RESOURCE AVAILABILITY

Lead Contact and Material Availability

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Stefan Knapp (knapp@pharmchem.uni-frankfurt.de)

Data and Code Availability

The model and structure factors reported in this study have been deposited in the PDB database under accession code 6TSZ. All raw mass spectrometry data have been deposited in the MassIVE repository (massive.ucsd.edu) with accession ID MSV000084747.

EXPERIMENTAL MODEL AND SUBJECT MATERIAL

METHODS DETAILS

Cloning

The DNA coding for a His_6 -tag, a TEV cleavage site and the ULK4 residues 2 to 288 was synthesized (Genscript) and cloned into the expression vector pET-28a, using the Ncol and Xhol restriction sites. From this DNA template, the mutants K39R and N139L were generated by site-directed mutagenesis using the QuikChange kit (Agilent).

Protein expression and purification

The expression plasmid was transformed into Rosetta (DE3) competent *E. coli* (Novagen). The expression was performed as previously described (Burgess-Brown et al., 2014). For ULK4_{PD} purification, bacteria were re-suspended in lysis buffer (50 mM HEPES pH 7.4, 500 mM NaCl, 20 mM imidazole, 0.5 mM TCEP, 5% glycerol) and lysed by sonication (35% amplitude, 10 s pulse and 10 s pause during a 20 min pulse sequence). The lysate was cleared by centrifugation and loaded onto a Ni NTA column. After vigorous rinsing with lysis buffer the His₆-tagged protein was eluted in lysis buffer containing 300 mM imidazole. Finally, ULK4_{PD} was concentrated and subjected to gel filtration using an AKTA Xpress system combined with an S200 gel filtration column. The elution volume 91.2 mL indicated the protein to be monomeric in solution. The final yield was 10 mg ULK4_{PD}/L TB medium.

Differential scanning fluorimetry (DSF)

The DSF assay of ULK4 against a set of nucleotides was performed according to a previously established protocol (Niesen et al., 2007). A solution of 2 μ M ULK4_{PD} in assay buffer (20 mM HEPES pH 7.4, 150 mM NaCl, 0.5 mM TCEP, 5% glycerol) was mixed 1:1000 with SYPRO Orange (Sigma). The nucleotides to be tested were added to a final concentration of 1 mM. 20 μ L of each sample were placed in a 96-well plate and heated gradually from 25°C to 96°C. The fluorescence intensity was monitored using an Mx3005P real-time PCR instrument (Stratagene) with excitation and emission filters set to 465 and 590 nm, respectively. Data was analysed with the MxPro software.

Crystallisation of the ULK4 $_{\mbox{\scriptsize PD}}\mbox{-}\mbox{ATP}\gamma\mbox{S}$ complex

200 nL of a solution containing the protein-ligand complex (12 mg/mL ULK4_{PD}, 1 mM ATP γ S) were transferred to a 3-well crystallisation plate (SwisSCI), mixed with 100 nL precipitant solution (0.1 M citrate pH 5.9, 15% 2-propanol, 6% PEG4K) and incubated at 4 °C. Crystals appeared after 2 days and did not change appearance after 7 days. They were mounted in

precipitant solution cryoprotected with additional 25% ethylene glycol. Data was collected at Swiss Light Source, analyzed, scaled and merged with Xia2 (Winter, 2010). The structure was solved by molecular replacement with Phaser (McCoy et al., 2005) using a ULK3_{KD} model as a template (PDB ID 6FDY) and refined by iterative model building using the software Coot (Emsley and Cowtan, 2004) and Refmac5 (Murshudov et al., 1997). The model was validated using MolProbity (Chen et al., 2010). The model and the structure factors have been deposited to the protein databank (http://www.rcsb.org/) with the PDB-ID 6TSZ (crystallographic data collection and refinement data are summarized in **Table S1**).

BioID sample processing

BioID was carried out as reported previously (Gupta et al., 2015). In brief, lysis buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton X-100, 0.1% SDS, protease inhibitor cocktail, turbonuclease) was added to frozen cell pellets, incubated with gentle agitation at 4°C for 1 hr, briefly sonicated and centrifuged at 16,000 x *g* for 30 min at 4°C. Supernatants were incubated with 30 μ L streptavidin-sepharose beads (GE Healthcare) for 3 h at 4°C with gentle agitation. Beads were washed with NH₄HCO₃ (50 mM) prior to overnight digestion with MS-grade, TPCK-treated trypsin (1 μ g, Promega) at 37°C. Additional trypsin (0.5 μ g) was added, and beads were incubated for 2 hrs at 37°C. Supernatants were collected and beads rinsed with NH₄HCO₃ (50 mM). Both fractions were pooled and samples were lyophilized. Samples were reconstituted in HCOOH (0.1%), de-salted on C18 columns and lyophilized.

Liquid Chromatography – Mass Spectrometry

Samples were reconstituted in HCOOH (0.1%), loaded on a pre-column (C18 Acclaim PepMapTM 100, 75 µm x 2 cm, 3 µm, 100Å, Thermo Scientific) and separated on an analytical column (C18 Acclaim PepMapTM RSLC, 75 µm x 50 cm, 3mm, 100Å, Thermo Scientific) via high performance liquid chromatography (LC) over a 120-minute, reversed-phase gradient (5-30% CH₃CN in 0.1% HCOOH) running at 250 nl/min on an EASY-nLC1000 pump in-line with a Q-Exactive HF mass spectrometer (Thermo Scientific) operated in positive ion mode ESI. An MS1 ion scan was performed at 60,000 FWHM followed by MS/MS scans (HCD, 15,000 FWHM) of the twenty most intense parent ions (minimum ion count of 1000 for activation). Dynamic exclusion (within 10 ppm) was set for 5 seconds.

LC-MS Data Processing

Raw files (.raw) were converted to .mzML format using Proteowizard (v3.0.19311), then searched using X!Tandem (v2013.06.15.1) and Comet (2014.02 rev. 2) against Human RefSeqV104 (containing 36,113 entries). Search parameters specified a parent MS tolerance of 15 ppm and an MS/MS fragment ion tolerance of 0.4 Da, with up to two missed cleavages allowed for trypsin. No fixed modifications were set but deamidation (NQ), oxidation (M), acetylation (protein N-term) and diglycine (K) were set as variable modifications. Search results were processed through the trans-proteomic pipeline (TPP v4.7) and proteins to which \geq 2 unique peptides were assigned and an iProphet probability \geq 0.9 were considered to be high confidence identifications. For statistical analysis, a Bayesian FDR was assigned to identified proteins using SAINT (v2.5.0; 18 BioID controls compressed to 4). All raw mass spectrometry data have been deposited in the MassIVE repository (massive.ucsd.edu) with accession ID MSV000084747.

Cloning and generation of cell lines

The following were cloned into pcDNA5/FRT/TO plasmid using in-fusion HD cloning kit (Clontech): full length ULK4, kinase domain of ULK4, armadillo repeat domain of ULK4, ULK4 with point mutation K39R. Each of the inserts was tagged to Flag and BirA either N-terminally

or C-terminally. These plasmids were transfected into Flp-In T-REx 293 cells (Thermo Fisher) using LipoD293 reagent (SignaGen Laboratories), and stable expression cell pools were generated following manufacturer's instructions. Cells were induced using 1 μ g/ml tetracycline. For experiments involving biotinylation, biotin was used at a concentration of 50 μ M.

Density gradient ultra-centrifugation

Flp-In T-REx 293 cells expressing full length ULK4 (upon induction with tetracycline) were lysed in Tris-buffer containing 0.3% CHAPS. Cleared whole cell lysate was carefully layered on top of a continuous glycerol gradient (10%-60%) in Tris buffer. Following ultra-centrifugation at 35000 r.p.m. for 18 hrs at 4°C, fractions were collected, boiled with sample buffer and run on SDS-PAGE for subsequent western blot analysis.

Antibodies

Antibodies against Flag tag, PTPN14, ROCK1 and ROCK2 were procured form Cell Signaling Technology, and that against CAMSAP1 were procured form Abcam.

Immunoprecipitation

Flp-In T-REx 293 cells expressing full length ULK4 (upon induction with tetracycline) were lysed in Tris-buffer containing 0.3% CHAPS. Whole cell lysate was subjected to pre-clearing, following which it was used for immunoprecipitation using anti-Flag antibody conjugated to agarose beads. For analysis of biotinylated proteins, streptavidin-conjugated beads were used. The eluate in each case was boiled in sample buffer for immunoblotting.

Immunofluorescence

FIp-In T-REx 293 cells expressing full length ULK4 (upon induction with tetracycline) was used for staining with anti-Flag antibody. Texas red was used for secondary staining. Confocal imaging was performed with an Olympus IX81 inverted microscope using 60x/1.4 PlanApo oil-immersion objective and FluoView software.

Phylogenetic tree

Kinase domains of ULK4 orthologs were aligned with MAFFT V7.450 (Katoh and Standley, 2013). Maximum likelihood tree was generated using FastTree 2.1 (Price et al., 2010). The tree was annotated and visualized using Interactive Tree of Life (ITOL) webserver (Letunic and Bork, 2016).

Activation loop length distribution

UniProt sequences of ULK4 orthologs were identified using a previously curated eukaryotic Protein Kinase (ePK) profile (Kannan et al., 2007L; McSkimming et al., 2016; Talevich et al., 2011)using the MAPGAPS tool (Neuwald, 2009). Residues corresponding to the DFG-Asp (N139 in ULK4) and APE-Glu (E189 in ULK4, Uniprot ID: Q96C45) were used as activation loop boundaries. The lengths of the activation loops were then determined for all ULK4 orthologs and the length distribution was plotted using R version 3.6.3 [Link: https://cran.r-project.org/doc/FAQ/R-FAQ.html#Citing-R].

Molecular Dynamics (MD) of ULK4 with ATP bound

Unbiased full atom MD simulation of ULK4 was performed on the solved crystal structure using GROMACS 2018.1 software [https://doi.org/10.1016/j.softx.2015.06.001]. Residues with ambiguous electron density were modelled using the Whatif server (Vriend, 1990). Main chain atoms for the missing G163 were modelled using RosettaLoop (Wang et al., 2007) using the cyclic coordinate descent (CCD) protocol. Due to the lack reliable force field parameters for ATPγS, we modelled ATP using ATPγS coordinates as template and performed unrestrained

simulations on the ATP bound complex. Both the protein and ATP were parameterized with CHARMM36-March2019 forcefield (Huang and MacKerell, 2013). The protein was solvated with TIP3P water model in a dodecahedron box. In order to neutralize the charge on the protein, sodium and chloride ions were added to the system. Verlet cutoff was used to define neighbour list for non-bonded interactions [doi: 10.1016/j.cpc.2013.06.003]. Particle Mesh Ewald (PME) was used to calculate long-range interactions. Energy minimization was performed with steepest-descent algorithm and then with conjugate descent with Fmax less than 500kJmol-1nm-1. The canonical ensemble was carried out by heating the system from 0 K to 310 K, using velocity rescaling for 100 ps (Bussi et al., 2007). The isothermal–isobaric ensemble (P = 1 bar, T = 310 K) was carried out using the Berendsen barostat for 100 ps [https://doi.org/10.1063/1.448118]. The unrestrained MD productions were collected using a time step of 2 fs after the isothermal–isobaric ensemble. The trajectories were processed and analyzed using the GROMACS built-in tools. Secondary structures for the MD trajectory was defined using DSSP (Allan and Doherty, 1990; Kabsch and Sander, 1983). Structural visualization was performed using PyMOL [PyMOL 2.3.2].

Identification of ULK4 sequence constraints

ULK1-4 UniProt sequences were identified and aligned using previously curated hierarchical ePK profiles (See Methods, Activation loop length distribution). Residues distinguishing ULK4 sequences from other ULK paralogs were then identified using the optimal multiple category Bayesian Partitioning with Pattern Selection (omcBPPS) program (Neuwald, 2014).

REAGENT or RESOURCE	SOURCE	IDENTIFIER	
Antibodies			
Anti-Flag	Cell Signaling	Cat#14793	
	Technology		
Anti-PTPN14	Cell Signaling	Cat#13808	
	Technology		
Anti-ROCK1	Cell Signaling	Cat#4035	
	Technology		
Anti-ROCK2	Cell Signaling	Cat#9029	
	lechnology	0.1//00000	
Anti-CAMSAP1	Abcam	Cat#86000	
Texas Red goat anti-rabbit	ThermoFisher	Cat#T6391	
	Scientific		
Bacterial and Virus Strains			
Escherichia coli Rosetta	Novagen	Cat#70954	
Biological Samples			
none			
Chemicals, Peptides, and Recombinant Proteins			
HEPES	Fisher BioReagents	Cat#BP310-1	
NaCl	Fisher BioReagents	Cat#S/3160/65	
TCEP	Goldbio	Cat#TCEP25	
Imidazole	Alfa Aesar	Cat#A10221	
Glycerol	Fisher BioReagents	Cat#G/0650/17	
PEG4K	Molecular dimensions	www.moleculardime	
		nsions.com	
ΑΤΡγS	Jena Bioscience	Cat#NU-406-5	
citrate	Molecular dimensions	www.moleculardime	
		nsions.com	

KEY RESOURCES TABLE

2-propanol	Molecular dimensions	www.moleculardime
Ethylene alvcol	Fluka Analytical	Cat#03750
SYPRO orange	Sigma	Cat#S5692
LipoD293	SignaGen	Cat#SL100668
	Laboratories	
CHAPS	MilliporeSigma	Cat#C3023
tetracycline	MilliporeSigma	Cat#T3383
Biotin	Biobasic	Cat#BB0078
Critical Commercial Assays		
none		
Deposited Data		
ULK4 in complex with ATPgammaS	This paper	PDB: 6TSZ
Mass spectrometry data	This paper	ID MSV000084747
Experimental Models: Cell Lines		
Human: Flp-In T-REx 293 cells	Thermo Fisher	Cat#R780-07
Experimental Models: Organisms/Strains		
none		
Oligonucleotides		
Mutagenesis primer pair for ULK4 K39R:	Eurofins	https://www.eurofins.
GTGČACCGATAAGTGCAGACGTCCGGAGATTACCA		com/
ACTG		
Mutagenesis primer pair for LILK4 N139L	Furofins	https://www.eurofins
GTACCCTGAAGTTCAGCCTCTTTTGCCTGGCGAAAG	Laronno	com/
TG		
CACTTTCGCCAGGCAAAAGAGGCTGAACTTCAGGG		
IAC Recombinent DNA		
	Concernint	
pET-28a(+) encoding ULK4 residues 2-288	Genscript	Synthetic DNA
pcDNA3 1-eCEP encoding fullength LILK/	Genscript	CloneID#OHu10/18
pcDNA5/FRT/TO encoding full-length LILK4 LILK4	This naner	CIONEID#ONU 10410
pseudokinase domain. ULK4 armadillo repeat domain.		
ULK4 K39R		
Software and Algorithms		·
MxPro software	Stratagene	https://www.agilent.c
	-	om/
FluoView software	Olympus	ttps://www.olympus-
Yia?	Winter 2010	https://www.ccp4.ac
	Winter, 2010	uk/
Phaser	McCoy, 2005	https://www.ccp4.ac.
	•	uk/
Coot	Emsley, 2004	https://www.ccp4.ac.
Defmae5	Murahuday 1007	UK/
Reimaco		niips.//www.ccp4.ac.
MolProbity	Chen, 2010	molprobity.biochem.
		duke.edu
Proteowizard (v3.0.19311)	(Chambers et al.,	http://proteowizard.s
VITendem (v2012.06.15.1)	2012) The Claim I Duri	ourcetorge.net/
	ine Giobai Proteome	org/TANDEM/
	iviachine Organization	

Comet (2014.02 rev. 2)	(Eng et al., 2013)	https://sourceforge.n et/projects/comet- ms/
Trans-proteomic pipeline (TPP v4.7)	(Deutsch et al., 2015)	http://tools.proteome center.org/wiki/index .php?title=Software: TPP
SAINT (v2.5.0)	(Choi et al., 2011)	https://omictools.co m/saint-tool
Gromacs 2018.1	Berendsen,1995	http://www.gromacs. org/Downloads
MAFFT V7.450	Katoh, 2013	https://mafft.cbrc.jp/a lignment/software/
R version 3.6.3	R Core Team, 2013	https://www.r- project.org/
FastTree 2.1	Price, 2010	http://www.microbes online.org/fasttree/
MAPGAPS 1.0.1	Neuwald, 2009	http://mapgaps.igs.u maryland.edu/
OmcBPPS 1.0	Neuwald, 2014	http://www.chain.um aryland.edu/omcbpp s/
Other		
Mx3005P qPCR system	Stratagene	https://www.agilent.c om/
3 Lens crystallisation plate	SWISSCI	3W96T-PS
In-fusion HD cloning kit	Clontech	Cat#639648
Inverted microscope with 60x/1.4 PlanApo oil-immersion objective	Olympus	IX81
Streptavidin-sepharose beads	GE Healthcare	
C18 Acclaim PepMap [™] 100	Thermo Scientific	
Q-Exactive HF mass spectrometer	Thermo Scientific	

References

Allan, J.E., and Doherty, P.C. (1990). Binding of monoclonal antibodies and T cell effector function in vivo. Hybridoma *9*, 9-15.

Burgess-Brown, N.A., Mahajan, P., Strain-Damerell, C., Gileadi, O., and Graslund, S. (2014). Medium-throughput production of recombinant human proteins: protein production in E. coli. Methods Mol Biol *1091*, 73-94.

Bussi, G., Donadio, D., and Parrinello, M. (2007). Canonical sampling through velocity rescaling. J Chem Phys *126*, 014101.

Chambers, M.C., Maclean, B., Burke, R., Amodei, D., Ruderman, D.L., Neumann, S., Gatto, L., Fischer, B., Pratt, B., Egertson, J., *et al.* (2012). A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol *30*, 918-920.

Chen, V.B., Arendall, W.B., 3rd, Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J., Murray, L.W., Richardson, J.S., and Richardson, D.C. (2010). MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr *66*, 12-21.

Choi, H., Larsen, B., Lin, Z.Y., Breitkreutz, A., Mellacheruvu, D., Fermin, D., Qin, Z.S., Tyers, M., Gingras, A.C., and Nesvizhskii, A.I. (2011). SAINT: probabilistic scoring of affinity purification-mass spectrometry data. Nat Methods *8*, 70-73.

Deutsch, E.W., Mendoza, L., Shteynberg, D., Slagel, J., Sun, Z., and Moritz, R.L. (2015). Trans-Proteomic Pipeline, a standardized data processing pipeline for large-scale reproducible proteomics informatics. Proteomics Clin Appl *9*, 745-754.

Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr *60*, 2126-2132.

Eng, J.K., Jahan, T.A., and Hoopmann, M.R. (2013). Comet: an open-source MS/MS sequence database search tool. Proteomics *13*, 22-24.

Gupta, G.D., Coyaud, E., Goncalves, J., Mojarad, B.A., Liu, Y., Wu, Q., Gheiratmand, L., Comartin, D., Tkach, J.M., Cheung, S.W., *et al.* (2015). A Dynamic Protein Interaction Landscape of the Human Centrosome-Cilium Interface. Cell *163*, 1484-1499.

Huang, J., and MacKerell, A.D., Jr. (2013). CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comput Chem *34*, 2135-2145.

Kabsch, W., and Sander, C. (1983). Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577-2637.

Kannan, N., Taylor, S.S., Zhai, Y., Venter, J.C., and Manning, G. (2007). Structural and functional diversity of the microbial kinome. PLoS Biol *5*, e17.

Katoh, K., and Standley, D.M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol *30*, 772-780.

Letunic, I., and Bork, P. (2016). Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res *44*, W242-245.

McCoy, A.J., Grosse-Kunstleve, R.W., Storoni, L.C., and Read, R.J. (2005). Likelihoodenhanced fast translation functions. Acta Crystallogr D Biol Crystallogr *61*, 458-464.

McSkimming, D.I., Dastgheib, S., Baffi, T.R., Byrne, D.P., Ferries, S., Scott, S.T., Newton, A.C., Eyers, C.E., Kochut, K.J., Eyers, P.A., *et al.* (2016). KinView: a visual comparative sequence analysis tool for integrated kinome research. Mol Biosyst *12*, 3651-3665.

Murshudov, G.N., Vagin, A.A., and Dodson, E.J. (1997). Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53, 240-255.

Neuwald, A.F. (2009). Rapid detection, classification and accurate alignment of up to a million or more related protein sequences. Bioinformatics *25*, 1869-1875.

Neuwald, A.F. (2014). A Bayesian sampler for optimization of protein domain hierarchies. J Comput Biol *21*, 269-286.

Niesen, F.H., Berglund, H., and Vedadi, M. (2007). The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc *2*, 2212-2221.

Price, M.N., Dehal, P.S., and Arkin, A.P. (2010). FastTree 2--approximately maximumlikelihood trees for large alignments. PLoS One *5*, e9490.

Talevich, E., Mirza, A., and Kannan, N. (2011). Structural and evolutionary divergence of eukaryotic protein kinases in Apicomplexa. BMC Evol Biol *11*, 321.

Vriend, G. (1990). WHAT IF: a molecular modeling and drug design program. J Mol Graph *8*, 52-56, 29.

Wang, C., Bradley, P., and Baker, D. (2007). Protein-protein docking with backbone flexibility. J Mol Biol 373, 503-519.

Winter, G. (2010). xia2: an expert system for macromolecular crystallography data reduction. Journal of Applied Crystallography *43*, 186-190.