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This supplement contains: 

1) Additional data visualisations of the species-level results (Supplementary Fig. 1),  

2) Further information characterising the study sites and survey conditions 

(Supplementary Table 1), 

3) Additional analysis and interpretation of how wind speed influences photogrammetric 

reconstructions of plants (Supplementary Figs. 2A and 3, Supplementary Table 3, 

Supplementary Note 2), 

4) Additional analysis and interpretation of how cloud cover influences photogrammetric 

reconstructions of plants (Supplementary Fig. 4, Supplementary Tables 4 and 6), 

5) Additional analysis and interpretation of how sun elevation influences 

photogrammetric reconstructions of plants (Supplementary Figs. 2B and 4, 

Supplementary Table 5, Supplementary Note 3), 

6) Parameters for species-level height:biomass models (Supplementary Table 2),  

7) Extended discussion of the limitations of photogrammetric reconstructions of plants 

(Supplementary Note 1, Supplementary Figs. 6 and 7), 

8) Extended discussion of the limitations of universal allometric functions 

(Supplementary Note 4), and 

9) Extended discussion of the true cost of photogrammetric surveys (Supplementary 

Note 5).  



 

Supplementary Fig. 1. Photogrammetrically-derived canopy height is a strong predictor 

of biomass across species. We used ordinary least squares regression to fit linear models 

with an intercept constrained through the origin (solid black line) for all species with four or 

more observations. Species are grouped by plant functional type (indicated by icon and point 

colour). A constant X:Y ratio is used for all plots, so model slopes can be compared visually, 

even when axis ranges vary. Steeper slopes in these allometric models imply more biomass-

per-unit-of-height, and model slopes are generally similar within plant functional groups. Full 

model results are included in Supp. Table 2. 



 

 

Supplementary Fig. 2. Reconstructed plant height and thus height-biomass 

relationships were influenced by wind speed but were insensitive to sun elevation. The 

allometric density (slope of height:biomass models ± 83% confidence intervals) calculated for 

each sample of each species plotted against wind speed (n=55) (A) and sun elevation for all 

surveys conducted under relatively clear sky conditions (n = 47, see methods for details) (B). 

Data are grouped by PFT, and linear models are fitted to illustrate the PFT-level trends tested 

with GLMMs (Supplementary Tables 3 and 4). We attribute the positive relationships between 

wind speed and density at the PFT-level (Fig. 3A) and species-level (Supplementary Fig. 3) 

to the influence of wind on reconstructed plant height (Supplementary Note 2). The negative 

relationships between sun elevation and density in the graminoid and shrub PFTs may be 

caused by lower sun angles causing shadowing that negatively bias reconstructed plant 

heights and thus increase density, but this effect was not statistically significant (Fig. 2B, 

Supplementary Table 5, Supplementary Note 3). 



 

Supplementary Fig. 3. Sensitivity of photogrammetrically-reconstructed height to wind 

speed differs between species based on growth form. For the twelve species sampled 

more than once, the slope (± 83% confidence interval) of the linear model fitted to height and 

biomass for each sample was plotted against wind speed during the survey, and linear models 

were then fitted to these points to illustrate patterns at the species-level. Species are ordered 

by apparent sensitivity to wind speed, which broadly corresponded with canopy architecture. 

For further discussion see Supplementary Note 2. 



 

Supplementary Fig. 4. The apparently strong effect of cloud cover on 

photogrammetrically-reconstructed height likely arises from imbalanced observations.  

Mean predicted aboveground biomass variation over the range of observed mean canopy 

height. Shaded areas represent 95% confidence intervals on the model predictions. Cloud 

cover appears to strongly influence on the relationship between height and biomass; however, 

these results should be interpreted cautiously as these two factors are highly unbalanced in 

this analysis (‘Clear’ consisted of 620 observations from 33 surveys, whereas ‘Cloudy’ 

consisted of 80 observations from four surveys), and thus do not account for other possible 

covariates. Cloud cover had a statistically non-significant effect in the model, but there was a 

statistically significant interaction between cloud cover and height (Supplementary Table 4). 

  



 

Supplementary Fig. 5. Sun elevation has little systematic effect on 

photogrammetrically-reconstructed height at the species-level. For the nine species 

sampled more than once under moderately clear skies (see methods for details), the slope (± 

83% confidence interval) of the linear model fitted to height and biomass for each sample was 

plotted against sun elevation during the survey, and linear models were then fitted to these 

points to illustrate patterns at the species-level. For further discussion see Supplementary 

Note 3.  



  

Supplementary Fig. 6. This sampling approach was unable to usefully resolve the 

canopy height of mosses. Photographs of two of the thirteen rocky bryophyte (moss) plots 

where we were unable to determine meaningful measurements of canopy heights due to the 

short height of the bryophytes (just a few centimetres) relative to the terrain roughness (A is 

of plot 20190810_HW_KS1_P01, and B is of plot 20190810_HW_KS1_P05). The 13 plots 

from these two sites were excluded from further analysis.  



 

Supplementary Fig. 7. Image alignment was not possible in this tall grassland, due to 

the complicated texture and structure of the subject preventing the accurate matching 

of tie points. Photograph of a harvest plot (ID:20200313_AG_WSP_P01) in the one densely 

vegetated grassland that we were unable to reconstruct with the photogrammetry, co-

dominated by Eragrostis curvula, Chloris gayana reaching up to 1.5 m in height. See 

Supplementary Note 1 for further details.  



Supplementary Table 1. Details of survey location, climate, ecosystem type and image sensor. Where survey ID comprises the date of the 

survey (YYYYMMDD), followed by the initials of the lead contributor and three-character site code. MAT is mean annual temperature, MAP is 

mean annual precipitation, IGBP is the International Geosphere-Biosphere Programme code for the ecosystem type, and sky condition codes 

are after 1. 

Survey ID Latitude Longitude Elevation 

(m) 

MAT MAP Köppen 
class 

IGBP Wind 
speed 
(m s-1) 

Sky 
conditions  

Drone & Sensor 

20160725_AC_ORC 69.572 -138.895 5 -10.0 160 ET 6 3.4 5 Tarot 680 Pro (Sony alpha6000 camera with 20 mm lens) 

20180602_MV_SGE 37.979 -109.936 1868 11.6 228 BSk 7 2 0 3DR Solo (Ricoh GR II camera) 

20180602_MV_SGB 37.955 -109.953 1855 11.6 228 BSk 7 2 0 3DR Solo (Ricoh GR II camera) 

20180623_JK_LCO 43.357 -114.393 1492 6.0 400 BWh 7 4 4 DJI Phantom 4 Pro (FC6310 camera) 

20180624_JK_HAT 43.420 -114.411 1584 6.0 400 BWh 7 3.5 0 DJI Phantom 4 Pro (FC6310 camera) 

20180626_FV_LAK 52.251 -2.254 35 10.5 606 Cfb 10 1.5 0 DJI Phantom 4 Pro (FC6310 camera) 

20180727_JK_BC1 46.120 -116.942 321 11.7 313 Dfb 10 2.25 0 DJI Phantom 4 Pro (FC6310 camera) 

20180727_JK_BC2 46.127 -116.941 279 11.7 313 Dfb 10 2.25 0 DJI Phantom 4 Pro (FC6310 camera) 

20180812_FV_HBC 52.333 -2.259 53 10.5 606 Cfb 7 1.5 5 DJI Phantom 4 Pro (FC6310 camera) 

20180915_AC_SEG 34.362 -106.702 1596 13.7 273 BSk 10 5.5 0 DJI Phantom 4 Advanced (FC6310 camera) 

20180923_AC_SES 34.335 -106.745 1604 13.7 275 BSk 7 1.5 0 DJI Phantom 4 Advanced (FC6310 camera) 

20181006_AC_WJS 34.425 -105.861 1931 11.5 364 BSk 9 3.6 4 DJI Phantom 4 Advanced (FC6310 camera) 

20181022_SP_PTF -33.695 19.895 875 14.8 372 BSk 7 3.9 2 DJI Phantom 4 Advanced (FC6310 camera) 

20181023_SP_DKR -33.571 20.029 1008 14.6 320 BSk 7 4.2 0 DJI Phantom 4 Advanced (FC6310 camera) 

20190317_AC_SOC 33.377 -116.625 1415 13.6 533 Csa 6 5.5 2 DJI Phantom 4 Advanced (FC6310 camera) 

20190326_AC_SO4 33.384 -116.641 1447 13.5 554 Csa 6 2 3 DJI Phantom 4 Advanced (FC6310 camera) 

20190605_PC_WBS 43.167 -116.715 1425 9.2 298 Csa 7 0.9 0 DJI Phantom 4 (FC330 camera) 

20190617_JG_RLP 43.044 -5.413 1635 7.0 1600 Cfb 6 3.9 8 DJI Phantom 4 Pro (FC6310 camera) 

20190625_PC_LOS 43.143 -116.738 1608 8.5 345 Csa 7 0.9 0 DJI Phantom 4 (FC330 camera) 

20190626_TA_BRR 50.478 9.971 870 4.8 1084 Cfb 10 2.7 0 DJI Phantom 3 Advanced (FC300S camera) 

20190716_PC_MBS 43.065 -116.750 2100 5.4 803 Csa 7 3 0 DJI Phantom 4 (FC330 camera) 



20190807_SV_UTQ 71.318 -156.609 3 -11 115 ET 11 4.9 4 DJI Phantom 4 Pro (FC6310 camera) 

20190810_HW_KS1 46.861 10.731 2800 4.6 848 ET 16 1.3 8 DJI Phantom 4 Pro (FC6310 camera) 

20190810_HW_KS2 46.864 10.733 2700 4.6 848 ET 16 1.3 8 DJI Phantom 4 Pro (FC6310 camera) 

20190831_JP_DHR 50.161 13.126 705 6.5 650 Dfb 7 2 4 DJI Phantom 4 Pro (FC6310 camera) 

20191001_AC_SEG 34.362 -106.702 1596 13.7 273 BSk 10 7 7 DJI Phantom 4 Advanced (FC6310 camera) 

20191003_AC_SES 34.335 -106.744 1604 13.72 275 BSk 7 2.6 7 DJI Phantom 4 Advanced (FC6310 camera) 

20191011_AC_PIN 34.439 -106.234 2170 10.5 385 BSk 8 2.6 0 DJI Phantom 4 Advanced (FC6310 camera) 

20191015_AC_JOC 32.514 -106.789 1300 14.6 240 BSk 7 3.8 4 DJI Phantom 4 Advanced (FC6310 camera) 

20191015_AC_JOM 32.610 -106.796 1300 14.8 240 BSk 7 3 4 DJI Phantom 4 Pro (FC6310 camera) 

20191015_AC_JOP 32.667 -106.770 1300 14.8 240 BSk 10 3 4 DJI Phantom 4 Pro (FC6310 camera) 

20191015_AC_JOT 32.514 -106.740 1300 14.8 240 BSk 7 3.5 4 DJI Phantom 4 Advanced (FC6310 camera) 

20191015_ML_CFT -35.965 149.168 736 11.3 544 Cfb 10 2 4 DJI Phantom 4 Pro (FC6310 camera) 

20191015_ML_OTH -35.957 149.169 811 11.3 544 Cfb 10 3 4 DJI Phantom 4 Pro (FC6310 camera) 

20191016_ML_RED -35.968 149.164 731 11.3 544 Cfb 10 3 4 DJI Phantom 4 Pro (FC6310 camera) 

20191024_SE_MEX 27.251 -110.192 4 23.7 317 Bwh 14 3 0 3DR Solo (MAPIR Survey 2 RGB camera) 

20200309_IM_IRG 30.586 -8.931 406 20.1 226 BSh 8 1.8 0 DJI Phantom 4 Advanced (FC6310 camera) 

20200313_AG_WSP -33.722 150.685 19 18.6 705 Cfb 10 1.6 0 DJI Mavic Pro Platinum (FC220 camera) 

  



Supplementary Table 2. Parameters for species-level linear models, fitted for all species with four or more observations. Where PFT is plant 

functional type, n is number of observations, Adj. R2 is the adjusted R2, and LOOCV is the prediction error from Leave-One-Out Cross-Validation 

divided by the slope. 

PFT Family Species n Samples Slope 
(g m-2) 

Residual 
standard error 

(g m-2) 

Adj. R2 t-statistic P value LOOCV [%] 

Fern Dennstaedtiaceae Pteridium aquilinum 6 1 1096 53 0.99 20.558 <0.0001 12.0 

Forb Asteraceae Cirsium spinosissimum 7 1 374 140 0.46 2.660 0.0368 21.9 

Forb Polygonaceae Rumex obtusifolius 4 1 2416 505 0.85 4.779 0.0174 8.9 

Forb Fabaceae Trifolium repens 4 1 2865 112 0.99 25.435 0.0001 1.5 

Graminoid Juncaceae Juncus spp. 10 1 3897 301 0.94 12.910 <0.0001 3.3 

Graminoid Poaceae Achnatherum nelsonii 24 2 5603 576 0.8 9.724 <0.0001 1.4 

Graminoid Poaceae Arctophila fulva 16 1 852 62 0.92 13.574 <0.0001 1.3 

Graminoid Poaceae Bothriochloa macra 9 2 1849 272 0.83 6.785 0.0001 1.0 

Graminoid Poaceae Bouteloua eriopoda 28 2 4563 175 0.96 26.063 <0.0001 1.6 

Graminoid Poaceae Bromus marginatus 12 1 609 102 0.74 5.931 0.0001 2.8 

Graminoid Poaceae Eragrostis curvula 21 3 3809 481 0.75 7.908 <0.0001 1.8 

Graminoid Poaceae Festuca idahoensis 4 1 901 335 0.61 2.684 0.0605 6.2 

Graminoid Poaceae Festuca rubra 4 1 1388 437 0.69 3.175 0.0497 19.1 

Graminoid Poaceae Nardus stricta 16 1 1470 153 0.85 9.554 <0.0001 1.7 

Graminoid Poaceae Nassella trichotoma 7 1 4505 393 0.95 11.458 <0.0001 1.1 

Graminoid Poaceae Pleuraphis mutica 20 1 3206 324 0.83 9.870 <0.0001 2.2 

Graminoid Poaceae Pseudoroegneria spicata 46 4 3104 187 0.86 16.569 <0.0001 4.7 

Shrub Asteraceae Artemisia arbuscula 11 1 3378 383 0.87 8.805 <0.0001 3.7 

Shrub Asteraceae Artemisia nova 12 1 8805 884 0.89 9.952 <0.0001 3.5 

Shrub Asteraceae Artemisia tridentata 50 4 6264 664 0.64 9.434 <0.0001 7.4 

Shrub Asteraceae Elytropappus rhinocerotis 16 1 4989 693 0.76 7.192 <0.0001 8.1 

Shrub Asteraceae Flourensia cernua 16 1 4993 1276 0.47 3.912 0.0014 8.4 

Shrub Asteraceae Gutierrezia sarothrae 36 3 4465 230 0.91 19.344 <0.0001 2.1 



Shrub Asteraceae Launaea arborescens 7 1 5214 559 0.92 9.320 0.0001 2.2 

Shrub Asteraceae Pteronia paniculata 16 1 10127 932 0.88 10.864 <0.0001 0.9 

Shrub Chenopodiaceae Atriplex canescens 16 1 4001 276 0.93 14.465 <0.0001 3.9 

Shrub Caprifoliaceae Symphoricarpos oreophilus 12 1 2189 149 0.95 14.688 <0.0001 3.1 

Shrub Ericaceae Calluna vulgaris 16 2 5912 546 0.88 10.822 <0.0001 7.3 

Shrub Fabaceae Prosopis glandulosa 16 1 5372 330 0.94 16.254 <0.0001 2.5 

Shrub Fabaceae Ulex gallii 5 1 4033 561 0.91 7.180 0.0019 15.7 

Shrub Salicaceae Salix richardsonii 36 1 2523 142 0.9 17.670 <0.0001 11.1 

Shrub Rosaceae Adenostoma fasciculatum 26 2 4830 728 0.62 6.626 <0.0001 17.1 

Shrub Rosaceae Adenostoma sparsifolium 24 2 2348 338 0.66 6.930 <0.0001 60.1 

Shrub Rosaceae Crataegus spp. 12 1 2803 158 0.96 17.716 <0.0001 8.0 

Shrub Rosaceae Prunus spinosa 12 1 2734 173 0.95 15.783 <0.0001 4.9 

Shrub Zygophyllaceae Larrea tridentata 44 3 5631 539 0.71 10.445 <0.0001 5.7 

Succulent Asparagaceae Yucca glauca 12 2 12380 899 0.94 13.763 <0.0001 2.4 

Succulent Cactaceae Cylindropuntia imbricata 4 2 8106 1527 0.87 5.308 0.013 5.9 

Succulent Cactaceae Opuntia phaeacantha 6 1 14044 1073 0.97 13.083 <0.0001 1.5 

Tree Cupressaceae Juniperus monosperma 18 1 7623 1096 0.72 6.955 <0.0001 8.4 

Tree Pinaceae Pinus edulis 20 1 5000 671 0.73 7.446 <0.0001 17.7 

  



Supplementary Table 3. Generalised linear mixed model parameters testing wind 

effects. Model predicting aboveground biomass (g m-2) as a function of mean canopy height 

(m), with wind speed (m s-1) as an interaction effect and plant functional type as a random-

effect. See Fig. 3A, Supplementary Fig. 2A, Supplementary Fig. 3 and Supplementary Note 

2 for more information. Interactions are denoted by a colon (“:”). 

Model call: Biomass ~ Height × Wind + (1 | Plant Functional Type) 

Term Estimate Standard 
error 

t-statistic P value 

Intercept 480.96 21.11 22.780 <0.0001 

Height 1327.65 22.89 58.013 <0.0001 

Wind speed 17.98 5.84 3.108 0.0019 

Height:Wind 340.87 24.63 13.840 <0.0001 

 

 

Supplementary Table 4. Linear mixed model parameters testing cloud cover effects. 

Model predicting aboveground biomass (g m-2) as a function of mean canopy height (m) and 

cloud cover (‘Clear’ = direct illumination, ‘Cloudy’ = sun obscured) as fixed effects and plant 

functional type as a random-effect. Imbalance in observations between the cloud factors 

means these results should be interpreted cautiously, see Supplementary Fig. 4 for more 

information. The PFT random effect explained 62% of variance in the model. Interactions are 

denoted by a colon (“:”). 

Model call: Biomass ~ Height × Cloud + (1 | Plant Functional Type) 

Term Estimate Standard 
error 

t-statistic P value 

Intercept 511.81 419.72 1.219 0.277 

Height 2069.33 123.02 16.821 <0.001 

Cloudy -284.88 158.86 -1.793 0.073 

Height:Cloudy 2880.92 715.84 4.025 <0.001 

  



Supplementary Table 5. Linear mixed model parameters testing sun effects. Model 

predicting aboveground biomass (g m-2) as a function of mean canopy height (m) and sun 

elevation (degrees) as fixed effects and plant functional type as a random-effect. See Fig. 3B, 

Supplementary Fig. 2B, Supplementary Fig. 5 and Supplementary Note 4 for more 

information. The PFT random effect explained 59% of variance in the model. Interactions are 

denoted by a colon (“:”). 

Model call: Biomass ~ Height × Sun_elevation + (1 | Plant Functional Type) 

Term Estimate Standard 
error 

t-statistic P value 

Intercept 583.96 468.18 1.247 0.248 

Height 2939.14 770.76 3.813 <0.001 

Sun_elevation -0.21 4.06 -0.053 0.958 

Height:Sun_elevation -16.53 14.38 -1.150 0.251 

 

 

Supplementary Table 6. Sky Codes for qualitative classification of cloud-related 

ambient light conditions. From Assmann et al.1 after NERC Field Spectroscopy Facility, 

Edinburgh, UK (2018) based on work by Milton et al.2. 

Sky code Condition 

0 Clear sky 
1 Haze 
2 Thin cirrus, sun not obscured 
3 Thin cirrus, sun obscured 
4 Scattered cumulus, sun not obscured 
5 Cumulus over most of sky, sun not obscured 
6 Cumulus, sun obscured 
7 Complete cumulus cover 
8 Stratus, sun obscured 
9 Drizzle 

  



Supplementary Note 1. Notes on the limitations of photogrammetric reconstructions of 

plants. 

While our approach usually yielded highly plausible reconstructions of the plants within the 

harvest plots (Fig. 1C), in a few isolated instances the method did not work well. With a view 

to sharing our experience with the community (e.g. 3), we describe these challenges here. 

We observed that taller (>3 m maximum height) plants were more likely to be poorly 

reconstructed by the photogrammetry (e.g. Juniperus monosperma and Pinus edulis), which 

is illustrated by the negative bias in canopy height relative to the fitted model for a few of the 

plots with greater biomass in the Shrub and Tree panels of Fig 2. We attribute this poorer 

reconstruction primarily to excessive parallax in our low altitude flights that were optimised for 

shorter plants. Parallax is the effect whereby the position or direction of an object appears to 

differ when viewed from different positions4. To overcome this issue, we suggest using  higher 

survey altitudes for taller plants, testing longer focal lengths to maintain ground sampling 

distance while reducing parallax. 

We tested the approach on mosses (bryophytes in the genera Racomitrium and Pohlia); 

however, we were unable to resolve meaningful measurements of canopy height in a rocky 

pro-glacial montane setting because the mosses were too short (just a few centimetres in 

height) relative to the terrain roughness (Supplementary Fig. 6). 

We were unable to reconstruct usable results from a survey of a tall (up to 1.5 m) and dense 

perennial grassland, co-dominated by Eragrostis curvula and Chloris gayana (Supplementary 

Fig. 7). This site had a thick standing layer of dry dead grass stalks below the green live 

biomass. The complicated texture across this site confounded tie point matching, hindering 

the accurate estimation of exterior (location and orientation) and interior (lens distortion) 

camera parameters during the bundle adjustment phase of the structure-from-motion 

processing. The resultant dense cloud was particularly noisy, with many clearly erroneous 

points distorting canopy height measurements. Consequently, the 16 mixed-grass plots from 

this site were excluded from the graminoid plant functional type analysis. The acquisition of 

more precise camera locations through real time kinematic (RTK) or post-processed kinematic 

(PPK) type systems on drone platforms would help by better constraining the estimation of 

exterior and interior camera parameters; however, such complex scenes are likely to remain 

challenging settings for photogrammetry approaches. 

Flourensia cernua presented the main exception to the otherwise consistent pattern of mean 

canopy height being a good predictor of biomass (Supplementary Fig. 1). The shrubs were 



particularly poorly reconstructed in that survey, producing weak correspondence between 

mean height and biomass. An unknown factor appeared to have destabilised the bundle 

adjustment, but the cause of this remains unclear as the image data were high quality (well 

exposed, correctly focused, with high overlap and strong network geometry) and that 

shrubland was open with ca. 70% bare ground so tie points should have been largely stable. 

The wind speeds during that survey were moderate, at ca 3.5 m s-1.  



Supplementary Note 2. Notes on how wind speed influences canopy heights 

Our analysis indicates that canopy height reconstructed from drone-acquired photographs is 

sensitive to wind speed (Fig. 3A, Supplementary Fig. 2, Supplementary Fig. 3, Supplementary 

Table 3). The estimate for the height-wind interaction parameter in the generalised linear 

mixed model was strongly positive and statistically significant (p < 0.0001), indicating that the 

relationship between aboveground biomass and canopy height gets stronger as wind speed 

increases (Supplementary Table 3; Fig 3; Supplementary Fig. 2).  

Biomass divided by height increased for surveys conducted in windier conditions because the 

movement of foliage due to wind meant lower mean canopy heights were reconstructed from 

images that were acquired non-concurrently. These lower canopy heights then cause steeper 

slopes in the allometric relationship between mean canopy height and aboveground biomass. 

While our exploratory analysis cannot account for variation due to ecophenotype, phenology5 

or disturbance history, the consistency of responses across PFT-level (Fig. 3, Supplementary 

Fig. 2) and independently modelled species-levels (Supplementary Fig. 3) suggests that the 

overall results are robust. Dandois et al.6 reported wind speed had no effect on reconstructed 

canopy height in a temperate deciduous forest but Frey et al.7 reported wind speed does affect 

reconstructions of coniferous forest canopies. We think differences in sensitivity to wind are 

linked with the spatial grain of analysis (e.g. 1 cm-2 versus 1 m-2), in turn connected with 

differences in sensitivity to canopy structures.  

We expect sensitivity to wind speed differs between species because the effects of wind on 

foliage  (leaf and branch) motion depend on canopy architecture and mechanical properties 

like limb stiffness8,9. Tadrist et al.9 found that foliage movement under wind was dominated at 

low velocity by high frequency, large amplitude, velocity independent individual leaf motions, 

and at high velocity by branch-induced, large scale, velocity-dependent motion. Taller plants 

are more prone to movement in the wind, and we observed greater wind influence on shrubs 

with more open branching structures (e.g. A. sparsifolium, A. fasciculatum, L. tridentata and 

A. tridentata), but less influence on shrubs with more compact growth forms (e.g. G. 

sarothrae) (Supplementary Fig. 3). In plants with a more compact growth form, wind-induced 

movement may simply substitute different foliage elements into the same space at different 

photographs. Of the three species exhibiting negative relationships between wind speed and 

slope of the allometric function, the allometric slopes for B. eriopoda, Y. glauca and B. macra 

all had overlapping 83% confidence intervals (Supplementary Fig. 3), so their differences are 

not statistically significant (at p = 0.05)10. Furthermore, one of the B. macra sites (Site: ‘CTF’; 

Supplementary Table 1) experienced a fire disturbance 14-months prior to sampling which 



may contribute to the apparently anomalous relationship between height:biomass and wind 

(Supplementary Fig. 3). 

Wind-induced movement of subjects between image acquisitions during drone surveys 

hinders their reconstruction from structure-from-motion multi-view stereopsis11–13. Non-

stationary subjects will reduce the number of tie points that are matched correctly and often 

also increase the number of erroneously matched tie points, which together increase 

uncertainty in the estimation of external (location and orientation) and internal (lens distortion) 

camera parameters during the bundle adjustment. This degradation of parameter estimate 

quality will depend on the scene, as a greater proportion of tie points will remain stable in 

ecosystems with a large proportion of bare ground. The increased error in camera parameters 

combined with movement of the subject means that there is less coincidence between the 

depth maps calculated for each photograph, which results in fewer points being reconstructed 

by the multi-view stereopsis for moving vegetation11,12, especially when depth filtering is 

applied as is normal practice in multi-view stereopsis4,7,14–16. The resulting dense point clouds 

contain fewer and more uncertain points, which are further processed to set any negative 

canopy heights to zero. Consequently, lower mean canopy heights are reconstructed when 

vegetation is moving due to wind (Fig. 3, Supplementary Fig. 2, Supplementary Fig. 3). 

The force exerted by wind is non-linearly related to wind speed. When moving air is stopped 

by a surface, the dynamic energy in the moving air is transformed into pressure that acts on 

the surface as a force: 

F = ½ p v2 A 

Where F is in Newtons, p is the density of air in kg m-3 (ca. 1.2 at sea level), v is velocity in 

m s-1, and A is surface area in m2. Future investigations into the influence of wind on vegetation 

reconstructions should test whether force, rather than wind speed, might be a better predictor 

of the influence on reconstructed canopy height. Frey et al.7 suggested that the sensitivity of 

reconstructed forest canopies to wind speed depended on the ground sampling distance, with 

lower sensitivity at coarse spatial grains. Advancing understanding the interaction between 

the movement patterns of foliage and its reconstruction from non-concurrent photographs will 

need further empirical work.  



Supplementary Note 3: Notes on how sun elevation influences canopy heights 

Sun elevation had a very weakly negative, though statistically significant, effect on allometric 

density and by extension reconstructed plant height (estimate -7.67, std. error, 3.4, p = 0.03)  

(Supplementary Table 4, Fig. 3B). The weakly negative trend between sun elevation and 

density (Supplementary Fig. 2B) was seen in the relatively well-sampled graminoid and 

shrub PFTs, but there was little systematic pattern at the species level (Supplementary Fig. 

4). At lower sun elevations, increased shadowing may slightly reduce reconstructed canopy 

heights6 and thus increase biomass per unit of height. Reports on the effect of sun elevation 

on deciduous and coniferous forest canopy reconstructions have been contradictory6,7. 

However, forests are not always directly comparable to low-stature ecosystems because 

they differ in the distribution and intensity of shadows and illumination conditions that can 

have complex effects on photogrammetry4,17. Sensitivity to shadowing depends also on the 

camera’s dynamic range, i.e. its capacity to capture information in the brightest and darkest 

parts of the frame at the same time, as well as image formats (especially bit depth), camera 

settings and processing algorithms, which have all improved in recent years4,7,17. 

  



Supplementary Note 4: Limitations on ‘universal’ allometries 

There may be limitations to transferability of the ‘universal’ allometric relationships described 

here. Previous studies have found strong power-law allometric relationships for diverse plant 

growth forms18–20 and some consistency in allometric relationships over time21. While some 

studies have reported good allometric estimates of biomass at the plant functional group 

level18,19,22, others found species-specific allometric models to perform best20,23 or caution 

about overextending site-specific allometric functions18. In our study, all graminoids sampled 

have perennial life cycle strategies but there might be systematic differences between 

perennials and annual growth forms that hinder the transferability of a universal allometry. 

Future studies seeking to apply this approach to annuals should undertake sampling to 

calibrate their size – mass relationships as an expression of phenotypic plasticity. We also 

note that some species are known to adopt different growth forms in response to local 

environmental conditions and disturbance. For example, B. gracilis can shift from a bunch 

grass growth form to sod grass under elevated grazing pressure, as well as at higher 

elevations or farther north in its range24,25. Similarly, Prosopis species can vary from many-

stemmed shrub forms to tree forms when growing on stream or river terraces with access to 

groundwater. The implications of such shifts, for species known to exhibit variable morphology, 

should be quantified before this photogrammetric approach should be used to test differences 

in canopy height or biomass between growth forms. Nonetheless, the overall approach of 

predicting biomass from mean canopy height has been shown to work, particularly when 

calibrated to phenotype, ecophenotype based on site conditions, phenophase based on 

antecedent condition and growth form based on disturbance or grazing pressure 18,19,21–23.  



Supplementary Note 5. Notes on costs 

The photogrammetric approaches tested in this study have often been described as ‘low cost’ 

since suitable image data can be collected with a drone and camera system costing ca. $1500 

USD or less. However, such assertions are subjective depending on resource availability, as 

there can be additional costs for equipment to geolocate control points and for specialised 

hardware and software for data processing3,26. In some cases, it may be possible to mitigate 

these processing costs by using scalable web services and/or collaborations between data 

collectors and data processors (as in this project).  

As photogrammetric reconstructions require spatial control that is accurate in relative (rather 

than absolute) terms, it would be possible to employ less expensive geolocation instruments 

(such as tacheometers costing ca. $300, theodolites or total stations). Furthermore, the cost 

of GNSS equipment (both on the ground and on the drone) is falling as technology progresses, 

lowering barriers to wider participation.  
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