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Abstract 28 

In the course of global climate change, central Europe is experiencing more frequent and prolonged 29 

periods of drought. The drought years 2018 and 2019 affected European beeches (Fagus sylvatica L.) 30 

differently: even in the same stand, drought damaged trees neighboured healthy trees, suggesting 31 

that the genotype rather than the environment was responsible for this conspicuous pattern. We 32 

used this natural experiment to study the genomic basis of drought resistance with Pool-GWAS. 33 

Contrasting the extreme phenotypes identified 106 significantly associated SNPs throughout the 34 

genome. Most annotated genes with associated SNPs (>70%) were previously implicated in the 35 

drought reaction of plants. Non-synonymous substitutions led either to a functional amino acid 36 

exchange or premature termination. A SNP-assay with 70 loci allowed predicting drought phenotype 37 
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in 98.6% of a validation sample of 92 trees. Drought resistance in European beech is a moderately 38 

polygenic trait that should respond well to natural selection, selective management, and breeding.  39 

Keywords 40 

Genome-wide association study, genomic prediction, forest tree, Fagales, conservation genomics, 41 

functional environmental genomics 42 

Impact Statement 43 

European beech harbours substantial genetic variation at genomic loci associated with drought 44 

resistance and the loci identified in this study can help to accelerate and monitor adaptation to 45 

climate change.  46 

Introduction 47 

Climate change comes in many different facets, amongst which are prolonged drought periods 48 

(Christensen et al. 2007). The Central European droughts in the years 2018 and 2019 caused severe 49 

water stress in many forest tree species, leading to the die-off of many trees (Schuldt et al. 2020a). 50 

Among the suffering tree species was European beech, Fagus sylvatica L. As one of the most 51 

common deciduous tree species in Central Europe, F. sylvatica is of great ecological importance: 52 

beech forests are a habitat for more than 6,000 different animal and plant species (Brunet et al. 53 

2010; Dorow et al. 2010). The forestry use of beech in 2017 generated a turnover of more than 1 54 

billion € in Germany alone (Thünen_Institute 2020), without taking the economic and societal value 55 

of the ecosystem services of woods into account (Elsasser et al. 2016). However, the drought years 56 

2018 and 2019 severely impacted the beech trees in Germany (Paar & Dammann 2019). Official 57 

reports on drought damage in beech recorded 62% of trees with rolled leaves and 20-30% of small 58 

leaves, mainly in the crown, resulting in 7% of badly damaged or dead trees. As shown before 59 

(Bressem 2008), most trees affected by drought stress were medium to old aged.  60 

Under favourable conditions, beech is a competitive and shade tolerant tree species, dominating 61 

mixed stands (Pretzsch et al. 2013). High genetic diversity within populations supports adaptation to 62 

local conditions (Kreyling et al. 2012). Significant differences between local populations in tolerance 63 

to various stress factors such as early frost (Czajkowski & Bolte 2006), drought (Cocozza et al. 2016; 64 

Harter et al. 2015) or air pollution (Müller-Starck 1985) are known. The distribution of F. sylvatica is 65 

mainly limited by water-availability, as the tree does not tolerate particularly wet or dry conditions 66 

(Sutmöller et al. 2008). Therefore, it is quite conceivable that the species could suffer even more 67 

under the predicted future climatic conditions than today (Sutmöller et al. 2008).  68 

Despite the widespread, severe drought damage, a pattern observed in all beech forests was very 69 

noticeable (personal observations). Using crown deteriation as significant indicator for drought 70 

damage (Choat et al. 2018), not all trees in a beech stand were equally damaged or healthy. The 71 

damage occurred rather in a mosaic-like pattern instead. Even though the extent of drought damage 72 

varied among sites, apparently completely healthy trees immediately neighboured severely damaged 73 

ones and vice versa. This observation gave rise to the hypothesis that not the local environmental 74 

conditions might be decisive for the observed drought damage, but rather the genetic make-up of 75 

the individual trees. 76 

We decided to draw on this natural “experimental set-up” to infer the genomic basis underlying the 77 

drought susceptibility in F. sylvatica. We identified more than 200 neighbouring pairs of trees with 78 

extreme phenotypes and used a Pool-GWAS approach (Bastide et al. 2013) to infer associated SNP 79 

loci by contrasting allele frequencies with replicated pools of drought susceptible and resistant 80 

individuals. In addition, we individually re-sequenced a subset of 51 pairs of susceptible and resistant 81 

trees. If the observed pattern indeed has a genetic basis, identifying the associated loci would enable 82 
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the genomic prediction of drought resistance (Stocks et al. 2019). Constructing a SNP assay from the 83 

most highly phenotype associated SNPs, we validated 70 identified loci by predicting the drought 84 

phenotype of an additional set of beech trees from their genotype at these loci using Linear 85 

Discriminant Analysis and a new Machine Learning approach (Horenko 2020). These accurate 86 

genomic prediction tools, e.g., the choice of drought resistant seed producing trees and selective 87 

logging could help accelerate and monitor natural selection and thus harness beech forests against 88 

climate change (Waldvogel et al. 2020).  89 

Results 90 

Sampling, climate development and phenotyping 91 

Damaged and healthy beech tree pairs were sampled from woods in the lowland Rhein-Main plain, 92 

the adjacent low mountain ranges of Odenwald and Taunus, and mountain ranges from Central and 93 

Northern Hessen (Fig. 1A). When summarising the climatic conditions from 1950 to 2019 for the 94 

sampling sites in a principal component analysis (PCA), the sites were divided into two groups by axis 95 

1, a temperature gradient. The Taunus mountain sites grouped with those from the northern part of 96 

Hessen, while the Rhein-Main plain clustered with the Odenwald sites (Fig. 1B). This grouping was 97 

also used to construct the GWAS pools (see below). Comparing the climate from the 1950s, when 98 

most of the trees sampled were already in place, with the decade from 2010-2019, showed that all 99 

local conditions changed substantially and similarly in the direction and extent of warmer and drier 100 

conditions (Fig. 1B). The steepest temperature increase occurred in the 1980s, while precipitation 101 

patterns mainly changed in the last decade (Suppl. Fig. 1). A wide range of parameters, potentially 102 

relevant as selection pressures changed drastically during this period: the mean January daily 103 

minimum temperature at the sampling sites increased by 1.49°C from -2.64°C (s.d. 1.68°C) in the 104 

1950s to -1.15°C (s.d. 2.50°C) during the last decade. The mean August daily maximum temperatures 105 

increased even more by 2.37°C from 22.06°C (s.d. 1.95°C) to 24.43°C (s.d. 2.35°C). Simultaneously, 106 

mean annual precipitation decreased by 40.5 mm or 5.5% from 741.2 mm (s.d. 85.8 mm) to 700.7 107 

mm (s.d. 70.9 mm). Most of the precipitation loss (84%) occurred during the main growth period 108 

between April and September, with a decrease of 33.9 mm from 410.4 mm (s.d. 36.1 mm) to 376.5 109 

mm (s.d. 25.6 mm).  110 

Mean monthly evaporation potential, available from 1991 onwards, showed that, compared to the 111 

beginning of the 1990s, the main growth period of beech from April to September became 112 

increasingly drier, with up to 30 mm more evaporation per month. The drought dynamics suggested 113 

that the years 2018 and 2019 were not outliers, but rather part of a long-term, accelerating trend 114 

(Fig. 1C), following the overall global pattern (Büntgen et al. 2021; Trenberth et al. 2014).  115 

There was a strong negative correlation (r = 0.695) between the drought strength during the main 116 

growth period (Apr- Sept) and a proxy for (green) leaf cover (leaf area index, LAI) for the sampled 117 

plots in the years 2015-2019 (Suppl. Fig. 2). This observation suggested that leaf loss and dried leaves 118 

are good indicators for drought stress.  119 

The mean distance between paired trees was 5.1 m (s.d. 3.4 m, Suppl. Fig. 3). Phenotypic 120 

measurements generally confirmed the study design and selection of trees: healthy and damaged 121 

trees within each tree pair did not differ significantly in trunk circumference, tree height, canopy 122 

closure and competition index (Fig. 2 A-D, Suppl. Table 2). Hence, these parameters were not 123 

considered in further analyses. As expected, and confirming the assignment of damage status, the 124 

quantity of dried leaves and leaf loss differed substantially between damaged and healthy ones (Fig. 125 

2 E-F, Suppl. Table 2). A sample of photographs contrasting damaged and healthy paired trees can be 126 

found in the Suppl. Fig. 4.  127 
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Linkage disequilibrium, population structure and genome-wide association study 128 

For a subsample of 300 out of the 402 sampled beech trees we generated four DNA pools from two 129 

climatically distinct regions (North and South Hessen, Fig. 1B), contrasting trees that were either 130 

healthy or highly drought damaged respectively (Tab. S1). The “South” pools consisted of 100 131 

individuals each, whereas the “North” pools contained 50 individuals each. We created ~50GB 150 132 

bp-paired end reads with insert size 250-300 bp on an Illumina HiSeq 4000 system per pool. More 133 

than 96% of the reads mapped against the repeat-masked chromosome level beech reference 134 

genome (accession no. PRJNA450822). After filtering the alignment for quality and a coverage 135 

between 15x and 70x, and removing indels, allele frequencies for 9.6 million SNPs were scored. All 136 

100 individuals from the North population were additionally individually re-sequenced to ~20x 137 

coverage each (for more details see M&M). This data was used to a) determine individual variability 138 

in allele frequencies and b) to validate the information content of the candidate SNP-set.  139 

Using all individually resequenced individuals, we inferred the extent of genome wide linkage 140 

disequilibrium (LD;). The plot of LD r² against the distance from the focal SNP showed that LD fell to 141 

r² ~ 0.3 within less than 120 bp, which means that genome positions such a distance apart are on 142 

average effectively unlinked (Fig. 3A). The PCA on SNP variation of the individually re-sequenced 143 

trees from the North population explained 12.3% of accumulated variation on the first two axes (Fig. 144 

3B). Trees from the same sampling site (within the North population) did not tend to cluster together 145 

(Fig. 3B). FST estimates among pools for non-overlapping 1 kb windows were virtually identical among 146 

healthy/damaged pools within region as compared to between regions (Suppl. Fig. 5). Trees within a 147 

phenotypic class were genomically not more similar than between classes (Suppl. Fig. 6, ANOSIM R = 148 

-0.008, p = 0.76, 9,999 permutations). 149 

Pool-GWAS analysis identified 106 SNPs significantly associated with the drought damage status 150 

using a Cochran-Mantel-Haenszel test on the two pairs of damaged and healthy pools after false 151 

discovery rate correction and a cut-off at 1 x 10-2 (Fig. 4A, Suppl. Fig. 7). Some of the 106 SNPs were 152 

in close physical proximity (<120bp) and thus probably linked. Taking this into account, 80 153 

independent genomic regions were associated with the drought damage status. None of the 154 

significantly differentiated SNP loci was mutually fixed; the observed allele frequency differences 155 

between healthy and damaged trees at associated loci ranged between 0.12 and 0.51 (Fig. 4B).  156 

Associated genes and gene function 157 

Of the 106 significant SNPs, 24 were found in 20 protein coding genes (Table 1). Forty-nine genes 158 

were the closest genes to the remaining 82 SNPs. For 61 of these genes, the best BLAST hit was with 159 

a tree, mainly from the Fagales genera Quercus and Castanea (Table 1, Suppl. Table 3). Among the 24 160 

SNPs in genes, we observed 13 non-synonymous changes. In eleven of these changes, the alternate 161 

allele was associated with the damaged phenotype and only in two cases with the healthy 162 

phenotype. Three of the non-synonymous substitutions resulted in a stop codon. Of the remaining 163 

ten, eight exchanges caused a major change in amino acid characteristics and thus probably in 164 

protein folding or function (Table 1). One gene, a PB1 domain-containing protein tyrosine kinase, 165 

contained four non-synonymous changes, suggesting that the allele version associated with the 166 

damaged phenotype lost its function (Tab. 1). From the 20 genes with significant SNPs, functional 167 

information could be obtained from the UniProt database for 14 (Suppl. Table 3). Of these, ten genes 168 

were associated in previous studies with either environmental stress response (two) or specifically 169 

with drought stress response (eight; Suppl. Table 3). Of the 49 predicted genes closest to the 170 

remaining significant SNPs (Tab. 1), 16 could be reliably annotated (Suppl. Table 2). Twelve had been 171 

directly related to drought in previous studies, while three were previously associated with other 172 

environmental stress responses (Suppl. Tab. 3).  173 
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Genomic prediction 174 

We furthermore set out to determine how many SNPs were needed to successfully predict the 175 

drought susceptibility of individual trees, i.e. to develop a genotyping assay. All Pool-GWAS SNPs in 176 

addition to the top 20 individual re-sequencing SNPs were used to create a SNP combination to reach 177 

a genotyping success threshold of min. 90%. After excluding loci due to technical reasons and 178 

filtering for genotyping success, seventy loci proved to be suitable for reliable genotyping with a SNP 179 

assay. We genotyped only individuals sampled in 2019 that were not used to identify the SNPs in the 180 

first place plus paired individuals sampled in Aug 2020. On average, each of the 95 individuals was 181 

successfully genotyped at 67.7 loci (96.7%). We coded the genotypes as 0 for homozygous reference 182 

allele, 1 for heterozygous and 2 for the homozygous alternate allele, thus assuming a linear effect 183 

relationship. Figure 5 shows the genotypogram for the tested individuals.  184 

Linear discriminant analysis (LDA) correctly predicted the observed phenotype from the genotype in 185 

91 of 92 cases (98.9%). Prediction success decreased to 65% when successively removing loci from 186 

the analysis (Suppl. Fig. 8). Nevertheless, ordering the individuals according to the LDA score of axis 1 187 

revealed no clear genotype pattern that distinguished healthy from damaged trees (Fig. 5). Observed 188 

heterozygosity at loci used in the SNP assay of individuals in the upper half of predictive values for a 189 

healthy phenotype was not significantly different from heterozygosity of the lower half (Suppl. Fig. 190 

9). Ordering the loci according to their squared loadings showed that loci’s contribution to the 191 

genomic prediction differed substantially (Fig. 5). As expected, the histogram of LDA scores showed 192 

two peaks, corresponding to the two phenotypes (Suppl. Fig. 10).  193 

To validate the results of the LDA prediction and to circumvent potential overfitting due to the small 194 

sample size, we also applied a non-parametric Machine Learning algorithm for feature selection and 195 

clustering that was especially designed for small sample sizes (Gerber2020, Horenko2020). The 196 

Method identified the 20 most-significant SNPs allowing to make an almost 85% correct classification 197 

that distinguished healthy from damaged trees (Suppl. Table 5). 198 

Discussion 199 

Over the last two decades, increasing drought periods caused severe damage to European forests 200 

(Schuldt et al. 2020b; Etzold et al. 2019; Pretzsch et al. 2013). Conifers seem to suffer the most, but 201 

also deciduous trees were strongly affected (Schuldt et al. 2020b). Weather data from our study area 202 

from 1950 onwards suggested that the climatic conditions for beech trees in the area investigated 203 

changed dramatically during this period. Roughly estimating the tree age from their trunk 204 

circumference (Bošeľa et al. 2014), more than a third of the trees were already in place at the 205 

beginning of this period. About 60% were recruited prior to the acceleration of temperature change 206 

from the 1980s onwards. As a result, trees in the mountainous regions of the study area today 207 

experience climatic conditions comparable to those experienced by low land trees in the 1950s, 208 

which in turn now experience a climate that used to be typical for regions much further South. Given 209 

the documented propensity of beech for local adaptation (Gárate‐Escamilla et al. 2019; Pluess et al. 210 

2016; Aranda et al. 2015), including drought (Bolte et al. 2016), it is therefore conceivable that 211 

current conditions exceed the reaction norm of some previously locally well-adapted genotypes with 212 

detrimental consequences for their fitness. If the trend of an increasingly drier vegetation period 213 

persists, this will likely affect an even larger proportion of the currently growing beeches.  214 

Evolutionary genomics will be indispensable to predict and manage the impact of global change on 215 

biodiversity (Waldvogel et al. 2020). As already shown for other partially managed (tree) species 216 

(Stocks et al. 2019), in particular pool-GWAS approaches (Endler et al. 2016) have proven to be useful 217 

in guiding conservation management.  218 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 23, 2021. ; https://doi.org/10.1101/2020.12.04.411264doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.04.411264
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

Our strictly pairwise sampling design avoided many pitfalls of GWAS studies, arising, e.g., from 219 

cryptic population structure and shared ancestry (Hoban et al. 2016; Wellenreuther & Hansson 220 

2016). Despite presented evidence from this and other studies (Schuldt et al. 2020) that the observed 221 

crown damages in large parts of Central Europe used for phenotyping here are directly or indirectly 222 

due to the severe drought years 2018 and 2019, we must acknowledge that we have no direct 223 

physiological proof that the trees surveyed here indeed suffered from drought stress. In addition, the 224 

observed diagnostic symptoms are not specific to drought stress. Nevertheless, an unknown 225 

independent stressor would have needed to accidentally co-occur spatially and temporally with the 226 

drought. The phenotypical drought response of individual trees may also be influenced by 227 

microspatial variation (Carrière et al. 2020). In the present study, however, the mean distance 228 

between sampled paired trees of about 5 m assured that their roots systems largely overlapped. 229 

Thus, environmental variation in soil quality, rooting depth, water availability or other factors should 230 

have been minimal. Please note that any phenotypical misclassification due to such microspatial 231 

differences would have rather dissimulated the genotypic differences found in GWAS than enhanced 232 

them artificially. Also he lumping of similar phenotypes induced by different stressors is unlikely to 233 

have the same genomic basis and resulting  in significant GWAs results. 234 

As expected from previous studies (Rajendra et al. 2014), we found no population structure among 235 

the sampling sites. Applying relatively strict significance thresholds, we found systematic genomic 236 

differences between the healthy and damaged trees. In all cases, these differences were quantitative 237 

and not categorical, i.e. we found allele frequency changes but no fixed SNPs between phenotypes. 238 

Significant SNPs were mostly not clustered - we found on average 1.4 selected SNPs in a particular 239 

region. These findings were in line with the observed very short average LD in F. sylvatica, indicating 240 

that polymorphisms associated with the two phenotypes were likely old standing genetic variation 241 

(Harris & Nielsen 2013). Moreover, such SNPs are mostly detached from the background in which 242 

they arose And they are therefore often the actual causal variants. This observation is underlined by 243 

the high proportion of non-synonymous significant SNPs within genes, which in most cases caused 244 

substitution to amino acid with different properties or even premature termination. Such deviant 245 

variants with likely substantial functional or conformational changes in the resulting proteins may be 246 

selectively neutral or nearly neutral under ancestral benign conditions, but may become selectively 247 

relevant under changing conditions (Paabi & Rockman 2014). Interestingly, most of the allelic 248 

variants associated with a healthy phenotype were also the variants in the reference genome. This 249 

might be due to the choice of the F. sylvatica individual from which the reference genome was 250 

gained (Mishra et al. 2018). This more than 300-year-old individual is standing at a particularly dry 251 

site on a rocky outcrop on the rim of a scarp where precipitation swiftly runs off. Trees at such sites 252 

were likely selected for drought tolerance.  253 

Even though the area sampled for this study was limited relative to the species distribution range, it 254 

comprised its core area. In addition, the climatic variation covered by the sampling sites for this study 255 

is representative for large parts of the species range (Baumbach et al. 2019). The relatively limited 256 

population structure over large parts of the species range (Magri et al. 2006) together with the 257 

propensity for long range gene- flow (Belmonte et al. 2008) suggested that the genomic variation 258 

responsible for drought tolerance identified here is widely distributed (Lander et al. 2021). 259 

Nevertheless, an assessment of the geographic distribution of the drought related genomic variants 260 

over the entire distribution range would yield general insight into the species-wide architecture of 261 

this important trait.  262 

None of the genes found here was involved in a transcriptomic study on drought response in beech 263 

saplings (Müller et al. 2017). However, most of the reliably annotated genes with or close to SNP loci 264 

significantly associated with drought phenotypes had putative homologs in other plant species 265 
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previously shown to be involved in drought or different environmental stress response (for citations 266 

see Suppl. Table 2). This observation may be considered as post-hoc evidence that drought was 267 

indeed the most likely stressor causing the observed phenotypic responses. It remained unclear 268 

whether the remaining, not annotated genes had not yet been associated with drought before, or 269 

whether we were just unable to make this link them due to the lack of (ecological) annotation and 270 

standardised reporting. (Waldvogel et al. 2021) The involvement of in total 67 genes together with 271 

the relatively flat effect size distribution suggested that drought resistance in F. sylvatica is a 272 

moderately polygenic trait, which should respond well to artificial breeding attempts and natural 273 

selection. However, given the relatively strict threshold criteria, it is likely that more yet undetected 274 

loci contribute to the respective phenotypes. The low LD in beech predicts that an adaptation to 275 

drought will not compromise genome-wide genetic diversity and thus adaptation potential to other 276 

stressors. We achieved a high level of accuracy using genomic data to predict the drought phenotype 277 

from individuals not used to identify drought associated SNP loci. However, due to the small sample 278 

size, LDA might have resulted in overfitting (Hawkins 2004). We therefore also used a non-parametric 279 

machine learning algorithm that has been shown to produce more robust results, especially for small 280 

sample sizes (Horenko 2020).Both analyses confirmed that we mainly identified alleles widespread 281 

throughout the sampled range and not locally specific. Besides, we confirmed a considerable level of 282 

genetic variation in the sampled regions. The observation that trees with the highest predictive 283 

values showed no loss of heterozygosity indicated that there is still adaptive potential for drought 284 

adaptation in the species (Gienapp et al. 2017).With the SNP assay, we therefore created a tool that 285 

can i) support the choice of seed trees for reforestations, ii) provide decision guidance for selective 286 

logging and iii) monitor, whether natural selection on this quantitative trait is already acting in the 287 

species. The current study can also serve as a starting point for molecular and physiological research 288 

on how the identified loci or variants may, alone or in concert, confer resilience or tolerance to a 289 

range of drought stress symptoms.  290 

Material and Methods 291 

Sampling and phenotyping 292 

In August/early September 2019, we sampled leaf tissue of 402 Fagus sylvatica trees from 32 293 

locations in Hessen/Germany (set 1, Figure 1), of which 300 were used for the (pool)GWAS analysis. 294 

Forty three, plus additional 53 trees which were sampled in n August 2020, additional 52 trees from 295 

four sites were sampled (set 2, Figure 1) made up the confirmation set. The coordinates and 296 

characteristics of each site can be found in Suppl. Table 1. The sampling was performed in a strictly 297 

pairwise design. The pairs consisted of one tree with heavy drought damage of the crown (lost or 298 

rolled up, dried leaves) and one with an unaffected crown, respectively. This categorisation into least 299 

and most damaged trees was taken compared to the other trees in the respective forest patch. The 300 

pairs were a priori chosen such that the two trees were i) mutually the closest neighbours with 301 

contrasting damage status (i.e. no other tree in the direct sight-line), ii) free from apparent 302 

mechanical damage, fungal infestations or other signs of illness, similar iii) in tree height, iv) trunk 303 

circumference, v) light availability, and vi) canopy closure. In addition, each pair was situated at least 304 

30 m from the closest forest edge. For each tree of the chosen pairs, we recorded the exact position, 305 

distance to the pair member and the estimated tree height (in 1 m increments), measured the trunk 306 

circumference at 150 cm height above the ground (in 10 cm increments), and estimated the leaf loss 307 

of the crown and the proportion of dried leaves (in 5% increments). We also recorded the estimated 308 

distance (in 1 m resolution) and the specific identity of the two closest neighbour trees for each pair 309 

member and calculated a competition index C as follows: C = S1/D1 + S2/D2, where S1 and S2 are the 310 

trunk diameter at 150 cm and D1 and D2 the distances of the nearest and second nearest neighbour 311 
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tree of the same size or larger than the focal tree. Photographs from the crown and the trunk were 312 

taken from the trees sampled in 2019.  313 

From each tree, we sampled 5 to 10 fully developed leaves from low branches. The leaves sampled 314 

from each tree were placed in paper bags. After returning from the field, they were dried at 50°C for 315 

30-90 min and then kept on salt until they could be stored at -80°C.  316 

Climate and remote sensing data 317 

Monthly daily mean minimum and maximum temperature values and precipitation data were 318 

obtained for the 1 x 1 km grid cells harbouring the sampling sites for the period between 1950 and 319 

2019. Data on the accumulated potential evapotranspiration during the growth season was obtained 320 

for the same grid cells. The data is publicly available from 321 

https://opendata.dwd.de/climate_environment/CDC/grids_germany/monthly/.  322 

Leaf area index (LAI) data for the above grid cells was obtained from Copernicus remote sensing 323 

(www.copernicus.eu) for the period 2014-2019, considering only the month of August. To see 324 

whether drought conditions influenced leaf coverage of the woods at the sampling sites, we 325 

calculated the relative annual deviation of LAI from the 2014 value. We correlated it to the relative 326 

deviation of the cumulated potential evatransporation over the growth season from 2014. The year 327 

2014 was used as a baseline, because of the significant drought increase since then (Büntgen et al. 328 

2021). Please note that the absolute level of LAI depends on the wood coverage, vegetation density 329 

and species composition of each plot. Changes in LAI are thus not exclusively due to drought 330 

damages in beech.  331 

DNA extraction, construction of GWAS pools and sequencing 332 

DNA was extracted from 12.5 mm² of a single leaf from each tree following the NucleoMag Plant Kit 333 

(Macherey Nagel, Düren, Germany) protocol. We set up four DNA pools for poolGWAS by pooling 334 

equal amounts of DNA from each individual: damaged individuals from the Southern part (dSouth), 335 

healthy individuals from the South (hSouth), damaged North (dNorth) and healthy North (hNorth). 336 

The Southern pools consisted of 100 individuals each, the Northern pools of 50 individuals each. The 337 

pools were sent to Novogene (Cambridge, UK) for library construction and 150bp paired end 338 

sequencing with 350bp insert size with 25Gb data for the northern and 38Gb data for the southern 339 

samples. The 100 individuals used to construct the Northern pools were also individually re-340 

sequenced. The exact composition of the genomic pools can be found in Supplemental Table 1. All 341 

sequence information can be found on the European Nucleotide Archive (ENA) under project 342 

accession number PRJEB24056. 343 

Reference genome improvement 344 

We used an improved version of the recently published reference genome for the European beech 345 

(Mishra et al. 2018). Contiguity was improved to chromosome level using Hi-C reads with the help of 346 

the allhic software after excluding the probable organelle backbones from the earlier assembly that 347 

was generated from the Illumina-corrected PacBio reads using Canu assembler (Mishra et al. 2021) 348 

Access. No. PRJNA450822.  349 

Mapping and variant calling 350 

Reads of pools and individual resequencing were trimmed using the wrapper tool autotrim v0.6.1 351 

(Waldvogel et al. 2018) that integrates trimmomatic (Bolger et al. 2014) for trimming and fastQC 352 

(Andrews 2010) for quality control. The trimmed reads were then mapped on the latest chromosome 353 

level build of the F. sylvatica genome using the BWA mem algorithm v.0.7.17 (Li & Durbin 2009). Low 354 
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quality reads were subsequently filtered and SNPs were initially called using samtools v.1.10 (Li et al. 355 

2009). A principal component analysis (PCA) was conducted on unlinked single nucleotide 356 

polymorphisms (SNPs) using the R package Factoextra v.1.0.7 (Kassambara & Mundt 2017). 357 

Pool GWAS and PLINK 358 

The PoPoolation pipeline 2_2012 (Kofler et al. 2011a; Kofler et al. 2011b) was used to call SNPs and 359 

remove indels from the four pools. Allele frequencies for all SNPs with a coverage between 15x and 360 

100x with a minimum allele count of three were estimated with the R library PoolSeq v. 0.35 (Taus et 361 

al. 2017).  362 

The statistical test to detect significant allele frequency differences among damaged and healthy 363 

trees was the Cochran-Mantel-Haenszel test. With this test, a 2x2 table was created for each variable 364 

position and region with two phenotypes (healthy and damaged). The read counts of each allele for 365 

each phenotype were treated as the dependent variables. We controlled for false discovery rate 366 

using the Benjamini-Hochberg correction R package p.adjust. 367 

For the individual resequencing data we followed the GATK-pipeline 4.1.3.0 (DePristo et al. 2011). In 368 

short, Picard tools v.2.20.8 was used to mark duplicates. GVCF files were created with 369 

HaplotypeCaller and genotyped with GEnotypeGVCFs. Since we did not have a standard SNP set we 370 

hard filtered SNPs with VariantFiltration QD<2.0, MQ<50.0, MQRankSum<12.5, 371 

ReadPosRankSum<8.0, FS>80.0, SOR>4.0 and QUAL<10.0. This conservative SNP-set was used for 372 

base recalibration before running the HaplotypeCaller pipeline a second round. Finally, the 373 

genotyped vcf-files were filtered using vcftools with --maf 0.03 --max-missing 0.9 --minQ 25 --min-374 

meanDP 10 --max-meanDP 50 --minDP 10 --maxDP 50. The detailed pipeline can be found in Suppl. 375 

Info 2. 376 

To conduct the GWAS association on the above generated SNP set with phenotypes being either 377 

damaged or healthy and to generate a principal component analysis on the SNP positions of the 378 

individually resequenced trees, we used PLINK 1.9 (Purcell et al. 2007). The detailed workflow can be 379 

found in Suppl. Info 2. We calculated a non-parametric ANOSIM on an inter-individual Euclidean 380 

distance matrix based on the first ten principal components to infer whether the trees within 381 

phenotype groups are overall genetically more similar than within groups (9,999 permutations; 382 

(Hammer et al. 2001).  383 

Inference of Linkage Disequilibrium 384 

The expected length of segregating haplotypes in a species depends on the recombination rate and 385 

their age. The former can be approximated by an estimate of linkage disequilibrium (LD. To 386 

determine LD decay based on individually re-sequenced data we used the software LDkit v 1.0.0 387 

(Tang et al. 2020), in 1kb and 100kb windows.  388 

Identification substitution type and gene function 389 

We inferred whether significantly differentiated SNPs within genes lead to a (non-) synonymous 390 

amino acid substitution using tbg-tools v0.2 (https://github.com/Croxa/tbg-tools) (Schoennenbeck et 391 

al. 2021). The protein sequences of the identified genes were used in a blastp search against all non-392 

redundant GenBank CDS translations, PDB, SwissProt, PIR, PRF to infer potential gene functions. Only 393 

the best BLAST-hits were considered.  394 

Selection of SNP loci for SNPtype™ assay design 395 
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For the design of SNPtype™ assays we used the web-based D3 assay design tool (Fludigm corp.). We 396 

aimed in first preference for the most significant SNPs of each genomic region identified by Pool-397 

GWAS (80 loci). If this was technically impossible and the region harboured more than a single 398 

significant SNP, we opted for the second most significant SNP and so forth. This resulted finally in 76 399 

suitable loci. The remaining 20 loci were recruited from the 20 most significant SNPs of the PLINK 400 

analysis that were not scored in the Pool-GWAS.  401 

SNP genotyping procedure 402 

For validation of drought susceptibility associated SNPs, we conducted SNP genotyping on 96.96 403 

Dynamic Arrays (Fluidigm) with integrated fluidic circuits (Wang et al. 2009, 2009). (N=96) to validate 404 

the effictiveness of the identified SNPs in discriminating healthy from damaged trees.  Prior to 405 

genotyping PCR, DNA extracts were normalised to approximately 5-10 ng/µl. They underwent a pre-406 

amplification PCR (Specific Target Amplification, STA) according to the manufacturer's protocol to 407 

enrich target loci. PCR products were diluted 1:10 with DNA suspension buffer (TEKnova, PN T0221) 408 

before further use. Genotyping was performed according to the recommendations of manufacturer. 409 

Four additional PCR cycles were added to accommodate for samples of lower quality or including 410 

inhibitors (von Thaden, 2020). Fluorescent data were measured using the EP1 (Fluidigm) and 411 

analysed with the SNP Genotyping Analysis Software version 4.1.2 (Fluidigm). The automated scoring 412 

of the scatter plots was checked visually and if applicable, manually corrected. 413 

Genomic prediction 414 

To predict drought susceptibility from genotype data, we used a linear discriminant analysis (LDA) on 415 

92 genotypes scored with the Fluidigm assay at 70 loci. Genotypes homozygous for the reference 416 

allele were scored as 0, heterozygous as 1 and homozygous alternate alleles as 2. We used the LDA 417 

option implemented in PAST v. 4.05. (Hammer, 2001).  418 

We also used a non-parametric entropy-based Scalable Probabilistic Analysis framework (eSPA). This 419 

method allows simultaneous solution of feature selection and clustering problems, meaning that 420 

does not rely on a particular choice of user-defined parameters and has been shown to produce 421 

more robust results, especially for small sample sizes (Gerber2020, Horenko2020). Following the 422 

suggestion of the user manual, eSPA analysis was run 100 times with independent cross-validations 423 

of the Area Under the Curve (AUC) on the validation data.  424 
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 593 

Figures 594 

 595 

Figure 1. A) Locations of sampling sites in Hessen, Germany. For abbreviations see Suppl. Table 1. The 596 

sites where confirmation individuals were sampled are designated in grey.B) Principal Component 597 

Analysis of monthly climate data 1950-2019, C) Development of main growth period drought 598 

indicator from 1991-2019. Shown is the difference mean monthly evaporation potential in mm from 599 

April to September relative to the 1991 level. Climate and drought data obtained from 600 

https://opendata.dwd.de/climate_environment/CDC/grids_germany/monthly/.   601 
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 602 

Figure 2. Comparison of sampled beech pairs. A) trunk circumference, B) canopy closure, C) tree 603 

height, D) competition index, E) dried leaves and F) leaf loss. Box-plots with indicated means, the 604 

boxes represent one standard deviation, the whiskers are the 95% confidence intervals. Damaged 605 

trees in ochre, healthy trees in green. Except for E and F, the difference of means among damaged 606 

and healthy trees is insignificant between the groups. 607 
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 608 

Figure 3. Genome wide linkage disequilibrium and principal component analysis on genome-wide 609 

SNP data. A) Decay of genome wide linkage disequilibrium (LD), measured as r² on allele frequencies 610 

gained from individual resequencing, with distance from focal SNP in base pairs. B) Plot of the first 611 

two principal component axes of LD pruned SNP data from individually sequenced beech individuals 612 
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from the North population. Healthy trees are indicated by a green dot, damaged ones by ochre. 613 

Individuals sampled from the same site are grouped by convex hulls, limited with dotted lines.  614 

  615 
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 616 

Figure 4. Significantly associated drought phenotype associated SNP marker. A) Manhattan plot of 617 

false discovery rate (FDR) corrected –log10 probability values from CMH test. The black horizontal 618 

line indicates the chosen significance threshold. SNPs on different chromosomes alternate in colour 619 

(black and blue). B) Mean allele frequency difference at significantly associated SNP loci between 620 

healthy and damaged phenotypes. The loci are ordered according to amount of change.  621 

  622 
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 623 

Figure 5. Combined results of SNP assay and discriminant analyses. The centre of the figure depicts 624 

the genotypogram of the SNP assay. Each column represents one of 70 loci, each row one of 92 625 

beech individuals. The scored genotypes are colour-coded, with red squares = homozygous reference 626 

allele, light blue = homozygous alternate allele, white = heterozygous SNP, grey squares = locus could 627 

not be scored in the respective individual. The left bar indicates the observed phenotype for each 628 

tree individual with ochre rectangles for damaged, and green for healthy trees. Below the 629 

genotypogram, the relative contribution of each locus to the predictive model of the discriminant 630 

analysis is indicated, ordered from high to low. On the right side, first the genotype model scores for 631 

each individual are given, with the according predicted phenotype (ochre = damaged; green = 632 

healthy).  633 

 634 

 635 
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Tables 
 

Table 1. Genes with significantly associated SNPs. Given are the chromosome number (CHR), nucleotide position (position), the gene ID for Fagus sylvatica 

(gene), the UniProt ID of the closest match (UniProt ID), the name of the gene (name), the nucleotide base in the reference (ref DNA base), and the alternate 

base (alt DNA base), if applicable, the amino acid of the reference (ref AA) and the alternate base (non-synonymous change), functional change (effect) and the 

phenotype associated with the alternate base.  

CHR position gene UniProt ID name ref DNA 
base 

alt DNA 
base 

ref AA non-
synoynmous 
change 

effect phenotype 
assoc. with 
alt base 

1 40374762 1.g3851.t1 none  A G C R SH side chain > positive charge healthy 
10 32290645 10.g3914.t1 none  C T F - -  
11 20479628 11.g2467.t1 EXOS5_ORYSJ   Exosome complex 

exonuclease RRP46 
homolog 

T C T A polar > hydrophobic damaged 

11 23722307 11.g2832.t1 PCN_ARATH   WD repeat-
containing protein 
PCN 

A G I V hydrophobic > hydrophobic damaged 

12 13901034 12.g1695.t1 F4I5S1_ARATH   PB1 domain-
containing protein 
tyrosine kinase 

C A P Q hydrophobic > polar damaged 

 13901063    C T Q stop termination damaged 
 13901082    A T H L positive charge > hydrophobic damaged 
 13901094    T A I N hydrophobic > polar damaged 
2 43326571 2.g4736.t1 none  G A R C positive charge > SH side chain damaged 
3 31226940 3.g3590.t1 none  C T Q stop termination healthy 
4 34077017 4.g3980.t1 CKX1_ARATH Cytokinin 

dehydrogenase 1 
C A G C no side chain > SH side chain damaged 

5 16359587 5.g1807.t1 GDI2_ARATH Guanosine 
nucleotide 
diphosphate 
dissociation 
inhibitor 2 

T C P - -  

6 19865311 6.g2227.t1 NDUS7_ARATH NADH 
dehydrogenase 
[ubiquinone] iron-
sulfur protein 7, 
mitochondrial 

T C D - -  

6 26383172 6.g2921.t1 none  T C A - -  
7 1493904 7.g177.t1 TLP10_ARATH Tubby-like F-box 

protein 10 
C T G - -  

7 20242023 7.g2350.t1 PRK4_ARATH Pollen receptor-like 
kinase 4 

A G P - -  

7 4504799 7.g1655   C T W stop termination damaged 
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7 31456694 7.g3617.t1 LSH4_ARATH Protein LIGHT-
DEPENDENT SHORT 
HYPOCOTYLS 4 

G T R - -  

7 33110000 7.g3816.t1 none  G A L - -  
7 4504813 7.g552.t1 none  G A G - -  
 4504831    C T L - -  
8 29295139 8.g3494.t1 VATC_ARATH V-type proton 

ATPase subunit C 
G A G - -  

9 25538827 9.g3080.t1 PPA14_ARATH Probable inactive 
purple acid 
phosphatase 14 

G C K N positive charge > polar damaged 

9 37955715 9.g4504.t1 TBL33_ARATH Protein trichome 
birefringence-like 
33 

G C M I hydrophobic > hydrophobic damaged 
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