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Abstract: 13 

The human visual cortex enables visual perception through a cascade of hierarchical 14 

computations in cortical regions with distinct functionalities. Here, we introduce an AI-15 

driven approach to discover the functional mapping of the visual cortex. We related 16 

human brain responses to scene images measured with functional MRI (fMRI) 17 

systematically to a diverse set of deep neural networks (DNNs) optimized to perform 18 

different scene perception tasks. We found a structured mapping between DNN tasks 19 

and brain regions along the ventral and dorsal visual streams. Low-level visual tasks 20 

mapped onto early brain regions, 3-dimensional scene perception tasks mapped onto the 21 

dorsal stream, and semantic tasks mapped onto the ventral stream. This mapping was of 22 

high fidelity, with more than 60% of the explainable variance in nine key regions being 23 

explained. Together, our results provide a novel functional mapping of the human visual 24 

cortex and demonstrate the power of the computational approach. 25 

1. Introduction 26 

The human visual system transforms incoming light into meaningful 27 

representations that underlie perception and guide behavior. This transformation is 28 
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believed to take place through a cascade of  hierarchical processes implemented in a set 29 

of brain regions along the so-called ventral and dorsal visual streams1. Each of these 30 

regions has been stipulated to fulfill a distinct sub-function in enabling perception2 . 31 

However, discovering the exact nature of these functions and providing computational 32 

models that implement them has proven challenging. Recently, computational modeling 33 

using deep neural networks (DNNs) has emerged as a promising approach to model, and 34 

predict neural responses in visual regions3–7. These studies have provided a first 35 

functional mapping of the visual brain. However, the resulting account of visual cortex 36 

functions has remained incomplete. This is so because previous studies either explain 37 

the function of a single or few candidate regions by investigating many DNNs or explain 38 

many brain regions comparing it to a single DNN trained on one task only (usually object 39 

categorization). In contrast, for a systematic and comprehensive picture of human brain 40 

function that does justice to the richness of the functions that each of its subcomponents 41 

implements, DNNs trained on multiple tasks, i.e., functions, must be related and 42 

compared in their predictive power across the whole cortex. 43 

Aiming for this systematic and comprehensive picture for the visual cortex we here 44 

relate brain responses across the whole visual brain to a wide set of DNNs, in which each 45 

DNN is optimized for a different visual task, and hence, performs a different function. 46 

To reliably reveal the functions of brain regions using DNNs performing different 47 

functions, we need to ensure that only function and no other crucial factor differs between 48 

the DNNs. The parameters learned by a DNN depend on a few fundamental factors, 49 

namely, its architecture, training dataset, learning mechanism, and the function the DNN 50 

was optimized for. Therefore, in this study, we select a set of DNNs8 that have an identical 51 

encoder architecture and are trained using the same learning mechanism and the same 52 

set of training images. Thus, the parameters learned by the encoder of the selected DNNs 53 

differ only due to their different functions. 54 

We generate a functional map of the visual cortex by comparing the fMRI 55 

responses to scene images9 with the activations of multiple DNNs optimized on different 56 

tasks8 related to scene perception, e.g., scene classification, depth estimation, and edge 57 

detection. Our key result is that different regions in the brain are better explained by DNNs 58 

performing different tasks, suggesting different computational roles in these regions. In 59 
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particular, we find that early regions of the visual cortex are better explained by DNNs 60 

performing low-level vision tasks, such as edge detection. Regions in the dorsal stream 61 

are better explained by DNNs performing tasks related to 3-dimensional (3D) scene 62 

perception, such as occlusion detection and surface normal prediction. Regions in the 63 

ventral stream are best explained by DNNs performing tasks related to semantics, such 64 

as scene classification. Importantly, the top-3 best predicting DNNs explain more than 65 

60% of the explainable variance in nine ventral-temporal and dorsal-lateral visual regions, 66 

demonstrating the quantitative power and potential of our AI-driven approach for 67 

discovering fine-grained functional maps of the human brain. 68 

2. Results 69 

2.1 Functional map of visual cortex using multiple DNNs 70 

Our primary goal is to generate a functional map of the visual brain in terms of the 71 

functions each of the regions implements. Our approach is to relate brain responses to 72 

activations of DNNs performing different functions. For this, we used an fMRI dataset 73 

recorded while human subjects (N=16) viewed indoor scenes9 and performed a 74 

categorization task; and a set of 18 DNNs8 optimized to perform 18 different functions 75 

related to visual perception (some of the tasks can be visualized here: 76 

https://sites.google.com/view/dnn2brainfunction/home#h.u0nqne179ys2) plus an 77 

additional DNN with random weights as a baseline. The different DNNs’ functions were 78 

associated with indoor scene perception, covering a broad range of tasks from low-level 79 

visual tasks, (e.g., edge detection) to 3-dimensional visual perception tasks (e.g., surface 80 

normals prediction) to categorical tasks (e.g., scene classification). Each DNN consisted 81 

of an encoder-decoder architecture, where the encoder had an identical architecture 82 

across tasks, and the decoder varied depending on the task. To ensure that the 83 

differences in variance of fMRI responses explained by different DNNs from our set were 84 

not due to differences in architecture, we selected the activations from the last two layers 85 

of the identical encoder architecture for all DNNs. 86 
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 87 
Figure 1: Methods and results of functional mapping of the visual cortex by task-specific DNNs: a) 88 
Schema of DNN-fMRI comparison. As a f irst step, we extracted DNN activations from the last two layers 89 
(block 4 and output) of the encoders, denoted as b41(xi), o1(xi) for DNN1 and b4n(xi), on(xi) for DNNn in the 90 
f igure, f rom n DNNs and the fMRI response of a region f (x i) for the ith image x i in the stimulus set. We 91 
repeated the above procedure for all the images in the stimulus set. b) We used the extracted activations 92 
to compute the RDMs, two for the two DNN layers and one for the brain region. Each RDM contains the 93 
pairwise dissimilarities of the DNN activations or brain region activations, respectively. We then used 94 
multiple linear regression to obtain an R1

2 score to quantify the similarity between DNN1 and the brain 95 
region. We repeated the same procedure using other DNNs to obtain corresponding R2 c) We obtained a 96 
ranking based on R2 to identify the DNNs with the highest R2 for fMRI responses in that brain region. To 97 
visualize the results, we color-coded the brain region by the color indexing the DNN showing the highest 98 
R2 in that brain region. d) Functional map of the visual brain generated through a spatially unbiased 99 
searchlight procedure, comparing 18 DNNs optimized for different tasks and a randomly initialized DNN as 100 
a baseline. We show the results for the voxels with significant noise ceiling and R2 with DNN (p<0.05, 101 
permutation test with 10,000 iterations, FDR-corrected). An interactive visualization of the functional brain 102 
map is available in this weblink (https://sites.google.com/view/dnn2brainfunction/home#h.ub1chq1k42n6)  103 

  104 
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The layer selection was based on an analysis finding the most task-specific layers of the 105 

encoder (see Supplementary Section 2). Furthermore, all DNNs were optimized using the 106 

same set of training images, and the same backpropagation algorithm for learning. 107 

Hence, any differences in our findings across DNNs cannot be attributed to the training 108 

data statistics, architecture, or learning algorithm, but to the task for which each DNN was 109 

optimized. 110 

To compare fMRI responses with DNNs, we first extracted fMRI responses in a 111 

spatially delimited portion of the brain for all images in the stimulus set (Figure 1a). This 112 

could be either a group of spatially contiguous voxels for searchlight analysis10–12 or 113 

voxels confined to a particular brain region as defined by a brain atlas for a region-of-114 

interest (ROI) analysis. Equivalently, we extracted activations from the encoders of each 115 

DNN for the same stimulus set. 116 

We then used Representational Similarity Analysis (RSA)13 to compare brain 117 

activations with DNN activations. RSA defines a similarity space as an abstraction of the 118 

incommensurable multivariate spaces of the brain and DNN activation patterns. This 119 

similarity space is defined by pairwise distances between the activation patterns of the 120 

same source space, either fMRI responses from a brain region or DNN activations, where 121 

responses can be directly related. For this, we compared all combinations of stimulus-122 

specific activation patterns in each source space (i.e., DNN activations, fMRI activations). 123 

Then, the results for each source space were noted in a two-dimensional matrix, called 124 

representational dissimilarity matrices (RDMs). The rows and columns of RDMs represent 125 

the conditions compared. To relate fMRI and DNNs in this RDM-based similarity space 126 

we performed multiple linear regression predicting fMRI RDM from DNN RDMs of the last 127 

two encoder layers. We obtained the adjusted coefficient of determination R2 (referred to 128 

as R2 in the subsequent text) from the regression to quantify the similarity between the 129 

fMRI responses and the DNN (Figure 1b). We performed this analysis for each of the 18 130 

DNNs investigated, which we group into 2D, 3D, or semantic DNNs when those are 131 

optimized for 2D, 3D, or semantic tasks, respectively, and an additional DNN with random 132 

weights as a baseline. The tasks were categorized into three groups (2D, 3D, and 133 

semantic) based on different levels of indoor scene perception and were verified in 134 

previous works using transfer performance using one DNN as the initialization to other 135 
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target tasks8 and representational similarity between DNNs14. We finally used the 136 

obtained DNN rankings based on R2 to identify the DNNs with the highest R2 for fMRI 137 

responses in that brain region (Figure 1c top). To visualize the results, we color-coded 138 

the brain region by color indexing the DNN showing the highest R2 in that brain region 139 

(Figure 1c bottom).  140 

To generate a functional map across the whole visual cortex we performed a 141 

searchlight analysis11,12. In detail, we obtain the R2-based DNN rankings on the local 142 

activation patterns around a given voxel, as described above. We conducted the above 143 

analysis for each voxel, resulting in a spatially unbiased functional map. 144 

We observed that different regions of the visual cortex showed the highest 145 

similarity with different DNNs. Importantly, the pattern with which different DNNs predicted 146 

brain activity best was not random but spatially organized: 2D DNNs (in shades of blue in 147 

Figure 1d; interactive map visualization available here: 148 

https://sites.google.com/view/dnn2brainfunction/home#h.ub1chq1k42n6) show a higher 149 

similarity with early visual regions, 3D DNNs (in shades of green) show a higher similarity 150 

with dorsal regions, while semantic DNNs (in shades of magenta) show a higher similarity 151 

with ventral regions and some dorsal regions.  152 

Together, the results of our AI-driven mapping procedure suggest that early visual 153 

regions perform functions related to low-level vision, dorsal regions perform functions 154 

related to both 3D and semantic perception, and ventral regions perform functions related 155 

to semantic perception.  156 
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2.2 Nature and predictive power of the functional map 157 

158 

Figure 2: Nature and predictive power of the functional map: a) Cortical overlay showing locations of 159 

selected cortical regions f rom the probabilistic atlas used. b) Absolute total variance (R2) explained in 15 160 

ROIs by using the top-3 DNNs together. The Venn diagram for each ROI illustrates the unique and shared 161 

variance of  the ROI responses explained by the combination of the top -3 DNNs. The bar plot shows the 162 

unique variance of each ROI explained by each of the top-3 DNNs individually. The asterisk denotes the 163 
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significance of unique variance and the difference in unique variance (p<0.05, permutation test with 10,000 164 

iterations, FDR-corrected across DNNs). The error bars show the standard deviation calculated by 165 

bootstrapping 90% of the conditions (10,000 iterations). c)  Variance of each ROI explained by top-3 best 166 

predicting DNNs (cross validated across subjects and conditions) indicated in blue bars compared with 167 

lower and upper bound of noise ceiling indicated by shaded gray region. The error bars show the 95% 168 

conf idence interval calculated across N=16 subjects. All the R2 values are statistically significant (p<0.05, 169 

two-sided t-test, FDR-corrected across ROIs). 170 

 171 

Using the searchlight results from Figure 1d, we identified the DNN that showed the 172 

highest R2 for each searchlight. This poses two crucial questions that require further 173 

investigation for an in-depth understanding of the functions of brain regions. Firstly, does 174 

a single DNN prominently predict a region’s response (one DNN-to-one region) or a group 175 

of DNNs together predict its response (many DNNs-to-one region)? A one-to-one 176 

mapping between DNN and a region would suggest a single functional role while a many-177 

to-one mapping would suggest multiple functional roles of the brain region under 178 

investigation. Secondly, given that the DNNs considered in this study predict fMRI 179 

responses, how well do they predict on a quantitative scale? A high prediction accuracy 180 

would suggest that the functional mapping obtained using our analysis is accurate, while 181 

a low prediction accuracy would suggest that DNNs considered in this study are not 182 

suitable to find the function of that brain region. Although it is possible to answer the above 183 

questions for each voxel, for conciseness we consider 25 regions of interest (ROIs) tiling 184 

the visual cortex from a brain atlas15. 185 

To determine how accurately DNNs predict fMRI responses, we calculated the 186 

lower and upper bound of the noise ceiling for each ROI. We included ROIs (15 out of 25) 187 

with a lower noise ceiling above 0.1 and discarded other ROIs due to low signal-to-noise 188 

ratio. We show the locations of the investigated ROIs in the visual cortex in Figure 2a.   189 

For each ROI we used RSA to compare fMRI responses (transformed into fMRI 190 

RDMs) with activations of all 18 DNNs plus a randomly initialized DNN as a baseline 191 

(transformed into DNN RDMs). This yielded one R2 value for each DNN per region (see 192 

Supplementary SFigure 4). We then selected the top-3 DNNs showing the highest R2 and 193 

performed a variance partitioning analysis16. We used the top-3 DNN RDMs as the 194 

independent variables and the ROI RDM as the dependent variable to find out how much 195 
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variance of ROI responses is explained uniquely by each of these DNNs while considered 196 

together with the other two DNNs. Using the variance partitioning analysis (method 197 

illustrated in Supplementary SFigure 1) we were able to infer the amount of unique and 198 

shared variance between different predictors (DNN RDMs) by comparing the explained 199 

variance (R2) of a DNN used alone with the explained variance when it was used with 200 

other DNNs. Variance partitioning analysis (Figure 2b) using the top-3 DNNs revealed the 201 

individual DNNs that explained the most variance uniquely for a given ROI along with the 202 

unique and shared variance explained by other DNNs. The DNN that detects edges 203 

explained significantly higher variance (p<0.05, permutation test, FDR corrected across 204 

DNNs) in ROIs in early and mid-level visual regions (V1v, V1d, V2v, V2d, V3v, and hV4) 205 

uniquely than the other two DNNs, suggesting a function related to edge detection. 206 

Semantic segmentation DNN explained significantly higher unique variance in ventral 207 

ROIs VO1 and VO2, suggesting a function related to the perceptual grouping of objects. 208 

3D DNNs (3D Keypoints, 2.5D Segmentation, 3D edges, curvature) were best predicting 209 

DNNs for dorsal ROIs V3d and V3b suggesting their role in 3D scene understanding. A 210 

combination of 3D and semantic DNNs were best predicting DNNs for other ROIs (PHC1, 211 

PHC2, LO1, LO2, and V3a). It is crucial to note that if two DNNs from the same task group 212 

are in the top-3 best predicting DNNs for an ROI, the unique variance of ROI RDM 213 

explained by DNNs in the same group will generally be lower than by DNN not in the 214 

group. We have observed that DNNs in the same task group show a higher correlation 215 

with each other as compared to DNNs in other task groups14. A higher correlation 216 

between the DNNs of the same task group leads to an increase in shared variance and 217 

reduces the unique variance of the ROI RDM explained by within task group DNNs. For 218 

instance, we can observe this in PHC2 (also in PHC1, V3a), where two semantic DNNs 219 

explain less unique variance than a 3D DNN. Therefore, in such cases, we restrain from 220 

interpreting that one type of DNN is significantly better than others.      221 

Overall, we observed a many-to-one relationship between function and region for 222 

multiple regions, i.e., multiple DNNs explained jointly a particular brain region. In early 223 

and mid-level regions (V1v, V1d, V2v, V3v) the most predictive functions were related to 224 

low-level vision (2D edges, denoising, and 2D segmentation). In dorsal regions V3d and 225 

V3b, the most predictive functions were related to 3D scene understanding. In later 226 
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ventral and dorsal regions (V2d, hV4, VO1, VO2, PHC1, PHC2, LO1, LO2, and V3a) we 227 

observed a mixed mapping of 2D, 3D, and semantic functions suggesting multiple 228 

functional roles of these ROIs. The predictability of a region’s responses by multiple DNNs 229 

demonstrates that a visual region in the brain has representations well suited for distinct 230 

functions.  A plausible conjecture of the above findings is that these regions might be 231 

performing a function related to the best predicting DNNs but is not present in the set of 232 

DNNs investigated in this study. 233 

To determine the accuracy of the functional mapping of the above ROIs, we 234 

calculated the percentage of the explainable variance explained by the top-3 best 235 

predicting DNNs. We calculated the explained variance by best predicting DNNs using 236 

cross-validation across subjects (N-fold) and conditions (two-fold). As we use multiple 237 

models together for multiple linear regression, we need to cross-validate using different 238 

sets of RDMs for fitting and evaluating the fit of the regression. Here, we perform cross-239 

validation across subjects by fitting the regression on one-subject-left-out subject-240 

averaged RDMs on half of the images in the stimulus set and evaluating on the left-out 241 

single subject RDM on the other half of the images. The above method is a stricter 242 

evaluation criterion as compared to the commonly used one without cross-validation (See 243 

Supplementary SFigure 5). We compared the variance explained by the top-3 DNNs with 244 

the lower estimate of the noise ceiling which is an estimate of the explainable variance. 245 

We found that variance explained in nine ROIs (V1v, V1d, V2v, V3v, VO1, PHC1, LO2, 246 

LO1, V3a) is higher than 60% of the lower bound of noise ceiling (Figure 2c, absolute R2 247 

= 0.085 ± 0.046). In absolute terms, the minimum, median, and maximum cross-validated 248 

R2 values across the 15 ROIs were 0.014 (PHC2), 0.044 (VO1), and 0.27 (V1v) which 249 

are comparable to related studies60 performing evaluation in a similar manner. This shows 250 

that the DNNs selected in this study predict fMRI responses well and therefore are 251 

suitable for mapping the functions of the investigated ROIs.  252 

In sum, we demonstrated that in many regions of the visual cortex, DNNs trained 253 

on different functions predicted activity. This suggests that these ROIs have multiple 254 

functional roles. We further showed quantitatively that more than 60% of the explainable 255 

variance in nine visual ROIs is explained by the set of DNNs we used, demonstrating that 256 

the selected DNNs are well suited to investigate the functional roles of these ROIs.  257 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 23, 2021. ; https://doi.org/10.1101/2020.11.27.401380doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.27.401380
http://creativecommons.org/licenses/by-nc/4.0/


11 

2.3 Functional map of visual cortex through 2D, 3D, and semantic tasks  258 

In the previous section, we observed a pattern qualitatively suggesting different 259 

functional roles of early (2D), dorsal (3D and semantic), and ventral (semantic) regions in 260 

the visual cortex. To quantitatively assess this, we investigated the relation of brain 261 

responses and DNNs not at the level of single tasks, but task groups (2D, 3D, and 262 

semantic), where DNNs belonging to a task group showed a higher correlation with other 263 

DNNs in the group than with DNNs in other task groups (see Supplementary Section 2).  264 

 265 
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Figure 3: Functional mapping of the visual cortex with respect to 2D, 3D, and semantic tasks: a) 266 

Functional map of the visual cortex showing the regions where unique variance explained by  one DNN 267 

group (2D, 3D, or semantic) is significantly higher than the variance explained by the other two DNN groups 268 

(p<0.05, permutation test with 10,000 iterations, FDR-corrected). We show the results for the voxels with a 269 

significant noise ceiling (p<0.05, permutation test with 10,000 iterations, FDR-corrected across DNNs and 270 

searchlights). The functional brain map can be visualized in this weblink 271 

(https://sites.google.com/view/dnn2brainfunction/home#h.xi402x2hr0p3). b) Absolute variance (R2) 272 

explained in 15 ROIs by using 3 DNN RDMs averaged across task groups (2D, 3D, or semantic). The Venn 273 

diagram for each ROI illustrates the unique and shared variance of the ROI responses explained by the 274 

combination of 3 task groups. The bar plot shows the unique variance of each ROI explained by each task 275 

group individually. The asterisk denotes whether the unique variance or the difference in unique variance 276 

was significant (p<0.05, permutation test with 10,000 iterations, FDR-corrected across DNNs). The error 277 

bars show the standard deviation calculated by bootstrapping 90% of the conditions (10,000 iterations).  278 

 279 

We averaged the RDMs of DNNs in each task group to obtain aggregate 2D, 3D, and 280 

semantic RDMs. Averaging the RDMs based on task groups reduced the number of DNN 281 

comparisons from 18 to 3. This allowed us to perform variance partitioning analysis to 282 

compare fMRI and DNN RDMs, which would be impractical with 18 single DNNs due to 283 

a large number of comparisons and computational complexity. When used in this way, 284 

variance partitioning analysis reveals whether and where in the brain one task group 285 

explained brain responses significantly better than other task groups. 286 

We first performed a searchlight analysis to identify where in the cortex one task 287 

group explains significantly higher variance uniquely than the other task groups. We 288 

selected the grouped DNN RDM that explains the highest variance in a given region 289 

uniquely to create a functional map of the task groups in the visual cortex (Figure 3a). 290 

Here, due to the reduced number of comparisons, we can clearly observe distinctions 291 

where one grouped DNN explains fMRI responses better than the other grouped DNNs 292 

(p<0.05, permutation test with 10,000 iterations, FDR corrected across DNNs and 293 

searchlights). The resulting functional map (Figure 3a; interactive visualization available 294 

in this link: https://sites.google.com/view/dnn2brainfunction/home#h.xi402x2hr0p3) is 295 

different from the functional map in Figure 1d in two ways. First, in the functional map 296 

here we highlight the searchlight where one DNN group explained significantly higher 297 

variance uniquely than the other 2 DNN groups. In the functional map of Figure 1d, we 298 
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highlighted the DNN that explained the highest variance of a searchlight without 299 

performing any statistical analysis whether the selected DNN was significantly better than 300 

the second best DNN or not due to the higher number of comparisons. Second, here we 301 

compared functions using groups of DNNs (3 functions: 2D, 3D and semantic), whereas 302 

in the previous analysis we compared functions using single DNNs (18 functions). The 303 

comparison using groups of DNNs allows us to put our findings in context with previous 304 

neuroimaging findings that are typically reported at this level. 305 

 We observed that the 2D DNN RDM explained responses in the early visual 306 

cortex, semantic DNN RDM explained responses in the ventral visual stream, and some 307 

parts in the right hemisphere of the dorsal visual stream, and 3D DNN RDM explained 308 

responses in the left hemisphere of the dorsal visual stream. The above findings 309 

quantitatively reinforce our qualitative findings from the previous section that early visual 310 

regions perform functions related to low-level vision, dorsal regions perform functions 311 

related to both 3D and semantic perception, and ventral regions perform functions related 312 

to semantic perception. 313 

While the map of the brain reveals the most likely function of a given region, to find 314 

out whether a region can have multiple functional roles we need to visualize the variance 315 

explained by other grouped DNN RDMs along with the best predicting DNN RDM. To 316 

achieve that, we performed a variance partitioning analysis using 3 grouped DNN RDMs 317 

as the independent variable and 15 ROIs in the ventral-temporal and the dorsal-ventral 318 

stream as the dependent variable. The results in Figure 3b show the unique and shared 319 

variance explained by group-level DNN RDMs (2D, 3D, and semantic) for all the 15 ROIs. 320 

From Figure 3b we observed that the responses in early ROIs (V1v, V1d, V2v, 321 

V3v, hV4) are explained significantly higher (p<0.05, permutation test with 10,000 322 

iterations, FDR corrected across DNNs) by 2D DNN RDM uniquely, while responses in 323 

later ventral-temporal ROIs (VO1, VO2, PHC1, and PHC2) are explained by semantic 324 

DNN RDM uniquely. In dorsal-lateral ROIs (V3a, V3d) responses are explained by 3D 325 

RDM uniquely. In LO1, LO2, and V3b 3D and semantic DNN RDMs explained significant 326 

variance uniquely while in V2d all 2D, 3D, and semantic DNN RDMs explained significant 327 

unique variance. It is crucial to note that for the ROI analysis here we use grouped DNN 328 

RDMs as compared to Figure 2b where we selected top-3 single DNNs that showed the 329 
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highest R2 with a given ROI. The comparison with grouped DNN RDMs provides a holistic 330 

view of the functional role of ROIs which might be missed if one of the DNNs that is related 331 

to the functional role of a ROI is not in the top-3 DNNs (as analyzed in Figure 2b). For 332 

instance, in Figure 3b the results suggest both 3D and semantic functional roles of V3b 333 

which is not evident from Figure 2b where the top 3-DNNs were all optimized on 3D tasks. 334 

Together, we found that the functional role of the early visual cortex is related to 335 

low-level visual tasks (2D), the dorsal stream is related to tasks involved in 3-dimensional 336 

perception and categorical understanding of the scene (3D and semantic), and in the 337 

ventral stream is related to the categorical understanding of the scene (semantic). 338 

2.4 Functional roles of scene-selective regions 339 

In the previous sections, we focused on discovering functions of regions 340 

anatomically defined by an atlas. Since the stimulus set used to record fMRI responses 341 

consisted of indoor scenes, in this section we investigate functional differences in 342 

functionally localized scene-selective regions. We here focus on two major scene-343 

selective ROIs: occipital place area (OPA) and parahippocampal place area (PPA), 344 

putting results into context with the early visual cortex (EVC) as an informative contrast 345 

region involved in basic visual processing. The analysis followed the general rationale as 346 

used before. 347 

We first investigated the functional differences in these regions by performing 348 

variance partitioning analysis using top-3 DNNs (see R2 based ranking of all DNNs in 349 

Supplementary SFigure 3) that best explained a given ROIs’ responses (Figure 4a). We 350 

found that the DNN that detects edges explained significantly higher variance (p<0.05, 351 

permutation test, FDR-corrected) in EVC uniquely than the other two DNNs, suggesting 352 

a function related to edge detection. 3D DNNs (3D Keypoints, 2.5D Segmentation, 3D 353 

edges) were best predicting DNNs for OPA suggesting its role in 3D scene understanding. 354 

A combination of semantic (semantic segmentation, scene classification) and 3D (3D 355 

keypoints) DNNs were best predicting DNNs for PPA suggesting its role in both semantic 356 

and 3D scene understanding. 357 

We then investigated the functional differences by performing variance partitioning 358 

analysis using aggregated 2D, 3D, and semantic DNN RDMs obtained by averaging the 359 
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individual DNN RDMs in each task group (Figure 4b). We found that for EVC and OPA 360 

results are highly consistent with top-3 DNN analysis showing a prominent unique 361 

variance explained by the 2D DNN RDM in EVC and the 3D DNN RDM in OPA. 362 

Interestingly, in PPA we find that the semantic DNN RDM shows the highest unique 363 

variance with no significant unique variance explained by the 3D DNN RDM. The 364 

insignificant unique variance explained by the 3D DNN RDM is potentially due to 365 

averaging the DNN RDMs of all 3D DNNs (high ranked as well as low ranked) which may 366 

lead to diminishing the contribution of an individual high ranked 3D DNN RDM (e.g. 3D 367 

keypoints that was in top-3 DNNs for PPA). Overall, we find converging evidence that 368 

OPA is mainly related to tasks involved in 3-dimensional perception (3D), and PPA is 369 

mainly related to semantic (categorical) understanding of the scene. 370 

  371 

Figure 4: Functional roles of localized ROIs: a) Absolute total variance (R2) explained in functionally 372 

localized ROIs by using the top-3 DNNs together. The Venn diagram for each ROI illustrates the unique 373 

and shared variance of the ROI responses explained by the combination of the top-3 DNNs. The bar plot 374 

shows the unique variance of  each ROI explained by each of the top -3 DNNs individually. The asterisk 375 

denotes the significance of unique variance and the difference in unique variance (p<0.05, permutation test 376 

with 10,000 iterations, FDR-corrected across DNNs). The error bars show the standard deviation calculated 377 

by bootstrapping 90% of the conditions (10,000 iterations). b) Absolute total variance (R2) explained in 378 
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functionally localized ROIs by using 3 DNN RDMs averaged across task groups (2D, 3D, or semantic). The 379 

Venn diagram for each ROI illustrates the unique and shared variance of the ROI responses explained by 380 

the combination of 3 DNN task groups. The bar plot shows the unique variance of each ROI explained by 381 

each task group individually. The asterisk denotes whether the unique variance or the difference in unique 382 

variance was significant (p<0.05, permutation test with 10,000 iterations, FDR-corrected across DNNs). 383 

The error bars show the standard deviation calculated by bootstrapping 90% of the conditions (10,000 384 

iterations). 385 

3. Discussion 386 

In this study, we harvested the potential of discovering functions of the brain from 387 

comparison to DNNs by investigating a large set of DNNs optimized to perform a set of 388 

diverse visual tasks. We found a systematic mapping between cortical regions and 389 

function: different cortical regions were explained by DNNs performing different functions. 390 

Importantly, the selected DNNs explained 60% of the explainable variance in nine out of 391 

15 visual ROIs investigated, demonstrating the accuracy of the AI-driven functional 392 

mapping obtained using our analysis. 393 

Our study provides a systematic and comprehensive picture of human brain 394 

functions using DNNs trained on different tasks. Previous studies3,4,6,7,17–21,51,52 have 395 

compared model performance in explaining brain activity, but were limited to a few 396 

preselected regions and models, or had a different goal (comparing task structure)22. 397 

Using the same fMRI dataset as used in this study, a previous study17 showed that 398 

representation in scene-selective ROIs consists of both location and category information 399 

using scene-parsing DNNs. We go beyond these efforts by comparing fMRI responses 400 

across the whole visual brain using a larger set of DNNs, providing a comprehensive 401 

account of the function of human visual brain regions. 402 

We obtained the functional mapping of different regions in the visual cortex on both 403 

individual (e.g., 2D edges, scene classification, surface normals, etc.) and group (2D, 3D, 404 

semantic) levels of visual functions. We discuss the novel insights gained at the level of 405 

individual functions that inform about the fine-grained functional role of cortical regions.  406 

First, we consider 2D DNNs, where the denoising DNN explained significant 407 

unique variance in V1v, V1d, V2v, V2d, V3v, and hV4. The denoising task requires the 408 

DNN to reconstruct an unperturbed input image from slightly perturbed (e.g., adding 409 
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Gaussian noise in the current case) input image that encourages learning representations 410 

robust to slight perturbations and limited invariance. This suggests that these ROIs might 411 

be generating a scene representation robust to high frequency noise.  412 

When considering 3D DNNs, the 3D Keypoint and the 2.5d segment were among 413 

the top-3 best predicting DNNs in multiple ROIs. The 3D Keypoints DNN explained 414 

significant unique variance in V3d, PHC1, PHC2, LO2, LO1, V3a, V3b, OPA, and PPA. 415 

The 3D Keypoints task requires the DNN to identify locally important regions of the input 416 

image based on object boundary information and surface stability. This suggests that the 417 

ROIs in which 3D Keypoints DNN explained significant variance may be identifying locally 418 

important regions in a scene. The identification of locally important regions might be 419 

relevant to selectively attend to these key regions to achieve a behavioral goal e.g., 420 

searching for an object. The 2.5d segment DNN explained significant unique variance in 421 

V3d, LO2, LO1, V3b, V3a, and OPA. The 2.5d segment task requires the DNN to segment 422 

images into perceptually similar groups based on color and scene geometry (depth and 423 

surface normals). This suggests that the ROIs in which 2.5d segment DNN explained 424 

significant variance may be grouping regions in the images based on color and geometry 425 

cues even without any knowledge of the categorical information. Grouping regions based 426 

on geometry could be relevant to behavioral goals such as reaching for objects or 427 

identifying obstacles.  428 

Among semantic DNNs, the semantic segmentation DNN explained significant 429 

unique variance in VO1, VO2, PHC1, PHC2, V3a, and PPA. The semantic segmentation 430 

task requires the DNN to segment objects present in the image based on categories. This 431 

suggests that the ROIs in which semantic segmentation DNN explained significant 432 

variance may be grouping regions in the image based on categorical information.  433 

Other DNNs (2D edges, scene classification, and object classification) that showed 434 

significant unique variance in ROIs provided functional insights mostly consistent with the 435 

previous studies23–25,31,32. Overall, the key DNNs (denoising, 3D keypoints, 2.5D segment, 436 

and semantic segmentation) that explained significant variance in multiple ROI responses 437 

uniquely promote further investigation by generating novel hypotheses about the 438 

functions of these ROIs. Future experiments can test these hypotheses in detail in 439 

dedicated experiments. 440 
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The functional mapping obtained using grouped DNNs is complementary to that at 441 

the individual level and helps us put functional mapping obtained here in context with 442 

previous literature. We found that early visual regions (V1v, V1d, V2v) have a functional 443 

role related to low-level 2D visual tasks which is consistent with previous literature 444 

investigating these regions23–25. In dorsal-ventral ROIs (V3a, V3d, LO1, and LO2) we 445 

found functional roles related to 3D and semantic tasks converging with evidence from 446 

previous studies26–30. Similarly, the prominent semantic functional role of later ventral-447 

temporal ROIs (VO1, VO2, PHC1, and PHC2) found in this study converges with findings 448 

in previous literature31,32. In scene-selective ROIs, we found a semantic functional role for 449 

PPA and 3D functional role for OPA respectively. Our study extends the findings of a 450 

previous study51 relating OPA and PPA to 3D models by differentiating between OPA and 451 

PPA functions through a much broader set of models. To summarize, the functional 452 

mapping using individual DNNs optimized to perform different functions revealed new 453 

functional insights for higher ROIs in the visual cortex while at the same time functional 454 

mapping using grouped DNNs showed highly converging evidence with previous 455 

independent studies investigating these ROIs.  456 

Beyond clarifying the functional roles of multiple ROIs, our approach also identifies 457 

quantitatively highly accurate prediction models of these ROIs. We found that the DNNs 458 

explained 60% of the explainable variance in nine out of 15 ROIs. Our findings, thus, 459 

make advances towards finding models that generate new hypotheses about potential 460 

functions of brain regions as well as predicting brain responses well.20,33–35. 461 

A major challenge in meaningfully comparing two or more DNNs is to vary only a 462 

single factor of interest while controlling the factors that may lead to updates of DNN 463 

parameters. In this study, we address this challenge by selecting a set of DNNs trained 464 

on the same set of training images using the same learning algorithm, with the same 465 

encoder architecture, while being optimized for different tasks. Our results, thus, 466 

complement previous studies that focused on other factors influencing the learning of 467 

DNN parameters such as architecture19,35–37, and the learning mechanism38–40. Our 468 

approach accelerates the divide-and-conquer strategy of investigating human brain 469 

function by systematically and carefully manipulating the DNNs used to map the brain in  470 

their fundamental parameters one by one20,41–43. Our high-throughput exploration of 471 
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potential computational functions was initially inspired by Marr's computational level of 472 

analysis44 which aims at finding out what the goal of the computation carried out by a 473 

brain region is. While Marr’s approach invites the expectation of a one-to-one mapping 474 

between regions and goals, we found evidence for multiple functional roles (3D + 475 

semantic) using DNNs in some ROIs (e.g. LO1, LO2, PHC1, PHC2). This indicates a 476 

many-to-one mapping59 between functions and brain regions. We believe such a 477 

systematic approach that finds the functional roles of multiple brain regions provides a 478 

starting point for a further in-depth empirical inquiry into functions of the investigated brain 479 

regions. 480 

Our study is related to a group of studies53-55,61 applying DNNs in different ways to 481 

achieve a similar goal of mapping functions of brain regions using DNNs.  Some studies53 -482 

54,61 applied optimization algorithms (genetic algorithm or activation maximization) to find 483 

images that maximally activate a given neuron’s or group of neurons' response. Another 484 

related study55 proposes Neural Information Flow (NIF) to investigate functions of brain 485 

regions where they train a DNN with the objective function to predict brain activity while 486 

preserving a one-to-one correspondence between DNN layers and biological neural 487 

populations. While sharing the overall goal to discover functions of brain regions, 488 

investigating DNN functions allows investigation in terms of which computational goal a 489 

given brain region is best aligned with. With new computer vision datasets62 investigating 490 

a diverse set of tasks relevant to human behavioral goals63,64 our approach opens new 491 

avenues to investigate brain functions.  492 

A limitation of our study is that our findings are restricted to functions related to 493 

scene perception. Thus, the functions we discovered for non-scene regions correspond 494 

to their functions when humans are perceiving scenes. In contrast, our study does not 495 

characterize the functions of these regions when humans perceive non-scene categories 496 

such as objects, faces, or bodies. We limited our study to scene perception because there 497 

are only a few image datasets8,45 that have annotations corresponding to a diverse set of 498 

tasks, thus, allowing DNNs to be optimized independently on these tasks. The 499 

Taskonomy dataset8 with annotations of over 20 diverse scene perception tasks and 500 

pretrained DNNs available on these tasks along with the availability of an fMRI dataset 501 

related to scene perception9, therefore, provided a unique opportunity. However, the 502 
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approach we presented in this study is not limited to scene perception. It can in principle 503 

be extended to more complex settings such as video understanding, active visual 504 

perception, and even outside the vision modality, given an adequate set of DNNs and 505 

brain data. While in this study we considered DNNs that were trained independently , 506 

future studies might consider investigating multitask models56,57 which are trained to 507 

perform a wide range of functions using a single DNN. Multitask modeling has the 508 

potential to model the entire visual cortex using a single model as compared to several 509 

independent models used in this study. Another potential limitation is that our findings are 510 

based on a single fMRI and image dataset, so it is not clear how well they would 511 

generalize to a broader sample of images. Given the explosive growth of the deep 512 

learning field43,46 and the ever increasing availability of open brain imaging data sets47,58 513 

we see a furtive ground for the application of our approach in the future.  514 

Beyond providing theoretical insight with high predictive power, our approach can 515 

also guide future research. In particular, the observed mapping between cortical region 516 

and function can serve as a quantitative baseline and starting point for an in-depth 517 

investigation focused on single cortical regions. Finally, the functional hierarchy of the 518 

visual cortex from our results can inspire the design of efficient multi-task artificial visual 519 

systems that perform multiple functions similar to the human visual cortex.  520 

4. Materials and Methods 521 

4.1 fMRI Data 522 

We used fMRI data from a previously published study9. The fMRI data were 523 

collected from 16 healthy subjects (8 females, mean age 29.4 years, SD = 4.8). The 524 

subjects were scanned on a Siemens 3.0T Prisma scanner using a 64-channel head coil. 525 

Structural T1-weighted images were acquired using an MPRAGE protocol (TR = 2,200 526 

ms, TE = 4.67 ms, flip angle = 8°, matrix size = 192 × 256 × 160, voxel size = 0.9 × 0.9 × 527 

1 mm). Functional T2*-weighted images were acquired using a multi-band acquisition 528 

sequence (TR = 2,000 ms for main experimental scans and 3,000 ms for localizer scans, 529 

TE = 25 ms, flip angle = 70°, multiband factor = 3, matrix size = 96 × 96 × 81, voxel size 530 

= 2 × 2 × 2 mm). 531 
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During the fMRI scan, subjects performed a category detection task while viewing 532 

images of indoor scenes. On each trial, an image was presented on the screen at a visual 533 

angle of ~17.1° x 12.9° for 1.5 s followed by a 2.5s interstimulus interval. Subjects had to 534 

respond by pressing a button indicating whether the presented image was a bathroom or 535 

not while maintaining fixation on a cross. The stimulus set consisted of 50 images of 536 

indoor scenes (no bathrooms), and 12 control images (five bathroom images, and seven 537 

non-bathroom images). fMRI data were preprocessed using SPM12. For each participant, 538 

the functional images were realigned to the first image followed by co-registration to the 539 

structural image. Voxelwise responses to 50 experimental conditions (50 indoor images 540 

excluding control images) were estimated using a general linear model. 541 

4.2 Deep neural networks 542 

For this study, we selected 18 DNNs trained on the Taskonomy8 dataset optimized 543 

on 18 different tasks covering different aspects of indoor scene understanding. The 544 

Taskonomy dataset is a large-scale indoor image dataset consisting of annotations for 18 545 

single image tasks, thus, allowing optimization of DNNs on 18 different tasks using the 546 

same set of training images. We briefly describe the objective functions and DNN 547 

architectures below. For a detailed description, we refer the reader to Zamir et al.8. 548 

4.2.1 Tasks and objective functions of the DNNs 549 

The Taskonomy dataset consists of annotations for tasks that require pixel-level 550 

information such as edge detection, surface normal estimation, semantic segmentation, 551 

etc. as well as high-level semantic information such as object/scene classification 552 

probabilities. The tasks can be broadly categorized into 4 groups: relating to low-level 553 

visual information (2D), the three-dimensional layout of the scene (3D), high-level object 554 

and scene categorical information (semantic), and low-dimensional geometry 555 

information(geometrical). The above task categorization was obtained by analyzing the 556 

relationship between the transfer learning performance on a given task using the models 557 

pretrained on other tasks as the source tasks. The 2D tasks were edge detection, keypoint 558 

detection, 2D segmentation, inpainting, denoising, and colorization; 3D tasks were 559 

surface normals, 2.5D segmentation, occlusion edges, depth estimation, curvature 560 
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estimation, and reshading; semantic tasks were object/scene classification and semantic 561 

segmentation, and low-dimensional geometric tasks were room layout estimation and 562 

vanishing point. A detailed description of all the tasks and annotations is provided in 563 

http://taskonomy.stanford.edu/taskonomy_supp_CVPR2018.pdf . In this study, we did not 564 

consider low dimensional geometric tasks as they did not fall into converging clusters 565 

according to RSA and transfer learning as in the case of 2D, 3D, and semantics tasks. 566 

To perform a given task, DNN’s parameters were optimized using an objective function 567 

that minimizes the loss between the DNN prediction and corresponding ground truth 568 

annotations for that task. All the DNNs’ parameters were optimized using the 569 

corresponding objective function, on the same set of training images. Due to the use of 570 

the same set of training images the learned DNN parameters vary only due to the 571 

objective function and not the difference in training dataset statistics. A complete list of 572 

objective functions used to optimize for each task is provided in this link 573 

(https://github.com/StanfordVL/taskonomy/tree/master/taskbank). We downloaded the 574 

pretrained models using this link 575 

(https://github.com/StanfordVL/taskonomy/tree/master/taskbank), where further details 576 

can be found.  577 

4.2.2 Network architectures 578 

The DNN architecture for each task consists of an encoder and a decoder. The 579 

encoder architecture is consistent across all the tasks. The encoder architecture is a 580 

modified ResNet-5048 without average pooling and convolutions with stride 2 replaced by 581 

convolutions with stride 1. ResNet-50 is a 50-layer DNN with shortcut connections 582 

between layers at different depths. Consistency of encoder architecture allows us to use 583 

the outputs of the ResNet-50 encoder as the task-specific representation for a particular 584 

objective function. For all the analysis in this study, we selected the last two layers of the 585 

encoder as the task-specific representation of the DNN. Our selection criteria was based 586 

on an analysis (Supplementary Section 2) that shows task-specific representation is 587 

present in those layers as compared to earlier layers. In this way, we ensure that the 588 

difference in representations is due to the functions these DNNs were optimized for and 589 

not due to the difference in architecture or training dataset. The decoder architecture is 590 
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task-dependent. For tasks that require pixel-level prediction, the decoder is a 15-layer 591 

fully convolutional model consisting of 5 convolutional layers followed by alternating 592 

convolution and transposed convolutional layers. For tasks, which require low 593 

dimensional output, the decoder consists of 2-3 fully connected layers.  594 

4.3 Representational Similarity Analysis (RSA)  595 

To compare the fMRI responses with DNN activations we first need to map both 596 

the modalities in a common representational space and then by comparing the resulting 597 

mappings we can quantify the similarity between fMRI and DNNs. We mapped the fMRI 598 

responses and DNN activations to corresponding representational dissimilarity matrices 599 

(RDMs) by computing pairwise distances between each pair of conditions. We used the 600 

variance of upper triangular fMRI RDM (R2) explained by DNN RDMs as the measure to 601 

quantify the similarity between fMRI responses and DNN activations. To calculate R2, we 602 

assigned DNN RDMs (RDMs of the last two layers of the encoder) as the independent 603 

variables and assigned fMRI RDM as the dependent variable. Then a multiple linear 604 

regression was fitted to predict fMRI RDM from the weighted linear combination of DNN 605 

RDMs. We evaluated the fit by estimating the variance explained (R2). We describe how 606 

we mapped from fMRI responses and DNN activations to corresponding RDMs in detail 607 

below. 608 

 609 

Taskonomy DNN RDMs: We selected the last two layers of the Resnet-50 encoder as 610 

the task-specific representation of DNNs optimized on each task. For a given DNN layer, 611 

we computed the Pearson’s distance between the activations for each pair of conditions 612 

resulting in a condition x condition RDM for each layer. This resulted in a single RDM 613 

corresponding to each DNN layer. We followed the same procedure to create RDMs 614 

corresponding to other layers of the network. We averaged the DNN RDMs across task 615 

clusters (2D, 3D, and semantic) to create 2D, 3D, and semantic RDMs.  616 

 617 

Probabilistic ROI RDMs: We downloaded probabilistic ROIs15 from the link 618 

(http://scholar.princeton.edu/sites/default/files/napl/files/probatlas_v4.zip). We extracted 619 

activations of the probabilistic ROIs by applying the ROI masks on the whole brain 620 
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response pattern for each condition, resulting in ROI-specific responses for each 621 

condition for each subject. Then for each ROI, we computed the Pearson’s distance 622 

between the voxel response patterns for each pair of conditions resulting in a RDM (with 623 

rows and columns equal to the number of conditions) independently for each subject. To 624 

compare the variance of ROI RDM explained by DNN RDMs with the explainable variance 625 

we used independent subject RDMs. For all the other analyses, we averaged the RDMs 626 

across the subjects resulting in a single RDM for each ROI due to a higher signal to noise 627 

ratio in subject averaged RDMs. 628 

 629 

Searchlight RDMs: We used Brainiak toolbox code49 to extract the searchlight blocks for 630 

each condition in each subject. The searchlight block was a cube with radius = 1 and 631 

edge size = 2. For each searchlight block, we computed the Pearson’s distance between 632 

the voxel response patterns for each pair of conditions resulting in a RDM of size condition 633 

times independently for each subject. We then averaged the RDMs across the subjects 634 

resulting in a single RDM for each searchlight block.  635 

4.4 Variance partitioning 636 

Using RSA to compare multiple DNNs we do not obtain a complete picture of how 637 

each model is contributing to explaining the fMRI responses when considered in 638 

conjunction with other DNNs. Therefore, we determined the unique and shared 639 

contribution of individual DNN RDMs in explaining the fMRI ROI RDMs when considered 640 

with the other DNN RDMs using variance partitioning.  641 

We performed two variance partitioning analyses on probabilistic ROIs: first using 642 

the top-3 DNNs that best explained a given ROI’s responses and second using RDMs 643 

averaged according to task type (2D, 3D, and semantic). For the first analysis, we 644 

assigned a fMRI ROI RDM as the dependent variable (referred to as predictand) and 645 

assigned RDMs corresponding to the top-3 DNNs as the independent variables (referred 646 

to as predictors). For the second analysis, we assigned an fMRI ROI (searchlight) RDM 647 

as the dependent variable (referred to as predictand). We then assigned three DNN 648 

RDMs (2D, 3D, and semantic) as the independent variables (referred to as predictors).  649 
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For both variance partitioning analyses, we performed seven multiple regression 650 

analyses: one with all three independent variables as predictors, three with different pairs 651 

of two independent variables as the predictors, and three with individual independent 652 

variables as the predictors. Then, by comparing the explained variance (R2) of a model 653 

used alone with the explained variance when it was used with other models, we can infer 654 

the amount of unique and shared variance between different predictors (Supplementary 655 

SFigure 1). 656 

4.5 Searchlight analysis 657 

We perform two different searchlight analyses in this study: first to find out if 658 

different regions in the brain are better explained by DNNs optimized for different tasks 659 

and second to find the pattern by taking the averaged representation DNNs from three 660 

task types (2D, 3D, and semantic). In the first searchlight analysis, we applied RSA to 661 

compute the variance of each searchlight block RDM explained by 19 DNN RDMs (18 662 

Taskonomy DNNs and one randomly initialized as a baseline) independently. We then 663 

selected the DNN that explained the highest variance as the preference for the given 664 

searchlight block. In the second searchlight analysis, we applied variance partitioning with 665 

2D, 3D, and semantic DNN RDMs as the independent variables, and each searchlight 666 

block RDM as the dependent variable. For each searchlight block, we selected the task 667 

type whose RDMs explained the highest variance uniquely as the function for that block. 668 

We used the nilearn (https://nilearn.github.io/index.html) library to plot and visualize the 669 

searchlight results. 670 

 671 

4.6 Comparison of Explained with Explainable Variance 672 

To relate the variance of fMRI responses explained by a DNN to the total variance 673 

to be explained given the noisy nature of the fMRI data, we first calculated the lower and 674 

upper bounds of the noise ceiling as a measure of explainable variance and then 675 

compared cross-validated explained variance of each ROI by top-3 best predicting DNNs. 676 

In detail, the lower noise ceiling was estimated by fitting each individual subject RDMs as 677 

predictand with mean subject RDM of other subjects (N-1) as the predictor and calculating 678 

the R2. The resulting subject-specific R2 values were averaged across the N subjects. 679 
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The upper noise ceiling was estimated in a similar fashion while using mean subject 680 

RDMs of all the subjects (N) as the predictor. To calculate variance explained by the best 681 

predicting DNNs we fit the regression using cross validation in 2N folds (2 folds across 682 

conditions, N folds across subjects) where the regression was fit using the subject 683 

averaged RDMs of N-1 subjects and the fit was evaluated using R2 on the left out subject 684 

and left out conditions. Finally, we then calculated the mean R2  across 2N folds and 685 

divided it by the lower bound of the noise ceiling to obtain the ratio of the explainable 686 

variance explained by the DNNs.  687 

4.7 Statistical Testing 688 

We applied nonparametric statistical tests to assess the statistical significance in 689 

a similar manner to a previous related study50. We assessed the significance of the R2 690 

through a permutation test by permuting the conditions randomly 10,000 times in either 691 

the neural ROI/searchlight RDM or the DNN RDM. From the distribution obtained using 692 

these permutations, we calculated p-values as one-sided percentiles. We calculated the 693 

standard errors of these correlations by randomly resampling the conditions in the RDMs 694 

for 10,000 iterations. We used re-sampling without replacement by subsampling 90% (45 695 

out of 50 conditions) of the conditions in the RDMs. We used an equivalent procedure for 696 

testing the statistical significance of the correlation difference and unique variance 697 

difference between different models.  698 

For ROI analysis, we corrected the p-values for multiple comparisons by applying 699 

FDR correction with a threshold equal to 0.05. For searchlight analyses, we applied FDR 700 

correction to correct for the number of DNNs compared as well as to correct for the 701 

number of searchlights that had a significant noise ceiling. 702 

We applied a two-sided t-test to assess the statistical significance of the cross-703 

validated explained variance across N subjects. We corrected the p-values for multiple 704 

comparisons by applying FDR correction. 705 
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Supplementary information 899 

 900 

Here, we provide the supplementary material that complements the main manuscript.  901 

1. Illustration of variance partitioning method 902 

2. Selecting Task-specific DNN representations 903 

3. R2 ranking for all the DNNs in localized and anatomical ROIs 904 

4. Effect of cross validation on explained variance (R2) 905 

 906 

 907 

S1: Variance partitioning 908 

 909 
SFigure 1: Variance partitioning overview: Given a set of multiple independent variables and dependent 910 

variables, multiple linear regression results in R-squared (r2) that represents the proportion of the variance 911 

for a dependent variable that is explained by independent variables in a regression model. To f ind how 3 912 

DNN RDMs together explain the variance of a given fMRI RDM we perform 7 multiple regression and 913 

illustrate unique and shared variance explained by models through a Venn diagram  914 

S2: Selecting Task-specific DNN representations 915 

Our aim was to select the layers of the encoders of the DNN that had task-specific 916 

representation. By task-specific representation, we refer to representation learned by the 917 

DNN to perform the corresponding task. We performed multiple analyses to find out which 918 
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layers of the encoder consisted of the most task-specific information. In the first analysis, 919 

we calculated the Spearman’s correlation of one DNN RDM from a given layer with all the 920 

other DNN RDMs from the same layer. We performed this analysis for all pairwise 921 

combinations of DNNs investigated in this study and plotted the mean correlation for all 922 

pairwise DNN comparisons per layer in SFigure 2a. In SFigure 2a, we observed that early  923 

 924 

925 

SFigure 2: Selecting task-specific DNN representation to compare with fMRI data: a) Spearman’s 926 

correlation of all DNN RDMs at a given layer of the encoder with other DNN RDMs computed at the same 927 

layer. We report the mean pairwise correlation of  all 18 DNNs at dif ferent layers of  the encoder. b) 928 

Spearman’s correlation of all DNN RDMs at a given layer of the encoder with a randomly initialized model 929 

with the same architecture computed at the same layer. We report the mean correlation of all 18 DNNs with 930 

the randomly initialized DNN at different layers of the encoder. c) Spearman’s correlation of all DNN RDMs 931 
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at a given layer of the encoder with deeper layers (block4 and encoder output) of 2D DNNs. We report the 932 

mean correlation of the key layers of all 18 DNNs with deeper layers (block4 and encoder output) of 2D 933 

DNNs. d) Spearman’s correlation between layers at different depths for DNNs corresponding to different 934 

task types. We report the mean correlation between different layers averaged across different DNNs of the 935 

same task type. e) Effect of adding all the key layers on unique and shared variance of fMRI RDMs from 936 

dif ferent ROIs as compared to selecting only task-specific layers for variance partitioning analysis. We 937 

report the change in variance explained (variance change) for 7 variance partitions when all key layers were 938 

used for analysis as compared to selecting task-specific layers. 939 

layers of the encoder showed a higher mean pairwise correlation than the deeper layers.  940 

The results suggest that early layers of DNN learn similar representation irrespective of 941 

the task DNN was optimized for, while task-specificity increases as we go deeper in the 942 

network. In the second analysis, we calculated the Spearman’s correlation of RDMs of a 943 

given layer from all the 18 DNNs investigated in this study and compared with the RDM 944 

of the same layer from a randomly initialized network having the exact same encoder 945 

architecture (SFigure 2b). In SFigure 2b, we observed that early layers showed a higher 946 

correlation with randomly initialized DNN than deeper layers. The results reinforce our 947 

argument that early layers learn a general representation irrespective of the task DNN 948 

was optimized for while deeper layers consist of more task-specific information.  949 

An arguably attractive procedure for layer selection is to select all key layers for 950 

each of the DNNs and then perform the comparison. We argue against this by performing 951 

an analysis comparing the representation of late layers of 2D DNNs (block 4 and encoder 952 

output) with key layers of all the DNNs (Sfigure 2c). We find that early layers of all the 953 

DNNs show a high correlation with late layers of 2D DNNs, suggesting that early layers 954 

of all DNNs learn a representation required to perform low-level 2D tasks irrespective of 955 

the tasks they need to perform (3D or semantic). We further validate this argument by 956 

comparing the correlation between different layers of DNNs within a task type (Sfigure 957 

2d). We find that in 2D DNNs the late layers show a high correlation with early layers, 958 

suggesting that to perform 2D functions DNNs learn very similar representations at 959 

different depths of the network. In the case of 3D and semantic DNNs, the late layers 960 

show low correlation with early layers, suggesting that a different representation is 961 

required to perform these tasks and that these representations are found in late layers.  962 
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The early layer representations of all DNNs are very similar to representations 963 

learned by 2D DNNs. Including these layers into the variance partitioning analysis could 964 

diminish the unique variance of fMRI RDMs explained by 2D DNNs due to an increase in 965 

shared variance explained by all the DNNs together. We show the above effect by 966 

reporting the change in unique and shared variance when all key layers were used in 967 

variance partitioning analysis corresponding to Section 3 of main text instead of the last 968 

2 layers of the encoder (Sfigure 2e). We observe that adding early layers of all 3 different 969 

types of DNNs in the analysis leads to an increase in shared variance explained by all 970 

these models together and reducing the unique variance contribution of 2D DNNs 971 

significantly in the early visual regions. We further observe that in high-level ROIs for 972 

which the unique variance of 2D DNNs was insignificant in the original analysis, we barely 973 

notice any changes in the unique variance explained. Therefore, to observe the 974 

differences in the DNNs due to the task they were optimized to perform we selected the 975 

last two layers of the DNNs as the task-specific representation. 976 

S3: R2 ranking for all the DNNs in localized and anatomical ROIs 977 

 978 

SFigure 3: R2 ranking for 18 Taskonomy DNNs and random baseline in functionally localized ROIs. 979 

The bar plot shows the absolute total variance of each ROI RDM explained by task-specific layer RDMs of 980 

a given DNNs. The asterisk denotes the significance of total variance (p<0.05, permutation test with 10,000 981 

iterations, FDR-corrected across DNNs). The error bars show the standard deviation calculated by 982 

bootstrapping 90% of the conditions (10,000 iterations). 983 
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 984 

SFigure 4: R2 ranking for 18 Taskonomy DNNs and random baseline in anatomical ROIs. The bar plot 985 

shows the absolute total variance of each ROI RDM explained by task -specific layer RDMs of a given 986 

DNNs. The asterisk denotes the significance of  total variance (p<0.05, permutation test with 10,000 987 
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iterations, FDR-corrected across DNNs). The error bars show the standard deviation calculated by 988 

bootstrapping 90% of the conditions (10,000 iterations). 989 

S4: Effect of cross validation on explained variance (R2) 990 

 991 

SFigure 5: Effect of cross validation on variance explained (R2)  a) Variance of each ROI explained by 992 

top-3 best predicting DNNs compared for different cross-validation settings (blue bars: no cross validation; 993 

orange bars: cross validation across subjects; green bars: cross validation across subjects and stimuli).  994 

The error bars show the 95% confidence interval calculated across N=16 subjects. All the R2 values are 995 

statistically significant (p<0.05, two-sided t-test, FDR-corrected across ROIs) b) Variance of  each ROI 996 

explained by 1000 randomly generated RDMs compared for different cross-validation settings (blue bars: 997 

no cross validation; orange bars: cross validation across subjects; green bars: cross validation across 998 

subjects and stimuli).  The error bars show the 95% confidence interval calculated across N=16 subjects . 999 

 1000 
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