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Abstract 49 

Non-forest ecosystems, dominated by shrubs, grasses and herbaceous plants, provide 50 

ecosystem services including carbon sequestration and forage for grazing, yet are highly 51 

sensitive to climatic changes. Yet these ecosystems are poorly represented in remotely-52 

sensed biomass products and are undersampled by in-situ monitoring. Current global 53 

change threats emphasise the need for new tools to capture biomass change in non-forest 54 

ecosystems at appropriate scales. Here we assess whether canopy height inferred from 55 

drone photogrammetry allows the estimation of aboveground biomass (AGB) across low-56 

stature plant species sampled through a global site network. We found mean canopy height 57 

is strongly predictive of AGB across species, demonstrating standardised photogrammetric 58 

approaches are generalisable across growth forms and environmental settings. Biomass 59 

per-unit-of-height was similar within, but different among, plant functional types. We find 60 

drone-based photogrammetry allows for monitoring of AGB across large spatial extents and 61 

can advance understanding of understudied and vulnerable non-forested ecosystems across 62 

the globe. 63 

 64 

Keywords: 65 

Aboveground Biomass, Canopy Height Model, Structure-from-Motion Photogrammetry, 66 

Unmanned Aerial System (UAS), Drone, Allometry, Fine Resolution Remote Sensing, Plant 67 

Height.  68 
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Introduction 69 

Non-forest ecosystems, dominated by shrub and herbaceous plants, cover about 70% of the 70 

Earth’s land surface1 and account for around 35% of all aboveground biomass (AGB)2. They 71 

provide multiple ecosystem services, playing dominant roles in the long-term trends and 72 

interannual variability of the global carbon cycle3,4, and are highly significant for grazing and 73 

agriculture5. Grassland, shrubland, Arctic tundra, savanna and proglacial montane 74 

landscapes are often more sensitive and respond faster to changes in climate than forests6, 75 

but have received less systematic research attention1,7,8. Non-destructive measurements of 76 

canopy height and biomass are fundamental requirements for plant science9–11 to 77 

understand the roles of these ecosystems in climate change mitigation, sustainable food 78 

production and land management12–14. However, measuring biomass with in situ 79 

measurements is labour intensive and thus prone to undersampling, particularly in 80 

ecosystems that are spatially heterogeneous and/or temporally dynamic, putting on (and 81 

losing) biomass rapidly1,15–17. Gaps in available data mean that biomass dynamics are not 82 

being captured in many important ecosystems across the globe, hindering the calibration 83 

and validation of vegetation models and products derived from satellite observations7,14. The 84 

lack of accurate biomass data limits our ability to track changes and predict future responses 85 

in globally relevant non-forest ecosystems.  86 

 87 

Improving the accuracy of biomass data in non-forest biomes requires approaches that are: 88 

(i) sensitive to small differences in AGB, (ii) sufficiently inexpensive to be adopted worldwide, 89 

and allow (iii) spatially continuous sampling across (iv) representative areas at (v) temporal 90 

frequencies appropriate for dynamic ecosystems14,16. The most accurate non-destructive 91 

estimates of AGB are generally obtained from in situ measurements of attributes such as 92 

plant cover, height and stem diameters, using allometric functions fitted to harvested 93 

biomass observations. Canopy volume, the product of height and cover, is often the 94 

strongest predictor of AGB for shrubs, herbs and other low-stature plants15,18–22. Remote-95 

sensing approaches have been widely used to extend the coverage of biomass predictions. 96 

Biomass can be predicted from airborne LiDAR (Light Detection and Ranging) in shrublands 97 

and savannas23, but the footprints sampled by LiDAR can be insensitive to fine-scale 98 

changes in plant structure and these data are expensive and unavailable in many areas. 99 

Biomass estimates computed from spectral reflectance are often highly uncertain due to 100 

asymptotic relationships between AGB and surface reflectance and variable soil albedo6,22. 101 

Globally-available biomass products from space-based sensors such as LiDAR, synthetic-102 
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aperture radar or vegetation optical depth are either insensitive and/or poorly calibrated and 103 

validated in low-biomass (<20 Mg ha-1) ecosystems1,7,8,14,24. 104 

 105 

Photogrammetry using aerial images acquired with unmanned aerial systems (UAS, herein 106 

‘drones’) could greatly improve quantification of AGB in non-forest ecosystems, both directly 107 

at a local scale and indirectly by improving the calibration and validation of biomass products 108 

obtained from coarser scale remotely-sensed observations. Advances in photogrammetry, 109 

particularly structure-from-motion (SfM) with multi-view stereopsis25, have made it possible 110 

to capture 3D representations of plants, quantitatively describing their fine-scale structure 111 

with an unprecedented level of detail26,27. SfM allows objective measurements of canopy 112 

height at sub-decimetre spatial grain for a wide range of plant growth forms18–20,27–31. 113 

Lightweight and inexpensive drones enable vegetation sampling at temporal intervals 114 

appropriate for highly dynamic ecosystems16,32 and can be used for detailed surveys over 115 

extents of 1-10 ha, covering more representative areas of heterogeneous ecosystems15,27 116 

that allow spatially explicit comparison with other biomass estimates1,14,32. 117 

 118 

Fully realising the potential of drone photogrammetry in plant science requires reproducible 119 

workflows, which minimise biases30,33,34. Over the past few years, thousands of hectares of 120 

low-stature ecosystems have been surveyed with drones across the globe, yielding 121 

information-rich datasets. However, drone-photogrammetry products are sensitive to the 122 

ways in which data are (i) collected (e.g., ground sampling distance, image overlap, viewing 123 

geometry, spatial control, illumination conditions)27,30,34–38, (ii) processed (e.g., software, lens 124 

model, specification of control accuracy, selection of processing quality, depth filtering)27,36–125 

38, and (iii) analysed (e.g., canopy height metrics, spatial grain and interpolation, statistical 126 

treatment)20,27–29,31. These sensitivities are more pronounced for subjects with complex 127 

texture, such as vegetation, and hinder comparisons between products obtained from 128 

different workflows. To maximise the value of these approaches, standardised and 129 

reproducible protocols are needed, but few efforts currently exist to advance this aim. 130 

Addressing critical knowledge gaps in plant science with drone photogrammetry requires 131 

knowledge of the relationships between photogrammetrically derived canopy height and 132 

AGB across the range of plants and ecosystems in which they will be applied, and 133 

systematic understanding of the possible influences of environmental conditions (e.g. wind 134 

speed and illumination)19,27,30,35,39. In this study, we apply a new, standardised approach for 135 

airborne allometric inference of biomass for non-forested ecosystems globally using drone 136 
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photogrammetry. We asked the following research questions: (1) Does canopy height 137 

derived from drone photogrammetry correspond with AGB at the species-level? (2) Does 138 

photogrammetry-derived canopy height correspond with AGB at the PFT-level? (3) Are 139 

relationships between reconstructed canopy height and biomass influenced by wind speed 140 

and (4) and solar elevation? 141 

 142 

Using rigorous, consistent protocols33, we conducted a novel, globally coordinated 143 

experiment to sample 36 sites, encompassing a diverse range of non-forest ecosystems, 144 

including semi-arid and temperate grasslands and shrublands, Arctic tundra, savanna and 145 

proglacial montane sites (Fig. 1B), spanning from 71° North to 37° South, across North 146 

America, Europe, Australia and Africa (Fig. 1A). Our study includes photogrammetric 147 

reconstructions from 38 different surveys (Supplementary Table 1), sampling 50 low-stature 148 

plant species across six PFTs including ferns, forbs, graminoids, shrubs, succulents and 149 

trees that cover phylogenetic diversity including non-flowering plants and the most species-150 

rich clades of flowering plants (including monocots and eudicots). To calibrate our allometric 151 

models, we sampled 741 harvest plots, with AGB ranging from 9 g m-2 to 7,892 g m-2 and 152 

mean (maximum) canopy heights ranging from 0 m to 1.9 m (0.01 m to 6.7 m). Our sample 153 

achieved a more than twenty-fold improvement in the coverage of harvest plots, species and 154 

sites compared to previous photogrammetry vegetation studies (Fig. 1C)20,28,29. We fitted 155 

plant functional type (PFT) and species-specific models that predict AGB from fine-grained 156 

canopy height as determined by SfM photogrammetry. Mean canopy height, sampled at fine 157 

(centimetre) spatial grain, integrated canopy cover and height as well as foliage density. The 158 

consideration of these multiple plant size attributes is key to robust prediction of biomass.  159 
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 160 

Fig. 1. Point clouds derived from drone surveys consistently provided structural 161 

reconstructions of plants across non-forested ecosystems. A depicts the geographic 162 

distribution of our sites, spanning four continents. B depicts the bioclimatic distribution of 163 

sites in terms of annual average precipitation and temperature. We sampled five biomes 164 

where low-stature vegetation is often dominant, representing every appropriate (non-forest) 165 

biome described by Whitaker40. C Reconstructed point clouds corresponded well with 166 

photographs of harvest plots. The grid of black points represents the underlying terrain 167 

model.  168 
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Methods 169 

Site and Species selection 170 

We focused our efforts on low-stature phenotypes in non-forest ecosystems, including 171 

grasslands, shrublands with open and closed canopies, and woody savannas. Low-stature 172 

ecosystems are understudied and tools for quantifying forest biomass are better represented 173 

in the existing literature1,7,8. While photogrammetry can be used to characterise forest 174 

canopies30,31,35, we consider forest ecosystems better candidates for observation with active 175 

remote sensing approaches such as synthetic-aperture radar7, vegetation optical depth and 176 

LiDAR52. We selected species that were regionally widespread, accessible and would inform 177 

ongoing research efforts, but excluded extensively modified vegetation such as managed 178 

hedges. Sampling was undertaken during seasonal peak canopy cover to minimise 179 

differences arising from phenophase, although plant development and allometric 180 

relationships may still vary especially in more water-limited ecosystems41. The data 181 

collection protocol was comprehensively described by Cunliffe and Anderson33. Two study 182 

sites (‘SES’ and ‘SEG’) were sampled on consecutive years, giving 38 surveys from 36 sites 183 

(Supplementary Table 1). 184 

Aerial imaging surveys 185 

Harvest sites were surveyed using drones to acquire aerial red-green-blue images. For each 186 

site, two sets of survey flights were undertaken, the first obtaining nadir imagery to attain a 187 

spatial grain of ca. 5 mm per pixel at the canopy top, and the second obtaining oblique (ca. 188 

20° from nadir) images from ca. 4 m higher. Survey altitudes varied depending on the 189 

resolution and field-of-view of the sensors and the canopy height30, but were typically 20 m 190 

above the canopy. The different perspectives afforded by the nadir and slightly higher, 191 

convergent surveys helps to improve the stability of the camera network36,37,45,53–56. Both 192 

survey flights obtained 75% forward and side overlap, together capturing at least 30 images 193 

for each part of the study area. The high image overlap facilitated tie point matching in the 194 

vegetated scenes. Wind speeds were generally recorded using handheld anemometers 195 

immediately prior to the survey47. Our sampling protocol33 was optimised for smaller plants of 196 

up to ca. 3 m in height. To support feature matching in texturally complex scenes containing 197 

taller vegetation (e.g., mature Juniperus monosperma or Pinus edulis), higher survey 198 

altitudes could be used to help minimise excessive parallax (i.e., excessive scene changes 199 

between overlapping images). 200 
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A key requirement for photogrammetric surveys is the inclusion of adequate spatial 201 

control38,45. Our photogrammetric reconstructions used thirteen ground markers, each 202 

measuring ca. 20 cm x 20 cm, deployed across each site and geolocated to a typical 203 

precision of ± 0.015 m horizontally and ± 0.03 m vertically. Further details on the sites and 204 

survey equipment are provided in Supplementary Table 1. Images intended for 205 

photogrammetric analysis should ideally not be geometrically corrected in-camera prior to 206 

further distortion correction. Such in-camera processing is a problem for JPG-format image 207 

files from cameras like the widely used DJI Phantom 4 Advanced/Pro FC6310 camera, and 208 

so capturing RAW-format images can help avoid this error source38,45. We anticipate ongoing 209 

improvements to camera geolocation and orientation information from drone systems will 210 

continue to improve the accuracy and reliability of the camera parameter estimation, 211 

particularly in densely vegetated and thus texturally complex settings (Supplementary Note 212 

1)34,38,45,57,58. 213 

Vegetation harvests 214 

We used an area-based approach to enable sampling in ecosystems with continuous or 215 

coalesced canopies, while also sampling individual plants where these were naturally 216 

isolated from other plants33,59. We selected harvest plots to sample across the natural range 217 

of canopy heights observed at each site, in order to estimate the allometric models more 218 

efficiently as well as to test the form of the relationship between mean canopy height and 219 

biomass46. Plots were chosen to try to ensure that ≥ 90% of the biomass and ≥ 90% of the 220 

foliar volume within each plot were from the target species. We aimed for a minimum harvest 221 

plot size of 0.5 m x 0.5 m to reduce the possible effects of co-registration errors22. The 222 

corners of each plot were geolocated with high-precision GNSS before all standing biomass 223 

was harvested to ground-level (or the moss level for Salix richardsonii and Arctophila 224 

fulva)22. Biomass was then dried at ca. 50-80°C until reaching a constant weight over a 24-225 

hour period. For some of the largest taxa (Adenostoma fasciculatum, Adenostoma 226 

sparsifolium, Atriplex polycarpa, Ericameria nauseosa, Juniperus monosperma, Launaea 227 

arborescens, Pinus edulis and Prosopis velutina), freshly harvested biomass was weighed in 228 

the field and representative sub-samples were then dried to determine moisture contents59. 229 

Plot areas were computed from corner coordinates, unless a quadrat was used during 230 

harvesting in which case the area of the quadrat was used to minimise propagating errors 231 

from GNSS-coordinates. 232 

Image-based modelling 233 
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Aerial images were processed using SfM photogrammetry, using established workflows and 234 

following our previous studies27,59. Geotagged image data and ground-control marker 235 

coordinates were imported into AgiSoft PhotoScan Professional v1.4.3 (now Metashape; 236 

http://www.agisoft.com) and converted to UTM coordinate reference systems. Image 237 

sharpness was measured using PhotoScan’s image quality tool, all images had an image 238 

sharpness score of ≥ 0.537. Tie points were matched and cameras aligned using 239 

PhotoScan’s highest quality setting, a key point limit of 40,000, a tie point limit of 8,000, with 240 

generic and reference pair preselection enabled, and adaptive camera model fitting disabled. 241 

During camera self-calibration we enabled the following lens parameters: Focal length (f), 242 

principal point (cx, cy), radial distortion (k1, k2), tangential distortion (p1, p2), aspect ratio 243 

and skew coefficient (b1, b2). Most cameras had global shutters but rolling shutter 244 

corrections were used when appropriate. Reference parameters were set to: camera 245 

location accuracy = XY ± 20 m, Z ± 50 m; marker location accuracy = XY ± 0.02 m, Z ± 0.05 246 

m; marker projection accuracy was set to 2 pixels; tie point accuracy was set to either the 247 

mean root mean square reprojection error or one, whichever was greater. The result of 248 

camera alignment was a sparse point cloud that was then filtered and points with 249 

reprojection error above 0.45 pixels were excluded from further analysis. An operator 250 

reviewed the sparse point clouds and estimated camera positions to verify their plausibility. 251 

Any obviously erroneous tie points were removed manually. Geolocated markers were 252 

placed by an operator on ten projected images for each of the 13 ground control points. Ten 253 

of these markers were used to constrain the photogrammetric reconstructions spatially60, 254 

while the remaining three were used for independent evaluation of each reconstruction. The 255 

three markers used for accuracy assessment were deselected before the interior and 256 

exterior camera parameters were optimised. Any obviously implausible camera positions 257 

were refined after marker placement and optimisation. All cameras were usually aligned and 258 

used for multi-view stereopsis (dense point cloud generation), using the ultrahigh quality 259 

setting with mild depth filtering to preserve finer details of the vegetation27,29,30. For further 260 

discussion of some of the limitations of this approach, see Supplementary Note 1. Dense 261 

point clouds were exported in the laz format, with point coordinate and RGB attributes.  262 

Digital terrain models 263 

An essential requirement for deriving canopy height models from photogrammetry-derived 264 

point clouds is a digital terrain model, which must be sufficiently accurate and detailed with 265 

respect to canopy heights and topographic complexity31. We used terrain models 266 

interpolated with Delaunay triangulation between the GNSS-observations of the harvest plot 267 

corners (Fig. 1C). In instances where plant canopies are discontinuous in space, suitable 268 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 17, 2020. ; https://doi.org/10.1101/2020.07.16.206011doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.16.206011
http://creativecommons.org/licenses/by-nc/4.0/


terrain models may be extracted from the photogrammetric point cloud20,27. Other options 269 

can include extracting terrain models from photogrammetric drone surveys during leaf-off 270 

conditions (or post-harvest, if applicable), LiDAR surveys61 or walkover surveys with GNSS 271 

instruments. 272 

Calculation of canopy heights 273 

Point clouds were analysed with PDAL (v2.1.0)62. The point cloud representing each harvest 274 

plot was subset using the GNSS-observed corner coordinates. In a few instances where plot 275 

infrastructure (e.g., marker posts or flags) was visible in the point cloud (n=20 plots), these 276 

points were manually assigned to a noise class and excluded from canopy height 277 

calculations. Within each plot, the height-above-ground of each point was calculated relative 278 

to the terrain model and any points with a negative height-above-ground were set to 279 

zero20,27. Using a 0.01 m resolution grid, we calculated the maximum point height in each 280 

grid cell. For cells containing no points, we interpolated heights using inverse distance 281 

weighting considering an array of 7 × 7 cells using a power of one, and cells with no 282 

neighbouring points in that area remained empty. Plot-level mean canopy height was then 283 

extracted from this grid of local maxima elevations. 284 

Statistical analysis 285 

Statistical analyses were conducted in R v3.6.163. Sun elevations during each survey were 286 

computed with the Astral package64. We produced the climate space plot using the 287 

plotbiomes R package65 based on the biomes described by Whittaker40. We excluded 13 288 

bryophyte plots from two rocky sites where we were unable to extract meaningful canopy 289 

height observations (Supplementary Fig. 5) and 16 graminoid plots from one grassland site 290 

(‘WSP’) that could not be reconstructed (Supplementary Fig. 6, Supplementary Note 1).  291 

We used ordinary least squares regression to fit separate linear models predicting AGB 292 

observations from mean canopy height for each PFT and for each species with four or more 293 

observations. We considered ferns, forbs, graminoids, shrubs, trees and succulents as 294 

PFTs, and constrained the y-intercept to zero in order to ensure zero canopy height 295 

predicted zero biomass. Model performance was validated using leave-one-out cross-296 

validation (LOOCV) to compute the mean out-of-sample prediction error, which was divided 297 

by the model slope to obtain relative errors for each model31,66. 298 

To test the influence of wind speed on allometric functions, we fitted a generalised linear 299 

mixed model (GLMM) to predict total biomass as a function of canopy height and wind speed 300 

as fixed-effects and PFT as a random-effect based on a gamma error distribution with an 301 
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identity link function, using the ‘lme4’ package (v1.1-23)67 (Supplementary Table 3). 302 

Succulents were excluded from this model because their inclusion prevented model 303 

convergence, possibly because this PFT had a much steeper slope between height:biomass 304 

(Table 1, Fig. 2) and/or because they may be less influenced by wind speed (Supplementary 305 

Fig. 2A). To illustrate the effect of wind speed, we used the ‘ggeffects’ pacakge (v0.15)68 to 306 

simulate the relationship between height and biomass for three levels of wind speed using 307 

the GLMM (Fig. 3A), and plotted the slope of biomass-height models (±83% confidence 308 

interval69) against wind speed at the PFT- (Supplementary Fig. 2A) and species-levels 309 

(Supplementary Fig. 3). 310 

To test the influence of cloud cover on allometric functions, we fitted a linear mixed model 311 

(LMM) to predict total biomass as a function of canopy height, with PFT as a random-effect 312 

and cloud cover as fixed-effects, using the ‘lmerTest’ package (v3.1-2)70 (Supplementary 313 

Table 4). Cloud cover was coded as a binary factor, with relatively clear sky (n=620) and 314 

cloudy conditions where the sun was obscured (n=80, sky codes ≥ 6 after71, Supplementary 315 

Table 6). To illustrate the effect of sun elevation, we simulated the modelled relationship 316 

between height and biomass for the two levels of cloud cover using the LMM 317 

(Supplementary Fig. 4). 318 

To test the influence of sun elevation on allometric functions, we fitted a LMM to predict total 319 

biomass as a function of canopy height and sun elevation as fixed-effects and PFT as a 320 

random-effect, using the ‘lmerTest’ package (v3.1-2)70 (Supplementary Table 5). We only 321 

included observations (n=620) collected under relatively clear sky conditions (sky codes ≤ 5, 322 

after71) when scene illumination was minimally modulated by clouds. To illustrate the effect 323 

of sun elevation, we simulated the modelled relationship between height and biomass for 324 

three levels of sun elevation using the LMM (Fig. 3B), and plotted the slope of biomass-325 

height models (±83% confidence interval69) against sun elevation at the PFT- 326 

(Supplementary Fig. 3B) and species-level (Supplementary Fig. 5). There was insufficient 327 

replication to allow convergence of more complex model structures including species nested 328 

within PFT or site as random-effects. We evaluated diagnostics for all model visually using 329 

the R package ‘performance’ (v0.4.6)72.  330 
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Results 331 

We found photogrammetrically measured mean canopy height was strongly predictive of 332 

AGB at the species-level. Linear models with a zero-intercept provided good approximations 333 

of the relationships between mean canopy height and AGB and are readily interpreted (Fig. 334 

2, Supplementary Fig. 1)22,31. The slopes from these models are equivalent to AGB density 335 

(g m-3, calculated by dividing g m-2 by mean canopy height). Species-level densities ranged 336 

between 375 g m-3 to 13,801 g m-3 (Supplementary Fig. 1, Supplementary Table 2). Mean 337 

canopy height was an accurate predictor for individual species, especially when calibrated 338 

for specific ecophenotypic and phenological conditions15,31,41. Model goodness-of-fit was 339 

strong, with adjusted R2 values ranging from 0.46 to 0.99 with a mean of 0.83 340 

(Supplementary Fig. 1, Supplementary Table 2). Leave-one-out cross-validation indicated a 341 

mean prediction error of 7.4% (Supplementary Table 2). The high goodness-of-fits indicated 342 

the photogrammetric approach performed as well as widely used in situ allometric 343 

approaches at the species-level (Fig. 1, Table 1, Supplementary Fig. 1, Supplementary 344 

Table 2)15,22,41,42. Importantly, however, intensive drone surveys are relatively easy to 345 

conduct over larger spatial extents of several hectares. Using a carefully designed, 346 

standardised protocol33 for acquiring and processing datasets yielded a good level of 347 

success in reconstructing 93% (688/741) of plots (Fig. 1C). The few instances where 348 

reconstructions were unsuccessful include mosses in rocky terrain, tall and dense grassland, 349 

and taller trees and shrubs (> 3 m) and are discussed in Supplementary Note 1. The 350 

similarities of the height-biomass relationships indicate this approach is generalisable across 351 

growth forms and environmental settings. 352 

 353 

At the PFT-level, we found canopy height strongly predicted AGB across all six PFTs, with 354 

adjusted R2 ranging from 0.49 to 0.99 (Fig. 2, Table 1). For every 1-centimetre increase in 355 

mean canopy height, AGB increased by between 11 to 115 g m-2, depending on PFT (Fig. 2, 356 

Table 1). Ferns had the lowest density (1,096 g m-3), followed by forbs (1,191 g m-3), then 357 

graminoids (2,898 g m-3) and shrubs (3,214 g m-3) with notably similar densities, then small 358 

trees (5,572 g m-3) and lastly succulents had the largest density (11,532 g m-3). Species-level 359 

model slopes were generally similar within, but different between, PFTs. The similarity of 360 

densities within PFTs indicates these relationships are generally transferrable between 361 

species within PFTs, particularly for the better sampled types such as graminoids and 362 

shrubs, although phenotypic and phenological variation will limit accuracy31,41. Should 363 

destructive harvests for local calibrations not be possible due to resource limitations or taxon 364 
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conservation status, the height-mass models described here could be used to non-365 

destructively estimate AGB from similar drone-derived canopy height models (Table 1 and 366 

Supplementary Table 2). These allometric relationships were linear across the range of 367 

canopy height and biomass that we sampled, allowing their application from the whole plant-368 

level to the ecosystem-level without necessarily requiring the discrete analysis of individual 369 

plants that can be challenging in ecosystems with coalesced canopies14,27,31,43. 370 

 371 

 372 

Fig. 2. Photogrammetrically derived canopy height was a strong predictor of biomass 373 

within plant functional types. A constant X:Y ratio was used for all plots, so model slopes 374 

can be compared visually even though axis ranges vary. Model slopes were generally similar 375 

within, but differed between, plant functional types. ‘Species’ indicates the number of species 376 

pooled for each plant functional type and black lines are linear models with intercepts 377 

constrained through the origin. Full model results are included in Table 1.  378 
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Table 1. Parameters for linear models fitted to each plant functional type. LOOCV is the 379 

prediction error from Leave-One-Out Cross-Validation divided by the slope. 380 

Plant 
functional 
type 

n n of 
surveys 

Slope  Residual 
standard 

error 

Adj. 
R2 

t-
statistic 

P value LOOCV 

 

   g m-2 g m-2    % 

Fern 6 1 1,096 53 0.99 20.558 <0.0001 12.0 

Forb 22 3 1,191 262 0.47 4.534 0.0002 19.0 

Graminoid 227 17 2,898 112 0.75 25.786 <0.0001 3.7 

Shrub 397 24 3,214 134 0.59 23.823 <0.0001 11.6 

Succulent 22 3 11,532 760 0.91 15.159 <0.0001 2.6 

Tree 38 2 5,572 577 0.71 9.654 <0.0001 16.7 

 381 

Wind speed negatively affected canopy heights reconstructed from photogrammetry (Fig. 382 

3A, Supplementary Table 3, Supplementary Fig. 2, Supplementary Fig. 3, Supplementary 383 

Note 2). We found the height-wind interaction parameter was strongly positive and highly 384 

significant (p < 0.0001) (Fig. 3A Supplementary, Table 3). This influence was seen at both 385 

the PFT-level (Supplementary Fig. 2A) and species-level (Supplementary Fig. 3). Biomass 386 

divided by height increased for surveys conducted in windier conditions, because the 387 

movement of foliage meant lower mean canopy heights were reconstructed from images that 388 

were acquired non-concurrently (see Supplementary Note 2 for extended discussion). 389 

However, wind effects had only limited influence in our study because most of our plots were 390 

surveyed in relatively light wind conditions (of < 4 m s-1) (Supplementary Fig. 2A). We expect 391 

sensitivity to wind speed differs between species because the effects of wind on foliage 392 

motion depend on canopy architecture and mechanical properties like limb stiffness44 393 

(Supplementary Fig. 3, Supplementary Note 2). Previous studies in forest settings have 394 

reported contradictory effects of wind speed on canopy reconstructions30,35, but we think that 395 

these differences are linked with the spatial grain of analysis. Our study demonstrates the 396 

need to control for the influence of wind speed in future work particularly when surveying 397 

low-stature plant canopies. 398 

 399 

Sun elevation had no effect on allometric density and by extension reconstructed plant 400 

height (Fig. 3B, Supplementary Fig. 2B, Supplementary Fig. 5, Supplementary Table 5).  401 
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Cloudy conditions appeared to have a notable effect on allometric density; however, the 402 

imbalance in observations under cloudy and clear conditions (n=80 and n=620, 403 

respectively), meant this effect was not considered reliable (Supplementary Table 4, 404 

Supplementary Fig. 4). As with wind, previous studies in forest settings reported 405 

contradictory effects of elevation on canopy reconstructions30,35. However, illumination 406 

conditions affect photogrammetry in complex ways37,45, with the influence of sun elevation 407 

depending on the distribution and intensity of shadows as well as the properties of the 408 

camera sensor and user choices during processing (see Supplementary Note 3 for extended 409 

discussion). When comparing findings regarding illumination effects, it is therefore necessary 410 

to consider the capabilities of the sensors and workflows employed and the structural 411 

complexities of the observed ecosystems. Our findings suggest that surveying under low 412 

wind speeds may be a higher priority than optimal illumination conditions for obtaining 413 

structural models of vegetation in low stature ecosystems. 414 

 415 

 416 

Fig. 3. Reconstructed plant height and thus height-biomass relationships were 417 

systematically influenced by wind speed but were insensitive to illumination 418 

conditions. Mean predicted aboveground biomass variation over the range of observed 419 

mean canopy height, estimated for a range of three wind speeds and sun elevations. Wind 420 

speed has a statistically clear and positive effect on the relationship between height and 421 

biomass (A) (Supplementary Figs. 2A and 3, Supplementary Table 3), but sun elevation had 422 

no significant effect on the relationship between height and biomass (B) (Supplementary 423 

Figs. 2B and 5, Supplementary Table 5). Shaded areas represent 95% confidence intervals 424 

on the model predictions. 425 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 17, 2020. ; https://doi.org/10.1101/2020.07.16.206011doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.16.206011
http://creativecommons.org/licenses/by-nc/4.0/


Discussion 426 

We established accurate height-biomass relationships for non-forest vegetation using 427 

standardised drone photogrammetry protocols. Our findings enable observations that will 428 

provide new insights into ecosystem dynamics at previously understudied scales across 429 

non-forested ecosystems. Linear models have strong correspondence with observations at 430 

the species and PFT-levels across a diverse range of low-stature ecosystems and perform 431 

as well as conventional in situ allometric approaches reported in the literature (Table 1, Fig. 432 

2, Supplementary Table 2 and Supplementary Fig. 1). The similarity of graminoid and shrub 433 

PFT relationships indicate these could be applied together to estimate AGB in mixed 434 

ecosystems, without the need to individually classify these taxa, although there will be cases 435 

where allometric functions will need to be calibrated locally (Supplementary Note 4). As 436 

mean canopy height is readily compared between taxa, ecosystems and observation 437 

approaches14,22, these linear allometric relationships are straightforward to interpret46 and 438 

can be easily integrated with landscape modelling frameworks. Drone photogrammetry is a 439 

relatively ‘low-cost’ (although see Supplementary Note 5) tool well suited for local-scale 440 

observation in non-forest ecosystems. The ease of surveying landscape scales of 1 to 10 ha 441 

is critical to advancing beyond existing in situ approaches and overcoming the gap between 442 

on-the-ground monitoring and the coarser grain of global-scale products derived from 443 

satellite-based remote sensing27,31. Accurate information at these intermediary scales is 444 

invaluable for validating models and testing the scaling of ecological relationships and 445 

biomass carbon estimates from plots to biomes6. 446 

 447 

Addressing critical knowledge gaps in plant science with drone photogrammetry requires 448 

standardised protocols, such as those used here, because photogrammetry-derived models 449 

are sensitive to the ways in which data are collected27,30,35–38, processed27,36–38, and 450 

analysed20,27–29. These sensitivities can be more pronounced for subjects with complex 451 

texture, such as vegetation, and hinder comparisons between products obtained from 452 

different workflows. To date, what has been missing are systematic and reproducible 453 

demonstrations of how drone data can be used in real-world plant ecology research. Using 454 

standardised protocols, we established comparable height-biomass relationships for a wide 455 

range of low-stature plant species for the first time and enable investigation of how factors 456 

such as wind speed (Fig. 3A), illumination (Fig. 3B)35, or antecedent conditions41 may 457 

influence allometric approaches. We show that it is important to account for the effects of 458 

wind speed during photogrammetric surveys beyond simply considering the effects of wind 459 
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on drone platforms. The most reproducible reconstructions will be obtained under ‘zero’ wind 460 

speeds30,35,37, but this is often not possible under real world operational conditions31,45,47. Our 461 

findings demonstrate that data will be most comparable when wind speeds are similar, but 462 

also that, where differences are unavoidable, it will be possible to derive corrections for how 463 

wind influences canopy reconstructions from drone photogrammetry. We call for the 464 

continued development of harmonised and community-based protocols to maximise 465 

knowledge gains and support cross-biome syntheses31,33,34,48. 466 

 467 

Our findings show drone photogrammetry can yield informative canopy height models 468 

capable of detecting ecologically significant differences in AGB across a diverse range of 469 

low-stature ecosystems globally. Drones have considerable advantages as data collection 470 

platforms for ecological applications, including their relatively low cost, versatility in 471 

deployment allowing high temporal resolution monitoring, and capacity to record fine-grained 472 

and spatially explicit data34,45,49. Systematic and comparable observations of plant canopy 473 

structure and biomass are vital for calibrating and evaluating vegetation models and biomass 474 

products retrieved from globally-available remote sensing systems1,32,50,51. Drone data 475 

collection can broaden the scope of research and monitoring programmes to obtain more 476 

representative observations in vulnerable and understudied low-stature ecosystems. 477 

Photogrammetric approaches for monitoring canopy height and biomass provide novel tools 478 

that should be used more widely by the ecological research community to improve 479 

assessments of ecosystem change and global carbon budgets.  480 

 481 

 482 

Data availability 483 

Data collected for this publication, including aerial images, marker and plot coordinates, and 484 

dry sample weights, as well as site and survey metadata, are available from the NERC 485 

Environmental Information Data Centre (DOI: <DATA DEPOSIT IN PROGRESS> - 486 

AVAILABLE ON REQUEST IF REQUIRED FOR REVIEW). Code for photogrammetric 487 

processing and statistical analysis is available at <https://github.com/AndrewCunliffe/Global-488 

Drone-Allometry>.  489 
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