Study of single impurity Anderson model and
dynamical mean field theory based on
equation-of-motion method

Dissertation
zur Erlangung des Doktorgrades

der Naturwissenschaften

vorgelegt beim Fachbereich Physik
der Goethe—Universitdat Frankfurt

in Frankfurt am Main

von
Qingguo Feng
aus Shandong (China)

Frankfurt am Main 2009
(D30)



vom Fachbereich Physik der Goethe—Universitat Frankfurt als Dissertation angenommen.

Prifungskommission:
Prof. Dr. Claudius Gros (Vorsitz)
Dr. Harald O. Jeschke
Prof. Dr. Jens Miiller (Protokoll)
Prof. Dr. Jochim Maruhn
Priifungszeit: 16. November, 2009
Dekan: Prof. Dr. Dirk-Hermann Rischke
Gutachter: Dr. Harald O. Jeschke,
Prof. Dr. Claudius Gros,
Prof. Dr. Fakher Assaad (Universitdt Wiirzburg)



to my parents






Abstract

In this thesis, we studied the single impurity Anderson model and developed a new and fast
impurity solver for the dynamical mean field theory (DMFT). Using this new impurity solver,
we studied the Hubbard model and periodic Anderson model for various parameters. This work
is motivated by the fact that the dynamical mean field theory is widely used for the studies of
strongly correlated systems, and the most frequently used methods, e.g. the quantum Monte-Carlo
method (QMC), and the exact digonalization method are much CPU time consuming and usually
limited by the available computers. Therefore, a fast and reliable impurity solver is needed.

This new impurity solver was explored based on the equation-of-motion method (also called
Green’s function and decoupling method in some literature). Using the retarded Green’s function,
we first derived the equations of motion of Green’s functions. Then, we employed a decoupling
scheme to close the equations. By solving self-consistently the obtained closed set of integral
equations, we obtained the single particle Green’s function for the single impurity Anderson model.
After that, the single impurity Anderson model was solved along with self-consistency conditions
within the framework of DMFT. In this work, we studied and compared two decoupling schemes.
Moreover, we also derived possible higher order approximations which will be tested in future work.

Besides the theoretical work, we tested the method in numerical calculations. The integral
equations are first solved by iterative methods with linear mixing and Broyden mixing, respectively.
However, these two methods are not sufficient for finding the self-consistent solutions of the DMFT
equations because converged results are difficult to obtain. Moreover, the computing speed of the
two methods is also not satisfactory. KEspecially the iterative method with linear mixing costs
always a lot of CPU time due to the required small mixing. Hence, we developed a new method,
which is a combination of genetic algorithm and iterative method. This new method converges
very fast and removes artifacts appearing in the results from the iterative method with linear
and Broyden mixing. It can directly operate on the real axis, where no numerical error from the
high frequency tail corrections and the analytical continuation is introduced. In addition, our new
technique strongly improves the precision of the numerical results by removing the broadening.

With this newly developed impurity solver and numerical technique, we studied the single im-
purity Anderson model, the single band Hubbard model and the periodic Anderson model with
arbitrary spin and orbital degeneracy N on the real axis. For the single impurity Anderson model,

the spectral functions are calculated for the infinite and finite Coulomb interaction strength. We



also studied the spectral functions in dependence of the parameters of impurity position and hy-
bridization. For the Hubbard model, we studied the bandwidth control and filling control Mott
metal-insulator transition for spin and orbital degeneracy N = 2. It gives qualitatively the critical
value of Coulomb interaction strength for the Mott metal-insulator transition, and the spectral
functions which are comparable to those obtained in QMC and numerical renormalization group
methods. We also studied the quasiparticle weight and the self-energy in metallic states. The latter
shows almost Fermi liquid behavior. At last we calculated the densities of states for the Hubbard
model with arbitrary spin and orbital degeneracy N. The periodic Anderson model (PAM) is also
studied as another important lattice model. It was solved for various combinations of parameters:
the Coulomb interaction strength, the impurity position, the center position of the conduction
band, the hybridization, the spin and orbital degeneracy. The PAM results represents the physics
of impurities in a metal. In short, our method works for the Hubbard model and the periodic
Anderson model in a large range of parameters, and gives good results. Therefore, our impurity
solver could be very useful in calculations within LDA+DMFT.

Finally, we also made a preliminary investigation of the multi-band system based on the success
in single band case. We first studied the two-band system in a simplified treatment by neglecting
the interaction between the two bands through the bath. This has given promising numerical results
for the two-band Hubbard model. Moreover, we have studied theoretically the two-band system
with mean field approximation and Hubbard-I approximation in dealing with the higher order cross
Green’s functions which are related to both the two bands. In the mean field approximation, we
even generalized the two-band system to arbitrary M = N/2 band system. Potential improvement

can be carried out on the basis of this work.
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Chapter 1 Introduction

The discovery of exotic physical properties, such as the heavy Fermion behavior [1, 2], the high
T. superconductivity and the correlation-driven Mott metal-insulator transition [3], has revived
great interest in strongly correlated systems (especially those systems with partially occupied d or
f electrons, e.g. some transition metal oxides, rare-earth and actinide elements). It turns out that
the local Coulomb repulsive interaction is essential for a proper understanding of these systems
because the strength of the electron-electron Coulomb interaction can be comparable to or even
much larger than the kinetic energy of electrons. The density functional theory (DFT) [4, 5, 6, 7] is
very successful in describing systems where the electrons are mostly delocalized, but sometimes fails
to describe the much more localized electron systems. Though many people have investigated such
systems in the past forty years, the quantitative understanding of the properties of the strongly
correlated systems remains a hard and challenging fundamental task in modern condensed matter
physics. In the past decade, a new theory, the so called dynamical mean field theory (DMFT)
[8, 9, 10], has been developed and applied to the study of strongly correlated electron systems.
The dynamical mean field theory maps the many-body problem to an impurity problem, which is
solved self-consistently so that the many-body problem can be equivalently solved. The dynamical
mean field theory includes the quantum fluctuations for the strong Coulomb interactions so that it
has led to a considerable improvement in our understanding of strongly correlated systems.

There have been a lot of numerical methods developed to solve the single impurity model, see
Sect. 1.2. However, each method has its limitations. One of the most important limitations for those
methods is the strong requirement for computer conditions, which has limited their applications on
physical systems with large size. This difficulty motivates the work to construct a fast and reliable
impurity solver.

In this chapter, we will first introduce the Mott metal-insulator transition, then show the
underlying physics described by the dynamical mean field theory. Next, we will introduce the
single impurity Anderson model (STAM) [11], which is the key issue in the dynamical mean field
theory and also our main task in this thesis work. Finally, two most frequently used lattice models:

the Hubbard model [12] and the periodic Anderson model [11] are introduced. In our work, we

1



2 CHAPTER 1. INTRODUCTION

solve these two models in the framework of dynamical mean field theory and obtain the Kondo

peak and the Mott metal-insulator transition with our newly constructed impurity solver.

1.1 Mott transition

The Mott transition is named after the physicist Nevill Francis Mott [13, 14], who explained
theoretically the effect of light on a photographic emulsion and outlined the transition of substances
from metallic to insulating states. A lot of work has been done on this topic, and there are many
books discussing the Mott metal-insulator transition, e.g. [15]. A recent review can be found in
Ref. [16].

In condensed matter physics, the insulators can be divided into four classes according to their
different origins of insulation: band insulator, Peierls insulator, Anderson insulator and Mott insu-
lator. The first three classes of insulators are considered to be caused by the electron-ion interaction:
the band insulator is due to the interaction between electrons and the periodic potential of ions,
the Peierls insulator is caused by the interaction of electrons with lattice deformations, and the An-
derson insulator is the result of the presence of impurities. Different to these, the fourth insulator,

the Mott-insulator, is considered to be caused by the electron-electron Coulomb interaction.

However, the classification for insulators is not always unambiguous, because in real materials,
all the interactions are always simultaneously present and the observed insulators should be a
consequence of all the interactions. One dominant interaction may be strongly affected by other
interactions so that the classification can not be clearly made. In the following, we make a brief

introduction to the Mott metal-insulator transition.

Theoretically one kind of Mott metal-insulator transition can be considered as the phase tran-
sition caused by the competition between the kinetic energy and Coulomb interaction energy. The
kinetic energy tends to delocalize the electrons and makes the system metallic, while the Coulomb
interaction energy tends to localize the electrons in order to minimize the potential energy and
brings the system to an insulating state. Another kind of Mott transition is caused by the compe-
tition of the internal energy and the entropy. We mention that the strict Mott transition is defined
for exactly zero temperature. At finite temperature, it should be a good approximation when the
temperature is low enough and much smaller than the electronic energy scale.

For materials with partially filled d or f electrons, e.g. transition metal oxides, Lanthanide

and Actinide elements, the Mott transition becomes dominant because the Coulomb interaction
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strength is comparable to the kinetic energy scale and the electrons become much more localized.
Due to the wide usage and so many interesting properties of rare-earth elements, the study of
strongly correlated system and the Mott transition becomes more and more important and has

drawn a lot of attention.

1.2 Dynamical Mean Field Theory

The study of strongly correlated systems has drawn more and more interest in the past forty
years due to the experiments on transition metal oxides, the discovery of the Kondo problem
and itinerant ferromagnetism problem, and so on. It’s often possible to write down the effective
Hamiltonians for strongly correlated systems. However, it’s very difficult to solve such model
Hamiltonians theoretically due to the existence of strong correlations, which are non-perturbative
in nature. In addition, there are several competing physical mechanisms, which affect the properties
of the systems.
Many efforts have been devoted by researchers to circumvent these theoretical difficulties, e.g.
the method of Bethe Ansatz [17, 18], the decoupling method by Hubbard [12, 19, 20]. However, it
was difficult to find an ideal method due to the complexity of the problem. At the end of 1980s,
M. Metzner, D. Vollhardt, A. Georges, and G. Kotliar proposed the Dynamical Mean Field Theory
(DMFT) [8, 9, 10] to investigate strongly correlated electron systems. This method has been
extended from Weiss mean field theory and developed based on some previous works done by other
researchers for various lattice models of strongly correlated systems in high dimensions, e.g. [21,
22, 23]. Dynamical mean field theory has been applied to the study of strongly correlated electron
systems. It has led to a surprising success and to considerable improvement in the understanding
of strongly correlated systems.
In the dynamical mean field theory, the essential physics of the many body problem is captured
in single impurity models where a single impurity is coupled to a self-consistently determined
effective Fermionic host. Considering the Hubbard model [12],
H=—> tijfLfic—nY fic+UY_ i (1.1)

ij,o io i
where the first term is the hopping term, with one electron destroyed at site j and created at site ¢,
the second term relates to the chemical potential, while the last term corresponds to the Coulomb
interaction. This simple model, which will be discussed in the following sections, has been widely

used and gives a good qualitative description for strongly correlated systems.
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Figure 1.1: illustration for a system with interaction between sites

Let us assume a real system with translational invariance as shown in Fig. 1.1. For a given
site, if the number of neighboring sites goes to infinity, the central limit theorem holds so that the
fluctuations from site-to-site can be neglected. This means that the influence from other sites can
be replaced by an effective medium, i.e. all the degrees of freedom on other sites will be integrated
out as an external bath to this given site, as shown in Fig. 1.2. Thus the dynamics at this given site
(impurity) can be thought of as the interaction (hybridization) of this site with the bath. Moreover,

this bath by itself is noninteracting.

Figure 1.2: illustration of cavity method

Now the effective Hamiltonian derived from Eq. (1.1) can be written in a much clearer way,
H=> ealhoCar + Ui+ (67 = e + > Yalchafo + ficas) (1.2)
(6% g 6

The first term is the energy of the conduction electrons (bath), the second term gives the local
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Coulomb interaction for the impurity, the third term denotes the energy of the impurity, the last
term is the hybridization term between the impurity and the bath. In the Hamiltonian, the index «
is a degree of freedom of the electronic states of the bath. Thus, the many-body problem has been
transferred to a quantum impurity problem. It should be mentioned that the Coulomb interaction
only exists on the impurity site.

If the energy of correlated electrons ¢, and the hybridization v, are known, we can get the
Green’s function G, for the impurity when the Coulomb interaction strength U = 0. This Green’s
function should have all the information of the bath. Therefore, if this Green’s function is known,
the bath is known. Then we can calculate and get the Green’s function G, (iw) for arbitrary U.
The iw denotes the frequency on the Matsubara axis which will be explained in Chapter 2.

The physical idea of the dynamical mean field theory relies on the observation that the self-
energy Y (ko,iw) becomes k independent in the limit of infinite dimensions, i.e. X(ko,iw,) =
Yo (iwy). The calculation of these two quantities are as follows: the self-energy in infinite dimensions

can be derived by perturbation theory, which contains only local elements:
E(T‘Z’, Tj, iwn) = E(iwn)éiyj (13)

where iw,, is the Matsubara frequency. r; is the position of i—th lattice site. The local self-energy
only depends on the local Green’s function

SU[Giwn)]

Eliwn) = =5 Gtom)

(1.4)

where ¥[G(iwy)] is the Luttinger-Ward function. The fact that the self-energy is k independent in
infinite dimensions makes the single site treatment exact in the infinite dimension limit if the local
fluctuations are treated exactly. When the self-energy is known, we can obtain the lattice Green’s
function at site i,
Gioiw) = = 3 Glho,iwn) = =3 - ! . (1.5)
N < N < iwn, — €k + 1 — gy (iw)

where p is the chemical potential and ¢, is the dispersion. The bare Green’s function is the Green’s

function without interactions

1 1 1
GO (iw) = — - =
io (i) N o= iwn — e+ p Gyt (iwn) + So (iwy)

(1.6)

From the definition of G, (iwy,), we can get the relation

GO, (iw) = G (i) (1.7)
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and
G (iwn) + By (iwn) = G, (iwp) (1.8)

Thus we have obtained all the information about the bath from the Green’s function of the
impurity and the self-energy. At the same time, the Green’s function and self-energy are also
determined by the bath, which is specified by G,. Hence, Eq. (1.8) is a self-consistency equation.
It implies a self-consistent solution of the local quantities for the original lattice problem, which
gives the reasoning that the a single impurity coupled to an effective bath is an effective model for

the original lattice problem.

input

Weiss function impurity solver

converged?

output
Figure 1.3: Illustration of the DMFT calculation and the relation between DMFT and impurity

solver

Although the dynamical mean field theory is derived in the limit d — oo (or infinite lattice
coordination), it has surprising success in providing a good approximation in finite dimensions,
even in the low dimension d = 3, as long as spatial fluctuations are small.

In dynamical mean field theory, all the spatial fluctuations of the self-energy have been neglected,
while the local quantum fluctuations are fully taken into account. That’s the reason why the theory
is called ”dynamical”. Here the impurity solver describes the local dynamics of the quantum many-
body system. Therefore this quantum impurity model remains an interacting many-body problem
which needs reliable methods for calculating the local self-energy of the impurity model. Moreover,
recently improved dynamical mean field theory has been proposed to include the spatial fluctuations

for clusters in momentum space [24] or in real space [25].
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By replacing the complicated many-body lattice model with a single impurity model, the degrees
of freedom can be greatly reduced and hence the problem is simplified with the dynamical mean
field theory. Moreover, the single impurity model has been extensively studied. All the methods
that have been developed to solve the Anderson impurity model [11] can be easily used to solve

the DMFT equations.

Besides the simplification in calculation, the dynamical mean field theory has its necessity and
advantage in physics. Usually the calculation of correlated materials has been done in two different
ways. One is the local density approximation (LDA) based on density functional theory (DFT).
LDA is a widely used ab initio method, which has proven its value in the application to study the
electronic structure and properties of simple metals, semiconductors as well as band insulators.
However, it fails to predict some strongly correlated materials in agreement with experiments, e.g.
those materials containing partially filled d or f bands, because of the strong correlation effect. This
is because in LDA the wave like nature is emphasized instead of the atomic feature of the electronic
state. So LDA is much more suitable to simulate wide bands contributed by the electrons from outer
shells, but poorly to describe the unclosed inner shells. In the LDA+U approach [28], the Coulomb
interactions are usually treated in Hartree-Fock approximation, which is not a good approximation
to describe the true many-body physics because the self-energy depends on frequency. Though
LDA+U has been successful in dealing with the long range ordered insulator state, it fails to

describe the paramagnetic state of strongly correlated systems.

Different to LDA schemes, the study of model Hamiltonians provides qualitative understand-
ing of strongly correlated systems because it captures the essence of the frequency dependence
of electron-electron interactions. Various approximation schemes have been proposed and applied.
However, because of the parameter dependence of the model studies, this kind of method is weak in
predictions for new materials. However, the combination of the two approaches mentioned above,
i.e. LDA+DMFT [26, 27], goes beyond LDA+U and is one of the most promising methods to solve
various correlation problems within the framework of DMFT. The combined method has deepened
our understanding and demonstrated its success because the DMFT captures the correlation fea-
tures induced by the on-site Coulomb interaction quite well, while LDA can treat well the periodic
potential and the long range part of the Coulomb interaction so that LDA usually gives good pa-
rameters which can be used to build the Hamiltonian for real materials. For example, LDA+DMFT

nicely describes paramagnetic metals and gives the characteristic three-peak structure: lower and
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upper Hubbard bands, and one narrow Kondo peak at the Fermi level.

In the dynamical mean field theory, the most difficult part is the impurity solver where the effec-
tive Anderson impurity model has to be solved iteratively. Various impurity solvers have been devel-
oped for this purpose. Among them, the most often used impurity solvers are the iterated perturba-
tion theory (IPT) [29, 30, 31], the non-crossing approximation (NCA) [32, 33, 34, 35, the Hubbard
I approximation (HIA) [12], the fluctuation exchange (FLEX) approximation [36, 37], the quantum
Monte Carlo method (Hirsch-Fye algorithm) (HF-QMC) [10, 38, 39, 40], the continuous time quan-
tum Monte-Carlo method (CTQMC) [41, 42], the exact diagonalization method (ED) [43, 44], the
numerical renormalization group method (NRG) [45, 46], the density matrix renormalization group
method (DMRG) [47, 48], and the equation-of-motion method (EOM) [49, 50, 51]. However, each
impurity solver has its own limitation. The original IPT cannot be applied to the case when the
system is away from half-filling. Although the modified IPT can solve this problem, one has to in-
troduce an ansatz to interpolate the weak and strong coupling limits. The generalization of IPT to
the multi-orbital case requires more assumptions and approximations. NCA cannot yield the Fermi
liquid behavior at low energies and in the low temperature limit. The HIA can only be applied to
strongly localized electron systems like f electrons. FLEX works well in the metallic region while
it fails in the large U region. Before the appearance of CTQMC, the HF-QMC was not applicable
in the low temperature limit and had serious difficulties in application to multi-orbital systems
with spin-flip and pair-hopping terms of the exchange interaction since the Hubbard-Stratonovich
transformation [52] cannot be performed in these systems. But even for CTQMC, the requirement
to do analytical continuation of the results to the real frequency axis remains, which introduces
some uncertainties especially for multi-orbital systems. In the ED method, an additional procedure
is required for the discretization of the bath. As a consequence, the method is unable to resolve
low-energy features at the Fermi level. Although NRG can give a very precise description of the
low-frequency quasiparticle peaks associated with low-energy excitations, it has less precision in the
Hubbard bands which are important in calculating the optical conductivity. Furthermore, all the

numerically exact impurity solvers QMC, ED, NRG and DMRG are computationally expensive.

However, today, a fast and reliable impurity solver is really urgently needed due to the fact that
great achievements have been made in understanding correctly the strongly correlated systems from
first principle by combining DMFT and local density approximation (LDA) in density functional
theory (DFT), so called LDA+DMFT [27]. The aim of this work is just to construct a fast and
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reliable impurity solver based on the EOM method. Equation of motion methods are limited by
their decoupling scheme, but EOM has shown its value by working directly on the real frequency
axis and at very low temperature. It can be a good candidate for a fast and reliable impurity solver
by choosing a suitable decoupling scheme. Our work has already proven this assumption and shown
the validity of the EOM method in study of strongly correlated systems with a new impurity solver
successfully constructed. To realize this purpose, we have developed a new numerical method based
on a genetic algorithm in dealing with the minimization problem and self-consistently solving the

integral equations.

1.3 Single impurity Anderson model

The impurity solver is the central part of the DMFT so that we should intensively know the
physical aspect of the impurity model. Hence, we introduce the single impurity model in this
section. The most frequently used impurity model in the dynamical mean theory is the single
impurity Anderson model (SIAM), which was proposed by P. W. Anderson over forty years ago [11]
and was originally introduced to describe magnetic impurities in weakly correlated non-magnetic
metals, i.e. the well known Kondo problem. A recent review of the STAM can be found in the book
by A. C. Hewson [53].

In the single impurity Anderson model, a system of an impurity embedded in a metallic host

can be described by a Hamiltonian of interacting electrons,

N N
1 e? .
H= E + Uhost ) + Vzmp( )) + B g m + E )\(T’i)li -0y (1.9)
itj ! i=1

where considering the first sum as three terms, the first term is the kinetic energy of the electrons,
the second one is related to the periodic potential Uy, in the host metal contributed by the nuclei
without the existence of the impurity. The third term Vj;,, is an additional potential due to the
nucleus of the impurity. The Coulomb interactions between the electrons are given by the fourth
term, and the spin and orbital interaction is described by the last term. The Coulomb interaction
term in the Hamiltonian prohibits perturbational treatments. If the electrons are only weakly
correlated, the system can be treated in the framework of density-functional theory (DFT) [54].
For systems with strong local Coulomb interactions, e.g. the systems with partially filled d or
f shells in transition or rare earth elements, DFT based on local density approximation is not

sufficient and alternative approaches have to be explored.
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One approach is to use simpler model Hamiltonians by considering only the low energy exci-
tations associated with the impurity and neglecting those features not directly related to impurity

effects. Such an single impurity model is proposed as

U - .
H = ;Ekczackg + epflfa+ 5 ; fofigr -+ ;(V,WCLU for 4 Vio fl ko) (1.10)
o o o#o’ o

The first term in this Hamiltonian gives the energy of the conduction electrons, where C;L , and

cpo are the corresponding creation and annihilation operators of conduction electrons for Bloch
states ¢py(r) with the band energy €. k is the wavevector and o is the spin component. The

anticommutation relations are
[l Chior)+ = Okk0o0, [l s o]+ = 0 [Chos Chror]+ =0 (1.11)

In the model, assumptions have been made that the conduction band is a wide band and the
conduction electrons in the system are approximately independent to each other, i.e. the Coulomb
interaction between the screened conduction electrons is neglected due to the strong delocalization
of the wide conduction band.

The second term shows the energy of impurities, where ¢y is the energy level of impurity
electrons, f; and f, are the generation and annihilation operators of an electron in f — o orbital-
spin state.

The third term is the Coulomb interaction term, which describes the local Coulomb interactions
between f electrons. U is the energy that has to be paid for putting a second electron into a singly
occupied impurity state, i.e. once an energy state with energy € has been occupied by one electron,
adding one more electron should cost € + U. Therefore, one obvious effect of this term is to cause
the splitting of the impurity electronic state. Neglecting this term, the Hamiltonian is regarded as
the non-interacting Anderson impurity model, which has been discussed in detail in A. C. Hewson’s
book [53].

The last term describes the hybridization between the impurity electronic state and the con-
duction band with the interaction strength Vi,. The physical picture is that, when the conduction
electrons move in the periodic potential, they will be scattered by the impurity. For larger Vi, the
scattering orbital is stronger. Due to the scattering by the impurity, the system shows an additional
resistance of conduction electrons at the Fermi level. In experiments, a resistance minimum occurs

at a very low temperature when the resistivity contributed by the phonon scattering is suppressed.
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This resistance minimum was first observed by W. J. de Haas et al. [55]. It was found that the
resistance minimum is dependent on the impurity concentration. This phenomenon is caused by
the interaction between the local moment and conduction electrons and was first explained by J.
Kondo in his work [56]. Such kind of behavior was in honor named as Kondo effect.

The single impurity Anderson model is characterized by the interplay of the delocalization,
Coulomb interaction and hybridization, or by the choice of parameters U, Vi, €y and €;. Here we
discuss some special and simple systems.

If U is zero, the Hamiltonian corresponds to the non-interacting system,
H= Zskczackg + Zsff;fg + Z(V,:Uc};gfg + Vkof;ckg) (1.12)
ko o ko

Although the localized state and the conduction electronic states are not orthogonal to each other,
in a simplified consideration, one can still assume (f|k) = 0 because the conduction band is mainly

built by the s or p orbitals. The equations of motion should be

W—cep) < foifl> = 14> i< fl> (1.13)
k
(w—er) e fI> = V< foi fl > (1.14)
(w—er) < Clw;CLo > = otV < fg;CLU > (1.15)
(W—ef) < foichy > = > Viw < cwroicly, > (1.16)
o

Then the single electron Green’s function for impurity is defined as

1

< foi I = 7 (1.17)
w = Ef - Zk W—EL
and the single particle Green’s function for conduction electrons is
S ViV < foi fi >
< Ckos Cch/a > V| kTR fo: J (1.18)

o—en W@ —ew)

If the V} vanishes (the so called atomic limit), i.e. the localized impurity electronic states are
decoupled from the conduction electrons, there are three kinds of electronic configurations according
to the energy of the system: vacancy ( Eg = 0 ), single electron occupation ( 1, = £5 ) and double
electron occupation ( Ey = 2e¢ + U ). For the singly occupied state, the impurity energy level e
should be smaller than the Fermi level while e + U > 0 so that only one electron occupation is

favorable.
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If the Coulomb interaction U ## 0, a universal three peak structure emerges. The central peak
at w = 0 is called Kondo peak. The density of states at w = 0 is pinned to its non-interacting value
po(w = 0), which is independent of U as required by Friedel’s sum rule [57]

Ep

Nimp = Ap(e)de = ner) (1.19)

™

—0o0
where 7(¢) is the phase shift. This pinning can be used to check for the reliability of the numerical
algorithm.

In the general case, the density of states (DOS) of the impurity is given by
N i
plw) = ——Im < fo3 f5 > (1.20)
where N is the spin and orbital degeneracy. The overall weight should be normalized,
oo
/ plw)dw =1 (1.21)
—00
For the conduction electrons, the same rule should hold,

00 D
/ po(e)de =1= /Dpo(e)ds (1.22)

oo _

A special case is the so called symmetrical system, when 2e; +U = 0, i.e. € = —%. In this
case, the system should possess particle-hole symmetry at zero temperature. The increase of U
from zero leads to the formation of lower and upper Hubbard bands. The position of lower and
upper Hubbard bands are shifted from the position of the atomic peaks forward and backward to
:l:% due to the level repulsion. If the chemical potential p exists, the two bands are positioned at
the energies wy, /100 = i% + p. At the same time, with increasing U, the Hubbard bands capture

more weight of the density of states and the bands become separated.

1.4 Hubbard model

In the Sec. 1.2, we have mentioned the Hubbard model as an example of a lattice model, which
is indeed one of the most important models used to study strongly correlated electron systems.
The Hubbard model, independently proposed by J. Hubbard, M. C. Gutzwiller, and J. Kanamori
almost at the same time in the early sixties [12, 58, 59], is the simplest theoretical lattice model for
systems where the electrons are assumed to move by only nearest-neighbor hopping and interact

with extremely short range repulsive Coulomb interaction. Some reviews can be found in [60, 61, 62].
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In the single band Hubbard model, the Hamiltonian is given by

H = Hhop+Hint (1.23)
Hhop = - Z tijc;[acj'g (1.24)
ij,0
Hint = U Z niTnil (1.25)
%

where cgg creates an electron with spin o =T, | at site i, ¢j, is the corresponding annihilation
operator, n; = cl;cig is the occupation number operator. These Fermion operators obey the

anticommutation relations

[Czav Cj7]+ = 51']'507 (1.26)
and
[CZU’ C;T]+ = [cio, ¢jrl4 =0 (1.27)

In the Hubbard model, there are two parameters. One parameter ¢;;, which is assumed to be
real, represents an energy gain of the electrons hopping between different sites. Another param-
eter U gives the Coulomb interaction strength which represents the potential energy arising from
the charges of electrons. Thus the Hubbard model sets up a quantum mechanical hopping term
of electrons and a nonlinear on-site repulsive interaction. In the Hamiltonian given above, the
Coulomb interaction term has been given the simplified form with only the strongest part included,
for example, the Coulomb interaction between different orbital states has been neglected due to
the screening effect.

Neglecting the first term of the Hamiltonian Eq. (1.23), the system becomes a non-hopping
system. Neglecting the second term, we obtain the so called "tight binding” band theory. The
Hamiltonian containing either the first term or the second term can be diagonalized so that it can
be solved analytically. If both of them exist, it is believed that the model will show various non-
trivial phenomena, e.g. the transition from metal to insulator, ferromagnetism, antiferromagnetism,
and superconductivity, due to the competition of two mechanisms. Because of the simplicity of
the Hubbard model, and also because the model has captured the essence of strongly correlated
systems, the Hubbard model is very widely used. One can find various interesting aspects of
strongly correlated electron systems and learn new physical concepts from studying this simplest

idealized model.



14 CHAPTER 1. INTRODUCTION

Usually the band width W is used as energy scale to compare with the Coulomb interaction
parameter U. For the simple cubic lattice, there is a relation W = 2zt, where z is the number of
nearest neighbors.

If U > W, the system reaches the atomic limit or strong coupling limit, which corresponds to
a strongly correlated system. For U being infinity, the Hubbard model turns out to be the ¢t — J
model [63, 64], which describes electrons moving on a lattice and forbids the double occupancy on
each site. The effective exchange interaction relates to the hopping parameter by

e

J
U

(1.28)

The ¢t — J model can be solved by a perturbation expansion.

In the weak coupling limit U < W, the Hubbard model describes a Fermi liquid behavior,
because the whole system mainly shows the delocalization trends contributed by the hopping term.
The most interesting case is the intermediate region between weak and strong coupling, i.e. U ~ W.
Many important and interesting properties are shown in this region, e.g. the Mott metal-insulator
phase transition, due to the competition of two mechanisms. However, in this region the behavior
of the system is complex and a full mathematical treatment is difficult.

In history, J. Hubbard showed the splitting of the two Hubbard bands first using the decoupling
method, known as Hubbard-I decoupling method. Then, perturbation theory [65, 66] and the
Bethe ansatz method [17, 67] have been used in later studies. In the limit of dimension d = oo, two
methods, proposed by Metzner and Vollhardt [9] and Gutzwiller [68], give the exact solution, which
has eventually led to the appearance of the dynamical mean field theory. Nowadays, within the
framework of DMFT, there are a lot of numerical methods that can be used to solve the Hubbard
model through solving Anderson impurity model. This is also the purpose of this thesis.

In the dynamical mean field theory, the local Green’s function on a single site is given by the

functional equation

1
G(r) = ~7 /[DCTDC]CU(T)CL(O)S_S (1.29)
where Z is the partition function
7 = / [Dc'De]e™ (1.30)

The effective action is given as

B B B
= — T ’7'/ CT'T _lT—T/C 7'/ TNA\T )N\ T .
5= /Od/(]d%jo()g( >a<>+U/OdT<>¢<> (1.31)
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where 3 = ﬁ is the inverse temperature and G~!(7 — 7/) plays a role of Weiss effective field in the

mean field theory. It can be shown that

G Hiwn) = G (iwn) + X (iwy) (1.32)
where
R
Gliwp) = /O dre™nTG(1) (1.33)
s
Giwn) = /O dre“nTG(r) (1.34)

The local Green’s function G(iw) is related to the local self-energy ¥(iwy,) by the Dyson equation
Eq. (1.5). So it makes a self-consistent set of equations which can be calculated iteratively. One
can start with an arbitrary input X(iw,) and Go(iw,). If impurity model is solved, one new self-
energy can be obtained by the Gy(iwy) together with G(iwy,). Then, G(iwy) can be obtained with
Dyson equation and Eq.(1.32). The iteration will continue until a self-consistent solution (3, G) is

reached.

1.5 Periodic Anderson model

The periodic Anderson model (also called Anderson lattice model) is another important and fre-
quently used lattice model to study strongly correlated systems, especially heavy Fermion systems.
This model was introduced by P. W. Anderson in 1961 [11] to describe the effects of correlations
for d electrons in transition metals. More details of this model can be found in the review paper
by C. Noce [69].

As we have mentioned in Sec. 1.3, when localized moments are introduced into a host metal, the
system will show unusual behavior in transport properties, especially on a very low energy scale.
Usually the rare-earth and actinide elements containing incomplete f shells will introduce these
localized moments. Below a certain temperature, these impurities will act as scattering centers for
conduction electrons and enhance the resistivity of the system.

The periodic Anderson model is closely related to the single impurity Anderson model. The
difference between them is that the single impurity Anderson model describes an impurity in a
metallic host, while the periodic Anderson model has a lattice of impurities. Because the periodic
Anderson model captures the essential physics of interactions between the impurities and the con-
duction electrons of the host metal, it can well describe a large variety of physical phenomena and

the main properties of impurity systems.
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The original form of the Hamiltonian for periodic Anderson model is as follows:

H= ZtUCwCJO' + ngfgafﬂﬂ + 5 Z nJUnJ<7/ + Z VkUCkaJU + Vka]UCkU) (135)
ijo joo’ Jsk,o

o#o’!

where the first term is the hopping term of conduction electrons, the second term and third term are
related to correlated electrons. Here the correlated electrons are localized. When double occupancy
exists, the Coulomb repulsive strength is U. The last term corresponds to the hybridization between
the correlated electrons and conduction electrons with hybridization amplitude V. The Fermionic
operators in the Hamiltonian are the same as what we have explained in the single impurity
Anderson model and fulfill the same anti-commutation relations. The behavior of the impurities
will be the consequence of the interplay of the atomic interactions, the exchange interaction and

the hybridization term. Moreover, usually only nearest-neighbor hopping is considered.

The Hamiltonian can also be written in the form

U, .
H= Zé‘kcltgckg + ngfjo.fjo' + 5 Z NjoNjo + Z (Vk*UCLijg + ngfjackg) (1.36)
ko jo jyoo! J.k,o

o#o’!

with the relation
ep = Zt”e i(Ri-Rj)k (1.37)

Comparing with the Hamiltonian of the single impurity Anderson model (1.10), the periodic An-
derson model requires only one additional summation of j over the impurities. Actually the two

models sometimes also show similar behavior in physical quantities.

Like the Hubbard model, the periodic Anderson model is in the atomic limit when ¢;; = 0. In
this case, the periodic Anderson model can be exactly solved due to the decoupling of different
lattice sites. For the non-interacting case U = 0, the correlation of electrons for different spin
channels vanishes. Then the spin channels are independent to each other so that the model can be
simplified. If the hybridization factor V}, is zero, the conduction band and f electrons are decoupled.
Then the f electrons gives the trivial case, vacancy, single occupancy and double occupancy, just
similar to what we have discussed for the Hubbard model, see Sec. 1.4. For a general case, the

periodic Anderson model shows complex behavior and can not be exactly solved.
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1.6 Summary

In this chapter, we have introduced the motivation of this thesis work and the related scientific

background.

The discovery of various exotic properties and interesting phenomena such as heavy Fermions,
Mott metal-insulator transition, high T, superconductivity, shown in transitional metal oxides and
Lanthanides, promotes the study of strongly correlated electron systems. The failure of density
functional theory with local density approximation in some insulating systems and the success of
studies on model Hamiltonians (parameter dependent) motivates the appearance of the dynamical
mean field theory, which has shown the power in LDA+DMFT approaches. Dynamical mean field
theory maps the lattice problem to a single impurity problem with self-consistency conditions.
Thus the solving of lattice models is transferred to solve the single impurity Anderson model with
an additional level of self-consistency. Due to the fact that all existing numerically exact impurity
solvers are computationally expensive and usually limited by the available computer powers, a fast

and reliable impurity solver is needed, which motivates us to carry out this research.

For the content in order, we have introduced the Mott metal-insulator transition, one of the
key phenomena in strongly correlated systems. Then, the objects of our study, the dynamical
mean field theory and the single impurity Anderson model, were introduced. In the last part, two
important lattice models for the strongly correlated systems, the Hubbard model and the periodic

Anderson model, have been introduced briefly.
Moreover, the following Chapters are arranged as follows:

In Chapter 2, starting from the Hamiltonian and Green’s function, the equations of motion are
derived for the one band single impurity Anderson model with arbitrary spin and orbital degeneracy
N. Then, the decoupling scheme is introduced and employed to close the equations of motion.
Finally we derive the single particle Green’s function from these closed equations of motion. In
this procedure, two different decoupling schemes are applied separately in the calculation of the
single particle Green’s function. Moreover, besides the calculation on the real frequency axis, we
also perform the calculation on the Matsubara axis and use the Pade scheme to transfer the result

from imaginary frequencies to real frequencies.

In Chapter 3, based on the equation-of-motion method by taking more equations of motion

of higher order Green’s function into account, we derive the possible higher order approximations
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beyond Lacroix’s result. In order to find a suitable decoupling scheme and treatments for dealing
with the higher order Green’s functions and correlations, future efforts on exploring these formulae
in numerical calculations are necessary.

In Chapter 4, a theoretical investigation of multi-band systems is carried out. In most simple
cases, we have studied the two band system as a simplest example of multi-band systems. For
the sake of simplification, first we neglect the interaction between the two bands through the
dispersion. Then we study the system with taking into account the terms generated by the inter-
band Coulomb interaction. These terms are treated by the Hartree-Fock as well as Hubbard-I
approximation, respectively.

In Chapter 5, we review the detail of the most commonly used numerical techniques and in-
troduce our new numerical method. In our work, we first apply the iterative method with linear
mixing, and the iterative method with Broyden mixing. These two methods are difficult to con-
verge in the calculation of dynamical mean field theory. Therefore, a new method based on the
genetic algorithm is introduced in our study and proven to be very effective in improving both the
convergence speed and the quality of the numerical results.

In Chapter 6, we show the numerical results obtained from the calculations using our new
method. We study in detail the single impurity Anderson model, Hubbard model, periodic An-
derson model in the single band case with arbitrary spin and orbital degeneracy N for the two
cases when the Coulomb interaction strength U is infinite or the Coulomb interaction strength U is
finite. It gives numerically comparable result to previous exact results shown in review papers and
recent publications. Moreover, we give a first study for the multi-band system and get qualitative
results, which will be improved in the future. Finally we summarize all our work in Chapter 7 and

make a conclusion.



Chapter 2 Theory and method

In this chapter, we first explain why the Green’s function decoupling method (also called
equation-of-motion method) is chosen to construct our impurity solver. Then, the equations of
motion are calculated starting from the Hamiltonian of the single impurity Anderson model. Next,
the underlying meaning of the decoupling method is explained and the detailed decoupling schemes
studied in my work are presented. At last, the analytical results are presented and two different

decoupling schemes are compared.

2.1 Why have we chosen the EOM method?

The direct purpose of my PhD work is to get a fast and reliable impurity solver for LDA4+DMEFT,
because the impurity solver needs to be repeated again and again even in one-shot LDA+DMFT
(this is a LDA+DMFT scheme without self-consistently optimizing the charge density). So a fast
and reliable impurity solver is urgently needed. The following are the most frequently used methods:
The iterated perturbation theory (IPT) is an analytical method with an expansion of the self-energy
up to second order. Moreover, IPT originally can not be applied to the case away from half filling.
A modified IPT method can solve this problem, but has to introduce an ansatz to interpolate the
weak and strong coupling limits, while the generalization of IPT to the multi-band case requires
more assumptions and approximations. The Non crossing approximation (NCA) can not yield the
Fermi liquid behavior at low energy and in the low temperature limit. The Fluctuation exchange
(FLEX) approximation works well in the metallic region while it fails in the large U region. The
Quantum Monte-Carlo method (Hirsch-Fye algorithm) is hard to apply in the low temperature
limit and has serious difficulties in application to the multi-orbital system with spin-flip and pair-
hopping terms of the exchange interaction. The continuous time quantum Monte-Carlo method,
a significantly improved QMC scheme, still requires analytical continuation of the results to real
frequency axis, which will introduce some uncertainty especially for multi-orbital systems. In the
exact diagonalization (ED) method, an additional procedure is required for the discretization of
the bath. It gets also a discrete spectrum (collection of §-peaks). As a consequence, ED is unable

to resolve low energy features at the Fermi level. The numerical renormalization group (NRG)

19
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method aims at a very precise description of the low frequency quasiparticle peaks associated with
low energy excitations. But NRG has less precision in the Hubbard bands which are important in
calculating the optical conductivity. The density matrix renormalization group (DMRG) method is
only applicable to the Bethe lattice in the context of DMFT. The equation-of-motion method is an
analytical approximation method, whose precision closely depends on the implemented decoupling
scheme. Among the numerical methods, NRG, DMRG, QMC, and ED are numerically exact
methods, but at the same time all of them are computationally very expensive and strongly limited
by available computer resources. Due to the time limitations and the fact that the equation-of-
motion method can work on the real axis directly, we have concentrated on the equation-of-motion
method to construct our impurity solver. The most important task is to find a suitable decoupling

scheme.

2.2 Calculation of equations of motions

In this Section, the equations of motion for the Green’s function are calculated. Moreover,
a machine calculation by computer algebra has been employed as an alternative method in our
deriving of the equations of motion, the implementation of the decoupling scheme and the solution
of the closed equations. The machine calculation yields results consistent with the calculation by
hand and shows its potential applications in the derivation of the Green’s function. Some previous
works about the derivation of equations of motion can be read in [70, 71, 72, 73, 74].

2.2.1 Analytical calculation of equations of motion

For the single impurity Anderson model (SIAM), the Hamiltonian is

H= euchcro+ead dids+ % > gt + Y (Vigchydo + Vied) ko) (2.1)
ko o oo ko

o#o’
where 1, = didg. The first term is the energy of conduction electrons, the second term is the
energy of correlated electrons, the third term is the Coulomb interaction on the correlated site and
the last term is the hybridization term between conduction electrons and the correlated band. For
transition metals or Lanthanides, the Coulomb interaction between d electrons or f electrons is
strong and comparable to the band energy. So for such systems, U will be a large energy scale.

In the above Hamiltonian, all the Fermionic operators satisfy the following commutation rela-

tions,

[0207 Ck'or|+ = Okk G0 [CLO" Cl];’a/]-i- =0 [Chos Chor]+ =0
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[dlv do’]Jr = Ogo [dj,, dlf]Jr =0 [dav da’]+ =0

el d)y =0 el dp]t =0 [ehord ] =0  [chordor]s =0

In studying the system described by the Hamiltonian of Eq. (2.1), we consider the temperature-

dependent retarded Greens function in Zubarev notation [75],
Ganlt,#) =< A(t); B#) = —i0(t — £){[A(t), BE)]:) 2.2
involving the two Heisenberg operators A(t) and B(t'). ©(t — t’) is the Heavyside function, i.e.

, 1 t>t
ot —t) = , (2.3)
0 t<t

which determines the defined Green’s function as a 'retarded’ Green’s function.

It is convenient to work with the Fourier transform, which is defined as

< A B>,= / dt 1) < A(t): B(t') > . (2.4)

—00

In the framework of the equation-of-motion method, the Green’s function should satisfy the equa-

tions of motion

w< A;B>»=([A,B]4)+ < [A,H]; B> (2.5)
or

w<K A;B>»=([A,Bl;)+ < A;[H,B] > (2.6)

where we have neglected the lower indices w. In the following, all the Green’s functions depend on

frequency w.

For the one particle Green’s function < dg; db > using the Eq. (2.5), we will determine

w <L dy;dl >= ([dg,d}] )+ < [dy, H], d] > (2.7)
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Accordingly,

(o, df]+ =1 (2.8)
[do, czo,ckg/] = docza,clmx — czo,ckg/dg
= ([do, hrl s = ehydo)enor — i ([chors dol s — dycror)
=0- cLJ,dackgr -0+ CLJ,dackgr
=0 (2.9)
do,d!,dyr] = dod! dyr — d'dyid,
= ([dod,) 1 — d},do)der — di,([dor, do) s — dydl)
= [dy,d 4 dyr — dl dydyr — 0+ d!,dydy
= Ogordyr (2.10)
o, el idpr] = docl_dyr — ¢l _idyrd,
= ([do, el ]t = Chordo)dor =l ([dor, doly — dodyr)
=0~} dodyr — 04} dydy
=0 (2.11)
o, dhor] = dod Cror — di chordy
= ({do d} )4 = d! do)chor — dl, ([chor, do)y — docro) (2.12)
= [do, d} ]y Cror — d! dycrgr — 0 + d dycpgr
= Oy Chor (2.13)
(o i¢iiglcre = doficig — figigds
= (f¢do + [do, ] — Needy
= fedyiie + Ogedehe — Piehiedy
= ¢ (Ngdo + |do, fig]) + Oo¢(Rgde + [dg, ie]) — Ticeds
= ehedy + Aedoede + Sociiede + 0ocOcedy — Neiiedy

= Nedgede + Ogched (2.14)

where we obtained the final results in each formula by crossing out the terms with opposite signs

and dropping the zero terms (involving d¢¢) due to ¢ # &£ Thus we can obtain the equation of
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motion of the Green’s function < d; dj, >

U . R
(w — Ed) < dy; d:r, > = 1+ 5 Z < ncdg(sgg + ngdg(sgc; Clj; >+ Z Vie < Cios dg >
€3 k
C#E
= 14U <igdyid) >+ Vig < cposdfy > (2.15)
¢ k
CFo

For the system with arbitrary degeneracy N, we consider that the Green’s functions with difference

only in spin and orbital indices are quantitatively the same (due to degeneracy), i.e.
€ Mgl dfy, >=< fgde; df >cpe (2.16)
Summing over all spin and orbital indices, we obtain

(w—ca) Kdgidh > = 1+ (N = D)U < tigrdgidly Sos0 + > Vig < Croidl > (2.17)
k

Here, the higher order Green’s functions < 7,/d,; dj, > and < ¢gy; dl > appeared on the right
hand side of the equation. Similarly, we can calculate the equation of motion of these two higher

order Green’s functions.

Before calculating the commutators involving operators cg, and CL , for conduction electrons,

we should mention that
Ckada’ = [Ck07 da’]Jr - da’cka = 7da’cka (218)

by using the anti-commutation relation [cks, dy]+ = 0.

Similarly, we can get the following formulae:

C]wd;rr, = [Ck;o—,di_/]Jr — dIr’CkU = —d:rT,C]W (2.19)
CLUdU/ = [CLU,do-/]Jr — dglc};o = —do/C;rm (2.20)
CJlrm'dj;" = [CLO'7 dl’]‘i‘ - dl”c};a = _djf’CLU (221>

As we can see, permuting the ¢ and d operators only generates a minus sign. Later, we will simplify
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the calculation by just using this conclusion.

[ckaa dj;]-F =0
[Cka'a CZ:/O./ Ck’a’] = CkUCLIO./CkIU, - CLIO./CkIO',CkJU
= ([cktﬂ CLU/]-&- - c]];lo—/cka)ck’a’ - CLIO—/([CIC’O'H cko]—‘r - Ckock’a’)

= [Ckaa CL/U/]—I—Ck’U’ - CL/U/ CkoCkror — 0+ C]t/glckock’a’

— Bt Chre (2.22)
[ehord dg] =0 (2.23)
ehonicing] =0 (2.24)
[Chos cL,g,dU/] = c;wcL,g,dU/ - CL,G,dU/c;w

- CkO'CLIO./do" + CLU/C]go-dU/
_ T d
- [Ckcry ck:’a’]"’ o’
= 5]€k/(;0—0-/ (225)
ek, df = crod! cpor — dl
ko O./Ck/o-l] = Ckoly Cl! o7 o/ Ck' o’ Chor
— *dj;_/Cko-Ck/o./ — di-/ckla’cko'

- _d:rff [Ckaa Ck’a’}+

—0 (2.26)

So the equation of motion of < c¢iy; dj,- > is

(W —€}) K Cpg; dl >= Z Vi Opi0ote K dory dl = Vi < do; dl > (2.27)
k/

yielding,

Vi < do: dly >
& Cpgydl >= k2 (2.28)
W — €&k

Then the EOM of the Green’s function < d,; dl > turns out to be

2

V,
(w — &~ Z rkagk) < da§d:r7 > = 1+ (N - 1)U < ﬁa’dcr;d:ry > ool (2'29>
k
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Similarly, we can obtain the EOMs of other higher order Green’s functions

(w—¢e4—U) < Nprdg; dl >

= g+ (N = 2)U < figigrdo; d, >+ (=Vi, < ¢ idorde; df, >
k

Vo < i Croy dly > +Vigr < dl crordys df )

(W — k) K NgrCro; dl >

= Vi K fgrdy;dl > + Z (Vk*/ol < dl,ck/glckg; dl > Ve < ci,g,dg/ckg; d]; > )
k:/

(w—ep) <K dj;,ckg/dg; dl >

25

(2.30)

(2.31)

= (dLicre) + Vig: K tgrdosdl, >+ (=Vig < clicordoidl, > +Vivg < dY crorcrq: dl >)2.32)

k’

(W —+ L — 28(1) < Clta./da/dcr;dj; >

= (el _d,)+U < ¢ dordy;dl, > +2(N = 2)U < ¢}, icdprdy; d, > cz0
¢#o'

—V < dLdydyidl > +V Y (< el doicrgidh >+ < cfcpgrdyidl )
k/
(w +Eq — € — 5k) < dilck/glckg; d:fj >
= (N =V)U < figd! cprorpos dl, >cror AV (K Al cprgrdy; df, >

+ < ﬁo—/Cko—;dl. > — Z < CL//O./C]{;’U’C]@O—; di— >>)
k!

(w + e —Eq — Ek) < CL,U,dU/CkU; d:r, >
= (N =) < el dorcro; dl >cpor +V (<l dordys; df >

-< 'ﬁ‘a’cka;dl > +Z < CL/U/Ck”D'/ckU;dj; >>)
k//

(WHep —eq—ep) < C]E/U/Cko’do'; dl >
= <CL’O'/C]€0'/> + (N — 1)U < fLCCL/U’CkU/dU; dj;. >>C;éa’ +V(<< Cng/dg'/do-; dl. >

— < deperdeidh >+ < clpicrorerrordf )
k//

(2.33)

(2.34)

(2.35)

(2.36)

Moreover, here we will introduce a small trick in order to simplify the calculation by reducing

the number of EOMs for higher order Green’s functions. Actually you may notice that six double-c

operator Green’s functions appear in the first several EOMs, while we only calculated three higher

order EOMs. The reason is that here k and &’ are both momenta running over all k space. So, if

we change the summation order and the symbols in the summation, it does not change the result,
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i.€.
! Vi Vi1V,
Zkk’ —aIZU < dT/Ck’J’Ck’aa d > = Zkk’ ZG,E:/,J < d o' Ck' o’ Cho d >
Vi1V, Vi1V,
S gratey < cgdpcpoidh > = Y st < o, dycrgidh > (2.37)

VigrVirg f i Vio Vi : it
Dok ot T K G oo do > = ) oy SR K i Crot do o >

On the other hand, in order to make the formulae more clearly readable, we will introduce some

abbreviations, which will be used later.

Gy =< dy;dl >, Ge=< cpo;dl >, Gng =< figrdy;dl >
Gnc =<K ﬁa’cka; d:ry >, Gdcd =< di—/cko’da; d:fT >, chd =<K ckg d ’daa d:rr >

Gaere =< dl—/ck’a’cka; d:ry >, Goge =< C]t/o-/da’cka; d:fy >, Goeq =< CL/O-/CkJ’d0'§ d:ry >

Grnd =< ﬁ('ﬁa’da; d:rr >, Grne < ﬁcﬁa/ckJQ dz >, Grded =< ﬁcdilcka/da; d:ry >
Here, we used the ”d” label for d operator in all channels, the ”¢” label for ¢ operator in all channels,
the ”¢/” label for c or ¢t operators carrying a k' index, while "n” labels 7 in all channels. For those

Green’s functions we did not mention here, e.g9. Ggeers Geder, Geerd, We will use the same rule.

Finally, we give the definition of the hybridization function

2
Aw) =Y wv_"“’gk (2.38)
k

and then we list all necessary EOMs as follows:

(w — &k — A)Gd =14+ (N — 1)Gnd (2.39)
(w—e4—U)Gpg =g + (N — QUG pna + VZ(Gnc + Gaed — Gedd) (2.40)
k

VZGM:
k

e — Goae) (2.41)
kk’

Vi{d, cry V2
VZGM:Z <“_’“ >+Z — Gnd—Z—Gccd+Z G (2.42)
k PR PR Kk Kk!
V{d! cpor) + V(N = 2)UGnead — V2Gra V2
14 Gc = z Gc/ c Gc’c
zk: dd zk: wHep—2e9—U +;w+€k/_2€d_U( de + a)
(2.43)
(W+5d_€k’ _gk)Gdc/c - _( - 1)UGndcc+V(Gdcd+Gnc _ZGL cc (244)
k//
(w +Epr —Eq — Ek)Gc’dc = (N — 1)UGnc’dc + V(Gcfdd — Gpe + Z Gc/cuc) (2.45)
k//
(W +Exr —Eq — 5k)Gc’cd = <CL/J/Ck0/> + (N - 1)UGnc’cd + V(Gc/dd - Gdcd + Z Gc’cc”) (246)

k!
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2.2.2 Machine calculation and symbol manipulation

In our calculation of the equations of motion of Green’s functions and implementation of the
decoupling scheme, besides the calculation by hand, we have also tried and successfully employed
the machine calculation with FORM [76], an algebraic programming language that was specifically
designed to manipulate large formulae and developed by Jos A.M. Vermaseren at NIKHEF (the
Dutch Institute for Nuclear and High-Energy Physics).

With our code written with FORM, we have reexamined our calculation and confirmed the
result. We have found that FORM is a very useful tool in the derivation of large sets of equations.
Here we just give a brief introduction to my idea how to calculate the equations of motion and
how to do the decoupling. For the FORM language, please see the manual which is available on its
website.

To calculate the equations of motion, we first defined each kind of operator that appears in a
Green’s function and the Hamiltonian as symbols. The Green’s functions are defined as functions,
while the Hamiltonian is stated as a local expression in FORM. Then we calculate the relevant
(anti)commutators, e.g. [A, H]. Secondly we input the rule for the order of the arrangement of all
the operators, together with the permutation relations for these operators. Then we rearrange the
operators in the calculated (anti)commutators and bring them into our predefined order. Finally,
we remove the zero terms generated in this rearrangement. Hence, the expanded equations of
motion are obtained.

When the equations of motion are obtained, we input the rule of the decoupling scheme about
which Green’s function should be decoupled and how it is decoupled. Doing this replacement,
we get the closed set of equations of motion at the level we designed. Then we solve this closed
set of equations of motion by matrix manipulation. Thus, the single particle Green’s function is

automatically calculated. One example of the FORM code has been given in Appendix A.

2.3 Decoupling Scheme and approximations

The aim of the decoupling scheme is to decouple the equations of motion in order to close the
equation system by expressing higher order Green’s functions with lower order Green’s functions.
It’s a necessary step to solve the equations in a manner of certain approximation otherwise more
higher order Green’s functions and their equations of motion will appear. In the decoupling scheme,

the higher order Green’s function and those functions whose equation of motion is excluded from
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the closed 