-learn. 70

71
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Cosine: if x = (x1, ..., xn) and y = (y1, ..., yn) are two points in Euclidean n-space, 72

we use the following bespoke distance definition: 73

d(x, y) =

∣∣∣∣ x.y

||x||2 ∗ ||y||2
− 1

∣∣∣∣
Where x.y is the dot product between x and y and ||u||2 is the L2-norm (Euclidean 74

norm) of u. This definition of the is the absolute value of the normalised dot product of 75

x and y minus 1. The reason we take this definition and, not simply the normalised dot 76

product, is the following: The normalised dot product of any two points takes values 77

between +1 and -1. We want to cluster points whose vectors from the origin are almost 78

parallel and point almost in the same direction. Two such points have a normalised dot 79

product value that is close to +1. However, DBSCAN clusters two points whenever they 80

are a distance less than or equal to the eps parameter. (The eps parameter is the 81

maximum distance between two samples for them to be considered as in the same 82

neighbourhood). Therefore, what we need is a distance formula that outputs small 83

values for points that are ”close” to each other (i.e. whose vectors from the origin point 84

in roughly the same direction). The above bespoke distance formula achieves this. In 85

order to implement this computationally, we precompute the distance matrix of the 86

data using the normalised dot product with the 87

sklearn.metrics.pairwise.cosine_similarity function of sklearn, next, we 88

preprocess the distance matrix such that it fits our bespoke distance criterion: 89

X_cosine_similarity = sklearn.metrics.pairwise.cosine_similarity(X) 90

X_dist = np.abs(X_cosine_similarity - 1) 91

Finally, we pass the precomputed distance matrix to the clusterer, setting the metric 92

parameter of DBSCAN to be equal to ‘precomputed’. 93

94

Correlation: if x = (x1, ..., xn) and y = (y1, ..., yn) are two points in Euclidean 95

n-space, then the correlation distance between them is given by the following formula: 96

d(x, y) = 1− (x− x̄).(y − ȳ)

||(x− x̄)||2||(y − ȳ)2||

Where u.v is the dot product between u and v, ū is the mean of the elements of u 97

and ||u||2 is the L2-norm (the Euclidean norm) of u. Computationally, this is done 98

using the 99

sklearn.metrics.pairwise_distances function from Scikit-learn, setting the 100

parameter metric to ‘correlation’. 101

102

In the main part of this study we only reported the results obtained with the 103

correlation metric. We observed the same results with the correlation and cosine metrics 104

and we could not make concrete observations about the result obtained with the 105

Euclidean metric. The questions of why the cosine and correlation metrics create the 106

same simplicial complexes and how they differ from those created with the Euclidean 107

metric require further and were not done as part of this study. 108

1.1.4 Selection of lenses 109

The outcome of mapper algorithm is highly dependent on the lens(es) chosen. For the 110

purposes of our study, we categorised the lenses we used according to the information 111

about the data they extract. 112

Features. These lenses are simply the values at each data point of a particular 113

feature of interest. These were calculated using the fit_transform function of 114

the Kepler mapper. 115
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Distances to closest neighbours. These lenses report the distance of each 116

data point to its n closest neighbours, or the sum of the distances to the n closest 117

neighbours, under the metric of choice. These were calculated using the 118

sklearn.metrics.pairwise_distances function from Scikit-learn, specifying 119

the metric to be one of the three described above. 120

Dimensionality Reduction. These are projections of the data, usually, to the 121

first (and possibly also the second) dimension(s) of various dimensionality 122

reduction algorithms. These were calculated using the Manifold Learning 123

algorithms from the Scikit-learn Python library and the 124

sklearn.decomposition.PCA and sklearn.decomposition.TruncatedSVD 125

functions of Scikit-learn. See section 1.1.5 for a brief description of the methods 126

used here. 127

Geometric properties. These report geometric properties. Specifically, we 128

tested: 129

– The density using the sklearn.neighbors.KernelDensity function with 130

Gaussian kernel and calculated the bandwidth using Scott’s Rule [6]. 131

– The eccentricity which is defined as follows: 132

Given p with 1 <= p < +∞, define 133

Ep(x) =

(∑
y∈X d(x, y)p

N

) 1
p

where x, y ∈ X. (Recall that we denote the data set of N points by X and 134

d(x, y) denotes the distance between x, y ∈ X, which is dependent on the 135

metric of choice.) 136

– The infinite centrality which is a generalisation of the eccentricity above, for 137

when p = +∞, then E∞(x) = maxx′∈Xd(x, x′). 138

Statistical properties. These report on statistical properties about the data 139

points, such as the sum of the values of all the features for each data point, the 140

average value of the features for each data point, etc. These were calculated using 141

the fit_transform function of the Kepler mapper. 142

1.1.5 Short explanation of dimensionality reduction algorithms 143

Here we provide short explanations about each of the dimensionality reduction 144

algorithms used, (some of which have been adapted from the documentation of 145

Scikit-learn [7]). 146

Singular value decomposition (SVD) and Principal Component Analysis (PCA) are 147

two methods used to perform linear dimensionality reduction of high-dimensional data 148

set. 149

PCA reduces the data into linearly uncorrelated variables (called principal 150

components) such that the first component accounts for as much of the variability in the 151

data as possible, and each succeeding component in turn accounts for the next highest 152

variance possible and is orthogonal to the preceding components. When used in 153

dimensionality reduction, one can take the first few principal components as the new set 154

of features of the data set. To implement this, we used sklearn.decomposition.PCA. 155

SVD is a matrix decomposition method for reducing a matrix A to the product of its 156

constituent parts (A = U · Σ · V T , where U, V are unitary matrices and Σ is a 157

rectangular diagonal matrix of singular values). When applied in dimensionality 158

reduction, one can select the top k largest singular values in Σ and use the k affiliated 159
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columns in Σ and rows in V T to generate an approximation B = U · Σk · V T
k to A. We 160

used the TruncatedSVD class of Scikit-learn to implement this. 161

LLE, Isomap, MDS and Spectral Embedding are algorithms that belong to a 162

framework called Manifold Learning, which are an attempt to generalize linear 163

frameworks like PCA, to be sensitive to non-linear structure in data. These approaches 164

learn the high-dimensional structure of the data from the data itself, in an unsupervised 165

manner, i.e. without the use of predetermined classifications. 166

The Isomap seeks a lower-dimensional embedding which maintains geodesic 167

distances between all points. LLE seeks a lower-dimensional projection of the data 168

which preserves distances within local neighborhoods, and it can be thought of as a 169

series of local Principal Component Analyses which are globally compared to find the 170

best non-linear embedding. For the Isomap and the LLE one needs to make a choice on 171

the number of neighbors; since in our data set each time point should have between two 172

and five data points corresponding to individually analyzed mice, we chose the value of 173

three neighbors for these algorithms. 174

Multidimensional scaling (MDS) seeks a low-dimensional representation of the data 175

in which either the distances between the two output points are set to be as close as 176

possible to the similarity or dissimilarity of the original data (the metric approach) or 177

the algorithm seeks a monotonic relationship between the distances in the embedded 178

space and the similarities/dissimilarities of the original data (the non-metric approach). 179

For spectral embedding Laplacian Eigenmaps are implemented, which find a low 180

dimensional representation of the data using a spectral decomposition of the graph 181

Laplacian. The graph generated can be considered as a discrete approximation of the 182

low dimensional manifold in the high dimensional space. Points close to each other on 183

the manifold are mapped close to each other in the low dimensional space, preserving 184

local distances. 185

1.1.6 On the number of intervals and percentage overlap for each lens 186

The choice of number of intervals and percentage overlap defines how detailed or coarse 187

a topological network representation of the data we want to create is, in other words, 188

the “resolution” of the representation. The number of intervals can be any number 189

starting from 1 and, as the name indicates, the percentage overlap can be anything in 190

the range [0.0, 1.0]. Thus, choosing a higher number of intervals translates to increasing 191

the number of vertices of the graph. Increasing the percentage overlap allows the 192

algorithm to find more data points in common between two intervals, thus roughly 193

translating to an increased possibility of connecting two vertices. (Note that increasing 194

the number of lenses also increases the number of vertices, since it increases the number 195

of intervals that the data is partitioned into). S1 Fig. 3 shows topological networks of 196

data sampled from a 2-dimensional circle, at different resolutions. 197

1.1.7 Scaling of the data 198

PCA gives different results when the scales of the features are different. Additionally, 199

manifold learning methods are based on a nearest-neighbor search, therefore, such 200

algorithm may perform poorly if the features of the data are on different scales. 201

Therefore, we normalise the data before applying the dimensionality reduction 202

algorithms. (Note that the clustering algorithm is run on the original data, which we do 203

not normalise.) 204
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S1 Fig. 3. Resolution of simplicial complexes and persistence of the shape of the data. Three simplicial
complexes of data sampled from an unknown 3-dimensional space of different resolution are generated using the
mapper algorithm [1], implemented computationally using the Kepler mapper Python library [2]. One lens is used for
all simplicial complexes, namely a projection on the x-axis. The number of intervals and percentage overlap for the
lens at each resolution are indicated. Observation 1: the three simplicial complexes consist of one connected
component. Observation 2: the three simplicial complexes have a “big hole” in the middle. Conclusion: The data set
is sampled from a topological space that consists of one component and that has a hole in the middle. Since we know
it is a 3-dimensional space, we can say it is a torus.

1.1.8 Choice of clustering algorithm 205

Finding a good clustering of the points is a fundamental issue in computing 206

representative topological networks. Currently there is no automated or principled 207

method of making a choice. The mapper algorithm does not have any limitations on the 208

cluster used and in particular, according to [1] desired characteristics when choosing a 209

clustering are that it: 210

1. is able to take an interpoint distance matrix as an input, not restricted to the 211

Euclidean distance, 212

2. does not require specifying the number of clusters. 213

We chose the Density-Based Spatial Clustering of Applications with Noise 214

(DBSCAN) [7] because we can specify what metric to use, the thresholds for the number 215

of points needed to create a cluster (min_samples) and the value of the distance below 216

which two points are considered to belong to the same cluster (eps). 217

1.2 Grid search analysis of parameter values for the mapper 218

algorithm 219

As described in the previous section, the outcome of the mapper algorithm is highly 220

dependent on the choice of values for the following parameters: the number of lenses, 221

the type of lenses, the number of intervals for each lens, the percentage overlap for the 222

intervals, the choice of metric space and the clustering algorithm. 223

We wrote a semi-unsupervised algorithm that built all simplicial complexes for 224

various metrics, lenses and ranges of values for the lens intervals, percentage overlap and 225
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epsilon values of the DBSCAN clusterer from sklearn, and which “chose appropriate” 226

simplicial complexes to represent the data. More specifically, below we list all the values 227

we tested. 228

229

Metrics: cosine, euclidean and correlation 230

231

Number of lenses: 2 232

To start with, we constructed simplicial complexes of the data sets with between 1 233

and 4 lenses. However, when we visually inspected the result of using a three or four 234

lenses, we observed many more clusters corresponding to the same points, because of 235

oversampling by the larger number of intervals introduced by the third and fourth 236

lenses. In addition, using more that two lenses can make the calculations take over 20 237

hours to complete, compared to 3-5 hours for two lenses (ran on a standard laptop). 238

Therefore we limited ourselves to using two lenses. 239

240

Combinations of lenses: 241

1. Lens 1 = Distance to the first neighbour with Lens 2 = Distance to the second 242

neighbour 243

2. Lens 1 = Distance to the first neighbour with Lens 2 = Projections to features 244

3. Lens 1 = Sum of the distances to the first and second neighbours with Lens 2 = 245

Projections to features 246

4. Lens 1 = First dimension of a dimensionality reduction algorithm with Lens 2 = 247

Projections to features 248

5. Lens 1 = First dimension of a dimensionality reduction algorithm with Lens 2 = 249

Second dimension of the same dimensionality reduction algorithm 250

6. Lens 1 = Geometric or statistical information with Lens2 = Projections to features 251

The projections to features lenses are a projection to each of the nine features of the 252

data sets (the two pathogen loads and the seven cytokine concentrations). The distance 253

to the closest neighbours and the geometric and statistical lenses depend on the metric 254

chosen . 255

256

Number of intervals: between 2 and 30. 257

258

Percentage overlap: between 0.1 and 0.9. 259

260

Clusterer: DBSCAN from scikit-learn [7]. For the min_samples parameter we 261

chosed the value of 1, i.e. a cluster can be formed with 1 or more data points. For the 262

eps parameter we tested values between the minimum and maximum distances in the 263

data sets for each metric. More specifically, the distances between the data points in the 264

three infection groups range between [0,520002] in the Euclidean metric; between [0,1] 265

in the cosine metric; and between [0,2] in the correlation metric. So for the Euclidean 266

metric we tested 5000 values between 0 and 520002; and for the cosine and correlation 267

metrics we tested 10 values between 0 and 1 and 0 and 2, respectively. 268

269

Taking all these together, there are 18 different pairs of lenses; 28 different intervals 270

and 10 percentage overlap values to test for each lens; 10 values for the epsilon 271

parameter for the clusterer for the cosine and correlation metric and 5000 for the 272

Euclidean metric. Therefore, in total this parameter grid search exercise generated 273
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almost 1 billion simplicial complexes 274

(15 ∗ 282 ∗ 92 ∗ 10 + 3 ∗ 282 ∗ 102 ∗ 5000 = 962, 085, 600). 275

From all the simplicial complexes generated, the algorithm chooses those that have a 276

user-specified number of connected components. Biologically it makes sense that the 277

simplicial complexes for the three infection groups have only one connected component. 278

From the resulting list of simplicial complexes with one connected component, we 279

ordered the simplexes in ascending order of epsilon value for the clusterer and the 280

percentage overlap for the intervals for both lenses; choosing the smaller rather than the 281

larger values for these parameters makes the simplicial complexes, as models of the 282

system, simpler, which is desirable when working with models. Next, we chose simplicial 283

complexes that had number of vertices at least half of the number of data points in the 284

data set (for example, if the data set for the IAV infection group has 30 data points 285

then we favour simplicial complexes that consist of only one connected component and 286

at least 15 vertices); choosing this number gives a good resolution, not too simple, but 287

also prevents the user from choosing simplicial complexes that have oversampling of 288

data points. Finally, we visually inspected the simplest (in terms of small values for the 289

parameters) 10, 20 or 30 simplicial complexes in that list. The visual inspection has two 290

purposes: First, to give the user an idea of whether there is persistence in the global 291

and local structures of the simplicial complexes generated. Second, to choose a 292

representative structure for the data set. 293

2 Supplementary material to results/discussion 294

2.1 Search for looping behaviour in co-infection 295

Definition: Disease space is the multidimensional space that can be plotted using 296

quantitative measurements of disease symptoms as axes. 297

298

Definition: Parameters of a data set that oscillate, partially overlap and have a time 299

lag between them are called hysterectic parameters [5]. 300

301

Definition: When pairs of hysterectic parameters are plotted against each other in 302

their phase plot they create loops [5]. These can be considered two dimensional 303

projections of the higher dimensional looping behaviour of the data set and are referred 304

to as disease maps. 305

306

In the context of infectious diseases from which hosts can recover (e.g. malaria, 307

influenza, pneumococci, etc), disease maps that form loops are representative of the 308

trajectory from health, through infection and sickness and back to recovery or death [5]. 309

In particular, disease space with looping behaviour and disease maps that are circular 310

can be used to, for example: 1.) describe the in-host dynamics of infections; 2.) identify 311

where data of patients lie along the infection timeline, regardless of whether the stage of 312

the infection is known (for example, from cross-sectional studies or from data of patients 313

coming clinics to be treated, at different (and unknown) stages of the infection); and 3.) 314

distinguish between more and less resilient individuals, from a relatively early stage of 315

the infection course. This methodology was applied in [5] to investigate malaria. 316

Motivated from this approach, we investigated if looping curves are a common motif in 317

influenza or influenza in co-infection with bacteria. To that end, we also generated 318

phase plots of pairs of features of our data sets and used K-nearest neighbour analysis, 319

as is explained below. 320
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2.1.1 Possible looping revealed by disease maps 321

To help us see whether looping curves are a common motif in influenza, pneumococcal 322

disease, or co-infection, and to help us identify those pairs of features in each of the 323

infection groups that would be useful disease maps, we plotted the mean value at each 324

time point of all our features (viral load, bacterial burden and cytokine concentration) 325

pairwise against each other, for each infection group. As an example, S1 Fig. 4 shows 326

these plots for the IAV + T4 infection group only; the other infection groups are not 327

shown. 328

First, we found that the pairs in shifted phase create open loops, and not fully closed 329

loops as is the case in [5]. Fully closed loops are not present in our data sets because 330

data corresponds to an incomplete infection course in both the viral and the bacterial 331

infections: The first data points in the three data sets correspond to 1.5 hours post the 332

onset of the bacterial infection (which is the equivalent of 7 days and 1.5 hours post 333

onset of the viral infection). Furthermore, according the ethical standards, the mice 334

were euthanized at 31 hours post onset of bacterial infection (which is the equivalent of 335

8 days and 7 hours post onset of the viral infection), before the bacterial infection could 336

resolve naturally. Therefore neither the start nor the end of the viral infection course 337

are present and only the start of the bacterial infection course is present in the data sets. 338

Nevertheless, to continue the search for looping behaviour and the disease maps, we 339

closed the half loops by connecting the end points with a straight line, and choose the 340

pairs of features that generated non-self-intersecting closed loop. Finally, following [5] 341

we calculated the area of the resulting polygon, to make a choice of the pair of features 342

that are “best suited” to be considered disease maps; for example, choosing those with 343

the largest area would provide a visually clearer disease map. For the IAV + T4 344

infection group, the disease maps are shown in S1 Fig. 4 inside the orange boxes. 345

Next, we found that not the same pair of features generates a disease map for all 346

infection groups. This means that it is not possible to use the disease maps as a tool to 347

make direct comparisons between the behaviour of the immune system of infected 348

individuals in the three infection scenarios (single virus, single bacterial, co-infection 349

between the two). Notwithstanding, the disease maps can be used to investigate the 350

individual infection groups and there is indeed an indication of possible looping motifs 351

in the three infection groups. Therefore, to further investigate this we employed the 352

K-nearest neighbors analysis. 353

2.1.2 K-nearest neighbour analysis 354

We envisioned that if there is a true global looping structure to the data sets of each 355

infection group, K-nearest neighbor analysis would reveal graphs that globally trace 356

these loops and that locally show points nearby in time are connected to each other. To 357

examine the data using nearest neighbor analysis, we took each infection group 358

separately and stripped the data of time information. We then connected individual 359

data points to their three nearest neighbours. Nearest neighbour analysis was performed 360

with the KNeighborsClassifier function from scikit-learn [7] using the cosine distance 361

as the metric (see section 1.1.8 for a discussion on the choice of metric). Three nearest 362

neighbors were used as in the experimental procedure five mice were tested at each time 363

point. The resulting k-nearest neighbour networks for each infection group showed no 364

global looping or half-looping structures in any of the three infection groups (images not 365

shown). 366

August 2, 2019 10/16



S1 Fig. 4. Disease maps of mice in the IAV + T4 infection group. On the first column from left to right
are the time course plots of the mean values at each time point of the parasites load and the 4 core cytokines
identified in [8]. The other columns are the phase space plots of the mean values at each time point for the pairs of
features. Note that none of the phase plots form a completely closed loop because the data set does not have data for
the complete viral nor bacterial infection courses. Therefore the loops were closed with a straight dashed line that
connected the mean values of the first and last time points. Plots inside orange boxes correspond to the disease maps
for the IAV + T4 infection group (i.e. pairs of features that generate closed non-self-intersecting curves). The phase
plots not highlighted by the orange boxes are pairs of features that do not form a disease map.
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2.2 Parameter values for the topological networks discussed in 367

the main script 368

S1 Table 1 shows the parameter values used with the Kepler mapper to generate the 369

simplicial complexes of Figures 2 and 3 in the main script. 370

2.3 Coloring simplicial complexes according to feature value 371

A strategy for evaluating the results that can be concluded from the simplicial 372

complexes constructed by the mapper algorithm is to color the vertices according to the 373

values of the features of the data set. More precisely, a vertex of a simplicial complexes 374

is colored according to the average value of the feature for the data points that belong 375

to that particular cluster. S1 Fig. 5 shows these colorings for one of the simplicial 376

complexes for the IAV + T4 infection group. We make the following observations: 377

1. For the coloring corresponding to the viral load, the simplex shows high values of 378

virus at early time points. 379

2. For the coloring corresponding to the bacterial burden, the simplex shows high 380

values of bacteria at late time points. 381

3. For the coloring corresponding to the concentration of IFN-γ, the simplex shows 382

high values at early time points. 383

4. The coloring corresponding to the concentration of TNF-α does not reveal 384

anything in particular. 385

5. The coloring corresponding to the concentration of MCP-1 shows high values of 386

MCP-1 at late time points. 387

6. The coloring corresponding to the concentration of IL-6 shows high values of IL-6 388

for late time points. 389

Note that these observations can also be made from the time course plots in S1 Fig. 390

4. 391

2.4 Box plots of data points that belong to the two distinct 392

regions revealed by TDA 393

In Figure 2 in the main text, the simplicial complex generated with lens 2 = IL-6 there 394

are two regions - one in yellow (late time points IAV + T4; denoted by g1 in S1 Fig. 6) 395

and one in teal/purple (early time points IAV + T4 and all time points for IAV and for 396

T4; denoted by g2 in S1 Fig. 6). S1 Fig. 6 shows box plots of data points that belong 397

to the two regions revealed by the simplicial complex. From this we observe: 398

1. The box plot indicates that data points of IAV + T4 from 26 and 31 hours post 399

co-infection are separated by the simplicial complex from the earlier data points. 400

2. 18 and 26 hpc seem to be transition points for the system, since at both time 401

points there are data points in both groups (the yellow and the teal/purple). 402
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Simplicial complexes of IAV + T4 generated with lens 2 = projection to the bacterial burden, 

coloured by pathogen load or cytokine concentration

Bacterial 

burden
IFN- TNF- MCP-1 IL-6

Viral

load
𝛾 𝛼

1 2 3 4 5 6 7
1e5

2 4 6 8
1e7

0.5 1 1.5 2 2.5 3
1e5

1 2 3 4 5 6 7
1e3 1e3

2 4 6 8 10 12
1e3

0.5 1 1.5 2 2.5

Viral 

load
Bacterial burden

Coloured

by

Lens 2

S1 Fig. 5. Simplicial complexes of the co-infection group (IAV + T4) generated with lens 2 =
projection to the viral load or bacterial burden, coloured by parasite load or cytokine concentration.
A vertex of a simplicial complex is colored according to the average value of the feature for the data points that
belong to that particular cluster. The legends indicate the feature and the color maps indicate the feature values.
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S1 Fig. 6. Box plots of data points that belong to the two distinct regions revealed by TDA. g1
denotes the data points belonging to vertices in the yellow group in Fig. 2 in the main text. g2 denotes the data
points belonging to vertices in the teal/purple group in Fig. 2 in the main text. 6).
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