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Abstract. Genome-wide CRISPR screens are becoming more widespread and allow the simulta-

neous interrogation of thousands of genomic regions. Although recent progress has been made in

the analysis of CRISPR screens, it is still an open problem how to interpret CRISPR mutations in

non-coding regions of the genome. Most of the tools concentrate on the interpretation of mutations

introduced in gene coding regions. We introduce a computational pipeline that uses epigenomic

information about regulatory elements for the interpretation of CRISPR mutations in non-coding

regions. We illustrate our approach on the analysis of a genome-wide CRISPR screen in hTERT-

RPE-1 cells and reveal novel regulatory elements that mediate chemoresistance against doxorubicin

in these cells. We infer links to established and to novel chemoresistance genes. Our approach is

general and can be applied on any cell type and with different CRISPR enzymes.

Keywords: CRISPR-Cas9 screen, mutations, non-coding genome, gene regulation, chemoresis-

tance

Introduction

One of the largest problems in current biology and molecular medicine is understanding how genotypes

cause phenotypes. The recent development of the Clustered Regularly Interspaced Short Palindromic

Repeats (CRISPR) technology accelerated genotype to phenotype associations by introducing targeted
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gene perturbations [1]. While arrayed CRISPR experiments enabled the association of phenotypes to the

perturbation of individual genes, genome-wide CRISPR experiments are able to target entire genomes

simultaneously in a single experiment [2,3]. Unbiased genome-wide CRISPR screens facilitated the linking

of genotypes with phenotypes on a large scale and facilitated the identification of drug resistance and

cancer vulnerabilities [4–7]. In addition to fishing for potential hit candidates on a genome-wide scale,

the CRISPR technology has been used to understand gene architecture and identify functional protein

domains through exhaustive gene tiling [8,9]. Here, all possible gRNAs for a locus of interest were tested

simultaneously to identify gene/protein segments in which gRNAs were under/over-represented due to

a phenotypic enrichment. Moreover, CRISPR screens have been applied to the non-coding genome to

functionally characterize long non-coding RNAs (lncRNAs) and cis-regulatory elements linked to cell

viability and chemotherapy resistance [3, 10,11].

Current approaches to analyze genome-wide CRISPR screens are based on computing log fold changes

of gRNA abundance between treated and untreated cell populations. Usually, the treated cell population

is harvested at the end time point of the screen and compared to an untreated control population that

has been harvested at an early time point, or even the plasmid library. Positive and negative hit gRNAs

are then called based on the ranking of these relative changes [7, 12]. This principle can be applied

to analyze CRISPR screens targeting protein-coding genes as well as non-coding regions. For CRISPR

screens targeting known protein-coding genes, a variety of statistical analysis tools are available: One

of the first algorithms that was specifically designed for the analysis of CRISPR knockout screens was

MAGeCK, around which an entire suite of visualization and analysis tools has evolved [13–15]. The

BAGEL algorithm aims to identify hitherto unknown essential genes by applying a statistical model that

is based on prior knowledge about gene essentialities [16]. A user-friendly and easily accessible tool is

PinAPL-Py which is implemented as a web service and offers multiple analysis options for a variety of

CRISPR screening experiments [17]. However, there are no general approaches available to call hits of

a genome-wide screen using a randomized gRNA library that targets mainly non-coding regions. The

reason is that an additional annotation step is required to overlap hit gRNA target sites in non-coding

regions with known or predicted gene regulatory elements. Also, it is currently unclear whether the same

statistical assumptions hold true for calling hits in coding and non-coding regions of the genome.

Understanding the regulation through non-coding regions is a current topic in genetics. One particular

role of the non-coding genome is to harbor Regulatory EleMents (REMs) such as enhancers, repressors,

and promoters. REMs can be bound by transcription factors (TFs). TFs can recruit other proteins that

can influence the 3D-structure of the chromatin and regulate gene expression in a cell-type specific

manner [18]. REMs can be located far away from the genes they regulate and lead to up- or down-

regulation of target gene expression [19–21]. Identifying REMs is challenging, and different genome-
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wide protocols can be used. There is no one gold-standard method, but instead different (epi-)genomic

indicators and different algorithmic approaches are used for the annotation of REMs [22–28].

There are a number of databases that describe human REMs, such as theVista Enhancer Browser [29],

with experimentally verified enhancers, the FANTOM5 enhancer resource [26], or the HACER database [30].

Furthermore, there are resources that hold information about REMs and their putative target genes, the

genes they regulate. Examples are the GeneHancer database [31] or RAEdb [32]. Another large-scale

source of human REMs is EpiRegio [33], a database that contains 2.4 million predicted REMs with

associated target genes predicted with the StitchIt algorithm [28]. Databases such as HEDD [34] or

DiseaseEnhancer [35] list REMs that are associated to known disease genes, highlighting the role of

non-coding variation in human disease.

In this study we develop and test a workflow for the prediction of non-coding CRISPR events that

disrupt gene regulation based on the annotation of human REMs and epigenomic cell-specific information.

We apply our approach to a genome-wide CRISPR screen that has been performed in hTERT RPE-1

cells to find coding and non-coding regions that mediate doxorubicin resistance [3].

Doxorubicin is a chemotherapy medication used to treat different forms of cancer. It induces double-

strand DNA breaks and triggers DNA damage associated cell cycle arrest and apoptosis pathways, for

example via MAPK/ERK pathway [36,37]. Our analysis reveals 35 genes that we could link to doxorubicin

resistance through genomic pertubations in active REMs in RPE-1 cells.

Results

Overview of the suggested approach

Our approach identifies regulatory elements (REMs) linked to their target genes, which are (1) genomi-

cally modified by a gRNA and (2) are active in the cell type of interest. In order to identify the genomically

modified REMs, we intersect them with the gRNAs binding sites. Additionally, epigenomic data measur-

ing open chromatin, e.g. DNase1-seq, or histone modifications associated with active transcription, e.g.

H3K27ac or H3K4me3, can be used to identify REMs active in the cell type of interest. Based on the

active and genomically modified REMs, a protein-protein association network of the associated target

genes is constructed and a motif enrichment analysis of the REMs is performed. A general overview of

our approach is shown in Fig. 1.

Prediction of regulatory regions that mediate chemoresistance in RPE-1 cells

To illustrate our newly proposed approach on a realistic application, we applied it to a genome-wide

doxorubicin CRISPR-Cas9 resistance screen in hTERT-RPE-1 cells by Wegner et al. [3]. As a result of

the screen, 332 non-coding target sites of 226 validated gRNA sequences were identified. We extended
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Required input:
o gRNA target sites 

Step 1: CRISPR impaired  REMs
o identify genomically modified REMs
o detect active REMs using epigenomic 

signal 

Step 2: Functional analyses of the selected REMs 
o TF motif enrichment

TFsREMs

TFs enrichment 
value

12.45

2.4

o protein-protein 
association network
of target genes

gene 

REMDNA epigenomic signal
gRNA target site

active and genomically
modified REM

o regulatory elements 
(REMs) with target 
genes (StitchIt)

o Epigenomic signal 
e.g. DNase1-seq

Fig. 1. Overview of our analysis approach. Step 1: gRNA target sites are overlapped with a catalogue of
gene regulatory elements (REMs) and peak regions of epigenomic measurements for regulatory activity (e.g.
DNase1-seq, H3K4me3). Step 2: functional analysis of the target genes reveals involved complexes. Transcription
factor (TF) motif enrichment in REMs identifies TFs that are involved in the trait of interest.

the gRNA target sites to regions of length 200bp such that the target site is centered in the middle. We

aim to identify REMs affected by gRNAs, and explore their possible involvement in chemoresistance.

The REMs and their target genes were inferred simultaneously by Schmidt et al. using StitchIt [28].

This method interprets the variation in epigenetic data, like DNase1-seq in relation to gene expression,

across various cell types. To take even distal REMs into account, StitchIt ’s predicted REMs are

within a window covering 100kb upstream of the gene’s transcription start site, the gene body and

100kb downstream of the gene’s transcription termination site. In total, we downloaded 3,900,708 REMs

associated to 36,817 genes based on data from the Blueprint [38], Roadmap [39] and the ENCODE [40]

consortium.

We found 219 putative REMs overlapping with a non-coding gRNA, which could be linked to 190

different genes (see Sup. Table).

To ensure that we observe the overlap not only by chance, we randomly shuffled the positions of gRNA

target sites within the genome and intersected the random regions with the REMs from our catalogue.

We repeated this 100 times and obtained on average 72.07, 83.87 and 25.45 REMs overlapping with

the sampled regions for Blueprint, Roadmap and ENCODE, StitchIt REMs, respectively. We used a

two-sided t-test to compare results from the shuffling analyses with the REMs overlapping true gRNAs

and found a significant enrichment in each data set (Blueprint: 89/72.07, p-value < 2.2e-16; Roadmap:

90/83.87, p-value 1.638e-06; ENCODE: 40/25.45, p-value < 2.2e-16).

Analysis of epigenomic data reveals strong candidate doxorubicin chemoresistance genes

StitchIt identifies REMs using epigenomics data from several cell types, therefore we can not directly

conclude whether or not REMs affected by a gRNA are active in hTERT-RPE-1 cells. To identify active

REMs in open chromatin regions, we have integrated DNase1-seq and H3K4me3 ChIP-seq data from

human RPE-1 cells [40]. In total, we identified 13 gRNA target sites, which are overlapping active REMs

linked to 35 different genes (see Table 1). Interestingly, it occurred several times that a gRNA target site

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.22.423923doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.22.423923
http://creativecommons.org/licenses/by-nd/4.0/


5

chr gRNA coordinate gene(s) associated

1 40,036,652 CAP1, PPT1, AL663070.1
10 103,282,011 NT5C2 [41]
10 3,197,670 PFKP [42]
10 73,358,465 CFAP70, RPL26P6, ANXA7 [43, 44], RNU6-833P
13 87,671,102 SLITRK5
16 30,021,011 TMEM219 [45], DOC2A [46], TBX6, GDPD3 [46,

47]
17 28,404,283 AC002094.1, KRT18P55, SEBOX, TMEM199 [48]
17 42,423,866 MIR5010
17 81,635,498 MRPL12, SLC25A10 [49, 50], AC137896.1, HGS,

TSPAN10, AC139530.3, CCDC137
20 45,993,823 NCOA5, MMP9 [51], PCIF1
22 24,063,890 AC253536.3
4 139,651,636 AC112236.2, H3P16, MGST2 [52]
8 120,445,481 MTBP, COL14A1

Table 1. Candidate doxorubicin chemoresistance genes. All gRNAs that overlap regulatory regions with epige-
netic evidence and their associated target genes are listed. Genes which have been reported in the literature to
be linked to chemoresistance or cancer growth are in bold.

overlapped a region, which is linked to several target genes. These genes may be strong candidates to be

involved in doxorubicin chemoresistance, as gRNA-mediated change of the DNA sequence may impair

gene regulatory functions.

We have performed a detailed literature survey to find previous studies that have linked our candidate

genes to chemoresistance against doxorubicin or other cancer drugs, supporting a putative role of REM

target genes. We also considered studies that linked candidate genes to cancer growth, which may help

to establish chemoresistance. In total, we have found that 8 out of 13 gRNAs link to at least one gene

with literature evidence, as detailed below.

In myocytes, an increase of Myocardial Metallo Proteinases (MMPs) expression through increasing

ROS formation induced by doxorubicin was observed [51]. At position chr20:45993823, overlap between a

gRNA and REMs assume a regulatory site of MMP9, being in agreement with the finding of Spallarossa

et al. [51]. Sun et al. showed that in colorectal cancer NCOA5 is upregulated, which leads to an higher

expression of MMP9 and Cyclin D1 as well as to a lower expression of p27 through PI3K/AKT pathway.

As a consequence, cell proliferation, migration and invasion are enhanced [53].

Another candidate is the NT5C2 gene, which is known to confer treatment resistance against thiorubin

in acute lymphocytic leukemias [41]. For ANXA7 it was shown that resistance in different cancer types

has been observed [43,44].

One particularly interesting region was a gRNA binding to active REMs in a locus on chromosome

16. For three out of the four target genes we have found literature evidence. TMEM219 is a IGFBP-3
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receptor that has been linked to promoting anti-tumoric effects of IGFBP-3 [45]. The gene expression

and protein abundance of GDPD3 is associated with positive response to neoadjuvant chemotherapy

in urothelial carcinomas [47]. A genome-wide screen for induced genes after doxorubicin in cancer cell

lines [46] found that from the genes in Table 1 GDPD3 and DOC2A showed differential expression.

The expression of the TMEM199 gene was found to be upregulated in cisplatin resistent oesophageal

adenocarcinoma cells pointing to a role in chemoresistance [48]. The gene product of SLC25A10 is a

protein that belongs to the family of mitochondrial carriers, that are potential cancer therapy targets [49].

For example, high protein levels of SLC25A10 are associated with high metastasis potential and lower

relapse-free survival in osteosarcomas [50]. Moon and others [54] found PFKP expression is upregulated

in breast cancer cells. Further, high glycolytic metabolism, has been linked to breast cancer aggressiveness

and growth [42].

Dvash et al. showed that endoplasmic reticulum stress and doxorubicin or 5-fluorouracil induce expres-

sion of MGTS2, and by that LTC4, which triggers DNA damage and cell death [52]. MGTS2-deficient

mice seem to be resistance against the treatment with 5-fluorouracil. Further, they hypothesize that

the MGST2-LTC4 pathway is not activated by commonly used cancer drugs, e.g. doxorubicin or 5-

fluorouracil, in cells lines not able to express MGTS2, such as haematopoietic cell lines. They argue this

could explain their chemoresistance.

As we found that many genes from Table 1 have been linked to chemoresistance, we wondered if they

may form functional modules in the cell. We used the STRING database [55] to compute a protein-

protein association network that contains all genes from Table 1 (see Fig. 2). The analysis revealed that

DOC2A, TMEM219, GDPD3 and TBX6 form an association module. This is because all four genes lie

within a region of 600kb, which is connected to different forms of human disease depending on whether

the region is deleted or duplicated [56,57].

Enrichment of transcription factors binding in chemoresistance regulatory elements

To identify key TFs involved in the regulatory process of doxorubicin resistance, we performed a TF

motif enrichment analysis based on the active, genomically modified REMs. The analysis is done with

PASTAA [58], where we have ranked sequences according to the open chromatin signal to detect enriched

TFs compared to background REMs (more details in the methods section).

Table 2 lists the most enriched TFs and their corresponding FDR corrected p-value. The table con-

tains a number of TFs that have been linked to chemoresistance. For example NR2C2 (or testicular

nuclear receptor TR4) has been shown to suppress prostate cancer invasion by preventing infiltration

of macrophages [59] and a recent report showed that the sensitivity to Docetaxel chemotherapy can be

improved using antagonists against NR2C2 [60] in prostate cancer. Further, the TF NR2F2 (or Chicken

ovalbumin upstream promoter transcription factor II, COUP-TF2) expressed in different types of col-
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Fig. 2. Functional analysis of target genes. Protein-protein association network of the genes associated to
active, genomically modified REMs from the STRING database [55]. The network was seeded with all genes in
Table 1 and includes 10 additional interactors/proteins (marked with orange box) highly connected to the genes
provided as input.

orectal carcinoma, enhances the resistance to doxorubicin [61]. Several reviews [62–64] point to the

importance nuclear receptors play during the development of cancer, e.g. breast or prostate cancer, and

their potential role as drug targets. We identified several nuclear receptors within our analysis, like the

before mentioned NR2F2 and NR2C2 factors, but also RARA, NR3C1, NR2C1 and THRB.

A recent study [65] identified the G protein-coupled receptor 120 (GPR120) as a chemoresistance-

promoting factor in breast cancer. The authors hypothesize that GPR120 mediates fatty acid synthesis

and identified several factors, like SREBF1 and SREBF2, involved in this process. Due to the increased

lipid synthesis this leads to a different lipid composition of the cell membrane and may prevent the drug

from being absorbed.

Zheng et al. showed that the down regulation of RUNX3 in human lung adenocarcinoma is associated

with docetaxel resistance by activating Akt1-mediated signaling [66]. Over-expression of RUNX3 leads

to low AKT expression and higher treatment sensitivity.

ATF3 is a TF known to be involved in cellular stress response and is enriched in cells exposed to stress

signals [67]. Under doxorubicin treatment, it has been reported that ATF3 affects cell death and cell cycle

progression, however it is unclear whether the factor acts as a negative or positive regulator [68,69]. Nobori

et al. claim that ATF3 plays a pivotal role as transcriptional regulator in the process of doxorubicin-

induced cytotoxicity via an ERK-dependent pathway.

Walczynski et al. showed that the loss of ATF2 and ATF7, known to be homologous members in

the AP-1 (activator protein 1) family, in MYC-expressing lymphoma cells in a mouse model are more

resistant to doxorubicin induced apoptosis than control cells [70]. Further, they claim that ATF2/7 are

important key TFs to suppress an oncogenic transformation. It has been found in other studies that

upregulation of AP-1 expression confers resistance to chemotherapeutics [34].
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rank TF FDR

1 AP-1 [34] 3.83e-05
2 NR2C2 [60] 8.14e-05
3 CREB3L4 0.00015
4 HAND2 0.00016
5 ATF3 [68, 69] 0.00017
6 ATF7 [70] 0.00018
7 MYBL1 0.00035
8 E2F8 0.00038
9 ATF2 [70] 0.00039
10 NR2F1 0.00059

rank TF FDR

11 RARA 0.00062
12 NR3C1 0.00062
13 DBP 0.00079
14 NR2F2 [61] 0.00084
15 NR2C1 0.00090
16 GMEB2 0.001
17 THRB 0.001
18 SREBF2 [65] 0.0012
19 RUNX3 [66] 0.0013
20 SREBF1 [65] 0.0013

Table 2. Results of the TF enrichment analysis. TF binding in genomically modified active REMs was contrasted
to random sets of active REMs in the same cells. Reported are the ranked TF names and FDR corrected
enrichment p-values. TFs which have been reported to be linked to chemoresistance are in bold.

Discussion

We proposed a approach to identify genes whose expression might be affected by gRNAs targeting non-

coding regulatory regions. To do so, we examined which gRNAs modify regulatory elements associated

to potential target genes. The regulatory elements were retrieved from StitchIt . Further, we took

epigenetic data into account to identify REMs in open-chromatin or active enhancer regions of RPE-1

cells. Based on the target genes of active and genomically modified REMs, we constructed a protein-

protein association network. Using the REM sequences, we performed a TF motif enrichment analysis to

obtain key TFs involved in regulating doxorubicin resistance (see Fig. 1). Several of the identified target

genes and TFs are already known to be associated to doxorubicin resistance, chemoresistance or cancer

growth in general (marked in bold in Table 1 and Table 2).

Nevertheless, there are genes and TFs remaining that are worth to investigate more closely. For

instance, the TF motif enrichment analysis points to the factor CREB3L4, for which we were not able to

find an association to doxorubicin resistance. However, protein abundance of CREB3L1, which belongs

to the same TF subfamily as CREB3L4, is predictive of the response of triple negative breast cancer to

doxorubicin-based therapy [71]. In a recent paper, Pu et al. already identified that expression of CREB4L3

is increased in most breast cancer types, and that the downregulation leads to a decreasing proliferation,

induces cell cycle arrest and apoptosis [72]. We observed a CREB3L4 binding site in a genomically

modified REM associated to CCDC137. The gRNA (chr17:81,635,498) also affects MRPL12, SLC25A10,

AC137896.1, HGS, TSPAN10 and AC139530.3.

We found one example, where a gRNA target site overlaps with the REM of the post-transcriptional

regulator gene MIR5010 (Table 1). Mature microRNAs produced from this locus have the capacity
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to regulate many target genes. While we were not able to find evidence that the mature microRNA

products hsa-miR-5010-3p or hsa-miR-5010-5p of the MIR5010 gene are linked to chemoresistance against

doxorubicin, the prevalence of hsa-miR-5010-3p may be involved in colon cancer recurrence. In a study of

TNM-stage II colon cancer patients in two different cohorts, a four-miRNA recurrence prognosis signature

was developed, including the abundance of hsa-miR-5010-3p [73]. Other than that, little is known about

the regulatory roles of mature microRNAs of MIR5010. However, we queried the SpongeDB database,

that holds predicted competing endogenous RNA interactions computed for different cancer types [74]

using the Sponge algorithm [75]. We found that hsa-miR-5010-3p was predicted to regulate 3455 gene-

gene ceRNA pairs in a pancancer model and many others in individual cancer types (Suppl. Tab. 1),

suggesting an important regulatory role in cancer.

The overall association approach introduced here differs from other ad-hoc approaches. For example

Wegner et al. identified target genes using the nearest gene approach, which links non-coding regions to

adjacent genes without additional evidence. Our newly proposed approach is based on epigenetic data,

first to infer the regulatory regions and second to detect genomically modified REMs, which are accessible

in RPE-1 cells. Therefore, we conclude that our strategy is more informative than an approach, which is

just based on genomic locations.

A CRISPR modification can create new TF binding sites in REMs. In rare cases, a consequence is

that inactive REMs in the cell type of interest can become active by the gRNA caused modification.

In general, no open chromatin data is available for the cell types after the modification. For that our

current approach can not identify the REMs which become active by gaining a TF binding site.

We are aware that a CRISPR-Cas9 experiment can lead to off-target effects. Since we were able to

link suggested target genes and TFs to chemoresistance events, we assume that at least for the considered

cases here, off-target effects do not play a major role. Following the assumption that no strong off-target

effects are causing chemoresistance in the experiment, it would be remarkable that only the modification

of one REM leads to chemoresistance. This may fit to the observation that many of the active REMs

detected here are likely regulating more than one target gene.

While we wanted to use ENCODE epigenomic data for RPE-1 cells, predictions of StitchIt and ad-

ditional open-chromatin and expression data for the Roadmap and Blueprint consortium can be directly

obtained from our EpiRegio webserver [33]. EpiRegio holds data for diverse cell types, which allows to

retrieve active REMs with their associated target genes.

To sum up, we introduced a cell-type specific approach to identify potential target genes of CRISPR

modifications in non-coding regions, and useful downstream applications such as TF motif enrichment

analysis. Several of our identified target genes and TFs are known to be associated to doxorubicin

resistance, chemoresistance and cell growth in cancer cells. We believe that our approach based on
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epigenetic data can be helpful to identify novel target genes for different CRISPR screens and various

cell types.

Materials and methods

Analysis of Doxorubicin resistance in hTERT-RPE1 cells using CRISPR experiments

Here, we use a genome-wide CRISPR perturbation library consisting of partially randomized degenerated

oligonucleotides (5’-NNDNNNNNHNNNNHDHNVVR-3’) with flanking 3Cs homology regions which was

created using ssDNA of template-plasmids and site-specific mutagenesis targeting coding and non-coding

regions of the human genome in hTERT-RPE1 cells from ATCC (CRL-4000) [3]. Genomic coordiantes

of the gRNAs have been obtained from this work (see Supp. Tab. 1).

Retrieval of epigenomic data

StitchIt was applied to three data sets derived from different consortia, namely Roadmap [39], Blueprint

and ENCODE [40]. We downloaded the REMs predicted for the 100kb window from ZENODO (DOI:

10.5281/zenodo.4316356).

Narrow peak files for human RPE-1 cells of a DNase1-seq and a H3K4me3 ChIP-seq data set were

retrieved from ENCODE (accession numbers: ENCFF535GNR, ENCFF749ZBH, ENCFF922ERE). For

the DNase1-seq the data contained 140,038 and 118,815 peaks for replicate 1 and 2, respectively. The

replicates show a high agreement. The H3K4me3 ChIP-seq data included 34,179 peaks.

Identification of active and genomically modified REMs

First, we extended the gRNA target sites (see Sup. Table) to regions of length 200bp by adding 100bp

up- and downstream. To identify the REMs which are active, and genomically modified by the extended

gRNAs, we applied the following bedtools commands:

bedtools intersect -a <REMs> -b <gRNAs> -wa -u > <outputFile>

bedtools intersect -a <outputFile> -b <H3K4me2-peaks> -wo

bedtools intersect -a <outputFile> -b <DNase1-seq-rep1>, <DNase1-seq-rep1> -wo

Details about the motif enrichment analysis

The motif enrichment analysis is performed with PASTAA [58], which requires the DNA sequences

of the 45 REMs and a set of known TF binding motifs. We determined the DNA sequences using the

getfasta functionality in bedtools [76] and retrieved 515 TF binding motifs from the JASPAR motif

database [77]. Additionally, PASTAA requests a ranking of the DNA sequences. Hence, we sorted the
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sequences in descending order based on their maximal epigenetic signal from either the DNase1-seq or

the H3K4me3 ChIP-seq, such that regions with higher read coverage occurred at the top. To ensure that

PASTAA is able to discriminate enriched TF binding sites, we added 3 times as many randomly selected

REMs (135) not affected by a gRNA, but with epigenomic evidence as being active in RPE1-cells. The

background sequences are sorted in ascending order according to their epigenomic signal, and added to

the bottom of the ranking the active, genomically modified REMs. We repeated the motif enrichment

analysis 100 times, each run with a different background set, and averaged the TF enrichment results.

The averaged result can be found in the Sup. Table.

Acknowledgements

We are thankful to the ENCODE consortia for sharing the epigenomic data used in this work.

Funding

This work has been supported by the DZHK (German Centre for Cardiovascular Research, 81Z0200101)

and the DFG Clusters of Excellence on Multimodal Computing and Interaction [EXC248] and Cardio-

Pulmonary Institute (CPI) [EXC2026].

References

1. M. Jinek, K. Chylinski, I. Fonfara et al., “A programmable dual-RNA–guided DNA endonuclease in adaptive

bacterial immunity,” Science, vol. 337, no. 6096, pp. 816–821, 2012.

2. O. Shalem, N. E. Sanjana, E. Hartenian et al., “Genome-scale crispr-cas9 knockout screening in human cells,”

Science, vol. 343, no. 6166, pp. 84–87, 2014.

3. M. Wegner, V. Diehl, V. Bittl et al., “Circular synthesized CRISPR/Cas gRNAs for functional interrogations

in the coding and noncoding genome,” Elife, vol. 8, Mar 2019.

4. R. M. Meyers, J. G. Bryan, J. M. McFarland et al., “Computational correction of copy number effect improves

specificity of CRISPR–Cas9 essentiality screens in cancer cells,” Nature genetics, vol. 49, no. 12, pp. 1779–

1784, 2017.

5. F. M. Behan, F. Iorio, G. Picco et al., “Prioritization of cancer therapeutic targets using CRISPR–Cas9

screens,” Nature, vol. 568, no. 7753, pp. 511–516, 2019.

6. V. Pattanayak, S. Lin, J. P. Guilinger et al., “High-throughput profiling of off-target DNA cleavage reveals

RNA-programmed Cas9 nuclease specificity,” Nature Biotechnology, vol. 31, no. 9, pp. 839–843, 2013.

7. J. G. Doench, N. Fusi, M. Sullender et al., “Optimized sgRNA design to maximize activity and minimize

off-target effects of CRISPR-Cas9,” Nat. Biotechnol., vol. 34, no. 2, pp. 184–191, Feb 2016.

8. W. He, L. Zhang, O. D. Villarreal et al., “De novo identification of essential protein domains from CRISPR-

Cas9 tiling-sgRNA knockout screens,” Nature communications, vol. 10, no. 1, pp. 1–10, 2019.

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.22.423923doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.22.423923
http://creativecommons.org/licenses/by-nd/4.0/


12

9. J. Y. Hsu, C. P. Fulco, M. A. Cole et al., “Crispr-surf: discovering regulatory elements by deconvolution of

crispr tiling screen data,” Nature methods, vol. 15, no. 12, pp. 992–993, 2018.

10. M. A. Horlbeck, S. J. Liu, H. Y. Chang et al., “Fitness effects of CRISPR/Cas9-targeting of long noncoding

RNA genes,” Nature Biotechnology, vol. 38, no. 5, pp. 573–576, 2020.

11. J. B. Wright and N. E. Sanjana, “CRISPR screens to discover functional noncoding elements,” Trends in

Genetics, vol. 32, no. 9, pp. 526–529, 2016.

12. L. Henkel, B. Rauscher, B. Schmitt et al., “Genome-scale CRISPR screening at high sensitivity with an

empirically designed sgRNA library,” BMC biology, vol. 18, no. 1, pp. 1–21, 2020.

13. W. Li, H. Xu, T. Xiao et al., “MAGeCK enables robust identification of essential genes from genome-scale

CRISPR/Cas9 knockout screens,” Genome biology, vol. 15, no. 12, p. 554, 2014.

14. W. Li, J. Köster, H. Xu et al., “Quality control, modeling, and visualization of CRISPR screens with

MAGeCK-VISPR,” Genome biology, vol. 16, no. 1, p. 281, 2015.

15. B. Wang, M. Wang, W. Zhang et al., “Integrative analysis of pooled CRISPR genetic screens using MAGeCK-

Flute,” Nature protocols, vol. 14, no. 3, pp. 756–780, 2019.

16. T. Hart and J. Moffat, “BAGEL: a computational framework for identifying essential genes from pooled

library screens,” BMC bioinformatics, vol. 17, no. 1, p. 164, 2016.

17. P. N. Spahn, T. Bath, R. J. Weiss et al., “PinAPL-Py: a comprehensive web-application for the analysis of

CRISPR/Cas9 screens,” Scientific reports, vol. 7, no. 1, pp. 1–8, 2017.

18. S. Heinz, C. E. Romanoski, C. Benner, and C. K. Glass, “The selection and function of cell type-specific

enhancers,” Nature Reviews Molecular Cell Biology, vol. 16, no. 3, pp. 144–154, 2015.

19. Y. Zhang, C. H. Wong, R. Y. Birnbaum et al., “Chromatin connectivity maps reveal dynamic promoter-

enhancer long-range associations,” Nature, vol. 504, no. 7479, pp. 306–310, 2013.

20. I. Krivega, R. K. Dale, and A. Dean, “Role of LDB1 in the transition from chromatin looping to transcription

activation,” Genes and Development, vol. 28, no. 12, pp. 1278–1290, 2014.

21. L. Yao, B. P. Berman, and P. J. Farnham, “Demystifying the secret mission of enhancers: Linking distal

regulatory elements to target genes,” Critical Reviews in Biochemistry and Molecular Biology, vol. 50, no. 6,

pp. 550–573, 2015.

22. M. P. Creyghton, A. W. Cheng, G. G. Welstead et al., “Histone H3K27ac separates active from poised

enhancers and predicts developmental state,” Proceedings of the National Academy of Sciences of the United

States of America, vol. 107, no. 50, pp. 21 931–21 936, 2010.

23. H. H. He, C. A. Meyer, H. Shin et al., “Nucleosome dynamics define transcriptional enhancers,” Nature

Genetics, vol. 42, no. 4, pp. 343–347, 2010.

24. G. Li, X. Ruan, R. K. Auerbach et al., “Extensive promoter-centered chromatin interactions provide a topo-

logical basis for transcription regulation,” Cell, vol. 148, no. 1-2, pp. 84–98, 2012.

25. C. D. Arnold, D. Gerlach, C. Stelzer et al., “Genome-wide quantitative enhancer activity maps identified by

STARR-seq,” Science, vol. 339, no. 6123, pp. 1074–1077, 2013.

26. R. Andersson, C. Gebhard, I. Miguel-Escalada et al., “An atlas of active enhancers across human cell types

and tissues,” Nature, vol. 507, no. 7493, pp. 455–461, 2014.

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.22.423923doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.22.423923
http://creativecommons.org/licenses/by-nd/4.0/


13

27. K. J. V. Nordström, F. Schmidt, N. Gasparoni et al., “Unique and assay specific features of NOMe-, ATAC-

and DNase I-seq data,” Nucleic Acids Research, vol. 47, no. 20, pp. 10 580–10 596, 10 2019.

28. F. Schmidt, A. Marx, M. Hebel et al., “Integrative analysis of epigenetics data identifies gene-specific regu-

latory elements,” bioRxiv, 2019.

29. A. Visel, S. Minovitsky, I. Dubchak, and L. A. Pennacchio, “VISTA Enhancer Browser - A database of

tissue-specific human enhancers,” Nucleic Acids Research, vol. 35, no. SUPPL. 1, pp. 88–92, 2007.

30. J. Wang, X. Dai, L. D. Berry et al., “HACER: An atlas of human active enhancers to interpret regulatory

variants,” Nucleic Acids Research, vol. 47, no. D1, pp. D106–D112, 2019.

31. S. Fishilevich, R. Nudel, N. Rappaport et al., “GeneHancer: genome-wide integration of enhancers and target

genes in GeneCards,” Database : the journal of biological databases and curation, vol. 2017, pp. 1–17, 2017.

32. Z. Cai, Y. Cui, Z. Tan et al., “RAEdb: A database of enhancers identified by high-throughput reporter

assays,” Database, vol. 2019, no. 4, pp. 1–5, 2019.

33. N. Baumgarten, D. Hecker, S. Karunanithi et al., “EpiRegio: analysis and retrieval of regulatory elements

linked to genes,” Nucleic Acids Research, vol. 48, no. W1, pp. W193–W199, 05 2020.

34. Z. Wang, Q. Zhang, W. Zhang et al., “HEDD: Human Enhancer Disease Database,” Nucleic Acids Research,

vol. 46, no. D1, pp. D113–D120, 2018.

35. G. Zhang, J. Shi, S. Zhu et al., “DiseaseEnhancer: A resource of human disease-associated enhancer catalog,”

Nucleic Acids Research, vol. 46, no. D1, pp. D78–D84, 2018.

36. K. M. Tewey, T. C. Rowe, L. Yang et al., “Adriamycin-induced DNA damage mediated by mammalian DNA

topoisomerase II,” Science, vol. 226, no. 4673, pp. 466–468, Oct 1984.

37. S. Cagnol and J. C. Chambard, “ERK and cell death: mechanisms of ERK-induced cell death–apoptosis,

autophagy and senescence,” FEBS J., vol. 277, no. 1, pp. 2–21, Jan 2010.

38. H. G. Stunnenberg, S. Abrignani, D. Adams et al., “The International Human Epigenome Consortium: A

Blueprint for Scientific Collaboration and Discovery,” Cell, vol. 167, no. 5, pp. 1145–1149, 2016.

39. Roadmap Epigenomics Consortium, A. Kundaje, W. Meuleman et al., “Integrative analysis of 111 reference

human epigenomes,” Nature, vol. 518, no. 7539, pp. 317–329, 2015.

40. T. E. P. Consortium, “An integrated encyclopedia of DNA elements in the human genome,” Nature, vol. 489,

no. 7414, pp. 57–74, Sep. 2012.

41. C. L. Dieck and A. Ferrando, “Genetics and mechanisms of NT5C2-driven chemotherapy resistance in relapsed

ALL,” Blood, vol. 133, no. 21, pp. 2263–2268, may 2019.

42. J. Shen, Z. Jin, H. Lv et al., “PFKP is highly expressed in lung cancer and regulates glucose metabolism,”

Cellular Oncology, vol. 43, no. 4, pp. 617–629, 2020.

43. H. Liu, D. Guo, Y. Sha et al., “ANXA7 promotes the cell cycle, proliferation and cell adhesion-mediated

drug resistance of multiple myeloma cells by up-regulating CDC5L,” Aging, vol. 12, no. 11, pp. 11 100–11 115,

2020.

44. Y. Gao, B. Sun, J. Hu et al., “Identification of gene modules associated with survival of diffuse large B-cell

lymphoma treated with CHOP-based chemotherapy,” The Pharmacogenomics Journal, vol. 20, no. 5, pp.

705–716, 2020.

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.22.423923doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.22.423923
http://creativecommons.org/licenses/by-nd/4.0/


14

45. Q. Cai, M. Dozmorov, and Y. Oh, “IGFBP-3/IGFBP-3 Receptor System as an Anti-Tumor and Anti-

Metastatic Signaling in Cancer,” Cells, vol. 9, no. 5, p. 1261, May 2020.

46. M. D. Indermaur, Y. Xiong, S. G. Kamath et al., “Genomic-directed targeted therapy increases endometrial

cancer cell sensitivity to doxorubicin,” American Journal of Obstetrics and Gynecology, vol. 203, no. 2, pp.

158.e1 – 158.e40, 2010.

47. A. S. Baras, N. Gandhi, E. Munari et al., “Identification and validation of protein biomarkers of response

to neoadjuvant platinum chemotherapy in muscle invasive urothelial carcinoma,” PLOS ONE, vol. 10, no. 7,

pp. 1–11, 07 2015.

48. A. Buckley, B. Bibby, M. Dunne et al., “Characterisation of an Isogenic Model of Cisplatin Resistance in

Oesophageal Adenocarcinoma Cells,” Pharmaceuticals, vol. 12, no. 1, p. 33, Feb 2019.

49. L. Rochette, A. Meloux, M. Zeller et al., “Mitochondrial SLC25 Carriers: Novel Targets for Cancer Therapy,”

Molecules, vol. 25, no. 10, p. 2417, May 2020.

50. G. Wang, J. Xia, C. Chen et al., “SLC25A10 performs an oncogenic role in human osteosarcoma,” Oncol

Lett, vol. 20, no. 4, p. 2, 2020.

51. P. Spallarossa, P. Altieri, S. Garibaldi et al., “Matrix metalloproteinase-2 and -9 are induced differently by

doxorubicin in H9c2 cells: The role of MAP kinases and NAD(P)H oxidase,” Cardiovasc. Res., vol. 69, no. 3,

pp. 736–745, Feb 2006.

52. E. Dvash, M. Har-Tal, S. Barak et al., “Leukotriene C4 is the major trigger of stress-induced oxidative DNA

damage,” Nature Communications, vol. 6, no. 1, Dec. 2015.

53. K. Sun, S. Wang, J. He et al., “NCOA5 promotes proliferation, migration and invasion of colorectal cancer

cells via activation of PI3k/AKT pathway,” Oncotarget, vol. 8, no. 64, pp. 107 932–107 946, Nov. 2017.

54. J.-S. Moon, H. E. Kim, E. Koh et al., “Krüppel-like factor 4 (KLF4) activates the transcription of the gene for

the platelet isoform of phosphofructokinase (PFKP) in breast cancer,” The Journal of biological chemistry,

vol. 286, no. 27, pp. 23 808–23 816, jul 2011.

55. D. Szklarczyk, A. L. Gable, K. C. Nastou et al., “The STRING database in 2021: customizable protein–protein

networks, and functional characterization of user-uploaded gene/measurement sets,” Nucleic Acids Research,

11 2020, gkaa1074.

56. T. Arbogast, A.-M. Ouagazzal, C. Chevalier et al., “Reciprocal effects on neurocognitive and metabolic

phenotypes in mouse models of 16p11.2 deletion and duplication syndromes,” PLOS Genetics, vol. 12, no. 2,

pp. 1–35, 02 2016.

57. X. Zheng, F. Y. Demirci, M. M. Barmada et al., “A Rare Duplication on Chromosome 16p11.2 Is Identified

in Patients with Psychosis in Alzheimer’s Disease,” PLOS ONE, vol. 9, no. 11, pp. 1–7, 11 2014.

58. H. G. Roider, T. Manke, S. O’Keeffe et al., “PASTAA: identifying transcription factors associated with sets

of co-regulated genes,” Bioinformatics, vol. 25, no. 4, pp. 435–442, 12 2008.

59. X. Ding, D.-R. Yang, L. Xia et al., “Targeting TR4 nuclear receptor suppresses prostate cancer invasion

via reduction of infiltrating macrophages with alteration of the TIMP-1/MMP2/MMP9 signals,” Molecular

Cancer, vol. 14, no. 1, p. 16, 2015.

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.22.423923doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.22.423923
http://creativecommons.org/licenses/by-nd/4.0/


15

60. L. Hu, Y. Sun, J. Luo et al., “Targeting TR4 nuclear receptor with antagonist bexarotene increases docetaxel

sensitivity to better suppress the metastatic castration-resistant prostate cancer progression,” Oncogene,

vol. 39, no. 9, pp. 1891–1903, 2020.

61. X. Wang, R. Jiang, W. Feng et al., “COUP-TFII suppresses colorectal carcinoma resistance to doxorubicin

involving inhibition of epithelial-mesenchymal transition,” American journal of translational research, vol. 8,

no. 9, pp. 3921—-3929, Sep. 2016.

62. L. Zhao, S. Zhou, and J.-Å. Gustafsson, “Nuclear receptors: recent drug discovery for cancer therapies,”

Endocrine Reviews, Mar. 2019.

63. R. B. Riggins, M. M. Mazzotta, O. Z. Maniya, and R. Clarke, “Orphan nuclear receptors in breast cancer

pathogenesis and therapeutic response,” Endocrine-Related Cancer, vol. 17, no. 3, pp. R213–R231, Sep. 2010.

64. D. Wu, A. Cheung, Y. Wang et al., “The emerging roles of orphan nuclear receptors in prostate cancer,”

Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, vol. 1866, no. 1, pp. 23–36, Aug. 2016.

65. X. Wang, S. He, Y. Gu et al., “Fatty acid receptor GPR120 promotes breast cancer chemoresistance by

upregulating ABC transporters expression and fatty acid synthesis,” EBioMedicine, vol. 40, pp. 251–262,

Feb. 2019.

66. Y. Zheng, R. Wang, H.-Z. Song et al., “Epigenetic downregulation of RUNX3 by DNA methylation induces

docetaxel chemoresistance in human lung adenocarcinoma cells by activation of the AKT pathway,” The

International Journal of Biochemistry Cell Biology, vol. 45, no. 11, pp. 2369 – 2378, 2013.

67. T. Hai, C. D. Wolfgang, D. K. Marsee et al., “ATF3 and stress responses,” Gene Expr., vol. 7, no. 4-6, pp.

321–335, 1999.

68. K. Nobori, H. Ito, M. Tamamori-Adachi et al., “ATF3 inhibits doxorubicin-induced apoptosis in cardiac

myocytes: a novel cardioprotective role of ATF3,” J. Mol. Cell. Cardiol., vol. 34, no. 10, pp. 1387–1397, Oct

2002.

69. E. J. Park, H. K. Kwon, Y. M. Choi et al., “Doxorubicin induces cytotoxicity through upregulation of pERK-

dependent ATF3,” PLoS ONE, vol. 7, no. 9, p. e44990, 2012.

70. J. Walczynski, S. Lyons, N. Jones, and W. Breitwieser, “Sensitisation of c-MYC-induced b-lymphoma cells

to apoptosis by ATF2,” Oncogene, vol. 33, no. 8, pp. 1027–1036, Feb. 2013.

71. B. Denard, S. Jiang, Y. Peng, and J. Ye, “CREB3l1 as a potential biomarker predicting response of triple

negative breast cancer to doxorubicin-based chemotherapy,” BMC Cancer, vol. 18, no. 1, Aug. 2018.

72. Q. Pu, L. Lu, K. Dong et al., “The novel transcription factor CREB3l4 contributes to the progression of

human breast carcinoma,” Journal of Mammary Gland Biology and Neoplasia, vol. 25, no. 1, pp. 37–50, Feb.

2020.

73. H. Jacob, L. Stanisavljevic, K. E. Storli et al., “A four-microRNA classifier as a novel prognostic marker for

tumor recurrence in stage II colon cancer,” Scientific Reports, vol. 8, no. 1, p. 6157, 2018.

74. M. Hoffmann, E. Pachl, M. Hartung et al., “SPONGEdb: a pan-cancer resource for competing endogenous

RNA interactions,” NAR Cancer, vol. 1, Jan. 2020.

75. M. List, A. Dehghani Amirabad, D. Kostka, and M. H. Schulz, “Large-scale inference of competing endogenous

RNA networks with sparse partial correlation,” Bioinformatics, vol. 35, no. 14, pp. i596–i604, jul 2019.

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.22.423923doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.22.423923
http://creativecommons.org/licenses/by-nd/4.0/


16

76. A. R. Quinlan and I. M. Hall, “BEDTools: a flexible suite of utilities for comparing genomic features,”

Bioinformatics, vol. 26, no. 6, pp. 841–842, Mar 2010.

77. A. Khan, O. Fornes, A. Stigliani et al., “JASPAR 2018: update of the open-access database of transcription

factor binding profiles and its web framework,” Nucleic Acids Research, vol. 46, no. D1, pp. D260–D266, Nov.

2017.

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.22.423923doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.22.423923
http://creativecommons.org/licenses/by-nd/4.0/

