Supplementary Information

Type I fatty acid synthase (FAS) trapped in the octanoylbound state

Alexander Rittner, Karthik S. Paithankar, Aaron Himmler, and Martin Grininger*

Author affiliations

Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany

Correspondence

*grininger@chemie.uni-frankfurt.de

Table of contents:

Supplementary Figures:

Figure S1: Purification and crystallization of the KS-MAT didomain

Figure S2: Validation of ligand placement in the MAT domain

Figure S3: Dynamics of the MAT domain is determined by flexible subdomain linkers

Figure S4: Ramachandran plots for crucial residues in both subdomain linkers

Figure S5: Anisotropic movement of C-alpha atoms in the ferredoxin-like

subdomain

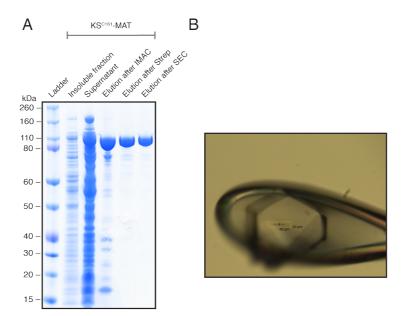
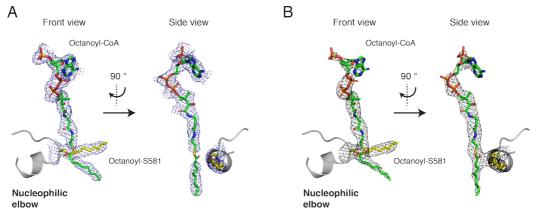

Figure S6: Rotational freedom of residue R606

Figure S7: Stability of select KS-MAT variants


Figure S8: Global Michaelis-Menten fit of KS-mediated transacylation data

Supplementary Tables

Table S1: Dimerization interface of the KS domain

Figure S1: Purification and crystallization of the KS-MAT didomain. (A) SDS-PAGE (NuPAGE 4-12 % Bis-Tris) of the purification strategy of the KS-MAT didomain. A tandem purification using Ni-chelating and Strep-Tactin affinity chromatography was followed by size exclusion. (B) Photograph of the octanoyl-CoA soaked crystal within a nylon loop at the synchrotron.

Figure S2: Validation of ligand placement in the MAT domain. Octanoyl-CoA and the covalent bound octanoyl-S581 were placed based on unbiased electron density maps. The FEM map (A) is shown in blue and the Polder map (B) in black. Contour levels are at 3 σ .

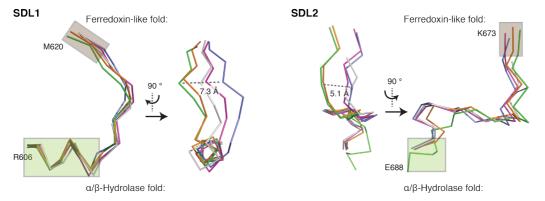
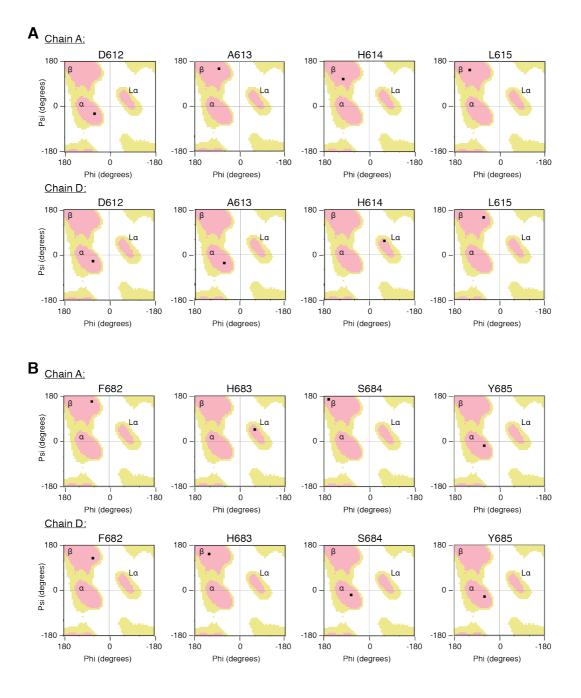
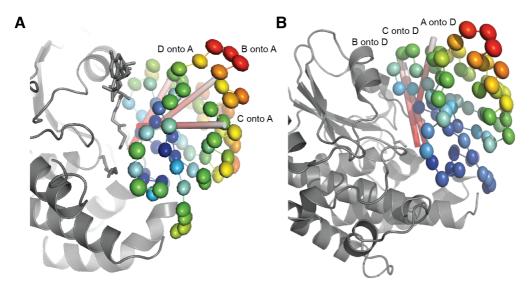
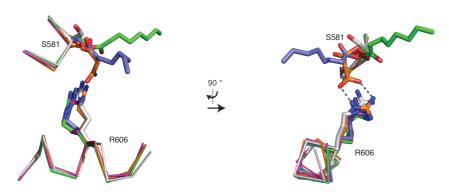
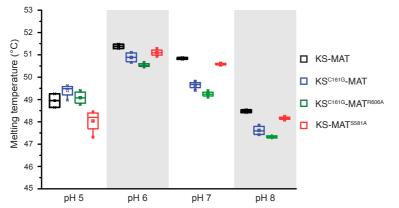
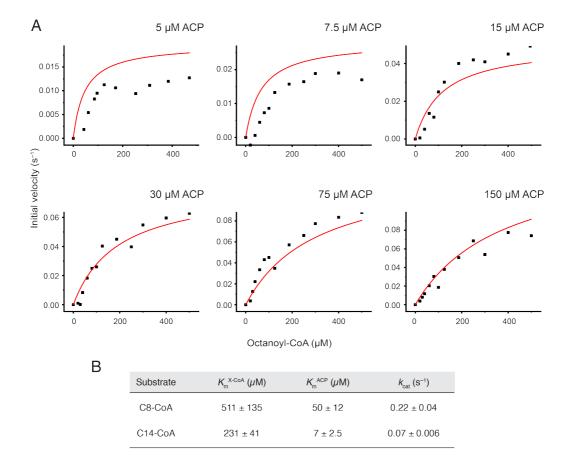


Figure S3: Dynamics of the MAT domain is determined by flexible subdomain linkers. SDL1 (612-617, left panel) and SDL2 (675-684, right panel) are shown as ribbons after α/β -hydrolase fold based alignments. Both linker stretches are shown from two different perspectives rotated by 90°. Chain A (blue), chain C (grey) and chain D (green) from the octanoyl-CoA soaked crystal (PDB code 6rop), malonyl-bound (orange) (PDB code 5my0; chain D) and apo human MAT (purple) (PDB code 3hhd; chain A) were used. Green and brown rectangles indicate secondary structure elements of the α/β -hydrolase- and ferredoxin-like subdomains, respectively.


Figure S4: Ramachandran plots for crucial residues in both subdomain linkers. Significant changes in dihedral angles were seen for residues in linker 1 (A) 612-615 and linker 2 (B) 682-685 leading to changes to different allowed regions. Plots were created in coot. Used abbreviations indicate α – right-handed helical region, L α – left-handed helical region and β – β -sheet region.


Figure S5: Anisotropic movement of C-alpha atoms in the ferredoxin-like subdomain. The anisotropic movement, as derived from the TLS tensors, is depicted by thermal ellipsoids colored by B-values (blue – low values; and red – high values) for the ferredoxin-like fold (616-684) region of chain A (A) and chain D (B). Rotation axes derived from superposition of ferredoxin-like fold (616-684) of chains B (A), C (B), and D (C) onto A (D) are shown in red-white cylindrical bars. For orientation, the rest of the KS-MAT chain is shown in grey.

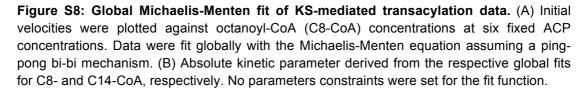


Figure S6: Rotational freedom of residue R606. α/β -Hydrolase based superposition (BB of 488-615) of chain A (blue), chain C (white) and chain D (green) from octanoyl-CoA soaked crystals (PDB code 6rop) with the malonyl-bound structure (orange) (PDB code 5my0; chain D) and of porcine FAS (purple) (PDB code 2vz9; chain A). Important residues S581 and R606 are shown in sticks with covalent modifications of the serine represented also in sticks. For clarity residue stretch 580-583 and 601-610 are depicted as ribbons. R606 in octanoyl-bound active sites adopts the same conformation as R606 in the porcine FAS, whereas R606 in chain C (unbound) possesses the rotameric state of the unbound active sites previously found in human KS-MAT (3hhd).⁶⁴

Figure S7: **Stability of select KS-MAT variants.** Melting temperatures were determined by a thermal shift assay as described in the Methods section. The four constructs were tested in phosphate buffers at different pH value. Four replicates are shown as dot plot.

Interface	Residues per side		Solvent-accessible interface area		Solvent energy gain per side	Hydrogen bonds	Salt bridges
	#	%	Ų	%	kcal/mol		
KS chain A	73	8.6	2583	8.1	-14.9	38	0
KS chain B	71	8.5	2578	8.0	-14.8		0
KS chain C	72	8.5	2586	7.9	-14.5	34	0
KS chain D	75	8.8	2582	8.1	-15.0		0

Table S1: Dimerization interface of the KS domain