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8 ABSTRACT9
10

COVID-19 is a global pandemic leading high death tolls worldwide day by day. Clinical evidence11

suggests that COVID-19 patients can be classified as non-severe, severe and critical cases. In12

particular, studies have highlighted the relationship between the lymphopenia and the severity13

of the illness, where CD8+ T cells have the lowest levels in critical cases. In this work, we aim14

to elucidate the key parameters that define the course of the disease deviating from severe to15

critical case. To this end, several mathematical models are proposed to represent the dynamic16

of the immune response in patients with SARS-CoV-2 infection. The best model had a good fit17

to reported experimental data, and in accordance with values found in the literature. Our results18

suggest that a rapid proliferation of CD8+ T cells is decisive in the severity of the disease.19

20

1. Introduction21

COVID-19 caused by SARS-CoV-2 infection is a global pandemic which has caused more than 40 millions con-22

firmed cases and more than 1 million deaths worldwide. People of all age can be infected where around 20% of the23

cases are asymptomatic, 60% appear with mild or moderate conditions, and 20% are severe or critical cases [2]. Most24

of the countries have taken emergency actions, these actions include confinement of their population, travel restric-25

tions, forced use of mask in public spaces, and even a nighttime curfew. In this situations, epidemiological models26

have been key to mitigating COVID-19 pandemic and many others [15].27

There are three coronaviruses (SARS-CoV, MERS-CoV and SARS-CoV-2) that can cause pneumonia, which can28

be fatal. SARS-CoV-2 is transmitted mainly via respiratory droplets, the median incubation period is around 4 days29

before symptom onset [13], most of symptomatic patients developing symptoms within 11.5 days [21]. The viral load30

reaches its peak within 5-6 days of symptom onset [32]. An animal model using rheus macaques reported two peaks31

of viral RNA, the first peak is input of the virus, while the second one is due to authentic viral replication [49].32

Most of COVID-19 patients present without any symptoms or only mild respiratory symptoms [5]. Moderate cases33

present principally fever, cough, and fatigue; less common symptoms are sputum production, headache, hemoptysis,34

and diarrhea [18]. Most of moderate patients are recovered, however, a portion of these patients are hospitalized.35

Approximately 20% of cases develop severe illness, requiring intensive care unit (ICU) treatment because of com-36

plications, including acute respiratory distress syndrome, arrhytmia, and shock. Critical patients have symptoms of37
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dyspnea and they are more likely to be older [44]. The bulk of patient who die had comorbidities like hypertension,38

heart disease, dibetes, among others. Respiratory failure is the most common cause of death, followed by sepsis,39

cardiac failure, hemorrhage, and renal failure. In these cases lymphopenia, neutrophilia and thrombocytopenia were40

usually observed [48].41

A key determinant factor of disease severity in SARS-Cov-2 is age, in particular individuals over 65 years have the42

greatest risk of requiring intensive care [5]. As other viral infections, the severity of the disease in the elderly is not43

directly attributed to the viral titter but to the host immune response [17]. Severe patients are characterized by difficult44

in breathing and low blood oxygen level; in some cases there even be secondary infection by bacteria and fungi that45

may cause respiratory failure, which is the cause of death in most fatal COVID-19 cases [5, 40].46

The storm of cytokines released by immune system in response to the infection can result in sepsis that is the47

cause of death in 28% of fatal COVID-19 cases [48]. For influenza infection, adaptive immune response against viral48

infection impairs innate immune defense against bacterial infection [30]. Immune therapies inhibiting viral infection49

and regulation of dysfunctional immune response are key to block pathologies [40, 9, 37].50

It is still controversial whether virus persistence can increase the severity of the disease. SARS-Cov-2 viral dy-51

namics has shown remarked differences between severe patients and non-severe patients. Viral load peak is higher in52

non-severe patients (∼ 108 copies/mL) than severe patients (∼ 107 copies/mL). Also, viral shedding time has been53

longer in severe patients [39], even the virus is detectable until death [51]. It also has been reported the mean viral54

load of severe cases around 60 times higher then mild cases [23].55

Similar to other viral infection, adaptive immune response have a key role in SARS-CoV-2 infection, particulary56

T cells [17]. It remains unclear weather T cell response are helpful or harmful in COVID-19. Mathew et al. [27]57

identified three immunotypes revealing different patterns of lymphocytes response in hospitalized COVID-19 patients.58

Immunotype 1 was associated with highly activated CD4+ and CD8+ T cells; immunotype 2 had less CD4+ T cell59

activation; and immunotype 3 had lacked activated T and B cell response. Mortality ocurred for patients with all three60

immunotypes. On the other hand, patients with severe conditions have shown lymphopenia associated with COVID-61

19, where CD8+ T cells have a major impact [6, 28]. Direct virus killing lymphocytes could be part of the problem,62

as SARS-CoV particles have been found in T cells, monocytes and macrophages [12].63

There are several studies around the dynamic changes of lymphocytes [25, 22], showing low level of lymphocytes64

in severe patients. In [47], Zhang et al. analyze the dynamic changes of lymphocyte subsets and specific antibodies65

in coronavirus disease. They obtained blood samples of 707 patients from Wuhan, China, which were classified into66

moderate,severe and critical groups. Their results shows that the counts of total T cells, CD4+ T cells and CD8+ T cells67

were significantly decreased with the increased severity of illness. The levels of these lymphocytes could be helpful68

markers to indicate the severe illness of COVID-19 and to understand the pathogenesis of COVID-19.69
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Mathematical modeling can be pivotal to dissect the dynamics between severe and non-severe COVID-19 patients.70

Epidemiological models have been of great help to follow the pandemic evolution, evaluate the results of different71

scenarios and reveal the health measures that could help to mitigate the pandemic [1, 36, 24]. Similarly, mathematical72

models at within-host level can help us to understand viral infections and the immune response [33, 16, 45, 11, 8].73

While these in-host models [33, 16, 45] are fitted to viral data from COVID-19 patients to infer the interaction with74

the immune response, there has not been any study to quantify the differences between severe and critical patients with75

COVID-19. As far as we know, there are no models fitted to T cells data in order to examine the relation between T cell76

dynamic and severity of the illness. In this work, we contribute to the mathematical study of SARS-CoV-2 dynamic77

and the T cell dynamics to elucidate the principal role of lymphocytes in the develop of the disease between severe ad78

critical patients.79

2. Materials and methods80

2.1. Experimental data details81

Here we considered the data reported by Zhang et al. [47]. They collected from 707 COVID-19 patients in Wuhan,82

China between February and April, 2020. The patients were classified into moderate, severe and critical groups. The83

moderate cases were those with fever, typical symptoms and pneumonia. 206 severe cases had respiratory distress,84

blood oxygen saturation less than 93%, or arterial partial pressure of O2 to fraction of inspired oxygen ratio less than85

300 mmHg. 91 critical cases had respiratory failure, shock or multiple organ dysfunction needing intensive care unit86

treatment.87

The counts of total T cells, CD4+ T cells, CD8+ T cells, B cells, and Natural Killer (NK) cells were analyzed with88

FACSCanto flow cytometer from 50 �l of whole blood. The patients were 48.5% males and 51.5% females. Most of89

the patients had fever, cough, expectoration, shortness of breath, chest distress, diarrhea at the illness onset. The most90

common comorbidities of the cases were hypertension (37.9%), diabetes (17.1%) and cardiovascular disease (11.1%).91

There were 30 deceased. The total T cells, CD4+ T cells and CD8+ T cells in moderate patients were relatively stable92

compared to those for several and critical cases. The severe and critical group had a lower count of lymphocyte from93

the illness onset but gradually recovered to the normal levels. More details can be found in the original paper [47].94

The data are displayed in Fig. 1, the median is represented as points and the dashed lines represent the interquartile95

range (IQR). Data are reproduced from the original paper [48] using plotDigitizer.96
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Figure 1: Experimental data. (a) CD8+ T cells, (b) CD4+ T cells and (c) natural killers cells levels. Data are reproduced
from reference [47].

2.2. Mathematical model97

In [16] has been reported a mathematical model to represent the interaction between SARS-CoV-2 infection and98

immune response dynamics. The model is given by:99

dV
dt

= pV
(

1 − V
K

)

− cTV T − cV (1)

dT
dt

= sT + rT

(

V 2

V 2 + k2T

)

− �T T (2)

where V is the virus level, T the number of CD8+ T cells, p the viral replication rate with maximum carrying capacity100

K , and c the rate of cleared virus. cTV T represent the rate of killing of infected cell by the immune response. In this101

model is assumed that the activation of T cell proliferation by V , at a rate r, follows a log-sigmoidal form with half102

saturation constant kT . The parameter sT = �T T (0) represent T cell homoeostasis with �T as the half life of T cells103
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Figure 2: Schematic representation of the viral infection model with immune response. Virus (V ) induces CD8+ T cells
(T ) a rate r which inhibits the viral replication through the clearance of the infected cell a rate cT . T cells are replenished
with constant rate sT and die with a rate �T . Virus are replicated with a rate p. The rate of clearance of the virus due to
processes not directly related to immune system is represented by c.

and T (0) the initial number of them. In figure 2 is shown a schematic representation of this model.104

Contrary to [16], in this work we fitted the data of CD8+ T cells to the model (2) using the median of the CD8+ T105

cells count for severe and critical cases from [47]. We reduced the number of parameters to be identified to p, cT , and106

r. The half-life of CD8+ T cells in humans have been estimated from 34 days [29] to 255 days [43]; therefore, we take107

�T = 0.01 day−1. We fix c = 2.4, K = 108, and kT = 1.26 × 105 for both cases; this values were taken in accordance108

to [16]. Also we use the initial viral level V (0) = 0.31 copies/ml. The sT parameter for each case was fixed with the109

respective initial value T (0). Due to lack of data before illness onset, we assumed the initial level of T cells equal to110

the median of the CD8+ T cells in the day 3 (T (0) = T (3)) from the reported data for each case. Infection time was111

assumed at -3 days after illness onset (daio).112

In our model, we included CD8+ T cells in the peripheral blood of patients described above, who have a wide range113

of comorbidities. We only considered several and critical cases, since data from moderate cases showed no marked114

changes during the disease course.115

Similar to CD8+ T cells, there is a evidence of activation and/or exhaustion markers at CD4+ T cells [6]. Even it has116

been suggested that CD4/CD8 ratio is significantly higher in critical patients than non-critical patients [31]. Because117

of that, we modified the model. We considered that CD4+ helps to proliferation of CD8+ T cells which occurs at rate118

�T4 where T4 is CD4+ T cell level and � is a free parameter to be estimated. We use piecewise linear fits to generate119

a time-dependent function T4(t) using the experimental data displayed in Fig. 1b. We also explored different ways to120

integrate CD4+ T cell data to our model, however, we do not obtain good results.121

Furthermore, natural killer cells (NK) are critical in the first-line defense against viral infection, and integrate122

innate and adaptive immune responses [42]. It has been correlated the number and function of NK during SARS-CoV-123

2 infection with the severity of the disease [50, 26]. Therefore, we explored the viral clearence due to NK (N) at rate124

cNV N . Similar to modification above, we use piecewise linear fits to generateN(t) using data in Fig 1c.125

Blanco-Rodríguez et al. Page 5 of 14

.CC-BY-NC-ND 4.0 International licensethe preprint in perpetuity. It is made available under a
for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display 

The copyright holderthis version posted March 24, 2021. ; https://doi.org/10.1101/2021.03.23.436686doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.23.436686
http://creativecommons.org/licenses/by-nc-nd/4.0/


Modeling SARS-CoV-2 infection

2.3. Parameter estimation126

The ordinary differential equations of the model were solved using a Dormand-Prince fifth-order Runge-Kutta

algorithm. The estimation of the free parameters was performed by minimize the Root Mean Square Error (RMSE)

using the difference between the experimental measurement (yi) and the predictive output (ȳi) as follows:

RMSE =

√

√

√

√

1
n

n
∑

i=1
(yi − ȳi)2 (3)

where i is the corresponding sample and n is the total number of measurement. To minimize the RMSE we used the127

Differential Evolution (DE) algorithm [38]. We implemented a DE algorithm using GPU parallelization with code128

written in CUDA-C, this implementation accelerate the optimization ten times at least. Some details about a DE129

implementation on GPU can be found in [41].130

2.4. Akaike information criterion131

In order to compare between different models, we used the Akaike information criterion (AIC) defined by:

AIC = n log
(RMSE

n

)

+ 2mn
n − m − 1

(4)

where n is the number of data points and m is the number of unknown parameters. A lower AIC values means a better132

description of the data.133

2.5. Identifiability analysis134

A mathematical model is said to be identifiable when the parameter set can be uniquely determined. Here we135

used the profile likelihood method proposed by [35]. In this method one by one the parameters are set to a range of136

values centered at the optimized value; the other parameters are re-optimized using the same cost function, which is the137

RMSE above mentioned. This methodology can detect both structurally and practically non-identifiable parameters138

[14]. Structural non-identifiability is related to the model structure and practical non-identifiability takes into account139

the amount and quality of the data. A parameter can be identified when the profile likelihood presents a concave form.140

However, if the data are insufficient and manifest large variability, the parameter could be practically non-identifiable.141

This can be visualized as a relatively flat valley in the profile likelihood. A structurally non-identifiable parameter has142

a profile that maintains a constant RMSE when the parameter is varied.143

2.6. Bootstrap144

The experimental data displayed in Fig 1(a) present a highly variable response to SARS-CoV-2 infection, hence145

we performed bootstrap fits to mimic a stochastic environment of the infection. Notice that the quartiles in Fig 1(a) are146
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asymmetric, that is, that the median values of the experimental data are not in the middle of the IQR. For that reason,147

we generated 27 discrete data between lower limit and upper limit of the IQR (including the median value) for each148

point of the daio (x-axis). We then performed a nonparametric bootstrap approach using Monte Carlo resampling.149

Data were resampled with replacement to have a sample of equal size to the generated values above. The parameters150

are estimated from the resampling. We adapted our DE code to perform 100 parameter estimations at the same time151

using GPU parallelization in order to save computational time. A total of 1000 optimizations (10 runs of our DE code)152

were performed using different sets of resampled data. We obtained the corresponding parameter distribution from153

refit our model in each of these repetitions.154

3. Results155

The experimental data for CD8+ T cells and their respective fit of the model above are displayed in Fig. 3a. The156

experimental data were reproduced from [47]. For severe cases, the CD8+ T cell response starts about 10 to 20 daio157

reaching its peak between 35 to 45 daio, while for critical the CD8+ T cell response starts late, around 30-40 daio with158

a peak between 40 to 50 daio. Note that critical cases begin with a lower level of CD8+ T cells than severe cases (half159

of them), however, both reaches approximately the same level of the moderate cases at the end of the disease course.160

The total count of cells (accumulative sum) between both cases are in the same order of magnitude although is lower161

for critical cases (1.3 × 107) than severe cases (2.2 × 107).162
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Figure 3: (a) Model fitted to experimental data for severe and critical cases. The continuous line are simulation. Points
are the median of the experimental data and dashed lines are the interquartile range. (b) Viral load obtained from the
model after the parameter optimization for severe and critical cases. Data are reproduced from reference [47].

The viral load obtained using the model with the parameter fitted to CD8+ T cells experimental data is displayed163

in Fig. 3b. The viral load peaks around 40 daio for critical cases and 20 daio for severe cases. There is a delay in the164

peak of the viral load for critical cases compared to severe cases; critical viral load peak is two orders of magnitude165
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lower than severe viral load peak. This result is consistent with those reported in [39], although in those results the166

difference is of one order of magnitude between severe and non-severe. The total viral count is higher for severe case167

(1.2 × 108) than critical cases (4.5 × 106).168

The profile likelihood analysis was performed with the unknown model parameter. These profiles are shown in169

Figs. 4a, 4b and 4c. Critical cases show a minimum for viral replication rate p and viral clearance cT implying identi-170

fiability of these parameter. The likelihood profile for the CD8+ T cell proliferation rate r does not show a minimum171

for critical cases. In severe cases, the profiles for cT and p show a minimum while for p it is not very clear. This results172

suggest the possibility to infer model parameters from experimental data reported.173

The best fitted parameters are presented in Table 1 for CD8+ T cells and the two cases of illness severity. The174

viral replication rate p for critical cases is a half of that for severe cases. The viral clearance cT for critical cases175

is approximately one third of that for severe cases. The CD8+ T cell proliferation rate r is higher for critical cases.176

These results suggest that the rapid proliferation of T cells and the low clearance rate are key in the development of177

the disease.178

Table 1
Model parameter values using CD8+ T cells experimental data from [47]. Fixed parameters are
taken from [16].

Fixed parameters

K 108 copies/mL
c 2.4 day−1

kT 1.26 × 105 copies/mL
�T 0.01 day−1

Critical cases

Parameter Best fit Median CI (95%)

p [day−1] 3.50 3.55 (3.45 - 3.81)
cT [10−8 day−1 cell−1] 0.596 0.595 (0.384 - 0.636)
r [day−1] 0.131 0.097 (0.033 - 0.137)

Severe cases

Parameter Best fit Median CI (95%)

p [day−1] 6.99 6.67 (6.29 - 7.63)
cT [10−8 day−1 cell−1] 1.47 1.34 (1.16 - 1.54)
r [day−1] 0.020 0.021 (0.014 - 0.024)

Due to high variability of the data, we performed bootstrap fits in order to obtained the confidence interval of the179

model parameter estimated. Figs. 4d, 4e and 4f shows the distribution in parameter values for severe and critical cases.180

The three free parameter show clear difference between cases. The viral replication rate p in critical cases decreased181

45% with respect to severe cases, the rate of killing of infected cell by immune response cT decreased 53% for critical182

cases; whereas that CD8+ T cell proliferation rate r was four times the rate for severe cases. Table 1 shows the median183
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and 95% confidence interval of each parameter. The median values presented for critical cases are consistent with the184

values for the best fit, except for r. Severe cases median values shows the opposite behavior, only r is in accordance185

with the value for the best fit. This discrepancy could due to high variability of the experimental data used.186

In order to explore the dependencies of the parameters, we displayed scatter plots in Figs 4g, 4h and 4i. These187

plots reveal that there are no strong correlation between p, cT and r. However, we can notice a slight inter-dependence188

between p and r parameters for critical cases; and p and cT parameters for severe cases. In the former, increasing r189

decrease p; and in the latter, increasing p increase cT .190

We explored the modification of the model by adding CD4+ T cells and NK responses. Fitting these models to191

the data revealed that including CD4+ T cells as a helper of the proliferation of CD8+ T cells does not improve the192

fits, similarly for NK response. Increasing the number of parameters to optimize does not improve the results neither.193

In the Table 2 is shown the AIC number for each model. The parameters � and cN tend to small values (10−3 and194

10−10 respectively), leading the same dynamics as the first model. In the third and fourth model we added CD4+ T195

cell helper as a log-sigmoidal form, however, in these models the viral load does not reach to be cleared; notice that196

they have the highest AIC numbers.197

Table 2
Model comparison

Severe Critical
Model Fit RMSE AIC RMSE AIC

V̇ = pV (1 − V ∕K) − cTV T − cV ; Ṫ = sT + rT (V 2∕(V 2 + k2T ) − �TT p, cT , r 4.38 57.33 4.98 58.12
V̇ = pV (1 − V ∕K) − cTV T − cV ; Ṫ = sT + rT (V 2∕(V 2 + k2T ) − �TT + �T4 p, cT , r, � 4.34 61.32 4.94 62.11
V̇ = pV (1 − V ∕K) − cTV T − cV ; Ṫ = sT + rT (T 2

4 ∕(T
2
4 + k24) − �TT p, cT , r, k4 7.94 64.99 6.40 63.68

V̇ = pV (1 − V ∕K) − cTV T − cV ; Ṫ = sT + rT (V 2∕(V 2 + k2T )(T
2
4 ∕(T

2
4 + k24) − �TT p, cT , r, k4 8.05 65.07 13.7 68.29

V̇ = pV (1 − V ∕K) − cTV T − cV − cNV N ; Ṫ = sT + rT (V 2∕(V 2 + k2T ) − �TT p, cT , r, cN 4.28 61.24 5.00 62.19

4. Discussion198

The role of the immune system during SARS-CoV-2 infection is fragmented. The T cell kinetics seem to be decisive199

in the resolution of severe or non-severe patients [22]. CD8+ T cells are relevant for killing infected cells during viral200

infections [34]. Furthermore, a defective immune response may lead to further accumulation of immune cells in the201

lungs causing overproduction of cytokines, resulting in a cytokine storm leading to multi-organ damage [40, 10].202

Therefore, an abnormal proliferation of T cells could lead to critical state to the COVID-19 patient. Quantification of203

the dynamics of these T cells could help to identified the critical cases in the early stage of the disease.204

A recent study [3], patients with hematologic cancer show that higher CD8+ T cell counts is associated with205

improved survival. Also, robust CD4+ T cell response in conjunction with a diminished CD8+ T cells is key in206

survival patients. Our simulations highlight a clear difference between the parameters that model critical case and207
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Figure 4: Profile likelihood for the model parameters; (a) viral replication rate p, (b) viral clearance cT and (c) CD8+ T
cell proliferation rate. Parameter distribution from 1000 bootstrap fits: (d) p, (e) cT and (f) r. Parameter ensembles from
bootstrap: (g) p-cT , (h) r-cT and (i) r-p.

those that model severe cases. The principal difference is in the rate of T cell proliferation r, this rate is high in critical208

cases. This is in accordance with [20, 46], suggesting a hyperactivation and overaggressive CD8+ T cell response.209

However, it is still unclear whether the T cells in COVID-19 patients are exhausted or just highly activated [6].210

On the other hand, fitting results show a viral clearance rate cT for severe cases is higher than that for critical cases.211

The viral replication rate p for severe cases is also higher than that for critical cases which translates to a higher viral212
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peak. Therefore, although the severe cases have a low production of CD8+ T cells compared with that critical cases,213

these cells clear a major viral load. Notice that viral shedding takes approximately the same time for both types of214

cases, this suggests that critical cases may have a dysfunctional immune response where there are excessive infiltration215

of T cells which could cause widespread inflammation and multi-organ damage; infected cells are slowly cleared.216

In [47], both critical and severe cases begin do not have any significant difference for CD4+ T cell levels. Nev-217

ertheless, there is a tendency of low levels of CD4+ T cells in critical patients. Note that in normal conditions, IL-2218

improve transcription of FOXP3 which is widely recognized as a suppressor of the T cell response. However, in se-219

vere COVID-19 patients, activated T cells fail to express FOXP3 [19]. This T cell dysregulation promotes prolonged220

inflammation and tissue destruction. Model selection was not able to show that CD4+ T cells play an important role221

in viral clearance or CD8+ T cell proliferation.222

Here, we explored the innate immune response against viral infection adding to our model NK cell response,223

nevertheless, this did not improve the AIC with just CD8+ T cell response. This may be attributted that NK cells play224

an important role in the begining of the infection, such dynamics can not be capture in the used data set [47]. It has been225

reported that the upregulation of human inhibitory receptors is one more strategy that SARS-CoV-2 uses to modulate226

NK cell cytotoxicity. It is clear that increase expression of such receptors lead to NK cell exhaustion and decrease227

their ability to clear viral infection. The mechanisms that drive NK cell exhaustion are poorly understood [4]. Several228

upregulated genes in peripheral blood from COVID-19 patients are involved in the apoptosis pathways, suggesting229

lymphopenia is due to apoptosis by SARS-CoV-2. In SARS-CoV-2 infection NK cells exit the peripheral blood,230

contributing to local inflammation and injury. NK cells that remain in the circulation show an exhausted phenotype231

that facilitate virus spread [26].232

The model that best describe the data is considering CD8+ T cell response. The best fits show a delay viral peak233

for critical cases, the difference is 20 days; while CD8+ T cells levels peak approximately in the same time for both234

cases and with almost the same level. Critical cases have the T cell response peak 5 days after their viral load peak.235

Finally, it is worth to mentioning that experimental data taken in [47] have samples with different comorbidities and236

ages, this results could be different if we took data from homogeneous group.237

Figure 3(a) does show that CD8+ T cells and the virus start to grow earlier in the severe patients respect to the238

critical one. However, while the CD8+ T cell is delayed in the critical patients, it reaches similar levels than the severe239

patients. This difference between severe and critical COVID-19 patients can be attributed to the effects of aging to the240

immune systems which is highly altered during viral infections [17]. Previous mathematical modeling work [17] had241

formulated that the slower viral growth presented in aged individuals may lead to less immune stimulation [7].242
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