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Abstract 

The coronavirus SARS-CoV-2 is the cause of the ongoing COVID-19 

pandemic. Most SARS-CoV-2 infections are mild or even asymptomatic. However, a 

small fraction of infected individuals develops severe, life-threatening disease, which 

is caused by an uncontrolled immune response resulting in hyperinflammation. 

Antiviral interventions are only effective prior to the onset of hyperinflammation. 

Hence, biomarkers are needed for the early identification and treatment of high-risk 

patients. Here, we show in a range of model systems and data from post mortem 

samples that SARS-CoV-2 infection results in increased levels of CD47, which is 

known to mediate immune escape in cancer and virus-infected cells. Systematic 

literature searches also indicated that known risk factors such as older age and 

diabetes are associated with increased CD47 levels. High CD47 levels contribute to 

vascular disease, vasoconstriction, and hypertension, conditions which may 

predispose SARS-CoV-2-infected individuals to COVID-19-related complications 

such as pulmonary hypertension, lung fibrosis, myocardial injury, stroke, and acute 

kidney injury. Hence, CD47 is a candidate biomarker for severe COVID-19. Further 

research will have to show whether CD47 is a reliable diagnostic marker for the early 

identification of COVID-19 patients requiring antiviral therapy. 
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1. Introduction 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing 

the ongoing coronavirus disease 2019 (COVID-19) outbreak [Hokello et al., 2020; 

Chilamakuri & Agarwal, 2021], which has resulted in more than 100 million confirmed 

cases and more that 2 million confirmed COVID-19-associated deaths so far [Dong 

et al., 2020]. 

The first COVID-19 vaccines have been developed [Chilamakuri & Agarwal, 

2021], and their roll-out has started in many countries. However, it will take a 

significant time until large parts of the world population will be vaccinated, and there 

is growing concern about the emergence of escape variants that can bypass 

immunity conferred by the current vaccines and previous SARS-CoV-2 infections 

[Andreano et al., 2020; Kemp et al., 2020; Liu et al., 2020; Weisblum et al., 2020; 

Sabino et al, 2021; Wibmer et al., 2021]. For the foreseeable future, there will thus 

be a need for improved COVID-19 therapies. 

Currently, the therapeutic options for COVID-19 are still very limited 

[Chilamakuri & Agarwal, 2021; Rebold et al., 2021]. COVID-19 therapies can either 

directly inhibit SARS-CoV-2 replication or target other COVID-19-associated 

pathophysiological processes, such as corticosteroids that are anticipated to control 

COVID-19-related cytokine storm and hyperinflammation [Pum et al., 2021].  

Dexamethasone and potentially other corticosteroids increase survival in patients 

who depend on oxygen support [RECOVERY Collaborative Group, 2020; WHO 

Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group, 2020]. 

In a controlled open-label trial, dexamethasone reduced mortality in patients 

receiving oxygen with (from 41.1% to 29.3%) or without (from 26.2% to 23.3%) 

mechanical ventilation, but increased mortality in patients not requiring oxygen 
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support [RECOVERY Collaborative Group, 2020]. Other immunomodulatory therapy 

candidates are being tested, but conclusive results are pending [Rebold et al., 2021]. 

Further COVID-19 therapeutics under investigations include anticoagulants that 

target COVID-19-induced systemic coagulation and thrombosis (coagulopathy) 

[Hadid et al., 2020]. 

However, it would be much better to have effective antiviral treatments that 

reliably prevent COVID-19 disease progression to a stage when immunomodulators 

and anticoagulants are needed. The antiviral drug remdesivir was initially described 

to reduce recovery time from 15 to ten days and 29-day mortality from 15.2% to 

11.4% [Beigel et al., 2020; Rebold et al., 2021]. However, other trials did not confirm 

this and conclusive evidence on the efficacy of remdesivir remains to be established 

[Rebold et al., 2021]. The JAK inhibitor baricitinib, which interferes with cytokine 

signalling, was reported to improve therapy outcomes in combination with remdesivir 

in a double-blind, randomised, placebo-controlled trial, in which patients were either 

treated with remdesivir plus baricitinib or remdesivir plus placebo [Kalil et al., 2020]. 

Moreover, convalescent sera and monoclonal antibodies are under clinical 

investigation for COVID-19 treatment [Tuccori et al., 2020; Devarasetti et al., 2021]. 

Ideally, antiviral therapies are used early in the disease course to prevent 

disease progression to the later immunopathology-driven stages [Weinreich et al., 

2021]. However, only a small proportion of patients develops severe disease 

[Salzberger et al., 2020]. Therefore, biomarkers are required that identify patients, 

who will develop severe disease, as early as possible.  

Here, we investigated the potential of the ubiquitously expressed cell surface 

glycoprotein CD47 as biomarker for the identification of high-risk COVID-19 patients. 

CD47 is the receptor of thrombospondin-1 (THBS1) and the counter-receptor for 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 1, 2021. ; https://doi.org/10.1101/2021.03.01.433404doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.01.433404
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6

signal regulatory protein-α (SIRPα). CD47 interaction with SIRPα inhibits the 

activation of macrophages and dendritic cells and thrombospondin-1/ CD47 

signalling inhibits T cell activation [Cham et al., 2020; Kaur et al., 2020]. High CD47 

expression prevents immune recognition of cancer and virus-infected cells [Cham et 

al., 2020; Kaur et al., 2020].  
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2. Materials and Methods 

2.1 Cell culture 

Calu-3 cells (ATCC) were grown at 37°C in minimal essential medium (MEM) 

supplemented with 10% foetal bovine serum (FBS), 100 IU/mL penicillin, and 100 

μg/mL of streptomycin. All culture reagents were purchased from Sigma. Cells were 

regularly authenticated by short tandem repeat (STR) analysis and tested for 

mycoplasma contamination. 

Primary human bronchial epithelial cells were purchased from ScienceCell. 

For differentiation to air-liquid interface (ALI) cultures, the cells were thawed and 

passaged once in PneumaCult-Ex Medium (StemCell technologies) and then seeded 

on transwell inserts (12 well plate, Sarstedt) at 4x104 cells/insert. Once cell layers 

reached confluency, medium on the apical side of the transwell was removed, and 

medium in the basal chamber was replaced with PneumaCult ALI Maintenance 

Medium (StemCell Technologies) including Antibiotic/Antimycotic solution (Sigma 

Aldrich) and MycoZap Plus PR (Lonza). During a period of four weeks, medium was 

changed and cell layers were washed with PBS every other day. Criteria for 

successful differentiation were the development of ciliated cells and ciliary 

movement, an increase in transepithelial electric resistance indicative of the 

formation of tight junctions, and mucus production. 

 

2.2 Virus infection 

SARS-CoV-2/7/Human/2020/Frankfurt (SARS-CoV-2/FFM7) was isolated and 

cultivated in Caco2 cells (DSMZ) as previously described [Hoehl et al., 2020; Toptan 

et al., 2020]. Virus titres were determined as TCID50/ml in confluent cells in 96-well 

microtiter plates [Cinatl et al., 2003; Cinatl et al., 2005]. 
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2.3 Antiviral assay 

Confluent layers of CaCo-2 cells in 96-well plates were infected with SARS-

CoV–2 FFM7 at a MOI of 0.01. Virus was added simultaneously with tested 

compound. 24 h post infection, cells were fixed with acetone:methanol (40:60) 

solution and immunostaining of spike protein was performed to determine infection 

rate. Briefly, a monoclonal antibody directed against the spike protein of SARS-CoV-

2 (1:1,500, Sino Biological) was detected with a peroxidase-conjugated anti-rabbit 

secondary antibody (1:1,000, Dianova), followed by addition of AEC substrate. The 

spike positive area was scanned and quantified by automated plate reader. The 

results are expressed as percentage of infection relative to virus control which 

received no drug. 

 

2.4 Western blot 

Cells were lysed using Triton-X-100 sample buffer, and proteins were 

separated by SDS-PAGE. Detection occurred by using specific antibodies against 

CD47 (1:100 dilution, CD47 Antibody, anti-human, Biotin, REAfinity™, # 130-101-

343, Miltenyi Biotec), SARS-CoV-2 N (1:1000 dilution, SARS-CoV-2 Nucleocapsid 

Antibody, Rabbit MAb, #40143-R019, Sino Biological), and GAPDH (1:1000 dilution, 

Anti-G3PDH Human Polyclonal Antibody, #2275-PC-100, Trevigen). Protein bands 

were visualized and quantified by laser-induced fluorescence using infrared scanner 

for protein quantification (Odyssey, Li-Cor Biosciences). 
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2.5 qPCR 

SARS-CoV-2 RNA from cell culture supernatant samples was isolated using 

AVL buffer and the QIAamp Viral RNA Kit (Qiagen) according to the manufacturer’s 

instructions. Absorbance-based quantification of the RNA yield was performed using 

the Genesys 10S UV-Vis Spectrophotometer (Thermo Scientific). RNA was 

subjected to OneStep qRT-PCR analysis using the Luna Universal One-Step RT-

qPCR Kit (New England Biolabs) and a CFX96 Real-Time System, C1000 Touch 

Thermal Cycler. Primers were adapted from the WHO protocol29 targeting the open 

reading frame for RNA-dependent RNA polymerase (RdRp): RdRP_SARSr-F2 (GTG 

ARA TGG TCA TGT GTG GCG G) and RdRP_SARSr-R1 (CAR ATG TTA AAS ACA 

CTA TTA GCA TA) using 0.4 µM per reaction. Standard curves were created using 

plasmid DNA (pEX-A128-RdRP) harbouring the corresponding amplicon regions for 

RdRP target sequence according to GenBank Accession number NC_045512. For 

each condition three biological replicates were used. Mean and standard deviation 

were calculated for each group. 

 

2.6 Data acquisition and analysis 

Normalized protein abundance data from SARS-CoV-2-infected Caco-2 cells 

were derived from a recent publication [Bojkova et al., 2020]. Data were 

subsequently normalised using summed intensity normalization for sample loading, 

followed by internal reference scaling and Trimmed mean of M normalization. Mean 

protein abundance was plotted using the function ggdotplot of the R package 

ggpubr. P-values were determined by two-sided student’s t-test 

Raw read counts from post-mortem samples of two COVID-19 patients and 

two healthy controls, as well as mock infected and SARS-CoV-2-infected Calu-3 
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cells, were derived from a recent publication [Blanco-Melo et al., 2020] via the gene 

expression omnibus (GEO) database (accession: GSE147507) and processed using 

DESeq2. Normalised gene counts were plotted using the function ggdotplot of the R 

package ggpubr. P-values were determined by two-sided student’s t-test  

 

2.6 Literature review 

Relevant articles were identified by using the search terms 'CD47 aging', 

'CD47 hypertension', 'CD47 diabetes', and 'CD47 obesity' in PubMed 

(https://pubmed.ncbi.nlm.nih.gov). Original articles in English were included into the 

analysis, when they contained on the influence of aging, diabetes, diabetes, or 

obesity on CD47 expression levels and/ or the relevance of CD47 with regard to 

pathological conditions observed in severe COVID-19. 
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3. Results 

3.1 SARS-CoV-2 infection results in enhanced CD47 expression 

A publicly available proteomics dataset [Bojkova et al., 2020] indicated 

increased in CD47 expression in SARS-CoV-2-infected Caco2 colorectal carcinoma 

cells (Figure 1A). We also detected enhanced CD47 levels in SARS-CoV-2-infected 

primary human bronchial epithelial cells (HBEpiC) grown in air liquid interface (ALI) 

cultures [Bojkova et al., 2020A] and Calu-3 lung cancer cells (Figure 1B). Analysis of 

transcriptomics data from another study also indicated increased CD47 levels in 

SARS-CoV-2 -infected Calu-3 cells (Suppl. Figure 2) and in post mortem lung 

samples from COVID-19 patients (Figure 1C) [Blanco-Melo et al., 2020]. 
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Figure 1. SARS-CoV-2 infection is associated with increased CD47 levels. A) TF 

protein abundance in uninfected (control) and SARS-CoV-2-infected (virus) Caco-2 

cells (data derived from [Bojkova et al., 2020]. P-values were determined by two-

sided Student’s t-test. B) CD47 and SARS-CoV-2 N protein levels and virus titres 

(genomic RNA determined by PCR) in SARS-CoV-2 strain FFM7 (MOI 1)-infected 

air-liquid interface cultures of primary human bronchial epithelial (HBE) cells and 

SARS-CoV-2 strain FFM7 (MOI 0.1)-infected Calu-3 cells. Uncropped blots are 

provided in Suppl. Figure 1. C) CD47 mRNA levels in post mortem samples from 

COVID-19 patients (data derived from [Blanco-Melo et al., 2020]). P-values were 

determined by two-sided Student’s t-test. 

 

 

3.2 CD47 and COVID-19 risk factors 

To further investigate a potential role of CD47 as biomarker indicating a high 

risk from COVID-19, we performed systematic literature searches on the relationship 

of CD47 and the known COVID-19 risk factors ‘ageing’, ‘diabetes’, and ‘obesity’. 

 

3.2.1 CD47 and ageing 

The risk of severe COVID-19 disease and COVID-19 death increases with 

age [Hokello et al., 2020]. A literature search in PubMed 

(https://pubmed.ncbi.nlm.nih.gov, 17th February 2020) using the terms 'CD47' and 

aging' resulted in 62 hits (Suppl. Table 1). Eight of these articles contained 

information that support a link between age-related increased CD47 levels and an 

elevated risk of severe COVID-19 (Figure 2, Suppl. Table 1). One article suggested 

that alpha-tocopherol reduced age-associated streptococcus pneumoniae lung 
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infection in mice by CD47 downregulation [Ghanem et al., 2015], which is in 

accordance with the known immunosuppressive functions of CD47 [Cham et al., 

2020; Kaur et al., 2020]. 

The remaining seven articles reported on age-related increased CD47 levels 

in vascular cells that are associated with reduced vasodilatation and blood flow 

(Suppl. Table 1), as CD47 signalling inhibits NO-mediated activation of soluble 

guanylate cyclase and in turn vasodilatation [Isenberg et al., 2008; Miller et al., 

2010]. Since reduced vasodilatation can cause hypertension [Touyz et al., 2018], we 

performed a follow-up literature search using the search terms "CD47 hypertension" 

(Suppl. Table 2). This resulted in 20 hits, including a further seven relevant studies 

(Figure 2B, Suppl. Table 2). 

Initial experiments showed that loss or inhibition of CD47 prevented age- and 

diet-induced vasculopathy and reduced damage caused by ischaemic injury in mice 

[Isenberg et al., 2007]. CD47-deficient mice indicated that CD47 functions as 

vasopressor and were also shown to be leaner and to display enhanced physical 

performance and a more efficient metabolism [Isenberg et al., 2009; Frazier et al., 

2011]. In agreement, CD47 was upregulated in clinical pulmonary hypertension and 

contributed to pulmonary arterial vasculopathy and dysfunction in mouse models 

[Bauer et al., 2012; Rogers et al., 2017]. Age-related increased CD47 levels further 

affected peripheral blood flow and wound healing in mice [Rogers et al., 2013] and 

NO-mediated vasodilatation of coronary arterioles of rats [Nevitt et al., 2016]. 

Moreover, thrombospondin-1/ CD47 signalling was shown to induce ageing-

associated senescence in endothelial cells [Gao et al., 2016; Meijles et al., 2017] 

and age-associated deterioration in angiogenesis, blood flow, and glucose 

homeostasis [Ghimire et al., 2020]. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 1, 2021. ; https://doi.org/10.1101/2021.03.01.433404doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.01.433404
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14

Increased CD47 levels were also detected in the lung of a sickle cell disease 

patient with pulmonary arterial hypertension, and vasculopathy and pulmonary 

hypertension were reduced in a CD47-null mouse model of sickle cell disease 

[Rogers et al., 2013a; Novelli et al., 2019]. Finally, anti-CD47 antibodies reversed 

fibrosis in various organs in mouse models [Wernig et al., 2017], which may be 

relevant in the context of COVID-19-associated pulmonary fibrosis [Leeming et al., 

2021]. 

In addition to immunosuppressive activity, ageing-related increased CD47 

levels may thus be involved in vascular disease, vasoconstriction, and hypertension 

and predispose COVID-19 patients to related pathologies such as pulmonary 

hypertension, lung fibrosis, myocardial injury, stroke, and acute kidney injury [Soto-

Pantoja et al., 2013; Rogers et al., 2017a; Cruz Rodriguez et al., 2020; Fabrizi et al., 

2020; Karmouty-Quintana et al., 2020; Scutelnic and Heldner, 2020; Leeming et al., 

2021; Sanghvi et al., 2021; Shah et al., 2021]. 
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Figure 2. Results of the PubMed (https://pubmed.ncbi.nlm.nih.gov) literature search 

for “CD47 aging” (A) and “CD47 hypertension” (B). C) Overview figure of the data 

derived from the literature searches. Age-related increased CD47 levels may 

contribute to pathogenic conditions associated with severe COVID-19. 

 

3.2.2 CD47 and diabetes 

 Diabetes has been associated with an increased risk of severe COVID-19 

and COVID-19-related death [Shah et al., 2021]. A PubMed search for "CD47 

diabetes" produced 47 hits, nine of which reported on increased CD47 levels in 

response to hyperglycaemia and/ or diabetes (Figure 3, Suppl. Table 3). 
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Hyperglycaemia protected CD47 from cleavage resulting in increased CD47 

levels [Maile et al., 2008; 2009; 2010; 2012]. In agreement, increased CD47 levels 

were detected in various cell types and tissues in rat diabetes models and diabetes 

patients [Abdul-Rahman et al., 2012; Abu El-Asrar et al., 2013; Wang et al., 2014; 

Bitar, 2019]. Therefore, diabetes-induced increased CD47 levels may interfere with 

the recognition of SARS-CoV-2-infected cells by the immune system [Cham et al., 

2020; Kaur et al., 2020]. 

 

 

Figure 3. Results of the PubMed (https://pubmed.ncbi.nlm.nih.gov) literature search 

for “CD47 diabetes” (A). B) Overview figure of the data derived from the literature 

search. Hyperglycaemia- and diabetes-induced increased CD47 levels may 

contribute to immune escape of SARS-CoV-2-infected cells. 
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3.2.3 CD47 and obesity 

As obesity is another risk factor for severe COVID-19 [Shah et al., 2021], we 

also performed a PubMed search for "CD47 obesity", which resulted in eight hits, 

two of which provided potentially relevant information (Suppl. Table 4). Results 

indicated that CD47-deficient mice were leaner, probably as a consequence of 

elevated lipolysis [Maimaitiyiming et al., 2015; Norman-Burgdolf et al., 2020]. Hence, 

low CD47 levels may be associated both with lower weight and increased immune 

recognition of virus-infected cells [Maimaitiyiming et al., 2015; Cham et al., 2020; 

Kaur et al., 2020; Norman-Burgdolf et al., 2020], but there is no direct evidence 

suggesting that obesity may also directly increase CD47 expression. However, 

obesity may at least indirectly contribute to enhanced CD47 levels as risk factor for 

diabetes [Shah et al., 2021]. 
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4. Discussion 

Here, we show that SARS-CoV-2 infection is associated with increased CD47 

expression in a range of model systems and in post mortem samples from COVID-

19 patients. CD47 exerts immunosuppressive activity via interaction with SIRPα on 

immune cells and as thrombospondin-1 receptor [Cham et al., 2020; Kaur et al., 

2020]. In this context, human CD47 expression is discussed as a strategy to enable 

the xenotransplantation of organs from pigs to humans [Cooper et al., 2019; Hosny 

et al., 2021]. Moreover, high CD47 expression is an immune escape mechanism 

observed on cancer cells, and anti-CD47 antibodies are under investigation as 

cancer immunotherapeutics [Feng et al., 2020; Kaur et al., 2020]. Due its 

immunosuppressive action, CD47 expression is also discussed as a target for the 

treatment of viral and bacterial pathogens including SARS-CoV-2 [Cham et al., 2020; 

Oronsky et al., 2020a; Tal et al., 2020]. Thus, our data indicating increased CD47 

levels in a range of SARS-CoV-2 infection models and clinical samples further 

support the potential role of CD47 as drug target for the mediation of a more 

effective antiviral immune response. 

Older age, diabetes, and obesity are known risk factors for COVID-19 

morbidity and mortality [Hokello et al., 2020; Shah et al., 2021]. Hence, we 

performed a series of systematic reviews to identify potential connections between 

CD47 and these processes. Results indicated an ageing-related increase in CD47 

expression, which may contribute the increased COVID-19 vulnerability in older 

patients [Hokello et al., 2020]. Moreover, high CD47 levels are known to be involved 

in vascular disease, vasoconstriction, and hypertension, which may predispose 

SARS-CoV-2-infected individuals to various conditions associated with severe 

COVID-19 related, including pulmonary hypertension, lung fibrosis, myocardial 
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injury, stroke, and acute kidney injury [Soto-Pantoja et al., 2013; Rogers et al., 

2017a; Cruz Rodriguez et al., 2020; Fabrizi et al., 2020; Karmouty-Quintana et al., 

2020; Scutelnic and Heldner, 2020; Leeming et al., 2021; Sanghvi et al., 2021; Shah 

et al., 2021]. 

High CD47 levels have also been reported as a consequence of 

hyperglycaemia and diabetes, which may contribute to the high risk of severe 

COVID-19 in diabetic patients [Shah et al., 2021]. Although there is no known direct 

impact of obesity on CD47 levels, obesity is associated with an increased risk of 

diabetes and other ageing-related conditions such as hypertension that may result in 

elevated COVID-19 vulnerability [Shah et al., 2021].  

 

5. Conclusions 

Severe COVID-19 disease is the consequence of hyperinflammation 

('cytokine storm') in response to SARS-CoV-2 infection [Jacques and Apedaile, 

2020; Nowill and Campos-Lima, 2020; Gustine and Jones, 2021]. Hence, the optimal 

time window for antiviral intervention is as early as possible to prevent disease 

progression to severe stages driven by immunopathology [Weinreich et al., 2021]. 

Since the vast majority of cases are mild or even asymptomatic [Salzberger et al., 

2020], biomarkers are required to identify and treat individuals early, who are at high 

risk of severe COVID-19. 

Here, we have identified CD47 as a candidate biomarker for severe COVID-

19. SARS-CoV-2 infection results in enhanced CD47 expression, which is known to 

interfere with the host immune response. Moreover, CD47 levels are elevated in 

groups at high risk from COVID-19 such as older individuals and individuals with 

hypertension and/ or diabetes. Thus, high CD47 levels may predispose these groups 
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to severe COVID-19. Further research will have to show whether CD47 is a reliable 

diagnostic marker for the early identification of COVID-19 patients requiring antiviral 

therapy. 
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