DFG-1 residue controls inhibitor binding mode and affinity providing a basis for rational design of kinase inhibitor selectivity

Martin Schröder^{1,2}, Alex N. Bullock⁴, Oleg Federov⁴, Franz Bracher⁵, Apirat Chaikuad^{1,2*}, Stefan Knapp^{1,2,3*}

¹ Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max von Lauestraße 9 60438 Frankfurt, Germany

² Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences (BMLS),

Goethe-University Frankfurt, Max von Lauestraße 15, 60438 Frankfurt, Germany

³ German translational cancer network (DKTK), Frankfurt/Mainz, site, 60438 Frankfurt,

Germany

⁴ Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK

⁵ Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University Munich, 81377 Munich, Germany

Supplementary information

	Page
Supplementary figure 1. Comparative sequence analyses of the most common kinase targets of 1-5.	S2
Supplementary figure 2. Polder difference maps at 3σ for the bound compounds	S3
Supplementary table 1. Thermal shift results of compounds 1-4 against various kinases	S4
Supplementary table 2. The gatekeeper and DFG-1 amino acid compositions of the kinases that interact with inhibitor 1-5 .	S7
Supplementary table 3. ∆Tm data for wild type and DFG-1-mutated CLK1 and CLK3.	S 8
Supplementary table 4. Inhibition constant (Ki) from nanoBRET assays for CLK1 wild type and V324A mutant.	S9
Supplementary table 5. Data collection and refinement statistics.	S10

Supplementary figure 1. Comparative sequence analyses of the most common kinase targets of 1-5. Sequence alignment of the kinase domains of CLK1, DYRK1A, haspin, PIM1 and DRAK2 is shown in panel **A** and sequence identities in panel **B**.

100

17

26

26

33-293

26

Polder difference maps at 3σ

Supplementary figure 2. Polder difference maps at 3σ for the bound compounds.

		ΔTm (°C) for	inhibitor				
Kinase	1	2	3	4	Gatekeeper	DFG-1 residue	subfamily
AAK1	6.9	1.5	1.5	3.4	М	С	Other
ABL2		-0.5			т	Α	ТК
ACVR2A	4.0			0.3	т	Α	TKL
ACVR2B	7.4			0.0	т	Α	TKL
AKT3	0.4	0.0	0.4		М	т	AGC
ACVRL1	11.1			1.2	т	Α	TKL
ACVR1	11.0			0.7	т	Α	TKL
ACVR1B	9.1			1.1	S	Α	TKL
PRKAA1	1.3	-0.3		0.5	М	Α	САМК
PRKAA2	1.1	-0.1			м	Α	САМК
ADRBK1		0.1			L	S	AGC
ADRBK2		-0.2	1.1		L	S	AGC
BMP2K	10.7	0.2	1.0		М	С	Other
BMPR1A	10.9				т	Α	TKL
BMPR1B	11.5			0.2	т	Α	TKL
BMPR2	7.8		0.3		м	S	TKL
BMX	0.4	-0.1		0.4	т	S	ТК
РТК6	0.4				т	G	ТК
CAMK1D	0.6	0.0	1.2	0.2	м	S	САМК
CAMK1G	0.6	-0.1		0.3	м	Т	САМК
CAMK2A	0.5	-0.1	1.2	0.1	F	Α	САМК
CAMK2B	0.2	0.3			F	Α	САМК
CAMK2D		-0.6	1.8		F	A	САМК
CAMK2G		0.1			F	Α	САМК
CAMK4		-0.2			L	A	САМК
CAMKK1		0.0	1.0		F	A	Other
САМКК2	2.5	0.4			F	Α	Other
CDK2	1.5	-0.1	0.4	0.3	F	Α	CMGC
CDK4		-0.6		1.5	F	Α	CMGC
CDK6	0.1	0.4			F	Α	CMGC
CDK8	2.7	0.1	2.2	1.9	F	Α	CMGC
CDKL1	0.2	0.4	0.9	0.8	F	С	CMGC
CDKL2		-0.5		0.1	F	С	CMGC
CDKL3		0.1			F	c	CMGC
CDKL5		1.1		0.3	F	c	CMGC
CHEK2	0.8	0.1	0.3	0.5	L	T	САМК
CSNK1E	4.4	5.1	1.0		M	1	CK1
CSNK1G1	1.7	3.2		1.0	L	-	CK1
CSNK1G2	2.5	2.7	-		L	-	CK1
CSNK1G3	0.3	3.3	2.9	1.2	L	-	CK1
CSNK2A1	3.3	2.6	3.5	0.2	F	-	CMGC
CSNK2A2	3.3	2.6	4.2	0.9	F	-	CMGC
CLK1	5.9	6.7	7.0	7.7	F	v	CMGC
CLK2	5.5	5.0	3.5	7.2	F	v	CMGC
CLK3	1.9	2.2	2.2	1.0	F	Α	CMGC
CLK4	8.5	9.8	4.6	0.9	F	v	CMGC
DAPK3	2.8	0.9	10.6		L	1	САМК
DCLK1	0.6	-0.4	0.9	0.2	M	G	САМК
DDR1		0,4		- /-	Т	A	ТК
DMPK	1.0	1.0		0.8	M	Α	AGC
CDC42BPG	0.6	-1.3			M	A	AGC
STK17A	3.4	1.7	4.3	2.2	.,,	v	САМК
STK17B	4.2	1.0	3.4	6.9	-	v	САМК
DYRK1A	3.6	6.1	2.5		F	v	CMGC
5 T T T T T	5.0	0.1	2.5				31100

Supplementary table 1. Thermal shift results of compounds 1-4 against various kinases.

		ΔTm (°C) for	inhibitor				
Kinase	1	2	3	4	Gatekeeper	DFG-1 residue	subfamily
DYRK2	4.1	7.3	3.6	8.9	F	I	CMGC
MAPK3	0.5	-0.1	0.5		Q	С	CMGC
MAPK6	0.4	0.0			Q	G	CMGC
MAPK7		0.2			L	G	CMGC
FES	0.6	-0.1	4.1	0.3	м	S	ТК
FGFR4				0.2	v	Α	ТК
FGR		-0.2	0.1		Т	Α	ТК
GAK	7.3	0.2	1.4	3.3	Т	С	Other
GRK5		0.8	1.4		L	S	AGC
GSK3B	4.1	1.4	3.9		L	С	CMGC
GSG2	6.5		5.6	4.0	F	I	Other
MAP4K4		-0.1		0.2	М	v	STE
IGF1R				0.2	м	G	ТК
ІКВКВ		0.1	0.6	1.5	М	I	Other
ERN2				0.4	L	S	Other
ITK		1.1		1	F	S	ТК
JAK1	6.4	0.1	0.9		E	S	ТК
MAPK8		0.7	0.2	1.0	м	L	CMGC
МАРК9	0.8	0.4	0.2	0.9	м	L	CMGC
LATS1		0.1			м	т	AGC
LIMK1				0.5	Т	A	TKL
STK10	3.3	0.8	0.1	1.9	1	A	STE
LYN	2.4	0.1	0.2	0.3	Т	A	ТК
MAP2K1		-0.1		0.2	M	C	STE
MAP2K2	2	0.5		0.1	M	c C	STE
MAP2K6	11	0.0	03	0.12	M	c	STE
MAP3K5	2.2	0.4	0.2	1	M	S	STE
MFRTK	13	0.0	0.5			Δ	тк
STK16	2.3	0.2	1.0	3.5		M	Other
	2.0	-0.4	1.0	0.6	M	Δ	AGC
		0.4		0.0	M	A	AGC
SEDK3	0.4	0.0	1 9	0.2		Δ	CMGC
	2.6	0.0	1.5	0.2	M	A	STE
STK3	2.0	0.7	03	16	M	A	STE
STK2/	2.5	-0.2	0.5	0.8	M	A	STE
STK26	0.3	_0.2		0.0	M	A	STE
MYO3A	0.5	0.5		0.1	1		STE
DKMVT1	0.0	-0.6		0.2	T	Ģ	Other
STK38	1 1	0.0	0.4	0.1	M	<u> </u>	AGC
51K38	0.4	0.4	0.4	0.9	M	5	AGC
NEK1	0.4	-0.3		0.5	M	6	Other
NEK11		0.5		0.0	Т	6	Other
NEK2		0.0		0.1	M	G	Other
NEKE		1.0		0.1		G	Other
NEKO		-1.0				G	Other
NEK9		0.3		1	- L	6	CMCC
	0.5	-0.2			M	<u>ر</u>	
MARK11	0.3	0.0	0.2		1VI T		
MAPK12	0.5	0.0	0.2	0.5	N4	L I	CMGC
DAK1		0.4	0.5	0.5	IVI N4	ц. ц. т	
		0.0					
	1 5	-0.6		1.5			
	1.5	1.7		1.5		5	
	0.4	-0.1		0.6	IVI	<u> </u>	
PAKO	1.1	-0.9			IVI	S	SIE
РВК	1	0.5		I	IVI	L C	other

Supplementary table 1 (cont.). Thermal shift results of compounds 1-4 against various kinases.

Supplementary table 1 (cont.). Thermal shift results of compounds 1-	4 against various
kinases.	

		ΔTm (°C) foi	inhibitor				
Kinase	1	2	3	4	Gatekeeper	DFG-1 residue	subfamily
CDK16	0.5	-0.4	2.6	1.2	F	Α	CMGC
CDK17		0.0		0.4	F	Α	CMGC
PDPK1	Ì	0.2		0.3	L	т	AGC
PHKG2	1.7	0.2		1.7	F	S	САМК
PIM1	6.3	5.9	10.7	5.9	L	i	САМК
PIM2	4.7	3.6	6.5	2.1	L	1	САМК
PIM3	6.8	49	9.6	5.4	-	1	CAMK
PRKACA		-0.2	3.3		м	Т	AGC
PRKCZ		-0.2	0.9		1	Т	AGC
PRKD2		0.7	0.9		M	c	САМК
PRKD3	0.8	2.7	2.9		M	c	САМК
PRKG1		1.6	6.1	0.5	M	V	AGC
PRKG2		-0.1			L	v	AGC
PKN1	1.7	-0.5		0.4	M	A	AGC
PKN2	3.7	-0.5	2.9		M	Α	AGC
PLK1	2.0	0.3	1.4	0.4	L	G	Other
PLK4	2.6	0.2	6.8	0.4	L	Α	Other
PRKX		-0.2	5.8		м	Т	AGC
SIK2	İ	-0.2	510	0.4	Т	Α	CAMK
GRK1	11	0.4	2.4		M	S	AGC
RIOK2	0.3	-0.2	2.1.	1	M	1	Atypical
RIPK2	6.0	0.2		l	Т	Δ.	TKI
RIPK3	010	-0.6		1	Т	A	TKI
RPS6KA1	5.2	0.6	1.0	0.6		Т	
RPS6KA3	3.4	0.7	110	0.0		T	САМК
RPS6KA2	27	0.4	22	1.0	-	Т	САМК
RPS6KA6	4.2	0.4	0.8	21		T	САМК
MYLK4	5.8	0.9	3.5	3.9	M		САМК
SgK223				0.4	Т	S	Other
SGK3	İ	-0.1		1	1	Т	AGC
STK40	İ	0.0		1		Т	CAMK
SIK1	İ	15		l	т	Δ.	САМК
MYLK2	İ	-1.4		0.0	M	1	САМК
SLK	2.3	-0.5		0.5	1	A	STE
MYLK		-0.2	3.4	0.1	L	1	САМК
SRPK1		0.0			F	A	CMGC
SRPK2		-0.2	2.4	0.4	F	Α	CMGC
STK33	3.1	0.6	5.9	2.4	M	Т	САМК
STK39	0.8	0.5		0.0	м	Α	STE
TEC		1.0			т	S	ТК
TGFBR1	9.5			0.9	S	Α	TKL
TGFBR2	13.7			2.0	т	с	TKL
TLK1		-0.1		ĺ	L	т	Other
TNIK	1.2	0.1		1.2	м	v	STE
TRIB1	1	0.2		0.1	L	E	САМК
ттк	2.7	0.5	0.7	1.7	м	I	Other
TYK2	1	0.6		ĺ	т	S	ТК
TYRO3	0.4	0.1		ĺ	L	Α	ТК
VRK1	0.7	1.1	0.3	1	м	v	CK1
VRK2	1.5	0.2	0.3	0.0	М	Α	CK1
VRK3		0.5	0.1		L	Α	CK1
WNK3	0.0	-0.3			т	G	Other
STK32A		-0.2	0.8	0.2	v	Т	AGC
STK32B		-0.2			v	т	AGC
STK32C		-0.9	0.7		v	Т	AGC
STK25	0.5	0.7	1.1		М	А	STE
ZAK	1.4	-0.3		0.3	т	С	TKL

Supplementary table 2. The gatekeeper and DFG-1 amino acid compositions of the kinases that interact with inhibitor **1-5.** The kinases that were test are indicated with T, while those that showed inhibitor binding, either in thermal shift assays or KINOMEscan ¹⁻³, are marked with X. The percentage of the occurrence of each amino acid are shown in Figure 2.

Kinase	1	2	3	4	5	Gatekeeper	DFG-1 residue	DFG	subfamily
AAK1	Х	т	т	т		М	С	DFG	Other
ACVR1	х	т		Т		т	Α	DLG	TKL
ACVR1B	х	т		Т	т	S	Α	DLG	TKL
ACVR2A	х	т		т		т	Α	DFG	TKL
ACVR2B	х	т		Т		т	Α	DFG	TKL
ACVRL1	Х	т	т	т		т	Α	DLG	TKL
BMP2K	х	т	т	l		М	С	DFG	Other
BMPR1A	х	т				т	Α	DLG	TKL
BMPR1B	Х	т		т		Т	Α	DLG	TKL
BMPR2	Х	т	т			М	S	DFG	TKL
CLK1	Х	Х	Х	Х	Х	F	v	DFG	CMGC
CLK2	Х	Х		Х	х	F	v	DFG	CMGC
CLK4	х	х	х		Х	F	v	DFG	CMGC
CSNK1E	Х	х	т			м	I	DFG	CK1
CSNK1G2	т	Х		ĺ	т	L	I	DFG	CK1
CSNK1G3	т	Х	т	Т	т	L	I	DFG	CK1
CSNK2A2	т	т	Х	Т	т	F	I	DWG	CMGC
DAPK3	т	т	Х		т	L	I	DFG	САМК
DRAK1	т	Т	Х	т	Т	L	v	DFG	САМК
DRAK2	Х	т	т	Х		L	v	DFG	САМК
DYRK1A	т	Х	т		Х	F	v	DFG	CMGC
DYRK1B		Х			х	F	v	DFG	CMGC
DYRK2	х	х	т	Х	х	F	I	DFG	CMGC
GAK	Х	т	т	т		т	С	DFG	Other
GSK3A		т		l	Х	L	С	DFG	CMGC
GSK3B	Х	Т	т		Х	L	С	DFG	CMGC
Haspin	х	т	х	х	Х	F	I	DYT	Other
НІРК2		Т			Х	F	I	DFG	CMGC
НІРКЗ		т			Х	F	I	DFG	CMGC
IRAK4		Т			Х	Y	S	DFG	TKL
JAK1	Х	Т	Т		Т	E	S	DPG	ТК
MAP3K19		Х				м	I	DFG	STE
MYLK4	Х	т	т	т		М	I	DFG	САМК
NTRK1		Т			Х	F	G	DFG	ТК
PIM1	Х	Х	Х	Х	Х	L	I	DFG	САМК
PIM2	Х	т	Х	т	Х	L	I	DFG	САМК
PIM3	Х	Х	Х	Х	т	L	I	DFG	САМК
PLK4	т	Т	Х	т		L	Α	DFG	Other
PRKG1		Т	Х	т	т	М	v	DFG	AGC
PRKX		т	Х		т	М	т	DFG	AGC
RIPK2	Х	т				т	Α	DFG	TKL
RPS6KA1	Х	Т	т	Т	Т	L	т	DFG	САМК
RPS6KA6	Х	Т	Т	Т	Т	L	т	DFG	САМК
STK33	т	Т	Х	Т	Т	м	т	DFG	САМК
TGFbR1	х	Т		Т	Т	S	А	DLG	TKL
TGFbR2	Х	т		т		т	С	DFG	TKL

ΔTm (°C) for kinases		S				
Cpd	name	wild type CLK1	V324A CLK1	wild type CLK3	A319V CLK3	SMILES
1	K00135 ⁴	7.2	4.9	1.4	5.8	N(C(=C1)C(=CC2C(=O)C)C=CC=2)(N=C2NCC(C3)C3)C(=N1)C=C2
2	Tg003⁵	7.1	3.6	1.1	5.8	O=C(C)/C=C1SC2=CC=C(OC)C=C2N\1CC
3	KH-CARB13 ⁶	7.4	2.8	1.2	5.8	[CI-].CN1C2C(C(C#N)C3(CC[NH2+]CC3)NC2=O)c4ccc(CI)c(CI)c14
4	K00972 ⁷	5.7	2.4	0.1	0.6	C(C(C=CC1C(=NC(=NC2)N)C=2)=N2)(C=1)=C(O2)C(=CC=C(C1)[Cl])C=1
5	MU1210 ²	9.3	5.94	1.5	8.27	Cn1cc(cn1)c2ccc3occ(c4cccc(c4)c5ccncc5)c3n2
6	staurosporine	13.4	11.8	4.7	8.1	CC12C(C(CC(O1)N3C4=CC=CC=C4C5=C6C(=C7C8=CC=CC=C8N2C7=C53)CNC6=O)NC)OC
7	KH-CB19 ⁸	15.0	7.5	8.6	11	C(=C1C=C2)(C(=C2[CI])[CI])N(C(=C1C(C#N)=CN)C(OCC)=O)C
8	GW807982X ⁹	9	2.5	2.0	5.5	CCOc1ccc2c(cnn2n1)c3ccnc(Nc4cc(OC)cc(c4)C(F)(F)F)n3
9	K00518 (biofocus)	6.8	3.9	1.8	8.6	N(C(=C1)C(=CC2C(=O)C)C=CC=2)(N=C2NC(C(C)C)CO)C(=N1)C=C2
10	T3-CLK ¹⁰	18.7	13.7	13.7	17.3	CN1CCN(C(C(C)(C)C2=CC=C(C(NC3=CN(C=C(C4=CC=NC=C4)C=C5)C5=N3)=O)C=C2)=O)CC1
11	KuWal151 ¹¹	9.4	5.1	1.7	4.7	Clc1cccc(c1)c2c[nH]c3c4C(=O)NCc4ccc23
12	FC162 ¹²	9.5	3.0	3.6	5.5	O=C1N(C=Nc2ccc3nc(sc3c12)c4cccnc4)C5CC5
13	ETH1610 ¹³	10.3	3.8	3.4	9.2	COC(=N)c1nc2ccc3ncnc(Nc4ccc(OC)cc4F)c3c2s1
14	VN412 ²	12.3	7.8	4.8	10.1	Cn1cc(cn1)c2ccc3occ(c4cccc(Oc5ccccc5)c4)c3n2
15	GW779439X ⁹	15.0	9.8	5.7	10.2	CN1CCN(CC1)C2=C(C=C(C=C2)NC3=NC=CC(=N3)C4=C5C=CC=NN5N=C4)C(F)(F)F
16	KH-CARB10 ⁶	6.1	1.8	1.1	5.0	CN1CCC2(CC1)NC(=O)C3C(C2C#N)c4ccc(Cl)c(Cl)c4N3C
17	KH-CARB11 ⁶	4.8	1.0	0.6	3.8	CCN1CCC2(CC1)NC(=O)C3C(C2C#N)c4ccc(Cl)c(Cl)c4N3C
18	iodotubercidin	13.1	9.7	7.9	14.1	C1=C(C2=C(N=CN=C2N1C3C(C(C(O3)CO)O)O)N)I

Supplementary table 3. Δ Tm data for wild type and DFG-1-mutated CLK1 and CLK3.

Supplementary table 4. Inhibition constant (K_i) from nanoBRET assays for CLK1 wild type and V324A mutant.

		Ki (μM)	
Compound	wild type CLK1	V324A CLK1	ratio mutant/wild type
1	0.229 ± 0.10	0.512 ± 0.10	2.2
2	0.21 ± 0.12	0.671 ± 0.23	3.2
3	0.136 ± 0.09	2.81 ± 0.67	20.6
6	0.009 ± 0.002	0.006 ± 0.002	0.7
7	0.018 ± 0.008	0.166 ± 0.031	9.2
8	0.036 ± 0.02	3.93 ± 1.1	109.2
9	0.943 ± 0.64	2.64 ± 1.80	2.8
10	0.001 ± 0.0001	0.0023 ± 0.0001	2.4
11	0.228 ± 0.08	0.878 ± 0.046	3.9
12	1.86 ± 1.2	5.45 ± 0.79	2.9

Complex	CLK1-1	CLK1-2	V324A CLK1-2	CLK3-2	A319V CLK3-2
PDB accession code	бута	6YTE	6YTD	6YTW	бүтү
Beamline	SLS PXIII-X06DA	BESSY 14.2	BESSY 14.2	BESSY 14.2	BESSY 14.2
Data Collection					
Resolution ^a (Å)	67.46-1.95 (2.00-1.95)	64.70-2.30 (2.38-2.30)	71.30-2.00 (2.05-2.00)	79.52-2.00 (2.05-2.00)	53.10-1.76 (1.80-1.76)
Spacegroup	C2	C2	12	Ω	12
Cell dimensions	a = 92.9, b = 64.2, c = 80.8 Å	a = 91.7, b = 64.3, c = 73.1 Å	a = 80.9, b = 64.7, c = 89.3 Å	a = 96.1, b = 131.6, c = 83.6 Å	a = 84.2, b = 45.0, c = 106.3 Å
	$\alpha = \gamma = 90.0^{\circ}; \ \theta = 123.4^{\circ}$	$\alpha = \gamma = 90.0^{\circ}; \beta = 117.7^{\circ}$	$\alpha = \gamma = 90.0^{\circ}; \ \theta = 114.7^{\circ}$	$\alpha = \gamma = 90.0^{\circ}; \ \theta = 108.0^{\circ}$	$\alpha = \gamma = 90.0^{\circ}; \beta = 111.1^{\circ}$
No. unique reflections ^a	29,054 (2,009)	16,851 (1,648)	27,570 (2,045)	66,435 (4,475)	36,800 (2,104)
Completeness ^a (%)	100.0 (100)	100.0 (100.0)	97.1 (98.0)	99.8 (100.0)	99.9 (99.8)
l/σl ^a	12.8 (3.7)	8.0 (3.7)	10.2 (2.8)	11.1 (2.8)	10.7 (3.1)
R _{merge} ^a	0.077 (0.413)	0.131 (0.383)	0.097 (0.618)	0.104 (0.653)	0.097 (0.553)
CC (1/2)	0.998 (0.909)	0.969 (0.893)	0.996 (0.851)	0.998 (0.839)	0.995 (0.793)
Redundancy ^a	6.3 (5.9)	4.8 (4.9)	6.0 (6.2)	6.3 (6.7)	5.2 (5.3)
Refinement					
No. atoms in refinement (P/L/O) ^b	2,716/23/220	2,810/ 17/ 233	2,779/ 17/ 254	5,686/ 34/ 623	2,912/ 17/ 186
B factor (P/L/O) ^b (Å ²)	24/23/26	26/ 16/ 29	31/ 20/ 39	36/ 52/ 40	18/13/20
R _{fact} (%)	19.0	18.1	17.9	18.4	18.6
R _{free} (%)	27.5	25.8	22.8	22.7	22.2
rms deviation bond ^c (Å)	0.013	0.013	0.013	0.012	0.014
rms deviation angle ^c (°)	1.9	1.6	1.6	1.7	1.7
Molprobity Ramachandran					
Favour (%)	94.05	94.05	95.25	95.00	96.56
Outlier (%)	0	0	0	0.15	0
Crystallization conditions	14% PEG 6k, 0.1M bicine 8.0	26% PEG 6k, 0.1M bicine 9.0	17% PEG 3350, 0,2M Na malonate pH	21% PEG 3350, 0,2M Na/K PO4, 10%	17% PEG 3350, 0,2M NaBr, 10%
			7	Ethylene Glycol	Ethylene Glycol, 0.1M bis-tris propane 7.0

Supplementary table 5. Data collection and refinement statistics.

^a Values in brackets show the statistics for the highest resolution shells.

^b P/L/O indicate protein, ligand molecules presented in the active sites, and other (water and solvent molecules), respectively.

^c rms indicates root-mean-square.

Complex	CLK1-3	CLK3-3	A319V CLK3-3	CLK1-8	CLK1-13
PDB accession code	6YTG	6YU1	6Z2V	6ZLN	6YTI
Beamline	SLS PXIII-X06DA	BESSY 14.1	BESSY 14.2	SLS PXI-X06SA	SLS PXIII-X06DA
Data Collection					
Resolution ^a (Å)	64.30-1.95 (2.00-1.95)	79.66-1.90 (1.94-1.90)	76.54-2.60 (2.72-2.60)	45.53-1.70 (1.73-1.70)	69.57-2.40 (2.49-2.40)
Spacegroup	C2	C2	12	C2	C2
Cell dimensions	<i>a</i> = 92.49, <i>b</i> = 64.1, <i>c</i> = 80.8 Å	<i>a</i> = 96.3, <i>b</i> = 131.0, <i>c</i> = 83.6 Å	a = 84.4, b = 45.4, c = 106.3 Å	<i>a</i> = 91.6, <i>b</i> = 63.6, <i>c</i> = 80.1 Å	<i>a</i> = 91.5, <i>b</i> = 63.9, <i>c</i> = 79.4 Å
	$\alpha = \gamma = 90.0^{\circ}; \ \theta = 123.4^{\circ}$	$\alpha = \gamma = 90.0^{\circ}; \ \theta = 107.7^{\circ}$	$\alpha = \gamma = 90.0^{\circ}; \ \theta = 111.2^{\circ}$	$\alpha = \gamma = 90.0^{\circ}; \ \theta = 118.4^{\circ}$	$\alpha = \gamma = 90.0^{\circ}; \ \theta = 118.8^{\circ}$
No. unique reflections ^a	29,054 (2,009)	76,479 (4,232)	11,812 (1,441)	44,218 (2,200)	15,727 (1,633)
Completeness ^a (%)	100 (100)	98.7 (91.8)	100.0 (100.0)	99.42(93.8)	99.4 (98.9)
l/σl ^a	26.8 (3.7)	10.7 (2.7)	6.4 (1.6)	11.1 (2.4)	10.1 (1.9)
R _{merge} ^a	0.071 (0.374)	0.073 (0.402)	0.246 (1.319)	0.065 (0.417)	0.153 (1.064)
CC (1/2)	0.998 (0.909)	0.997 (0.838)	0.985 (0.597)	0.997 (0.839)	0.996(0.707
Redundancy ^a	6.3 (5.9)	4.0 (3.4)	6.9 (7.2)	3.9 (3.6)	7.0 (6.9)
Refinement					
No. atoms in refinement (P/L/O) ^b	2,685/48/233	5,707/48/579	2,761/24/66	2,783/62/415	2,665/27/103
B factor (P/L/O) ^b (Å ²)	29/24/32	29/60/40	39/61/29	23/21/35	49/48/46
R _{fact} (%)	20.4	17.1	20.2	17.0	19.5
R _{free} (%)	27.0	20.7	26.4	19.9	25.6
rms deviation bond ^c (Å)	0.015	0.011	0.017	0.015	0.012
rms deviation angle ^c (°)	1.7	1.6	1.8	1.7	1.7
Molprobity Ramachandran					
Favour (%)	94.20	96.04	91.04	96.73	94.12
Outlier (%)	0	0.15	0.30	0.30	0.31
Crystallization conditions	17% PEG 6k, 0.1M bicine 8.0	18% PEG 3350, 0,2M Na/K PO4, 10%	24% PEG 3350, 0,2M KSCN,	14% PEG 6k, 0.1M bicine 9.0	29% PEG 6k, 0.1M bicine 9.3
		Ethylene Glycol	10% Ethylene Glycol, 0.1M bis-tris		
			propane 6.5		

Supplementary table 5 (cont.). Data collection and refinement statistics.

^a Values in brackets show the statistics for the highest resolution shells.

^b P/L/O indicate protein, ligand molecules presented in the active sites, and other (water and solvent molecules), respectively.

^c rms indicates root-mean-square.

Complex	ACVR1-1	CLK2-Ro-3306
PDB accession code	4DYM	3NR9
Beamline	Diamond I02	Diamond I24
Data Collection		
Resolution ^a (Å)	44.73-2.42 (2.55-2.42)	55.90-2.89 (3.04-2.89)
Spacegroup	C2221	P3221
Cell dimensions	a = 57.8, b = 81.86, c = 140.39 Å	<i>a</i> = b = 97.7, <i>c</i> = 223.0 Å
	$\alpha = \gamma = \beta = 90.0^{\circ}$	$\alpha = \gamma = 90.0^\circ; \theta = 120^\circ$
No. unique reflections ^a	13,074 (1,858)	28,133 (4,062)
Completeness ^a (%)	99.8 (100.0)	99.3 (99.2)
l/σl ^a	8.1 (2.0)	8.5 (2.0)
R _{merge} ^a	0.146 (0.75)	0.173 (0.989)
CC (1/2)		
Redundancy ^a	4.5 (4.7)	4.9 (5.0)
Refinement		
No. atoms in refinement (P/L/O) ^b	2,306/23/158	8,427/72/63
B factor (P/L/O) ^b (Å ²)	43/29/40	45/39/26
R _{fact} (%)	22.0	19.4
R _{free} (%)	28.0	25.2
rms deviation bond ^c (Å)	0.012	0.013
rms deviation angle ^c (°)	1.5	1.4
Molprobity Ramachandran		
Favour (%)	96.91	95.13
Outlier (%)	0.69	0.19
Crystallization conditions	1.60M MgSO4; 0.1M MES pH 6.5	1.60M MgSO4; 0.1M MES pH 6.5

Supplementary table 5 (cont.). Data collection and refinement statistics.

^a Values in brackets show the statistics for the highest resolution shells.

^b P/L/O indicate protein, ligand molecules presented in the active sites, and other (water and solvent molecules), respectively.

^c rms indicates root-mean-square.

REFERENCES

1. Moret, N.; Clark, N. A.; Hafner, M.; Wang, Y.; Lounkine, E.; Medvedovic, M.; Wang, J.; Gray, N.; Jenkins, J.; Sorger, P. K., Cheminformatics Tools for Analyzing and Designing Optimized Small-Molecule Collections and Libraries. *Cell Chem Biol* **2019**, *26* (5), 765-777.e3.

Nemec, V.; Hylsova, M.; Maier, L.; Flegel, J.; Sievers, S.; Ziegler, S.; Schroder, M.; Berger, B.
T.; Chaikuad, A.; Valcikova, B.; Uldrijan, S.; Drapela, S.; Soucek, K.; Waldmann, H.; Knapp, S.; Paruch, K., Furo[3,2-b]pyridine: A Privileged Scaffold for Highly Selective Kinase Inhibitors and Effective Modulators of the Hedgehog Pathway. *Angew Chem Int Ed Engl* 2019, *58* (4), 1062-1066.

3. Mott, B. T.; Tanega, C.; Shen, M.; Maloney, D. J.; Shinn, P.; Leister, W.; Marugan, J. J.; Inglese, J.; Austin, C. P.; Misteli, T.; Auld, D. S.; Thomas, C. J., Evaluation of substituted 6-arylquinazolin-4amines as potent and selective inhibitors of cdc2-like kinases (Clk). *Bioorg Med Chem Lett* **2009**, *19* (23), 6700-6705.

4. Pogacic, V.; Bullock, A. N.; Fedorov, O.; Filippakopoulos, P.; Gasser, C.; Biondi, A.; Meyer-Monard, S.; Knapp, S.; Schwaller, J., Structural analysis identifies imidazo[1,2-b]pyridazines as PIM kinase inhibitors with in vitro antileukemic activity. *Cancer Res* **2007**, *67* (14), 6916-6924.

5. Muraki, M.; Ohkawara, B.; Hosoya, T.; Onogi, H.; Koizumi, J.; Koizumi, T.; Sumi, K.; Yomoda, J.; Murray, M. V.; Kimura, H.; Furuichi, K.; Shibuya, H.; Krainer, A. R.; Suzuki, M.; Hagiwara, M., Manipulation of alternative splicing by a newly developed inhibitor of Clks. *J Biol Chem* **2004**, *279* (23), 24246-24254.

6. Huber, K.; Brault, L.; Fedorov, O.; Gasser, C.; Filippakopoulos, P.; Bullock, A. N.; Fabbro, D.; Trappe, J.; Schwaller, J.; Knapp, S.; Bracher, F., 7,8-dichloro-1-oxo-beta-carbolines as a versatile scaffold for the development of potent and selective kinase inhibitors with unusual binding modes. *J Med Chem* **2012**, *55* (1), 403-413.

7. Pierce, A. C.; Jacobs, M.; Stuver-Moody, C., Docking study yields four novel inhibitors of the protooncogene Pim-1 kinase. *J Med Chem* **2008**, *51* (6), 1972-1975.

8. Fedorov, O.; Huber, K.; Eisenreich, A.; Filippakopoulos, P.; King, O.; Bullock, A. N.; Szklarczyk, D.; Jensen, L. J.; Fabbro, D.; Trappe, J.; Rauch, U.; Bracher, F.; Knapp, S., Specific CLK inhibitors from a novel chemotype for regulation of alternative splicing. *Chem Biol* **2011**, *18* (1), 67-76.

9. Elkins, J. M.; Fedele, V.; Szklarz, M.; Abdul Azeez, K. R.; Salah, E.; Mikolajczyk, J.; Romanov, S.; Sepetov, N.; Huang, X. P.; Roth, B. L.; Al Haj Zen, A.; Fourches, D.; Muratov, E.; Tropsha, A.; Morris, J.; Teicher, B. A.; Kunkel, M.; Polley, E.; Lackey, K. E.; Atkinson, F. L.; Overington, J. P.; Bamborough, P.; Muller, S.; Price, D. J.; Willson, T. M.; Drewry, D. H.; Knapp, S.; Zuercher, W. J., Comprehensive characterization of the Published Kinase Inhibitor Set. *Nat Biotechnol* **2016**, *34* (1), 95-103.

10. Funnell, T.; Tasaki, S.; Oloumi, A.; Araki, S.; Kong, E.; Yap, D.; Nakayama, Y.; Hughes, C. S.; Cheng, S. G.; Tozaki, H.; Iwatani, M.; Sasaki, S.; Ohashi, T.; Miyazaki, T.; Morishita, N.; Morishita, D.; Ogasawara-Shimizu, M.; Ohori, M.; Nakao, S.; Karashima, M.; Sano, M.; Murai, A.; Nomura, T.; Uchiyama, N.; Kawamoto, T.; Hara, R.; Nakanishi, O.; Shumansky, K.; Rosner, J.; Wan, A.; McKinney, S.; Morin, G. B.; Nakanishi, A.; Shah, S.; Toyoshiba, H.; Aparicio, S., CLK-dependent exon recognition and conjoined gene formation revealed with a novel small molecule inhibitor. *Nat Commun* **2017**, *8* (1), 7.

11. Walter, A.; Chaikuad, A.; Helmer, R.; Loaec, N.; Preu, L.; Ott, I.; Knapp, S.; Meijer, L.; Kunick, C., Molecular structures of cdc2-like kinases in complex with a new inhibitor chemotype. *Plos One* **2018**, *13* (5), e0196761.

12. Fruit, C.; Couly, F.; Bhansali, R.; Rammohan, M.; Lindberg, M. F.; Crispino, J. D.; Meijer, L.; Besson, T., Biological Characterization of 8-Cyclopropyl-2-(pyridin-3-yl)thiazolo[5,4-f]quinazolin-9(8H)-one, a Promising Inhibitor of DYRK1A. *Pharmaceuticals (Basel)* **2019**, *12* (4), 185.

13. Chaikuad, A.; Diharce, J.; Schroder, M.; Foucourt, A.; Leblond, B.; Casagrande, A. S.; Desire, L.; Bonnet, P.; Knapp, S.; Besson, T., An Unusual Binding Model of the Methyl 9-Anilinothiazolo[5,4-f] quinazoline-2-carbimidates (EHT 1610 and EHT 5372) Confers High Selectivity for Dual-Specificity Tyrosine Phosphorylation-Regulated Kinases. *J Med Chem* **2016**, *59* (22), 10315-10321.