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Summary 

Music, like language, is characterized by hierarchically organized structure that unfolds over 

time. Music listening therefore requires not only the tracking of notes and beats but also 

internally constructing high-level musical structures or phrases and anticipating incoming 

contents. Unlike for language, mechanistic evidence for online musical segmentation and 

prediction at a structural level is sparse. We recorded neurophysiological data from 

participants listening to music in its original forms as well as in manipulated versions with 

locally or globally reversed harmonic structures. We discovered a low-frequency neural 

component that modulated the neural rhythms of beat tracking and reliably parsed musical 

phrases. We next identified phrasal phase precession, suggesting that listeners established 

structural predictions from ongoing listening experience to track phrasal boundaries. The data 

point to brain mechanisms that listeners use to segment continuous music at the phrasal level 

and to predict abstract structural features of music.  
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Introduction 

The physical world presents continuous streams of information, but we perceive, encode, and 

process it as a sequence of discrete events (Newtson et al., 1979; Zacks et al., 2007; Kurby 

and Zacks, 2008). The human brain segments the apparent continuity into events over 

multiple timescales and constructs complex hierarchical structures from natural stimuli 

unfolded linearly in time. This holds for spoken language, music, films, and motor sequences 

(Lashley, 1951; Lerdahl and Jackendoff, 1983; Ding et al., 2015; Baldassano et al., 2017). An 

intuitive example is that continuous speech is segmented into phonemes and syllables, which 

are grouped into words, phrases, and hierarchically organized sentences (Ghitza, 2012; Ding 

et al., 2015; Poeppel and Assaneo, 2020). Likewise, in music, units of different sizes are 

organized in nested hierarchical structures (Huron, 2008; Larrouy-Maestri and Pfordresher, 

2018; Lerdahl and Jackendoff, 1983), such that the building blocks (i.e., notes and beats) 

allow motifs and phrases to be constructed according to musical criteria. Accordingly, music 

listening involves extracting hierarchical structures and computing long-term dependencies, 

comparable to spoken language processing (Maess et al., 2001; Patel, 2003; Jackendoff, 2009; 

Patel, 2010; Rohrmeier, 2011; Koelsch et al., 2013; Donhauser and Baillet, 2020). How 

abstract, high-level structure is tracked online in language is actively investigated. Evidence 

illuminating mechanisms of predictive event segmentation in music has, in contrast, been 

sparse and circumstantial. During music listening, listeners hear a single note or chord at a 

moment - but internally represent melodies that are stretched into the past and extended into 

the future (e.g. tension and attraction in musical phrases) (Augustine and Chadwick, 1991; 

Huron, 2008). Here we test the hypothesis that neural mechanisms well established in other 

domains - e.g., hippocampal physiology - underpin segmentation and prediction of high-level 

musical structures.  

 To perceive musical event structure in real time, it has been conjectured that listeners 

anticipate incoming musical events following past harmonic progressions as music is 
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unfolding (Huron, 2008; Vuust et al., 2009; Rohrmeier and Koelsch, 2012; Tillmann, 2012; 

Patel and Morgan, 2016). Musical phrase segmentation is natural, automatic, and effortless 

for musicians as well as listeners without explicit knowledge of music theory (Trainor and 

Trehub, 1992; Kragness and Trainor, 2016). Because listening to music is ubiquitous across 

cultures, a deeper mechanistic understanding of this fundamental faculty is of broad 

significance. If abstract online musical segmentation involves fast structural predictions, 

neural dynamics should be observed that reflect simultaneously (i) parsing musical phrase 

structures and (ii) predicting phrase boundaries. Previous research has not demonstrated 

characteristic neural signatures of these concurrent operations.   

Experiments studying online processing of music mainly focus on lower-level 

stimulus features, such as tracking notes or beats or rhythmicity in tone sequences (Nozaradan 

et al., 2011; Doelling and Poeppel, 2015; Fujioka et al., 2015; Lenc et al., 2018; Harding et 

al., 2019). Prediction is primarily approached on the note and beat levels, with models based 

on information theory or transition probability to estimate predictability of notes and chords 

(Pearce, 2005; Di Liberto et al., 2020). Previous studies investigating musical syntax and 

structural prediction typically use deviation-detection paradigms in an offline manner: neural 

responses to endings of well-formed musical segments (e.g. musical phrases) are compared 

with endings of manipulated sequences (Knösche et al., 2005; Neuhaus et al., 2006; Koelsch 

et al., 2013; Silva et al., 2014; Koelsch et al., 2019). Differences between neural responses to 

offsets of musical pieces or segments, such as the early right anterior negativity (ERAN) 

(Koelsch et al., 2002) or the Closure Positive Shift (CPS) (Neuhaus et al., 2006), are 

interpreted as evidence for processing and predicting musical syntax. It remains unclear how 

the brain, in real time and in natural listening settings, segments high-level musical structures 

and establishes fast predictions. One methodological challenge is that musical hierarchies 

range from a timescale of ±1 second (e.g. note, beat levels) to a timescale of ±10 seconds 
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(musical phrase level). No neural mechanisms, especially in the time domain of tens of 

seconds, has been linked to processing high-level musical structures.  

 Here we draw on concepts from other fields. First, it has been proposed that ‘gain 

modulation’ in neural systems serves a fundamental role for routing and integrating 

information from multiple neural sources to scaffold high-level computations (Salinas and 

Sejnowski, 2001; Martin, 2020). In the case of music, we hypothesize that musical phrasal 

segmentation can be implemented through modulating the gain of low-level neural processes, 

such as neural tracking of notes and beats. Second, to study musical structural prediction, we 

draw inspiration from mechanisms of spatial cognition that have been extended to language. 

The phenomenon of ‘phase precession’ reveals that animals, guided by their learned cognitive 

maps, predict spatial positions of a future path during spatial navigation (Tolman, 1948; 

Jensen and Lisman, 1996; Buzsáki, 2005). Recent language research shows that prediction of 

high-level linguistic structures is reflected in phase precession: neural signals segmenting 

linguistic structures advance faster in time after listeners establish predictions for incoming 

speech (Teng et al., 2020). We conjecture that neural modulation components lock to musical 

phrasal boundaries and manifest phase precession, representing musical phrase segmentation 

with structural prediction. 

 To test these two hypotheses, we used chorales by J.S. Bach, as this music is highly 

structured and follows strict harmonic rules (Rohrmeier, 2011) - and collected 

electrophysiological data from human listeners. We first identify neural signatures that reflect 

the active segmentation of musical phrases. If listeners establish predictions at the phrasal 

level as a music piece unfolds, the neural signals of phrase segmentation should gradually 

peak around - and even predict - the timing of phrasal boundaries.  
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Results 

Musical materials and experimental paradigm  

We selected 10 Bach chorales. All music stimuli can be found at: https://osf.io/vtgse/. Nine 

stimuli had 8 beats per phrase, one had 12 beats per phrase. We chose three tempi, 66, 75, and 

85 bpm (beats per minute) to cover a range of tempi in natural listening conditions and 

removed fermata that indicate any phrasal structure in the acoustics. We generated the 

auditory stimuli using an artificial piano sound generator, so that all beats had the same length 

at one tempo (see Methods). To create two distinct control conditions with disrupted phrasal 

structures (Fig. 1A), we (i) globally reversed the temporal order of beats in a piece by 

rearranging the musical scores - a ‘Global reversal’ condition, and (ii) we locally reversed the 

beats in the middle of musical phrases while keeping the onset and the offset beats intact - a 

‘Local reversal’ condition. These reversal manipulations keep intact the basic musical 

contents (notes and beats) of each piece but disrupt temporally the high-level musical 

structures. We presented 90 pieces (10 pieces × 3 conditions × 3 tempi) to 29 participants 

undergoing EEG recording. The participants numerically rated how much they liked each 

piece (behavioral results in Fig. S1C).  
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Fig. 1.  Stimulus manipulation and experimental paradigm. (A) Reversal manipulation. 10 Bach chorales 
(Original, top) were subjected to two reversal conditions: Global reversal (bottom) - the order of beats of an 
entire music piece was temporally reversed; and Local reversal (middle) – the middle part of the musical phrases 
of each piece was reversed. The harmonic progressions of musical phrases, suggested by the dashed tree 
structures, were hypothesized to be preserved in the Original and the Global reversal conditions but not in the 
Local reversal condition. (B) Example excerpt. The first two phrases of a piece demonstrate the reversal 
manipulations. Neural signals should lock to the phrasal structures in the Original (top) and Global reversal 
(bottom) conditions but to a lesser degree in the Local reversal (middle) condition, illustrated by the wave 
amplitude. Based on findings in speech segmentation (Teng et al., 2020), the preserved harmonic progressions 
enable listeners to anticipate phrasal boundaries at the structural level. This can be demonstrated by phrase-
segmenting neural signals increasingly advancing faster than the musical structures unfolded physically – the 
phenomenon of phase precession. (C) Experimental paradigm and analysis. Participants listened to each piece 
while undergoing EEG recording and rated how much they liked each piece. We extracted shared neural 
components across the participants using multiway canonical correlation analysis (MCCA) (top right) and 
selected the component that explained the largest variance. We first conducted one Fourier decomposition to 
measure beat/note tracking around 1 Hz and derived temporal response function (TRF) and cerebral-acoustic 
coherence (Cacoh). We conducted the second Fourier decomposition that revealed how the power of neural 
signals was modulated by the phrasal structures around 0.1 Hz and derived TRFs using four different musical 
criteria. Lastly, we quantified phrasal phase precession in a neural-phase and phrasal-boundary plane: precession 
occurs when neural phase advances faster than phrasal boundaries; phase recession occurs, otherwise.    
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If musical phrasal structures can be extracted by listeners in the Original and Global 

reversal conditions (wherein harmonic progressions are preserved), neural response profiles 

should be observed to rhythmically lock to the phrasal boundaries, reflecting phrase-level 

musical segmentation. In contrast, such a phrase-segmenting neural component should be 

diminished in the Local reversal condition because of disrupted phrasal structures (see Fig. 1B 

for illustration). If listeners internally construct phrasal structures as music unfolds and 

establish expectations for incoming contents at the phrasal level, we should observe phrasal 

phase precession: neural signals locking to the phrasal boundaries advance faster than the 

physically unfolding music and eventually predict incoming phrasal boundaries (Fig. 1B).    

Neural tracking of notes and beats is not modulated by high-level musical structure  

We first examined how the reversal manipulations modulated low-level (note and beat) music 

tracking (providing, as well, a replication of previous research using new stimuli). To extract 

the relevant neural responses, we first conducted a multi-way canonical component analysis 

(MCCA) over the 29 participants who generated valid EEG recordings. We derived the 

largest component shared across the participants (see Fig. 1C for illustration). The MCCA on 

the EEG signals resulted in a pooled neural signal across all EEG channels for each 

participant and music piece (see Methods). The weights over the EEG channels showed an 

auditory origin of the derived neural signals (Fig. S1E-G).  

We then calculated the cerebro-acoustic coherence (Cacoh) between the amplitude 

envelopes of the pieces and the neural signals (Peelle et al., 2013). The results are depicted in 

Fig. 2A. Peak Cacoh values were observed around the beat rate (B), the note rate (N), and 

their harmonics, across all tempi and reversal conditions. We selected the peak Cacoh values 

around the beat and note rates (Fig. 2B) and conducted a three-way repeated-measure 

ANOVA (rmANOVA) (Condition × Tempo × Frequency, beat rate vs. note rate). We found a 

main effect of Frequency, with Cacoh values of the note rate significantly larger than the beat 

rate (F(1,28) = 108.09, p < .001, ηp2 = 0.794). The main effect of Tempo was significant 
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(F(2,56) = 3.68, p = .032, ηp2 = 0.116), and the interaction effect between Tempo and 

Frequency was significant (F(2,56) = 124.47, p < .001, ηp2 = 0.816). A two-way rmANOVA 

(Tempo × Frequency) showed that Cacoh increased with the tempo at the beat rate (F(2,56) = 

26.33, p < .001, ηp2 = 0.485) but decreased at the note rate (F(2,56) = 100.76, p < .001, ηp2 = 

0.783). Tempo-modulated music tracking can be explained by the resolution-integration 

mechanism in auditory perception (Teng et al., 2016): shortening intervals between acoustic 

elements facilitates global integration of acoustic information over a beat; lengthening the 

intervals facilitates perceptual analyses of local information to extract notes within a beat. 

Note that the Cacoh of note tracking is stronger than beat tracking, probably because the first 

harmonic of the beat note overlaps with the note rate, increasing the neural signal strength 

around the note rate.  
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Fig. 2. Neural tracking of beats and notes. (A) Cerebro-acoustic coherence (Cacoh) for notes (N) and beats (B) at 
each tempo. Line color indicates the reversal condition. The three conditions Original, Local, and Global are 
shown in each panel, but only the Original condition can be seen because the three conditions highly overlap. (B) 
Tempo modulates neural tracking of beats and notes. Increasing tempo positively modulates beat tracking (p 
< .05) but negatively modulates note tracking (p < .05). (C) Correlation between Cacoh and music training score. 
We used the GOLD-MSI questionnaire to quantify how much musical training each participant received and 
correlated the score of this subscale with Cacoh. (D) Temporal response function (TRF) for each condition and 
tempo. We identified two periods (shaded boxes) showing significant differences (p < .01) across all conditions 
and tempi. Line shade codes for the tempo. The dashed lines indicate the boundaries of the permutation test. (E) 
Root mean square (RMS) of TRF within each period. We calculated RMS within each significant period and 
found that the tempo positively modulated both periods (p < .05). In the late period, we found a main effect of 
conditions (p < .05); the RMS of the original condition is larger than the global reversal (p < .05). (F) 
Correlation between RMS and music training score. We correlated RMS of each period with the music training 
score and found a significant positive correlation in the early period (p < .05).  
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We next correlated the beat and note tracking averaged over all reversal conditions 

with participants’ musical training scores, obtained using the GOLD-MSI questionnaire 

(Müllensiefen et al., 2014) (see Methods). In line with previous research on neural tracking of 

musical beats and notes (Nozaradan et al., 2011; 2012; Doelling and Poeppel, 2015; Lenc et 

al., 2018), we show significant correlations between music training and note tracking 

(Koelsch et al., 2002; Fujioka et al., 2004; Doelling and Poeppel, 2015; Harding et al., 2019). 

We found a significant positive correlation between training and note tracking (r(27) = .447, p 

= .015) but not beat tracking (r(27) = .349, p = .063) (Fig. 2C). We show the correlations 

between the neural tracking at each tempo and the music training scores in Table S1. 

Surprisingly – and crucially - the main effect of Condition (Original, Local, Global) was not 

significant (p > .05) across all analyses. This suggests that previous findings of note and beat 

tracking may have less to do with high-level musical structures but rather reflect lower-level 

auditory processing of acoustic contents and tempi in musical materials.  

 

Reverse correlation shows temporal dynamics of music tracking 

Neural tracking of notes and beats has often been investigated in the spectral domain, 

forgoing information on temporal dynamics (Nozaradan et al., 2011; 2012; Doelling and 

Poeppel, 2015; Lenc et al., 2018; Harding et al., 2019). To characterize the time domain, we 

derived temporal responses functions (TRF), using reverse correlation between the amplitude 

envelopes of the music pieces and the elicited neural signals, to uncover the dynamics in 

music tracking (Crosse et al., 2016). We calculated a TRF over 10 music pieces of each of 

nine presented versions (Fig. 2D). To reveal the modulation effects of the tempi and reversal 

conditions, we conducted a cluster-based rmANOVA analysis over the 9 conditions from 100 

ms before the zero point to 400 ms after (see Methods). We found two significant periods (p < 

0.01): one early period, 30 – 100 ms and one late period, 120 – 250 ms. We then calculated 

root mean square (RMS) representing overall signal strength over the TRF weights within 
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each significant period, depicted in Fig. 2E. We next conducted a two-way rmANOVA 

(Condition × Tempo) in each period. In the early period, we found a significant main effect of 

Tempo (F(2,56) = 33.29, p < .001, ηp2 = 0.543), with the higher tempo showing higher RMS 

values, but not for Condition (F(2,56) = .24, p = .788, ηp2 = 0.008). This finding echoes the 

result of the beat tracking analysis in Fig. 2B and shows that tempo modulates early auditory 

responses and consequently modulates beat tracking. In the late period, we found a significant 

main effect of Tempo (F(2,56) = 6.34, p = .003, ηp2 = 0.185) as well as, importantly, of 

Condition (F(2,56) = 4.01, p = .024, ηp2 = 0.125). We compared the RMS of the late period 

between conditions and found that, after FDR correction, the original condition had higher 

RMS values than the global reversal (t(28) = 3.09, p = .021) (Fig. 2E, insert). We then 

correlated the averaged RMS across all the versions in each period with the music training 

score (Fig. 2F). A significant positive correlation was shown in the early period (r(27) = .391, 

p = .036), but not in the late period (r(27) = .299, p = .115). The correlations in all the 9 

conditions can be found in Table S3. 

 Summarizing these first analyses, the data illustrate the basic temporal dynamics of 

neural responses during music listening: an early response period is primarily modulated by 

the tempo of music; a later period is likely related to putative musical structures. The 

correlations between the musical training and the neural signals are constrained to the early 

period (30 – 100 ms), suggesting that the observed correlation between neural tracking of 

beats and notes with music training in the spectral domain was mostly driven by early cortical 

responses, arguably related to basic auditory processing, instead of by processes underpinning 

musical structure tracking (Koelsch et al., 2002; 2005; Mankel and Bidelman, 2018).  

 

EEG power modulations at ultra-low frequencies reflect musical phrase segmentation  

The effects around phrasal boundaries are likely caused by the fact that the power of the 

neural responses was modulated by the musical structures. By testing how the power of 
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electrophysiological responses is modulated over the entire pieces, we sought to reveal 

genuine musical phrase segmentation.  

 We conducted a time-frequency analysis on the EEG signals to derive the 

spectrograms of EEG power and then calculated modulation spectra at each frequency by 

applying the FFT transform to the spectrograms (see Methods). We first wanted to determine 

whether EEG power was modulated. We show the modulation spectrum for each tempo in 

Fig. 3A. EEG power between 1 Hz and 2 Hz (precisely around the beat rate; y-axis) was 

modulated; critically, the largest modulations fell around the phrase rate (x-axis) at each 

tempo.   
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Fig. 3. Spectral and temporal analyses of musical phrase segmentation. (A) Modulation spectra of EEG power.  
The modulation spectrum for each frequency of EEG power at each tempo was computed, averaged over the 
three conditions. The y-axis indicates the frequency of EEG power; x-axis the frequency of EEG power 
modulation. (B) EEG power of an example piece modulated by phrasal structure. The longest music piece in the 
original condition at each tempo was selected. The dashed vertical lines mark the phrasal boundaries. The 
fluctuations of EEG power are locked to the phrase boundaries. (C) Modulation spectra at the beat rate. We show 
the modulation spectrum at the beat rate for each condition (color code as in Fig. 1) and each tempo. The 
horizontal dashed lines indicate the threshold derived from the surrogate tests in the spectral domain. The shaded 
areas of color represent ±1 standard error of the mean over participants. The gray shaded areas represent 
frequency ranges with modulation amplitude above the thresholds around the fundamental frequency (F0) and 
the first harmonic (F1) of the phrase rate. (D) Correlation between musical training score and EEG power 
modulation of each reversal condition around F0. (E) TRF of phrasal boundaries. We calculated the TRF of EEG 
power using the phrasal boundaries as the regressor. The x axis is marked in the number of beats; the double-
arrow line indicates the beat length at each tempo. Importantly, the TRFs of phrasal boundaries started to 
progress two beats before the phrasal boundaries, indicating a prediction of the phrasal boundaries. The shaded 
areas of color represent ±1 standard error of the mean over participants. 
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We extracted EEG power at the beat rate for each tempo and show the EEG power of 

different tempi, averaged over 29 participants, for the longest original piece in Fig. 3B. EEG 

Power is indeed quasi-periodically modulated by the phrasal structure, which can be seen 

clearly from peaks of EEG power locked to the phrasal boundaries. We next quantified the 

modulation spectrum of each condition for the 9 music pieces having 8 beats per musical 

phrase. As the lengths of the pieces were different between the three tempi, the modulation 

spectra cannot be directly compared across tempi, because differences of signal lengths bias 

estimation of their modulation spectra. Also, a baseline was needed so that we could decide 

the frequencies at which significant modulations of EEG power were shown. Therefore, we 

conducted a surrogate test in the spectral domain by shuffling the phase of each modulation 

frequency for each of nine reversal versions (see Methods).  

Remarkably, the power modulations of the three reversal conditions were found to be 

significant around the corresponding phrase rate, but the strength of the modulations differed 

across conditions (Fig. 3C; Fig. S2A). We corrected the power modulations by subtracting the 

mean of the null distribution of each condition derived from the surrogate tests and then 

identified the significant frequency ranges around the phrase rates (F0) and their first 

harmonic (F1). We conducted a two-way rmANOVA (Tempo × Condition) on the corrected 

modulation amplitude within the significant range around the phrase rate (the fundamental 

frequency of the phrase segmentation, F0) (Fig. S2A). We did not find any significant main 

effect nor interactions (p > .05). We then averaged the magnitude over the significant 

frequency ranges around F0 of the phrase segmentation and its first harmonic (F1). The two-

way rmANOVA showed a significant main effect of Condition (F(2,56) = 3.66, p = .032, ηp2 

= 0.115), but not of Tempo (F(2,56) = 0.66, p = .521, ηp2 = 0.023) nor an interaction 

(F(4,112) = 1.48, p = .214, ηp2 = 0.050). In the post-hoc test, after FDR correction, we did not 
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find differences between the conditions (before FDR correction, the original is significantly 

larger than the local reversal, t(28) = 2.36, p = .026) (see Fig. S2A for more details).  

 We averaged the corrected modulation amplitude across tempi and correlated the 

corrected modulation magnitude of each condition around the phrase rate with the music 

training score (Fig. 3D). We found significant positive correlations for all the three conditions 

(original: r(27) = 0.459, p = .012; global reversal: r(27) = 0.576, p = .001; local reversal: r(27) 

= 0.376, p = .045). The correlations on the modulation amplitude around both F0 and F1 are 

shown in Fig. S2B. Note that the correlation between the musical training score and the 

magnitude of neural tracking of beats is not significant (Fig. 2C), but the power modulation of 

beat tracking significantly correlated with the musical training.  

 We conducted the same analysis procedure at the electrode level as well as in source 

space, to show topographies and source localization results (Fig. S3). Although the precision 

of EEG source localization was limited, it can be observed that the major difference of phrase 

segmentation between the reversal conditions was shown in the anterior part of the temporal 

lobes, with the right hemisphere showing more prominent differences than the left 

hemisphere, consistent with previous research suggesting a rightward lateralization of musical 

hierarchy processing under constrained experimental paradigms (Maess et al., 2001). 

 

TRFs of EEG power reveal different temporal dynamics of phrase segmentation  

To capture the temporal dynamics of the phrase segmentation, we calculated TRFs of EEG 

power at the beat rate of each tempo using the phrasal boundaries as the regressor (Fig. 3E). 

The TRFs of all three conditions show peaks around the phrasal boundaries, but their weights 

(TRF magnitude) differed, converging with the analysis in the spectral domain (Fig. 3C&D). 

The weights of the TRFs of phrasal boundaries started to go above baseline well before the 

phrasal boundaries, indicating a prediction of the phrasal boundaries. To summarize the TRFs 

quantitatively, we fitted the group-averaged TRFs with Gaussian models (Fig. S2C&D) and 
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tested the significance of the differences of RMS (one standard deviation of the Gaussian fits 

centered around the TRF peak) between the conditions by conducting a two-way rmANOVA 

(Tempo × Condition). We found a significant main effect of Condition (F(2,56) = 4.49, p 

= .016, ηp2 = 0.138), but not of Tempo (F(2,56) = 0.93, p = .399, ηp2 = 0.032) nor an 

interaction (F(4,112) = 0.68, p = .607, ηp2 = 0.024). The post-hoc test shows that the Original 

condition is significantly larger than the Local reversal (t(28) = 2.96, p = .018, FDR 

corrected). Similar results were observed when we calculated RMS around the peaks of the 

Gaussian fits or within two standard deviations (Fig. S2E). 

The TRFs of the Original and the Local reversal mostly peaked around the boundaries 

of the predefined phrasal structure. In contrast, the TRFs of the Global reversal had much 

longer latencies (Fig. S2D). This suggests that the reversal manipulations changed the phrasal 

structures of the music pieces in the Global reversal. We explored this finding by annotating 

different musical criteria that are expected to contribute to segmenting phrasal structures (i.e., 

cadence, grouping rule, and voice leading) in the Original and reversed music pieces, to 

investigate how each attribute explained the EEG power modulation (Fig. S4). The predefined 

phrasal structures still best explained the EEG power modulation, but the cadence showed 

comparable performance. The phrase segmentation in the Global reversal condition was 

further examined in Fig. S5. 

Summarizing to this point, the findings of phrase segmentation in both the spectral and 

temporal domains (Fig. 3) demonstrate that we can capture how listeners parse musical 

phrases online. Since musical phrase segmentation was better in the Original condition than in 

the Local reversal condition, online phrase segmentation cannot solely be explained by the 

boundary beats of musical phrases, as the boundary beats in the Original pieces were matched 

with the Local reversal condition (Fig. 1A).  

 

Phrasal phase precession reveals predictive processes of musical phrase segmentation 
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To further explore the predictive nature of musical phrase segmentation, we quantified phase 

precession of EEG power modulations. The important phenomenon of phase precession has 

been shown in spatial navigation (Buzsáki, 2005) and related to prediction of further events 

(Jensen and Lisman, 1996; Lisman, 2005; Oasim et al., 2021). At the beginning of each 

musical piece, the neural responses will track the phrasal structure; as the musical structure 

unfolds, predictions for the coming phrasal structures are established and the neural phases 

advance faster. Because phase precession is difficult to show in continuous naturalistic 

stimuli, this is an opportunity to explore a fundamental neurobiological mechanism in the 

context of complex perceptual processing.   

 We quantified phrase-level phase precession for each musical piece, as the different 

pieces were different in terms of their musical structures, which potentially leads to different 

degrees of predictability among the individual pieces. One challenge with analyzing neural 

data from individual music pieces is that the EEG recording did not provide a sufficiently 

high signal-to-noise ratio for single-trial data, and it is problematic to derive robust neural 

indices from single trials of each participant. To address this problem, we treated the EEG 

data of each participant for one piece as one repetition/trial of this piece, assuming that the 

same piece induced similar neural responses across individual listeners. We first averaged 

EEG power of each music piece over the 29 participants and then quantified the phrasal phase 

precession on each piece. After we acquired a robust estimate on the group-averaged data, we 

also investigated phase precession at the level of individual participants.   

Fig. 4A (left panel) shows the wrapped phase series of the group-averaged EEG 

power, for one music piece in the three reversal conditions at 75 bpm, plotting the phase 

values at the phrasal boundaries (Fig. 4A, right panel). The phase series at the phrasal 

boundaries in the Original and the Global reversal conditions is gradually accelerating, but not 

in the Local reversal. We grouped the neural phases of the music piece at the phrasal 

boundaries in the Original and the Local reversal conditions and visualize them in Fig. 4B 
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(see Fig. S5 for the Global reversal). As the music was unfolding, the neural phases for the 

Original condition were increasingly moving forward; in the Local reversal condition, the 

neural phases were lagging. This can be interpreted as (perceptual) time warping in the brain 

(Fig. 4C, upper panel). By the end of the music piece, the neural signal indicating musical 

phrase segmentation predicts the future phrasal boundaries in the Original condition (Fig. 4C, 

lower panel). Hence, the peak frequency of phrase-segmenting neural signals should be higher 

than the phrase rate of the music piece in the Original condition (warped time) but lower than 

the phrase rate in the Local reversal condition, which is exactly what the data show in Fig. 4D 

(see Fig. S6 for other music pieces).   
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Fig. 4. Phrasal phase precession. (A) Phase series of group-averaged EEG power of an example music piece (left 
panel). The phase of zero indicates where the peaks of cosine waves should be. The neural phases at the phrasal 
boundaries in the Original and the Global reversal conditions are advancing (tilting upwards) as the phrasal 
structures unfold (right panel). (B) Distribution of neural phases around phrasal boundaries. Cosine waves were 
plotted in both panels with the phase of zero aligning with the phrasal boundary. The bars indicate neural phases 
at the phrasal boundaries in the right panel of (A). In the Original condition, neural peaks lagged behind phrasal 
boundaries in the beginning but predicted phrasal boundaries after the fourth phrase; an opposite pattern was 
observed in the Local reversal condition. See Fig. S5 for the Global reversal. (C) Schematic indication of phase 
precession. As the phrasal phase precession occurs, time is warped mentally (top panel). Phrase-segmenting 
neural components followed the phrasal boundaries in the Local reversal condition but predicted the incoming 
phrasal boundaries in the Original condition by the end of the music piece (bottom panel). (D) Shifted 
modulation spectral peak. The peak frequencies of neural signals in the Original and Global reversal conditions 
are higher than the phrase rate. (E) Phrase Phasal Precession index (PPPi). We fit a line between the phrasal 
boundary number and the unwrapped boundary phase series. If no phase precession occurs, the slope is 2×pi 
(dashed line). The difference between the slope of each condition and 2×pi is indicated as PPPi and represents 
the degree and the direction of phase precession. (F) PPPi for each music piece. We calculated PPPi within the 
significant frequency ranges determined in Fig. 3C. (G) Averaged PPPi for each condition. The reversal 
manipulation modulated the phase precession (see main text). The error bars represented ±1 standard error of the 
mean over 9 music pieces.  
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We then constructed an index to summarize the phrasal phase precession by fitting a 

line between the order number of phrase boundaries and the unwrapped phase values for the 

example music piece (Fig. 4E). If no phase precession occurs, the slope of the fitted line 

would be 2×pi (a full cycle of neural signal for each phrase). A slope larger than 2×pi would 

be observed if the phase series accelerates, and vice versa. We subtracted 2×pi from the slope 

fitted for each piece, and the index was termed the Phrasal Phase Precession index (PPPi). 

Indeed, the PPPi values showed positive values for the Original version and the Global 

reversal of the music piece, but a negative value for the Local reversal. We quantified the 

effect of Tempo and reversal Condition on PPPi (shown for each piece in Fig. 4F) by 

conducting a two-way rmANOVA (Tempo × Condition). Each ‘participant’ here is a music 

piece and the rmANOVA only included 9 ‘participants’. We found a significant main effect of 

Tempo (F(2,16) = 21.65, p < .001, ηp2 = 0.730), but no significant effect was shown for 

Condition (F(2,16) = 3.44, p = .057, ηp2 = 0.301) nor an interaction (F(4,32) = 1.44, p = .243, 

ηp2 = 0.153). Note that after removing the piece number 10, we found a significant main effect 

for Tempo (F(2,14) = 26.21, p < .001, ηp2 = 0.789) and Condition (F(2,14) = 4.78, p = .026, 

ηp2 = 0.406), but the interaction remained non-significant (F(4,32) = 1.33, p = .284, ηp2 = 

0.160). The above analysis on group-averaged power validated our method of using the PPPi 

to quantify the phrasal phase precession. We then calculated PPPi on the single trial data of 

each music piece at the level of individual participants (Fig. S7) and observed a significant 

main effect of Condition on PPPi, which was consistent with the result at the group-averaged 

level. 

In summary, phrasal phase precession demonstrates that listeners establish structural 

predictions at the phrasal level from the preserved harmonic structure in the Original and 

Global reversal conditions during music listening and predict future event (phrasal) 

boundaries. The phrase segmentation in the Local reversal condition can be viewed as a 

passive process of phrase segmentation, as the phrasal boundaries drive neural signals, but 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 15, 2021. ; https://doi.org/10.1101/2021.07.15.452556doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452556
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

predictive processes are only involved in the phrase segmentation in the Original and Global 

reversal conditions – a manifestation of musical expectation at the structural level.  

 

Discussion 

One of the remarkable features of perceptual and cognitive systems is that we can track not 

just surface properties of naturalistic stimuli but also extract higher-order structural features 

which are not obviously visible. This capacity is especially prominent when we process 

continuously varying, complex stimuli such as speech and music. Investigating these internal, 

inferential processes has proved to be challenging. We discovered a neural signature that 

segments musical phrases online, in a manner that exploits predictive processes demonstrated 

by phase precession.  

We first analyzed neural tracking of notes and beats in the spectral domain (applying 

novel approaches to a well-studied question). Importantly, we found that the note and beat 

tracking did not interact with the presence or integrity of phrasal musical structures (Fig. 2A, 

B&C). The subsequent temporal analysis showed that the neural tracking had two 

characteristic periods: an early period modulated by tempo and a late period sensitive to 

phrasal structure in music (Fig. 2D, E&F). We then demonstrated that EEG power of the beat 

tracking was modulated by musical structure and the power modulation reflected musical 

phrase segmentation (Fig. 3). The analyses culminate in the quantification of phrasal phase 

precession. We show that musical phrase segmentation is a predictive process rather than 

being passively evoked by the phrasal boundaries (Fig. 4). Our findings support the view that 

listeners actively segment music streams online, conforming to high-level musical structures.  

The approach show that it is now possible to move beyond the neural tracking of notes 

and beats, lower-level features in music, and study fundamental (and relatively abstract) 

musical structures realized at long timescales (> 5 s), using newer analysis approaches to non-

invasive EEG recording. Previous studies have typically shied away from analyzing EEG 
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signals at ultra-low frequencies (i.e. ~ 0.1 Hz) due to the low signal-to-noise ratio. However, 

the neural signatures of phrase segmentation we observed were reliable and could be 

estimated from a single music piece, allowing the possibility to study differences between 

individual music pieces (Fig. 3B and Fig. 4A&F). Although we were motivated by previous 

research showing characteristic responses to the endings of manipulated musical structures, 

such as ERAN (Koelsch et al., 2002) and CPS (Neuhaus et al., 2006), our new approach 

reveals neurobiological insights about music listening in natural conditions as well as neural 

signatures of phrase segmentation that differ in kind from ERAN and CPS. (1) The neural 

signature of processing the musical syntax can be directly observed (Fig. 3B&C), instead of 

by comparing different conditions of musical materials, as in ERAN and CPS. (2) The 

processing of the phrasal structures started not after the ending of a musical segment but 

before the phrasal endings (Fig. 3E). (3) The phrase segmentation derived from the low-level 

neural tracking of beat, modulated by high-level musical structures. More importantly and 

generally, we show that segmenting sensory (music) streams based on high-level grouping 

structures is a dynamic operation that exploits predictive processes (Fig. 4). 

The phenomenon of phase precession has been argued to reflect predictions of future 

events (Jensen and Lisman, 1996; Lisman, 2005). The phrasal phase precession we show – 

the discovery that neural phase accelerates as music unfolds – illustrates that the structure-

depended segmentation of music streams is not solely based on the musical stimuli but driven 

by listeners’ active construction of a segmentation schema (Newtson et al., 1979). Listeners 

potentially extract structural regularities in music from the beginning of a musical piece and 

gradually internalize the pattern of structure of the musical pieces, which allows listeners to 

construct a template to segment the musical piece. Hence, listeners can better segment the 

phrasal boundaries as the music is unfolding. This is very much analogous to the phenomenon 

of phase precession in the spatial domain – after being familiarized with mazes, animals rely 

on memorized spatial landmarks to predict the path ahead, which results in phase precession 
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of neural signals (Buzsáki, 2005). We here provide the evidence that segmentation is an 

interplay between stimulus-driven processes and active mental construction of future events. 

 The musical phrase segmentation we report probably reveals a neural signature of 

segmenting high-level musical structures in general. The original music pieces we used were 

selected so that they had clear and simple musical phrasal structures, coherent across different 

music theoretical criteria, such as voice leading, group-changing rule, and cadence (Fig. 

S4B&C). This selection facilitated the successful identification of the neural signature of 

musical phrase segmentation, but the exact contribution of each criterion should be 

specifically investigated. In any case, the shifted latency of TRF of the power in the Global 

reversal condition (Fig. 3E&S5) indicates that phrase segmentation varied with the music 

criteria, modified by the reversing procedure. Next steps should include disentangling the 

neural modulations of different musical criteria to reveal the precise computational nature of 

the musical segmentation of high-level structures we identified (Fig. S4 and Fig. S5).  

 Musical phrase segmentation resides in a timescale of above ~5 seconds (the 

minimum phrase length at 85 bpm), requiring recruitment of brain areas capable of processing 

information over a long timescale. Although the EEG signals we extracted using MCCA 

mostly related to neural activities of an auditory origin (Fig. S1D&F), the auditory system 

does not typically represent such long time constants (Overath et al., 2015; Teng et al., 2017; 

Teng and Poeppel, 2019; Donhauser and Baillet, 2020) and hence is not equipped to extract 

long-term phrasal structures. The candidate brain regions with long time constants are frontal 

areas, which have been proposed to integrate information over a long time period in language 

processing (Hagoort et al., 2004; Hagoort, 2005; Hickok and Poeppel, 2007; Lerner et al., 

2011; Hagoort and Indefrey, 2014) and movie processing (Hasson et al., 2008), and have been 

demonstrated to be involved with processing musical syntax (Maess et al., 2001; Knösche et 

al., 2005; Koelsch et al., 2005). It is likely that the frontal areas (e.g. potentially right inferior 

frontal areas as suggested in Fig. S4B) establish the phrasal structures online and convey 
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signals to modulate the neural responses of beat tracking. On the other hand, with regard to 

predicting phrasal event boundaries (Fig. 4), the hippocampus likely aids in encoding past 

musical structural information and fast retrieval of structural knowledge before phrasal 

boundaries for prediction (Baldassano et al., 2017; Ben-Yakov and Henson, 2018). Lastly, 

predicting the timing of auditory sequences has been shown to involve motor areas, including 

premotor cortex, supplementary motor area, and the basal ganglia (Grahn and Rowe, 2012; 

Morillon and Baillet, 2017; Assaneo and Poeppel, 2018; Rimmele et al., 2018; Assaneo et al., 

2019). Hence, we conjecture that a fast interplay between frontal areas and hippocampus 

during music listening supports extracting event structures and establishing structural 

predictions online, with assistance from motor areas for predicting the precise timing of 

musical events. It would be interesting to test these hypotheses by employing MEG and/or 

functional MRI to pinpoint the brain areas involved in the musical phrase segmentation for a 

more comprehensive understanding. 

We identified a robust neural signature that captures the online segmentation of music 

according to its high-level phrasal structure. The novel quantification of phrasal phase 

precession further demonstrates a predictive process of phrase segmentation during music 

listening. The neural signatures we highlight (musical phrase segmentation and phrasal phase 

precession) and the analysis procedures (EEG power modulation and PPPi) provide novel 

directions for studying cognitive processes of high-level structures using non-invasive 

recording techniques such as EEG or MEG.    
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Methods 

LEAD CONTACT AND MATERIALS AVAILABILITY 

Further information and requests for resources should be directed to and will be fulfilled by 

the Lead Contact, Xiangbin Teng (xiangbin.teng@gmail.com).  

Participants.  

Thirty-four native German speakers (age 18 – 34, 23 females) took part in the experiment. All 

the participants self-reported normal hearing and no neurological deficits. For the results of 

liking rating on musical materials, we included 32 participants (age 18 – 34, 21 females), 

because two participants could not finish the experiment (one participant chose to terminate 

the experiment, and we encountered technical issues when testing the other participant). For 

the EEG recording, 29 participants were included (age 18 – 34, 20 females). Among the five 

participants excluded from EEG analyses: one participant did not undergo EEG recording; we 

encountered technical issues during EEG recording for two participants; and two participants 

could not finish the experiment. Written informed consent was obtained from each participant 

before the experiment and monetary compensation was provided after the experiment. The 

experimental protocol was approved by the Ethics Council of the Max Planck Society. 

Individual scores of musical training 

In order to investigate the relation between the musical training of the participants and their 

neurophysiological responses to music listening, we used the Goldsmiths Musical 

Sophistication Index (GOLD-MSI) (Müllensiefen et al., 2014). This self-report inventory 

(German version) was given to the participants before the EEG recording and includes six 

dimensions: Active Music Engagement, Self-reported Perceptual Abilities, Musical Training, 

Self-reported Singing Abilities, and Sophisticated Emotional Engagement with Music. We 

mainly focused on Musical Training here. 

 

Stimuli.  
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We selected 11 music pieces from the 371 four-part chorales by Johann Sebastian Bach 

(Breitkopf Edition, Nr. 8610). In the 18th century, chorales were congregational hymns 

performed in religious settings. The regularity and transparency of the harmonic structures of 

the Bach chorales facilitated our subsequent analyses in a frequency tagging paradigm to 

investigate musical phrase segmentation. Musical phrases are generally marked by fermatas, 

indicating a pause or the prolongation of a note (Fuller, New Grove Dictionary of Music 

Online; Schilkret, 1988); the predefined phrasal structures of the selected pieces are shown in 

Table S1.  

 We then processed the original musical scores so that several confounds that may 

appear in EEG analyses could be avoided. We first ensured that each beat was always marked 

by a note onset, and hence the neural tracking of beat could be measured accordingly. 

Concretely, the whole and half notes were substituted by four or two quarter notes and the ties 

across notes were deleted that they could be repeated. The material consisted thus mainly of 

quarter and eighth notes and few sixteenth notes (which were allowed because they occurred 

at regular positions within and between music pieces). More importantly, as fermatas in the 

original music pieces provided rhythmical or acoustic cues for phrasal structures (such as 

pauses between phrases and lengthened notes), we removed them so that listeners could only 

rely on harmonic structures as well as other structural cues, such as cadence and voice 

leading, to parse music streams into phrases. The processed musical scores can be found in a 

public data repository (https://osf.io/vtgse/).  

In order to investigate musical phrase segmentation, it is necessary to provide two 

control conditions: (1) phrasal structures in each music piece are disrupted but basic musical 

contents, such as notes and tempi of beats, are kept intact; (2) phrasal structures are preserved 

to a large extent but listeners’ familiarity with music materials is controlled. For this purpose, 

we employed a paradigm of temporal reversal that has been commonly used in speech and 

language studies (Saberi and Perrott, 1999; Baldassano et al., 2017).  
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We first applied a local reversal procedure to the music pieces. According to the 

phrasal structures defined in the musical scores, we kept the onset beat and the ending beat of 

each phrase intact but temporally reversed the order of the beats in the middle. For example, a 

phrase of eight beats [1 2 3 4 5 6 7 8] becomes a new phrase [1 7 6 5 4 3 2 8] after the local 

reversal. A schematic illustration of this reversing procedure on the musical scores can be 

seen in Fig. 1A. The rationale for this local reversal was as follows: as we kept the salient 

onset and ending beats intact but disrupted the phrasal structures, neural indices for tracking 

musical phrases should be lower in the condition of local reversal than in the original 

condition. Alternatively, if the salient onset and ending beats are sufficient for listeners to 

parse continuous music streams into musical phrases, musical phrase segmentation should not 

differ between such locally reversed music pieces and the original pieces. To implement this 

local reversal procedure, we first used MuseScore 3 (musescore.org) to generate audio files of 

the music pieces from the processed original scores. As the beats in the generated audio files 

had the exact same length at a certain tempo, we cut out each beat and then reversed the order 

of the beats while preserving the waveform of each beat (the note order in a beat was not 

reversed). 

Secondly, we applied a global reversal procedure on the music pieces. For each piece, 

the order of all the beats was temporally reversed, starting from the end to the beginning. A 

schematic illustration of this procedure can be seen in Fig. 1A. This reversing procedure was 

implemented on the order of beats but not on the waveforms of beats. By reversing the music 

pieces globally, we aimed to preserve harmonic progressions and the phrasal structures but to 

disrupt the typical onset and end beats of musical phrases. If musical phrase segmentation can 

still be observed for the globally reversed pieces, and if the neurophysiological tracking of 

musical phrases is comparable to the original pieces, it can be concluded that harmonic cues 

play an essential role in neurophysiological tracking of musical phrases. Also, as globally 

reversed music pieces are not typically heard by listeners, the listeners’ familiarity of the 
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music pieces can be shown to be a minor contributor to musical phrase segmentation, if the 

musical phrase segmentation can still be observed. 

Note that the harmonic progression was particularly disrupted in the Local reversal 

condition whereas the Global reversal manipulation allowed to keep a plausible articulation of 

chords over time (Fig. 1A). We extracted the amplitude envelopes of the pieces and showed 

the modulation spectra of the envelopes in Fig. S1A. The acoustic differences between the 

three reversal conditions (Original, Local reversal, Global reversal) around the phrase rates 

are negligible (Fig. S1B), so we conjecture that the differences of neural signals between the 

reversal conditions must be due to differences in high-level musical structure.  

We generated the music audio files in MuseScore 3 for three tempi, 66 bpm (beats per 

minute), 75 bpm, and 85 bpm, which arguably cover a reasonable range of tempi of actual 

recordings of the Bach chorales (the tempo range we observed in a set of forty-five 

interpretations by voice, organ, or piano). Choosing three tempi, instead of only one, also 

enabled us to investigate how musical phrase segmentation varied with tempo. Furthermore, if 

phrase and beat tracking are observed in the music pieces of different tempi at different 

frequencies of EEG signals, this aids in validating the neural measurement – neural tracking 

of music structures is not constrained to a specific tempo or a frequency range of EEG signals 

but aligns with musical structures.  

In summary, we had three reversal conditions - original (without reversal), global 

reversal, and local reversal, and three tempi - 66 bpm, 75 bpm, and 85 bpm. This generated a 

3-by-3 experimental design. We used the music piece number 0, BWV 255 (Table S1), as the 

training piece before the formal experiment to familiarize participants with the experimental 

materials and the task. The 10 remaining pieces were included in the data analyses. In total, 

we presented 90 music pieces (3 conditions * 3 tempi * 10 pieces). The sampling rate of audio 

files was 44,100 Hz and the amplitude of the audio files was normalized to 70 dB SPL by 

referring the music materials to a one-minute white noise piece that had the same sampling 
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rate and was measured beforehand to be 70 dB SPL at the experimental setting. The music 

stimuli used in the current study can be found in a public data repository 

(https://osf.io/vtgse/).  

Analysis on acoustics of the music materials.  

To characterize temporal dynamics of the music pieces, we derived the amplitude envelopes 

of the musical materials. We filtered the audio files through a Gammatone filterbank of 64 

bands logarithmically spanning from 50 Hz to 4000 Hz (Ellis, 2009). The amplitude envelope 

of each cochlear band was extracted by applying the Hilbert transformation on each band and 

taking the absolute values (Glasberg and Moore, 1990). The amplitude envelopes of 64 bands 

were then averaged, and we downsampled the sampling rate from 44100 Hz to 100 Hz to 

match the sampling rate of the following processed EEG signals for further analyses (i.e., 

cerebral-acoustic coherence and temporal response function; see below).  

We transformed the amplitude envelopes to modulation spectra so that the canonical 

temporal dynamics of the music pieces can be concisely shown in the spectral domain. We 

first calculated the modulation spectrum of the amplitude envelope of each music piece using 

FFT with zeropadding of 8000 points and took the absolute value of each frequency point. As 

each piece had a different length and the zero-padding caused the modulation spectra of 

different music pieces to have different ranges of magnitude, we normalized the modulation 

spectrum of each piece by dividing the norm of its raw modulation spectrum. We then 

averaged the normalized modulation spectra across the 10 pieces for each condition at each 

tempo. At each tempo, the average modulation spectra across three conditions were highly 

similar, so we only showed the modulation spectra averaged across the three conditions for 

each tempo (Fig. S1A). Nonetheless, to demonstrate that the differences of the amplitude 

modulation spectra between the three conditions were not noteworthy, we calculated at each 

tempo the standard deviation over the modulation spectra of three conditions (Fig. S1B). The 

music pieces of the three conditions showed the standard deviations close to zero below the 
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beat rate, so the neural tracking of phrasal structures found later cannot be caused by the 

acoustic differences between the music stimuli of different reversal conditions. 

Analysis of music structure along four criteria. 

Although it can be assumed that the phrasal structure of the music pieces corresponds to the 

structure illustrated by the fermatas, it is likely that different musical criteria contribute to 

segmenting the music pieces and thus support musical phrase segmentation. To investigate 

how listeners parse music streams using the predefined phrasal structures as well as different 

musical criteria, we again borrowed a methodology used in the studies on speech and 

language wherein linguistic boundaries of various levels in the speech or language materials 

are marked according to linguistic theories and then are used (e.g. as regressors) to study the 

neural signatures around such linguistic boundaries (Di Liberto et al., 2015; Brodbeck et al., 

2018; Broderick et al., 2018). Two musicians with training in music theory manually marked 

musical structures of the musical materials we generated according to three criteria: voice 

leading (Trainor et al., 2014), cadence, and grouping rule (Deliege, 1987). The two musicians 

agreed on their decisions on the markings of the musical structures. We show the musical 

structures determined by voice leading, cadence, and grouping preference rule in Table S2. 

Experimental protocol and EEG recording  

EEG data were recorded using an actiCAP 64-channel, active electrode set (10–20 system, 

Brain Vision Recorder, Brain Products, brainproducts.com), at a sampling rate of 500 Hz, 

with a 0.1 Hz online highpass filter (12 dB/octave roll-off). There were 62 scalp electrodes, 

one electrode (originally, Oz) was placed on the tip of the nose. All impedances were kept 

below 5 kOhm, except for the nose electrode, which was kept below ∼10 kΩ. The auditory 

stimuli were delivered through plastic air tubes connected to foam earpieces (E-A-R Tone 

Gold 3A Insert earphones, Aearo Technologies Auditory Systems). 

The experiment included a training session and a testing session. In the training 

session, we presented the three conditions of the piece BWV 255, at the three tempi, to the 
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participants, who were instructed to answer a question after listening to each piece: ‘how do 

you like this music piece’. The participants rated the music pieces using a 6-point scale from 1 

to 6, with 6 being the most positive rating and 1 being the most negative rating. In each trial, 

before each piece was presented, the participants were required to focus on a white cross in 

the center of a black screen. After 3 to 3.5 seconds of silence, a piece was presented and the 

participants were instructed to keep their eyes open while listening to it. After each piece 

ended, the question appeared on the screen and the participants rated the piece. The next trial 

started right after the participants’ responses. The order of music pieces was randomized 

between participants. The behavioral data and EEG signals were not recorded during the 

training session. 

 The testing session followed the training session. We presented the 90 music pieces in 

six blocks to the participants while they were undergoing EEG recording. 15 pieces were 

presented in each block. The order of the music pieces was randomized within and across the 

blocks, and a different order of pieces was presented to each participant. The trial structure 

was the same as in the training session. Behavioral ratings were recorded. After each block, 

the participants could choose to take a short break of around one to three minutes or to initiate 

the next block.  

Behavioral data analysis.  

Behavioral data were analyzed using MATLAB 2016b. To quantify differences between 

conditions and tempi, at each tempo for each condition for each participant, we averaged 

liking ratings over 10 music pieces and used the mean as the measurement for each tempo and 

each condition on which the statistics were conducted. The results indicated how each 

condition and each tempo affected the liking ratings.  

EEG preprocessing  

EEG data analysis was conducted in MATLAB 2016b using the Fieldtrip toolbox 20181024 

(Oostenveld et al., 2011), the wavelet toolbox in MATLAB, NoiseTools (de Cheveigné et al., 
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2018; 2019), and the Multivariate Temporal Response Function (mTRF) Toolbox (Crosse et 

al., 2016). 

  EEG recordings were off-line referenced to the average of activity at all electrodes. 

Raw EEG data were first filtered through a band-pass filter from 0.5 to 35 Hz embedded in 

the Fieldtrip toolbox (a FIR zero-phase forward and backward filter using MATLAB ‘fri1’ 

function with an order of 4). Each trial (the recording for each music piece) was divided into 

an epoch of a length of each music piece plus a 3 second pre-stimulus period and a 3 second 

post-stimulus period. Baseline was corrected for each trial by subtracting out the mean of each 

trial, which was necessary for the following multiway canonical correlation analysis (MCCA) 

(de Cheveigné et al., 2018; 2019). An independent component analysis was applied for EEG 

recording of all the trials and used to correct for artifacts caused by eye blinks and eye 

movements.   

Multiway canonical correlation analysis (MCCA).  

We focused on the neurophysiological signals evoked by the musical pieces (auditory 

stimuli). To extract EEG signals that largely reflect auditory-related neural responses, instead 

of arbitrarily selecting certain electrodes (e.g. CZ or FCZ), we deployed MCCA to extract 

shared EEG components across all the participants. The participants were listening to the 

same set of pieces and hence similar neural responses to the music pieces should be observed 

across participants, although each participant’s EEG recording varied with his or her head size 

and EEG cap position and with different sources of noise. MCCA, briefly, first implements a 

principal component analysis (PCA) on each participant’s EEG recordings and then pools all 

the PCA components across the participants to conduct another set of PCA. The components 

from the second PCA reflect shared components of neural responses across the participants 

that are invariant to EEG cap position and individual head sizes. Detailed procedures and 

further explanations can be found in de Cheveigné et al. (2019). This procedure of component 
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extraction simplified further analyses and avoided biases introduced by arbitrary EEG channel 

selections and by differences of EEG cap positions and head sizes across participants. 

We first sorted each participant’ EEG recordings according to the music piece number 

and concatenated EEG recordings of each condition and each tempo after epoching to form 

one long trial. For example, the EEG recording for the piece 1 (BWV153/1) was put in the 

beginning and was followed by the EEG recordings of the piece number 2, 3, 4, 5, 6, 7, 8, 9, 

and 10, sequentially. The 3 second pre- and post- stimulus periods were included for each 

trial. For each condition and each tempo, we applied MCCA to derive 50 components and 

selected the first component, as the first component explaining the most variance (Fig. 

S1D&E). We checked MCCA weights over EEG channels and plotted them as topographies 

in Fig. S1D, from which it can be seen that the topographies of MCCA weights resembled 

typical topographies of auditory EEG responses. To validate our component selection, we 

calculated the power spectra for the first five components of MCCA in one condition (local 

reversal, 65 bpm). We zero-padded the time series of each component to 8000 points and 

calculated power spectra using FFT. We took the absolute value of each frequency point and 

normalized the amplitude spectrum by its norm. The results are shown in Fig. S1F&G, from 

which it can be seen that only the first component showed amplitude peaks corresponding to 

the frequency of the beat rate of each tempo. This demonstrated that the first component of 

MCCA indeed represented neural responses to music pieces. 

After conducting MCCA for each condition and each tempo and extracting the first 

component, we projected the component back to each participant and derived one long trial 

including the 10 music pieces for each participant. We then cut out the neural response for 

each piece from the long trial. As PCA sometimes reversed polarity of EEG signals, the 

polarity of the derived signals was manually checked and corrected for each participant.  

Cerebral-acoustic coherence (Cacoh)  
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We calculated the coherence between the neural signals and the amplitude envelopes of music 

pieces in the spectral domain - cerebral-acoustic coherence (Cacoh) - to investigate how 

pieces of different conditions were tracked in the brain at different neural frequencies. The 

rationale is that, if the music pieces of one condition can be more reliably tracked by the 

auditory system than the pieces of the other conditions because of their specific musical 

structures or tempi, this difference can be observed in the magnitude of coherence between 

the neural signals and the amplitude envelopes. This measurement, Cacoh, has been used in 

neurophysiological studies on speech perception (Peelle et al., 2013; Doelling et al., 2014), 

which quantified how phase-locked neural responses correlate with acoustic signals – at what 

frequencies and how strong the neural signals and the acoustic signals correlate with each 

other. In essence, Cacoh calculates cross spectrum coherence between neural signals and 

acoustic signals; here we calculated magnitude-squared coherence using the function 

‘mscohere’ in MATLAB 2016b (https://de.mathworks.com/help/signal/ref/mscohere.html). 

This allowed us to control the temporal window used to calculate the cross-spectrum 

coherence and the spectral resolution of the coherence values so that the temporal window 

sizes and the spectral resolution were matched across all the conditions. This helped avoid the 

biases of calculating spectral coherence over the entire music pieces introduced by different 

lengths of the music pieces. Nonetheless, we still referred to our calculation as ‘Cacoh’ as this 

term has been well adopted in the literature.  

We calculated Cacoh for each music piece and each participant using the neural data 

and the amplitude envelope derived from ranging from 1 second after stimulus onset to 1 

second before offset, to minimize the influence of onset and offset neural responses of a 

whole musical piece. The temporal window used was a Hanning window of 1024 points with 

an overlap of 512 points (50 percent of overlap between adjacent temporal windows). We 

constrained the frequency range from 0.1 to 20 Hz, with a step of 0.05 Hz. The inputs, the 

neural signals, and the amplitude envelope had a sampling rate of 100 Hz. We then averaged 
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Cacoh values across the 10 pieces within a condition. Therefore, a Cacoh value was derived 

for each tempo and each condition at each frequency point. 

Temporal response function (TRF).  

To investigate the temporal dynamics of the phase-locked responses to the music pieces, we 

calculated the reverse correlation between the neural signals and the music amplitude 

envelopes in the temporal domain – temporal response functions (TRFs). TRF has been 

commonly used to investigate how the auditory system codes acoustic and linguistic features 

in neurophysiological studies on speech perception (Di Liberto et al., 2015; Brodbeck et al., 

2018; Broderick et al., 2018). The rationale for this analysis is similar to Cacoh: if music 

pieces of a condition robustly evoke auditory responses, such robust auditory responses 

should be reflected by TRF in the time domain. Furthermore, we could extract temporal 

information from TRFs on when the auditory responses are modulated by different conditions. 

For example, TRFs may reflect differences between tempi within the first 100 ms after the 

onset of an auditory event while TRFs may differ between the conditions after 100 ms 

because of different manipulations on the musical structures. Early auditory responses likely 

reflect sensory processes whereas late responses tend to reveal high-level cognitive processes 

in music perception (Koelsch et al., 2002; Koelsch and Siebel, 2005; Koelsch et al., 2005). 

 The TRF was derived from the amplitude envelopes of stimuli (S) (for details see 

Analysis on acoustics of stimuli) and their corresponding EEG signals (R) (for details see EEG 

preprocessing and analysis) through ridge regression with a parameter (lambda) to control for 

overfitting (superscript t indicating transpose operation): 

 

We calculated a TRF for each music piece for each participant using the neural data 

and the amplitude envelopes between 1 second from the stimulus onset to 1 second before the 

offset so that the influences of the onset and offset neural responses were avoided. The TRFs 

were calculated from 200 ms before onsets of auditory events and 500 ms after. As the highest 

TRF = (RtR+ �I)�1RS
<latexit sha1_base64="vr4Qn7S14oOLrUXSiOzTpmwuW6I=">AAACCnicbVDLSgMxFM34rPU16tJNtAgVscyIoBuhKIju6tgXtNOSSTNtaCYzJBmhDF278VfcuFDErV/gzr8xbWehrQcCh3Pu4eYeL2JUKsv6NubmFxaXljMr2dW19Y1Nc2u7KsNYYFLBIQtF3UOSMMpJRVHFSD0SBAUeIzWvfzXyaw9ESBryshpExA1Ql1OfYqS01Db3ys41vIB5p6UceASbTEc7CN4ewlZybA+hc982c1bBGgPOEjslOZCi1Da/mp0QxwHhCjMkZcO2IuUmSCiKGRlmm7EkEcJ91CUNTTkKiHST8SlDeKCVDvRDoR9XcKz+TiQokHIQeHoyQKonp72R+J/XiJV/7iaUR7EiHE8W+TGDKoSjXmCHCoIVG2iCsKD6rxD3kEBY6fayugR7+uRZUj0p2FbBvjvNFS/TOjJgF+yDPLDBGSiCG1ACFYDBI3gGr+DNeDJejHfjYzI6Z6SZHfAHxucPChSXTw==</latexit><latexit sha1_base64="vr4Qn7S14oOLrUXSiOzTpmwuW6I=">AAACCnicbVDLSgMxFM34rPU16tJNtAgVscyIoBuhKIju6tgXtNOSSTNtaCYzJBmhDF278VfcuFDErV/gzr8xbWehrQcCh3Pu4eYeL2JUKsv6NubmFxaXljMr2dW19Y1Nc2u7KsNYYFLBIQtF3UOSMMpJRVHFSD0SBAUeIzWvfzXyaw9ESBryshpExA1Ql1OfYqS01Db3ys41vIB5p6UceASbTEc7CN4ewlZybA+hc982c1bBGgPOEjslOZCi1Da/mp0QxwHhCjMkZcO2IuUmSCiKGRlmm7EkEcJ91CUNTTkKiHST8SlDeKCVDvRDoR9XcKz+TiQokHIQeHoyQKonp72R+J/XiJV/7iaUR7EiHE8W+TGDKoSjXmCHCoIVG2iCsKD6rxD3kEBY6fayugR7+uRZUj0p2FbBvjvNFS/TOjJgF+yDPLDBGSiCG1ACFYDBI3gGr+DNeDJejHfjYzI6Z6SZHfAHxucPChSXTw==</latexit><latexit sha1_base64="vr4Qn7S14oOLrUXSiOzTpmwuW6I=">AAACCnicbVDLSgMxFM34rPU16tJNtAgVscyIoBuhKIju6tgXtNOSSTNtaCYzJBmhDF278VfcuFDErV/gzr8xbWehrQcCh3Pu4eYeL2JUKsv6NubmFxaXljMr2dW19Y1Nc2u7KsNYYFLBIQtF3UOSMMpJRVHFSD0SBAUeIzWvfzXyaw9ESBryshpExA1Ql1OfYqS01Db3ys41vIB5p6UceASbTEc7CN4ewlZybA+hc982c1bBGgPOEjslOZCi1Da/mp0QxwHhCjMkZcO2IuUmSCiKGRlmm7EkEcJ91CUNTTkKiHST8SlDeKCVDvRDoR9XcKz+TiQokHIQeHoyQKonp72R+J/XiJV/7iaUR7EiHE8W+TGDKoSjXmCHCoIVG2iCsKD6rxD3kEBY6fayugR7+uRZUj0p2FbBvjvNFS/TOjJgF+yDPLDBGSiCG1ACFYDBI3gGr+DNeDJejHfjYzI6Z6SZHfAHxucPChSXTw==</latexit>
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tempo was 85 bpm, the shortest inter-beat interval of the music pieces was around 700 ms and 

the inter-note interval was less than 400 ms. In the statistical analysis, we focused on the 

period of TRFs from -100 ms to 400 ms but showed the TRFs from -200 ms to 500 ms. The 

EEG signals and the amplitude envelopes of music pieces were not filtered or decomposed 

into different frequency bands. We fixed the lambda at 0.1 for calculating TRFs across all the 

conditions and tempi and hence the differences of TRFs across conditions should not be 

because of different lambda values. After calculating TRF for each music piece, we averaged 

TFRs over 10 pieces of one condition for each participant and conducted statistic tests on the 

mean TFRs across different conditions. The TRFs were calculated using the Multivariate 

Temporal Response Function (mTRF) Toolbox (Crosse et al., 2016).  

 The fixed lambda value of 0.1 was decided empirically. The lambda value decides 

how signals are temporally smoothed during TRF calculation and makes sure that the 

encoding model does not overfit to noise: the larger the lambda value is, the signals are 

smoothed to a larger extent temporally – the lambda functions similarly as the cutoff 

frequency of a low-pass filter. If zero is chosen for the lambda, the inversion of matrices 

cannot be implemented as sometimes the covariance of neural responses recorded here is not 

fully ranked. Therefore, we chose 0.1 as the smallest value of the lambda to make sure that 

the inversion can be implemented, and the signals were not smoothed seriously. We believe 

that the choice of the lambda value should not affect our results, as we compared TRFs across 

the conditions instead of drawing conclusions from the absolute TRF values and the choice of 

the lambda value exerted an equal influence on TRFs of all the conditions.  

Temporal modulation of EEG power 

Here we aim to investigate musical phrase segmentation beyond the level of the beat 

structure. The lengths of the music phrases ranged from ~7 seconds (8 beats per music phrase 

at 65 bpm) to ~5 seconds (8 beats per music phrase at 85 bpm), which corresponded to an 

ultra-low EEG frequency range of ~0.13 Hz to ~0.18 Hz. This ultra-low EEG frequency range 
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has proved to be challenging to analyze because of the 1/f shape of power spectrum of EEG 

recording and hence a low signal-to-noise ratio at the ultra-low frequency range. Another fact 

is that the time-frequency analysis requires an ultra-long temporal window for such frequency 

ranges (i.e. two cycles for 0.13 Hz, which is ~15 seconds). Previous studies have not yet 

shown a meaningful and robust neural signature within this range. It is indeed challenging to 

directly observe temporal dynamics of musical phrase segmentation and its corresponding 

frequency components in EEG signals.  

 To circumvent the challenge of analyzing the ultra-low frequencies of EEG signals 

and to directly observe temporal dynamics of musical phrase segmentation, we resorted to a 

different strategy: as we observed the boundary effects of neural responses to the boundary 

beats of musical phrases (Fig. 2G), the musical phrasal structures likely modulated the power 

of neural responses to each beat. The beat rates of the music pieces were above 1 Hz, at which 

neural signals can be well recorded by EEG, and the analyses above showed robust beat 

tracking (Fig. 2). Therefore, we chose to measure the temporal modulation of EEG power at 

the beat rate to investigate musical phrasal tracking. If listeners do track musical phrases and 

the neural responses to beats are modulated by musical structures, we should be able to 

observe neural signatures reflecting musical phrase segmentation through temporal 

modulation of EEG power at the beat rates. This procedure is akin to recovering low-

frequency amplitude envelopes from high-frequency carriers in speech signal processing 

(Teng et al., 2019).  

 We first conducted a time-frequency analysis on EEG signals to derive power 

spectrograms of neural responses to the music pieces. The single-trial data derived from 

MCCA were transformed using the Morlet wavelets embedded in the Fieldtrip toolbox, with a 

frequency range from 1 to 35 Hz in steps of 1 Hz and a temporal range from 3 seconds before 

the onset of music pieces to 3 seconds after the offset of music pieces in steps of 100 ms. To 

balance spectral and temporal resolution of the time-frequency transformation, from 1 to 35 
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Hz, the window length increased linearly from 3 cycles to 10 cycles. Power (squared absolute 

value) was extracted from the wavelet transform output at each time-frequency point. 

Moreover, the power values for each trial were normalized by dividing the mean power value 

over the baseline range (-1.5 s ~ -.5 s) and taking logarithms with base 10, and then was 

converted into values with unit of decibel by multiplying by 10. 

We next quantified temporal modulation spectra of EEG power to examine at which 

frequency the EEG power was modulated and whether the salient modulation frequencies 

were related to the frequency range of musical phrasal structures. This procedure is similar to 

the calculations of acoustic modulation spectra of the music pieces (Fig. 1C). We calculated 

the modulation spectrum of EEG power at each frequency using FFT with zeropadding of 

20000 points and took the absolute value of each frequency point, so that the spectral 

resolution of the modulation spectra was 0.005 Hz. The high spectral resolution guaranteed to 

resolve different music phrase rates (8 beats per music phrase: 0.1375 Hz at 65 bpm; 0.1562 

Hz at 75 bpm; 0.1771 Hz at 85 bpm). We then normalized the modulation spectra of each trial 

by dividing the modulation spectrum of each trial by the length of its corresponding music 

piece. As the music pieces of each condition had different lengths, they could not be summed 

together in the temporal domain, we chose to sum the modulation spectra (complex numbers) 

of 10 pieces within each condition in the spectral domain. This spectral summation on 

complex number reserved phase information, and the shared frequency components with 

similar onset phases across the 10 pieces in a condition were emphasized. After the spectral 

summation, we took the absolute value of each frequency point to derive the modulation 

spectrum for each condition. The above procedure resulted in a two-dimensional modulation 

spectrum for each condition, with one dimension as the frequency of EEG power and the 

other dimension as the frequency of temporal modulation of EEG power. It should not matter 

for the following statistic tests in this case whether we summed the modulation spectra or 

averaged the modulation spectra over the music pieces, as both summation and averaging are 
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linear operations. 

 To examine how the musical phrase segmentation varied with the tempo of music 

pieces, we averaged over three reversing conditions within each tempo and showed the 

modulation spectra of three tempi, respectively (Fig. 3A). If the neural signatures of musical 

phrase segmentation varied with the tempo, this helped validate the observed neural 

signatures. We would also like to check whether other frequency ranges of EEG power (i.e., 

the alpha band, 8 – 12 Hz, and the beta band, 13 - 30 Hz) showed signatures of musical phrase 

segmentation, as the previous literature reported an important role of the neural beta band in 

music processing (Doelling and Poeppel, 2015; Fujioka et al., 2015).  

 We next focused on the frequencies of EEG power at the beat rates of three tempi, as 

we only observed salient modulations of EEG power around 1 Hz (Fig. 3A), which was close 

to the beat rates of three selected tempi. We conducted once again the time-frequency 

transformations on the EEG signals, but only at the beat rates, 1.1001 Hz (65 bpm), 1.25 Hz 

(75 bpm), and 1.4165 Hz (85 bpm). The window length in the time-frequency transformations 

was 3 cycles. Other procedures and parameters were the same as the above analyses of 

calculating the EEG power and the modulation spectrum of each tempo and each reversing 

condition. We selected the third music piece of the original condition (BWV267), which had 

the longest duration, and showed the temporal dynamics of EEG power at the beat rate of 

each tempo (Fig. 3B). This directly showed how the EEG power was modulated by the 

musical phrasal structures. For each participant, we summed the modulation spectra of 10 

pieces within a condition in the spectral domain and conducted statistics on the summed 

modulation spectrum of each condition (Fig. 3C). 

Surrogate test on modulation spectra of EEG power 

The modulation magnitudes of neural signals of musical phrase segmentation cannot be 

directly compared between different tempi, as the music pieces of different tempi had 

different lengths and the tempi biased estimation of the modulation spectra reflecting the 
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musical phrase segmentation– frequency components in the lower frequency range tend to 

have larger strength because of the 1/f nature of neurophysiological signals. Therefore, 

individual baselines need to be constructed for the modulation spectra of different tempi; then 

the modulation spectra can be normalized according to the baselines within each tempo. 

Therefore, we conducted surrogate tests in the spectral domain to derive a null distribution of 

the modulation spectrum for each condition and each tempo. This served two purposes – we 

can directly test the significant frequency ranges of musical phrase segmentation using the 

null distributions and then normalize the modulation spectra to do comparisons across 

conditions.  

 The null hypothesis of the surrogate test here is that the neural signals did not track or 

phase-lock to the musical phrasal structure, and hence the sum of modulation spectra across 

10 pieces of each condition should not differ from the surrogate modulation spectra derived 

from jittering the temporal alignment between each of the 10 music pieces and its neural 

recording temporally. However, it is not appropriate to conduct this surrogate test in the time 

domain. As the lengths of musical phases (> 5 seconds) were much longer than the pre- and 

post- stimulus periods (3 seconds), temporal surrogation cannot efficiently disrupt the 

temporal correspondence between neural signals and musical phrasal structures - the jittering 

can only happen within a cycle of musical phrase. More importantly, the tempi here still affect 

the procedure of surrogation – for example, jittering within a temporal range of 6 seconds at 

85 bpm has a different jittering effect from the same jittering range at 65 bpm because of 

different lengths of musical phrases at the two tempi. Therefore, we conducted the surrogate 

test in the spectral domain after Fourier transformation of EEG power.  

 After calculating the modulation spectrum of the EEG power of each music piece, we 

multiplied the modulation spectrum (complex numbers) with a complex number that has a 

norm of 1 but a randomly generated phase from 0 to 2 * pi. This multiplication reset the onset 

phase of the EEG power of each music piece so that the EEG power of each music piece now 
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started with a random phase, whereas the amplitude magnitude of the modulation spectrum 

was kept intact. We then derived the summed modulation spectrum of the surrogated data for 

each tempo and each condition. By doing this, the 10 pieces within a condition all had 

different onset phases and therefore the temporal components locked to the musical phrasal 

structures should be averaged out or severely smoothed. This surrogating procedure on phase 

in the spectral domain was invariant to different tempi, as the phase values were normalized 

to different tempi. We repeated this procedure 1000 times and derived a null distribution of 

modulation spectra for each condition and each tempo and for each participant. 

 We averaged the modulation spectra of each surrogation across participants and 

derived a null distribution of the group-averaged modulation spectrum for each condition and 

each tempo. We chose a one-side alpha level of 0.01 as the significant threshold for each 

condition and each tempo (dashed lines in Fig. 3C). The frequency ranges where the empirical 

modulation spectra are above this threshold can be considered as the frequency ranges 

showing robust effects of musical phrase segmentation. To derive one frequency range across 

three conditions for one tempo so that the frequency range selected is unbiased to each 

condition for the following analysis, we chose the lower bound and the upper bound of the 

significant frequencies among all the three conditions and used them to define one frequency 

range for all the three conditions. The significant frequency ranges are as following: at 65 

bpm, 0.125 – 0.15 Hz; at 75 bpm, 0.14 – 0.175 Hz; at 85 bpm, 0.165 – 0.2 Hz.  

Normalization of modulation spectra of EEG power 

From the surrogate tests above, we obtained the null distributions for the modulation spectra 

of EEG power. As mentioned, using the null distributions we could normalize the raw 

modulation spectra that were biased because of different tempi of music pieces. Here, we 

calculated the mean of the null distribution for each condition and each tempo and subtracted 

out the mean of the null distribution from the raw modulation spectrum.  

Temporal response function of EEG power envelope with phrasal boundaries as regressor 
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In the above spectral analysis, we characterized the frequency components reflecting musical 

phrase segmentation. What are the temporal trajectories of musical phrase segmentation? Is 

the musical phrase segmentation a result of neural signals locking to the onset beat or to the 

offset beat of a musical phrase? The spectral analyses cannot reveal such temporal 

information. Therefore, we calculated TRFs of EEG power using the phrasal boundaries of 

music pieces as the regressors. 

 The TRFs of EEG power envelopes were calculated in a similar way as in the 

calculation of TRF of boundary beats of musical phrases. We marked the boundaries between 

two phrases in each music piece. For example, there are 7 phrases in the music piece of 

BWV153/1 (see Table S1, Piece Number 1) and hence there are 6 phrase boundaries; these 6 

phrase boundaries served as a regressor for the EEG power envelope to derive a TRF for this 

piece. After deriving the EEG power envelopes at each tempo, we calculated TRF for each 

music piece from 1 second after stimulus onset to 1 second before stimulus offset. The length 

of TRF estimation was 6 seconds, with 3 seconds before the phrase boundary and 3 seconds 

after. We then averaged TRFs of 10 pieces within a condition of each tempo. The lambda was 

set as 0, which indicated that no smoothing was applied and the calculation of TRF was equal 

to a reverse correlation.  

 The TRFs of EEG power envelope are shown in Fig. 3E. It can be seen that the peak 

latencies for different conditions differ. To determine the latency of each condition and to find 

the peak time point, we fitted each group-averaged TRF using a one-term Gaussian model, 

whose center point determined the peak latency of each group-averaged TRF. The model fits 

were plotted as inserts in Fig. S2C.  

Mutual information between music criteria 

We defined musical phrasal boundaries according to the notifications of music scores, but this 

a priori definition of the musical phrasal structure may not be best to explain the musical 

phrase segmentation we observed here. As the different reversing manipulations broke 
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musical structures to different extents, by calculating MI between different criteria, we could 

see how coherent the four musical criteria are with each other. This MI measurement helped 

answer whether the decreased musical phrase segmentation of one condition could be because 

of the incongruence between musical criteria caused by the corresponding reversing 

manipulation – congruent cues of different musical criteria collectively help listeners to parse 

the music pieces into high-level musical units beyond note and beat, whereas the 

incongruence among the musical criteria causes confusion to music stream segmentation. The 

congruence between music criteria may help explain why the participants better tracked 

musical phrases in one condition than the others. 

We first calculated MI between different musical criteria. We set the boundary beat 

marked by a musical criterion to 1 and the other beats to 0. Hence, we had a vector of ‘0’ and 

‘1’ for each music piece according to one music criterion. The time unit of this vector is the 

number of beats. We show an example of one criterion vector in Fig. S5A. We then computed 

the normalized MI between the four musical criterion vectors for each music piece. The 

normalized MI was calculated as the following with x and y representing two different 

criterion vectors: 

 

 After deriving the MI between different criteria for each music piece, we averaged the 

music pieces within each condition and used the averaged MI as a measure for the MI results 

between two musical criteria in one condition. The results are plotted in Fig. S5B. On the 

other hand, to obtain a measure for the congruence between the four criteria for each music 

piece, we averaged over all the MI results between the four criteria for each music piece and 

used the averaged MI of each piece as the congruence measure. If all the criteria are highly 

coherent with each other, the averaged MI is close to 1. Otherwise, the average MI is close to 

0. We plotted the congruence between the musical criteria for each piece in Fig. S4C.  

MI =
I(x, y)

H(x) ⇤H(y)
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Temporal response function of EEG power envelope with musical criteria as regressor 

Following the same procedures used in Temporal response function of EEG power envelope 

with phrasal boundaries as regressor, we calculated TRFs of EEG power using the segment 

boundaries defined by different musical criteria as the regressors, and showed the results in 

Fig. S4D. 

Phrasal phase precession and phrase segmentation at group-average level 

The original music pieces are well structured, and a listener can readily extract the temporal 

regularity of the phrase structures and predict the unfolding of the musical pieces. In contrast, 

the reversed conditions may preserve the salient onset and offset beats of musical phrases or 

expected chord progressions but reduce the structural cues to the phrases, so listeners 

experience difficulties to predict the unfolding of the pieces. To test this conjecture, we tried 

to quantify phase precession of neural responses on the level of musical phrases – phrasal 

phase precession (PPP), as phase precession of neural signals has been argued to reflect the 

prediction of future events (Jensen and Lisman, 1996; Lisman, 2005). The rationale here is 

that, if listeners can predict the incoming musical contents, the neural phase should proceed 

faster as the music unfolds. On the other hand, if listeners cannot predict the incoming music 

contents but passively respond to or are solely driven by the acoustic events in music, the 

neural phases would proceed at a constant speed, as the speed/tempo of the acoustic events is 

constant in each music piece. 

 To quantify phrasal phase precession, we need to conduct our analysis on the neural 

response to each music piece at a single-trial level. However, we conducted EEG recording 

here and the EEG recording at a single-trial level often has a low signal-to-noise ratio; usually 

at least tens to hundreds of repetitions are needed for analyzing neural responses to a single 

stimulus. To resolve this issue, we took another strategy for quantifying phase precession for 

each music piece – we first averaged each trial across 29 participants and then conducted our 

analyses on the group-averaged trial. Although such strategy prevented us from probing 
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individual differences, the process of the group averaging did aid in emphasizing the neural 

components induced by the music pieces while averaging out neural signals unrelated to the 

music listening. If a music piece is predictable on the level of musical phrase segmentation, 

the phrasal phase precession should be observed for all the participants to various degrees. 

Therefore, the phase precession quantified from the group-averaged trials could collectively 

indicate that the participants predict the unfolding of each music piece as well as reflect the 

predictability of each music piece. 

 The above analyses had extracted the EEG power envelopes reflecting the musical 

phrase segmentation and determined the significant frequency ranges of musical phrase 

segmentation at each tempo. We averaged the power envelopes of each music piece across 29 

participants and employed a two-pass second-order Butterworth filter embedded in the 

Fieldtrip toolbox to filter the group-averaged envelopes, using the significant frequency range 

of each tempo as the cutoff frequencies. The phases of the averaged power envelope of each 

music piece were extracted by applying the Hilbert transformation on the filtered signal and 

taking the angle at each time point. We showed in Fig. 4A (left panel) the phase series of 

three conditions of the music piece, BWV267, at 75 bpm, as this piece has the largest length. 

We also plotted the phase values at the phrase boundaries in Fig. 4A (right panel) so that it 

can be clearly seen that the proceeding speed of the neural phases was increasing in the 

original and global reversal conditions as the music piece unfolded. 

 We constructed an index, phrasal phase precession index (PPPi), to quantify phrasal 

phase precession over each music piece. If there is no phase precession, the neural phase 

series would proceed in a step of 2 * pi over every musical phrase. This is to say that, if we fit 

a line between the musical phrasal boundaries and their corresponding neural phase values, 

the slope will be exactly 2 * pi if there is no phase precession. In contrast, if the neural phase 

series is accelerating as the music piece is unfolding, this line will be steeper and the slope 

will be larger than 2 * pi; if the phase series is slowing down, the slope will be smaller than 2 
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* pi. Therefore, the differences between the slope of the fitted line and 2 * pi can represent 

whether there is phase precession and to what extent the phase series is accelerating or 

slowing down. The differences here were termed as PPPi. We provide an example in Fig. 4C, 

where we show the lines fitted between the music phrase boundaries and their corresponding 

neural phase values in three reversing conditions at 75 bpm.  

 The peak frequencies of modulation spectra of EEG power correlate with PPPi, as the 

phase precession can be considered as frequency modulation or phase modulation – the 

frequency of musical phrase segmentation is modulated along the time – and the mean 

frequency over the whole music piece becomes larger than the phrase rate if the phrasal phase 

precession happens. Therefore, here, we also quantified the peak frequencies of the 

modulation spectrum of EEG power within the significant phrase segmentation range for each 

music piece, so that the results of PPPi can be further validated by a different index.  

 To detect the peak frequency within the significant phrase segmentation range derived 

from the above (Surrogate test on modulation spectra of EEG power), we first looked for the 

frequency point of the largest modulation amplitude of each group-averaged trial for each 

music piece within the significant phrase segmentation frequency range, and then we 

calculated the differences of modulation amplitude between its adjacent frequency points. If 

the differences indicated that this frequency point sat at a concave function (negative 

difference on the left and positive difference on the right), we considered this frequency point 

to be the peak frequency of the modulation spectrum for the music piece. Otherwise, it meant 

that we did not find a peak frequency – either the curve of modulation spectrum within the 

significant phrase segmentation frequency range is not concave or the peak frequency is at the 

boundary of the significant range. The results are shown in Fig. S6. 

Phrasal phase precession at the level of individual participants  

As the significant frequency ranges of the phrase segmentation defined in Fig. 3C was derived 

from the group-averaged data, the frequency ranges were not applicable to the individual 
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participant’s data. Therefore, for each participant, we calculated PPPi of each music piece at 

each tempo (from left to right) for each condition using the bandwidth from ± 0.05 octave to ± 

0.14 octave (from top panel to bottom panel), so that the effect of the bandwidth on the PPPi 

calculation can be examined. For example, we chose a bandwidth of ± 0.05 octave at the 

phrase rate of 0.138 Hz and hence the frequency range for calculating PPPi in this case was 

from 0.1333 Hz to 0.1429 Hz. The procedures of calculating PPPi were the same as in 

Phrasal phase precession and phrase segmentation at group-average level, but were 

conducted on the individual data instead of the group-averaged data. 

EEG topographies and source localization 

We re-conducted the analyses of Cacoh, TRF, and phrase segmentation on each EEG 

electrode and in the source space to show topographies and source localization results (Fig. 

S2&S4), which complemented the above analyses based on MCCA components. Note that 

MCCA extracted the neural components key to music listening and overcame variations of 

individual participants’ head sizes and EEG cap positions during EEG recording. In contrast, 

the analyses on the EEG electrodes and in the source space failed to do so. Therefore, we did 

not conduct statistical tests in the electrode space and the source space but only visualized the 

neural signatures. 

 We conducted the same analysis procedures of Cacoh, TRF, and phrase segmentation 

on the preprocessed data of each electrode before running MCCA. As the analyses on the 

MCCA components already tested the effects of different conditions, we selectively showed 

Cacoh values at the beat rate and the note rate of the three tempi (Fig. S3A), and the 

modulation strength of phrase segmentation of the three reversal conditions (Fig. S3B).  

 We next conducted EEG source reconstruction and localized Cacoh and modulation 

strength of phrase segmentation. As no structural T1-weighted MRI scan was acquired, we 

used a template boundary element model (BEM) of a resolution of 5 mm provided by 

EEGLAB (Delorme and Makeig, 2004) as the head model. The BEM model was composed of 
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three 3-D surfaces (skin, skull, cortex) extracted from the MNI (Montreal Neurological 

Institute) canonical template brain. The source reconstructions were done by Minimum 

Norm Estimation (MNE) implemented in the Fieldtrip toolbox 20181024, and the covariance 

matrix was calculated using the EEG data of two seconds before the onsets of all the 90 music 

pieces. The forward solution was estimated from a source space of 8196 activity points; the 

inverse solution was calculated from the forward solution. We did not scan a head shape nor 

measure EEG cap position for each participant, so the precision of the source location results 

was severely limited. Nevertheless, the source localization can be used to provide guidance 

for explaining our findings. After projecting the preprocessed EEG data to the source space, 

we conducted the analyses procedures of Cacoh and phrase segmentation on each virtual 

channel (each vortex). We did not conduct Surrogate test on modulation spectra of EEG 

power in the source space, so the modulation strength of phrase segmentation was of raw 

values. 

DATA AND CODE AVAILABILITY 

The music materials, group-averaged EEG data, and all the analysis codes have been 

deposited in the OSF folder (https://osf.io/vtgse/). The preprocessed individual EEG datasets 

will be uploaded to the OSF folder and be fully available by 31st, January, 2022, as the 

authors and their collaborators are developing further studies based on the EEG datasets of 

this study. Readers can contact the Lead Contact, Xiangbin Teng (xiangbin.teng@gmail.com), 

to request the raw and the preprocessed EEG datasets for validation and replication of the 

current study.  

 
 
 
  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 15, 2021. ; https://doi.org/10.1101/2021.07.15.452556doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452556
http://creativecommons.org/licenses/by-nc-nd/4.0/


 50 

Reference 

Assaneo MF, Poeppel D (2018) The coupling between auditory and motor cortices is rate-
restricted: Evidence for an intrinsic speech-motor rhythm. Science advances 4:eaao3842. 

Assaneo MF, Ripollés P, Orpella J, Lin WM, de Diego-Balaguer R, Poeppel D (2019) 
Spontaneous synchronization to speech reveals neural mechanisms facilitating language 
learning. Nature Neursocience 22:627–632. 

Augustine S, Chadwick H (1991) Confessions. Oxford: Oxford University Press. 

Baldassano C, Chen J, Zadbood A, Pillow JW, Hasson U, Norman KA (2017) Discovering 
Event Structure in Continuous Narrative Perception and Memory. Neuron 95:709–721.e5. 

Ben-Yakov A, Henson RN (2018) The Hippocampal Film Editor: Sensitivity and Specificity 
to Event Boundaries in Continuous Experience. J Neurosci 38:10057–10068. 

Brodbeck C, Hong LE, Simon JZ (2018) Rapid Transformation from Auditory to Linguistic 
Representations of Continuous Speech. Curr Biol 28:3976–3983.e5. 

Broderick MP, Anderson AJ, Di Liberto GM, Crosse MJ, Lalor EC (2018) 
Electrophysiological Correlates of Semantic Dissimilarity Reflect the Comprehension of 
Natural, Narrative Speech. Curr Biol 28:803–809.e803. 

Buzsáki G (2005) Theta rhythm of navigation: Link between path integration and landmark 
navigation, episodic and semantic memory. Hippocampus 15:827–840. 

Crosse MJ, Di Liberto GM, Bednar A, Lalor EC (2016) The Multivariate Temporal Response 
Function (mTRF) Toolbox: A MATLAB Toolbox for Relating Neural Signals to 
Continuous Stimuli. Front Hum Neurosci 10:3958–14. 

de Cheveigné A, Di Liberto GM, Arzounian D, Wong DDE, Hjortkjaer J, Fuglsang S, Parra 
LC (2019) Multiway canonical correlation analysis of brain data. NeuroImage 186:728–
740. 

de Cheveigné A, Wong DDE, Di Liberto GM, Hjortkjaer J, Slaney M, Lalor E (2018) 
Decoding the auditory brain with canonical component analysis. NeuroImage 172:206–
216. 

Deliege I (1987) Grouping Conditions in Listening to Music: An Approach to Lerdahl &amp; 
Jackendoff's Grouping Preference Rules. MUSIC PERCEPT 4:325–359. 

Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial 
EEG dynamics including independent component analysis. J Neurosci Meth 134:9–21. 

Di Liberto GM, O’Sullivan JA, Lalor EC (2015) Low-Frequency Cortical Entrainment to 
Speech Reflects Phoneme-Level Processing. Curr Biol 25:2457–2465. 

Di Liberto GM, Pelofi C, Bianco R, Patel P, Mehta AD, Herrero JL, de Cheveigné A, 
Shamma S, Mesgarani N (2020) Cortical encoding of melodic expectations in human 
temporal cortex. eLife 9:74. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 15, 2021. ; https://doi.org/10.1101/2021.07.15.452556doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452556
http://creativecommons.org/licenses/by-nc-nd/4.0/


 51 

Ding N, Melloni L, Zhang H, Tian X, Poeppel D (2015) Cortical tracking of hierarchical 
linguistic structures in connected speech. Nat Neurosci 19:158–164. 

Doelling KB, Arnal LH, Ghitza O, Poeppel D (2014) Acoustic landmarks drive delta–theta 
oscillations to enable speech comprehension by facilitating perceptual parsing. 
NeuroImage 85, Part 2 IS -:761–768. 

Doelling KB, Poeppel D (2015) Cortical entrainment to music and its modulation by 
expertise. Proc Natl Acad Sci U S A 112:E6233–E6242. 

Donhauser PW, Baillet S (2020) Two Distinct Neural Timescales for Predictive Speech 
Processing. Neuron 105:385–393.e389. 

Ellis DPW (2009) Gammatone-like spectrograms. web source Available at: 
http://www.ee.columbia.edu/~dpwe/resources/matlab/gammatonegram/ [Accessed 
October 29, 2014]. 

Fujioka T, Ross B, Trainor LJ (2015) Beta-Band Oscillations Represent Auditory Beat and Its 
Metrical Hierarchy in Perception and Imagery. J Neurosci 35:15187–15198. 

Fujioka T, Trainor LJ, Ross B, Kakigi R, Pantev C (2004) Musical Training Enhances 
Automatic Encoding of Melodic Contour and Interval Structure. J Cognitive Neurosci 
16:1010–1021. 

Ghitza O (2012) On the Role of Theta-Driven Syllabic Parsing in Decoding Speech: 
Intelligibility of Speech with a Manipulated Modulation Spectrum. Front Psychol 3. 

Glasberg BR, Moore BCJ (1990) Derivation of auditory filter shapes from notched-noise data. 
Hear Res 47:103–138. 

Grahn JA, Rowe JB (2012) Finding and Feeling the Musical Beat: Striatal Dissociations 
between Detection and Prediction of Regularity. Cereb Cortex 23:913–921. 

Harding EE, Sammler D, Henry MJ, Large EW, Kotz SA (2019) Cortical tracking of rhythm 
in music and speech. NeuroImage 185:96–101. 

Hasson U, Yang E, Vallines I, Heeger DJ, Rubin N (2008) A Hierarchy of Temporal 
Receptive Windows in Human Cortex. J Neurosci 28:2539–2550. 

Huron D (2008) Sweet anticipation: Music and the psychology of expectation. MIT press. 

Jackendoff R (2009) Parallels and Nonparallels between Language and Music. MUSIC 
PERCEPT 26:195–204. 

Jensen O, Lisman JE (1996) Hippocampal CA3 region predicts memory sequences: 
accounting for the phase precession of place cells. Learn Mem 3:279–287. 

Knösche TR, Neuhaus C, Haueisen J, Alter K, Maess B, Witte OW, Friederici AD (2005) 
Perception of phrase structure in music. Hum Brain Mapp 24:259–273. 

Koelsch S, Gunter TC, Wittfoth M, Sammler D (2005) Interaction between Syntax Processing 
in Language and in Music: An ERP Study. J Cognitive Neurosci 17:1565–1577. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 15, 2021. ; https://doi.org/10.1101/2021.07.15.452556doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452556
http://creativecommons.org/licenses/by-nc-nd/4.0/


 52 

Koelsch S, Rohrmeier M, Torrecuso R, Jentschke S (2013) Processing of hierarchical 
syntactic structure in music. Proc Natl Acad Sci U S A 110:15443–15448. 

Koelsch S, Schmidt B-H, Kansok J (2002) Effects of musical expertise on the early right 
anterior negativity: an event-related brain potential study. Psychophysiology 39:657–663. 

Koelsch S, Siebel WA (2005) Towards a neural basis of music perception. Trends Cogn Sci 
9:578–584. 

Koelsch S, Vuust P, Friston KJ (2019) Predictive Processes and the Peculiar Case of Music. 
Trends Cogn Sci 23:63–77. 

Kragness HE, Trainor LJ (2016) Listeners lengthen phrase boundaries in self-paced music. J 
Exp Psychol Human 42:1676–1686 Available at: 
http://doi.apa.org/getdoi.cfm?doi=10.1037/xhp0000245. 

Kurby CA, Zacks JM (2008) Segmentation in the perception and memory of events. Trends 
Cogn Sci 12:72–79. 

Larrouy-Maestri P, Pfordresher PQ (2018) Pitch perception in music: Do scoops matter? J 
Exp Psychol Human 44:1523. 

Lenc T, Keller PE, Varlet M, Nozaradan S (2018) Neural tracking of the musical beat is 
enhanced by low-frequency sounds. Proc Natl Acad Sci U S A 115:8221–8226. 

Lerdahl F, Jackendoff R (1983) An overview of hierarchical structure in music. MUSIC 
PERCEPT 1:229–252. 

Lisman J (2005) The theta/gamma discrete phase code occuring during the hippocampal 
phase precession may be a more general brain coding scheme. Hippocampus 15:913–922. 

Maess B, Koelsch S, Gunter TC, Friederici AD (2001) Musical syntax is processed in Broca's 
area: an MEG study. Nature Neursocience 4:540–545. 

Mankel K, Bidelman GM (2018) Inherent auditory skills rather than formal music training 
shape the neural encoding of speech. Proc Natl Acad Sci U S A 115:13129–13134. 

Martin AE (2020) A Compositional Neural Architecture for Language. J Cognitive Neurosci 
32:1407–1427. 

Morillon B, Baillet S (2017) Motor origin of temporal predictions in auditory attention. Proc 
Natl Acad Sci U S A 114:E8913–E8921. 

Müllensiefen D, Gingras B, Musil J, Stewart L (2014) The Musicality of Non-Musicians: An 
Index for Assessing Musical Sophistication in the General Population Snyder J, ed. PLOS 
ONE 9:e89642. 

Neuhaus C, Knösche TR, Friederici AD (2006) Effects of Musical Expertise and Boundary 
Markers on Phrase Perception in Music. J Cognitive Neurosci 18:472–493. 

Newtson D, Engquist GA, Bois J (1979) The objective basis of behavior units. Journal of 
Personality and Social Psychology 35:847–862. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 15, 2021. ; https://doi.org/10.1101/2021.07.15.452556doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452556
http://creativecommons.org/licenses/by-nc-nd/4.0/


 53 

Nozaradan S, Peretz I, Missal M, Mouraux A (2011) Tagging the Neuronal Entrainment to 
Beat and Meter. J Neurosci 31:10234–10240. 

Nozaradan S, Peretz I, Mouraux A (2012) Selective Neuronal Entrainment to the Beat and 
Meter Embedded in a Musical Rhythm. J Neurosci 32:17572–17581. 

Qasim, S. E., Fried, I., & Jacobs, J. (2021). Phase precession in the human hippocampus and 
entorhinal cortex. Cell. 

Oostenveld R, Fries P, Maris E, Schoffelen J-M (2011) Fieldtrip: open source software for 
advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell 
Neurosci 2011:1–9. 

Overath T, McDermott JH, Zarate JM, Poeppel D (2015) The cortical analysis of speech-
specific temporal structure revealed by responses to sound quilts. Nat Neurosci 18:903–
911. 

Patel AD (2003) Language, music, syntax and the brain. Nat Neurosci 6:674–681. 

Patel AD (2010) Music, language, and the brain. Oxford university press. 

Patel AD, Morgan E (2016) Exploring Cognitive Relations Between Prediction in Language 
and Music. Cognitive Science 41:303–320. 

Pearce MT (2005) The construction and evaluation of statistical models of melodic structure 
in music perception and composition. 

Peelle JE, Gross J, Davis MH (2013) Phase-locked responses to speech in human auditory 
cortex are enhanced during comprehension. Cerebral Cortex 23:1378–1387. 

Poeppel D, Assaneo MF (2020) Speech rhythms and their neural foundations. Nat Rev 
Neurosci 21:322–334. 

Rimmele JM, Morillon B, Poeppel D, Arnal LH (2018) Proactive Sensing of Periodic and 
Aperiodic Auditory Patterns. Trends Cogn Sci 22:870–882. 

Rohrmeier M (2011) Towards a generative syntax of tonal harmony. Journal of Mathematics 
and Music 5:35–53. 

Rohrmeier MA, Koelsch S (2012) Predictive information processing in music cognition. A 
critical review. Int J Psychophysiol 83:164–175. 

Saberi K, Perrott DR (1999) Cognitive restoration of reversed speech : Abstract : Nature. 
Nature 398:760–760. 

Salinas E, Sejnowski TJ (2001) Correlated neuronal activity and the flow of neural 
information. Nat Rev Neurosci 2:539–550. 

Silva S, Barbosa F, Marques-Teixeira J, Petersson KM, Castro SL (2014) You know when: 
Event-related potentials and theta/beta power indicate boundary prediction in music. 
Journal of Integrative Neuroscience 13:19–34. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 15, 2021. ; https://doi.org/10.1101/2021.07.15.452556doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452556
http://creativecommons.org/licenses/by-nc-nd/4.0/


 54 

Sridharan D, Levitin DJ, Chafe CH, Berger J, Menon V (2007) Neural Dynamics of Event 
Segmentation in Music: Converging Evidence for Dissociable Ventral and Dorsal 
Networks. Neuron 55:521–532. 

Teng X, Cogan GB, Poeppel D (2019) Speech fine structure contains critical temporal cues to 
support speech segmentation. NeuroImage 202:116152. 

Teng X, Ma M, Yang J, Blohm S, Cai Q, Tian X (2020) Constrained Structure of Ancient 
Chinese Poetry Facilitates Speech Content Grouping. Curr Biol 30:1299–1305.e7. 

Teng X, Poeppel D (2019) Theta and Gamma Bands Encode Acoustic Dynamics over Wide-
Ranging Timescales. Cereb Cortex 25:3077 Available at: 
https://academic.oup.com/cercor/advance-article/doi/10.1093/cercor/bhz263/5637582. 

Teng X, Tian X, Poeppel D (2016) Testing multi-scale processing in the auditory system. 
Scientific Reports 6:34390. 

Teng X, Tian X, Rowland J, Poeppel D (2017) Concurrent temporal channels for auditory 
processing: Oscillatory neural entrainment reveals segregation of function at different 
scales. PLoS Biol 15:e2000812. 

Tillmann B (2012) Music and Language Perception: Expectations, Structural Integration, and 
Cognitive Sequencing. Topics in Cognitive Science 4:568–584. 

Tolman EC (1948) Cognitive maps in rats and men. Psychol Rev 55:189. 

Trainor LJ, Marie C, Bruce IC, Bidelman GM (2014) Explaining the high voice superiority 
effect in polyphonic music: Evidence from cortical evoked potentials and peripheral 
auditory models. Hear Res 308:60–70. 

Trainor LJ, Trehub SE (1992) A comparison of infants“ and adults” sensitivity to Western 
musical structure. J Exp Psychol Human 18:394. 

Vuust P, Ostergaard L, Pallesen KJ, Bailey C, Roepstorff A (2009) Predictive coding of 
music – Brain responses to rhythmic incongruity. Cortex 45:80–92. 

Zacks JM, Speer NK, Swallow KM, Braver TS, Reynolds JR (2007) Event perception: A 
mind-brain perspective. Psychol Bull 133:273–293.  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 15, 2021. ; https://doi.org/10.1101/2021.07.15.452556doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452556
http://creativecommons.org/licenses/by-nc-nd/4.0/


 55 

Supplementary Information 

Segmenting and Predicting Musical Phrase Structure Exploits Neural Gain Modulation 
and Phase Precession  
 
Xiangbin Teng, Pauline Larrouy-Maestri, and David Poeppel 

 

Corresponding Author: Xiangbin Teng, xiangbin.teng@gmail.com 

 

This file includes:  

Figure S1 – S7 

Table S1 – S4 

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 15, 2021. ; https://doi.org/10.1101/2021.07.15.452556doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452556
http://creativecommons.org/licenses/by-nc-nd/4.0/


 56 

 

Fig. S1. Acoustic analyses, behavioral rating, and MCCA procedure, related to Fig. 1&2. 
(A) Acoustic analyses. We extracted the amplitude envelopes of the music pieces and calculated the modulation 
spectra averaged over 10 music pieces of each tempo in each reversal condition. The modulation spectra of the 
three reversal conditions highly overlapped and hence were plotted together. The fundamental frequency of each 
tempo represents the beat rate.  

(B) The standard deviation across three reversal conditions. In terms of amplitude fluctuations, the three 
conditions are comparable at each tempo. This demonstrates that the acoustic properties of the music pieces do 
not differ and should not contribute to the difference of phrasal segmentation between the reversal conditions. 

(C) Liking rating. The participants rated how much they liked each piece from 1 to 6. We conducted a two-way 
repeated-measure ANOVA (rmANOVA) with Condition and Tempo as the main factors, and found that both 
Tempo (F(2,62) = 7.80, p = 0.001, ηp2 = 0.201) and Condition (F(2,62) = 26.69, p < 0.001, ηp2 = 0.463) 
affected the participants’ liking ratings, but the interaction was not significant (F(4,124) = 1.20, p = 0.314, ηp2 = 
0.037). The listeners assigned higher liking ratings to faster pieces; the Original condition was rated higher than 
the other two conditions (Original > Global reversal: t(31) = 6.76, p < 0.001; Original > Local reversal: t(31) = 
3.54, p = 0.001); the Global reversal received the lowest liking rating (Local reversal > Global reversal: t(31) = 
4.55, p < 0.001). Adjusted False Discovery Rate (FDR) was used for multiple comparison correction.  
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(D) Topographies of correlation between the first MCCA component and each EEG channel. We calculated the 
Pearson correlation of neural signals between the first MCCA component and each EEG channel for each music 
piece. We then averaged the 10 music pieces of each tempo in one condition and plotted the topography. As the 
principle component analysis sometimes reverses the sign of a component, all the conditions did not have the 
same positive or negative signs.  

(E) MCCA components in each condition. We show 50 MCCA components in each condition. The first 
component explained a disproportionally large variance. This supports our choice of only extracting and 
proceeding with the first component for analysis.  

(F) MCCA components of the Local reversal condition at the tempo of 65 bpm.  

(G) Amplitude spectra of first 5 MCCA components of the Local reversal condition at the tempo of 65 bpm. We 
calculated the amplitude spectrum of each MCCA component in (F) to examine the spectral component of each 
component. The spectrum of the first component shows amplitude peaks corresponding to the beat rate and the 
note rate (the first harmonic of the beat rate). This further strengthens our choice of analysis – specifically, the 
first MCCA component, but not other components, contained the neural signals induced by beat and note 
structures in the music pieces. Furthermore, this echoes the topographies in (D), showing that the topographies 
reflected auditory responses to beats and notes.  
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Fig. S2. Modulation magnitude around F0 and F1, and RMS of TRFs, related to Fig. 3.  
(A) Modulation magnitude around F0 and F1. We averaged the corrected modulation magnitude within the 
significant frequency ranges identified in Fig. 4C around the fundamental frequency of the phrase tracking, F0 
(left panel) and conducted a two-way rmANOVA (Tempo × Condition). We did not find any significant main 
effect nor interactions (p > 0.05). This is likely due to the fact that the neural signals locking to phrasal structures 
are of complex waveforms, instead of sinusoid waves, and the narrow frequency range around the phrase rate 
cannot capture all the relevant neural components. We then averaged the magnitude over the significant 
frequency ranges around F0 of the phrase tracking and its first harmonic (F1) (right panel), and the two-way 
rmANOVA showed a significant main effect of Condition (F(2,56) = 3.66, p = 0.032, ηp2 = 0.115), but not of 
Tempo (F(2,56) = 0.66, p = 0.521, ηp2 = 0.023) or the interaction (F(4,112) = 1.48, p = 0.214, ηp2 = 0.050). In 
the post-hoc test, after FDR correction, we did not find any differences between the reversal conditions. 
However, before FDR correction, the Original reversal is significantly larger than the Local reversal (t(28) = 
2.36, p = 0.026). The error bars represent ±1 standard error of mean over the participants. 

(B) Correlation between music training score and EEG power modulation of each reversal condition within the 
significant frequency ranges around both F0 and F1. The results are consistent with Fig. 3D. 

(C) TRFs of phrasal boundaries and the Gaussian model fits. The TRFs are the same as in Fig. 3E and we fitted 
Gaussian models to the group averaged TRFs (insert in each panel) and derived the latencies of TRF peaks and 
the standard deviations of TRFs (see Methods). The shaded areas represent ±1 standard error of mean over the 
participants. 
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(D) Peak latency of TRF. Interestingly, the Global reversal had a peak latency much larger than the other two 
reversal conditions, which suggests that the reversing procedure changed the phrasal structures so that the 
listeners segmented the high-level musical structures differently. This observation was further examined in Fig. 
S6.  

(E) We calculated RMS of TRFs at the peak time point (left panel), within ±1 standard deviation (middle panel), 
and within ±2 standard deviation (right panel), which were determined by the Gaussian fits in (C). We tested the 
significance of the differences of RMS between the conditions by conducting a two-way rmANOVA (Tempo × 
Condition) on the RMS calculated using each time range. When the peak points were used, we found a 
significant main effect of Condition (F(2,56) = 5.73, p = 0.005, ηp2 = 0.170), but not of Tempo (F(2,56) = .31, p 
= 0.732, ηp2 = 0.011) nor the interaction (F(4,112) = 0.68, p = 0.608, ηp2 = 0.024). When ± 1 standard 
deviations were used, we found a significant main effect of Condition (F(2,56) = 4.49, p = .016, ηp2 = 0.138), 
but not of Tempo (F(2,56) = 0.93, p = .399, ηp2 = 0.032) or of interaction (F(4,112) = 0.68, p = 0.607, ηp2 = 
0.024). The post-hoc test shows that the Original condition is significantly larger than the Local reversal (t(28) = 
2.96, p = .018, FDR corrected). When ± 2 standard deviations were used, we found a significant main effect of 
Condition (F(2,56) = 4.72, p = 0.013, ηp2 = 0.144), but not of Tempo (F(2,56) = .92, p = 0.404, ηp2 = 0.032) nor 
the interaction (F(4,112) = 0.95, p = 0.439, ηp2 = 0.033). The TRF results are consistent with the spectral 
analysis using both F0 and F1 depicted in (A, right panel). The error bars represent ±1 standard error of mean 
over the participants.  
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Fig. S3. Topographies and source localization plots of Cacoh and phrasal segmentation, 
related to Fig.2&3. 
(A) Cacoh at note and beat rates. We averaged Cacoh values at the note and the beat rates over three reversal 
conditions, as the main effect of Condition was not significant (p < 0.05) (see Fig. 2), and show topographies of 
different tempi in the left panel and source localizations in the right panel. The same analysis procedures were 
conducted at the level of electrodes and in the source space as in Fig. 2.  

(B) Phrasal segmentation. We averaged modulation magnitudes within the significant frequency range at F0 of 
the phrasal rate identified in Fig. 3C, and show topographies of different reversal conditions in the left panel and 
source localizations in the right panel. The modulation magnitudes were of raw modulation strength and were 
not normalized. Other than that, the same analysis procedures were conducted at the level of electrodes and in 
the source space as in Fig. 3C.  
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Fig. S4. Mutual information (MI) analyses on musical criteria and TRFs, related to Fig. 3.  
(A) Musical criteria for an example music piece of the three reversal conditions. Four criteria were used here – 
pre-defined phrase end, cadence, voice leading, and grouping rule. Each beat was treated as a temporal unit and 
the structural boundaries determined by the criteria were marked on the beat number. The black-filed boxes 
indicate the beats representing the structural boundaries. The matrices for the following calculation of mutual 
information were created by marking the black boxes as ‘1’ and the other beats (empty areas/boxes) as ‘0’.   

(B) MI between different musical criteria. We quantified similarity between different musical criteria by 
calculating normalized mutual information between each pair of musical criteria (see Methods). In the Original 
condition, the musical criteria are highly coherent; it is not the case in the Global reversal and Local reversal 
conditions.  

(C) Congruence over four musical criteria for each music piece. We averaged the MI values over all the pairs of 
musical criteria for each music piece and used the averaged MI value as an index for the congruence over the 
four musical criteria of a music piece. It can be seen that most of the music pieces in the Global reversal 
condition have low congruence. The congruence pattern here is not consistent with the music phrasal 
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segmentation (Fig. 3&S2), as the segmentation strength in the Global reversal condition is between the Original 
condition and the Local reversal condition.   

(D) We calculated TRFs of EEG power using the boundaries defined by four musical criteria as the regressor. 
This analysis procedure is the same as in Fig. 3E. The x axis is marked in the number of beats; the double arrow 
line indicates the length of the beat at each tempo. We fitted Gaussian models to the group-averaged TRFs and 
derived the latencies of TRF peaks and the standard deviations of TRFs. The shaded areas represent ±1 standard 
error of mean over the participants. 

(E) Peak latency of TRFs. The group-averaged TRF of the Global reversal calculated using the phrasal 
boundaries had a large peak latency, but the latency decreased when the TRF was calculated using the cadence 
and grouping rule, which suggests that the phrasal segmentation in the Global reversal condition probably locked 
to the cadence or the grouping rule. See Fig. S6 for more information. 

(F) RMS of TRFs within ±1 standard deviation. We first calculated RMS of TRFs from different musical criteria 
within ± one standard deviation for each tempo and each condition, and conducted a three-way rmANOVA 
(Criteria * Condition * Tempo). We did not find a significant main effect of Tempo (F(2,56) = 1.91, p = 0.158, 
ηp2 = 0.064); the interaction is not significant between Tempo and Criteria (F(6,168) = 1.98, p = 0.071, ηp2 = 
0.066) nor between  Tempo and Condition (F(4,112) = 1.42, p = 0.231, ηp2 = 0.048). The interaction between 
the three factors is not significant (F(12,336) = 0.404, p = 0.962, ηp2 = 0.014). We then averaged RMS across 
the tempi and conducted a two-way rmANOVA (Criteria * Condition). We found a significant main effect of 
Criteria (F(3,87) = 0.404, p < 0.001, ηp2 = 0.196) and a significant interaction (F(6,174) = 5.50, p < 0.001, ηp2 = 
0.159); the main effect of Condition is not significant (F(2,58) = 3.05, p = 0.055, ηp2 = 0.095). We tested the 
difference between each pair of musical criteria to further examine the main effect of Criteria. After FDR 
correction, the RMS of the phrase boundary is significantly larger than the voice leading (t(28) = 4.37, p < 
0.001) and grouping rule (t(28) = 2.78, p = 0.019), but not than the cadence (t(28) = 2.16, p = 0.059). The RMSs 
of the cadence, the voice leading and grouping rule are not significantly different from each other (p > 0.05, FDR 
correction). The error bars represent ±1 standard error of mean over the participants. 

To explore the interaction between Condition and Criteria, we conducted a one-way rmANOVA 
(Condition) on each musical criterion. After FDR correction, we found a significant main effect of Condition for 
the phrasal boundary (F(2,58) = 4.80, p = 0.023, ηp2 = 0.142) and the voice leading  (F(2,58) = 6.50, p = 0.012, 
ηp2 = 0.183), but not for the cadence (F(2,58) = 3.38, p = 0.055, ηp2 = 0.104) nor for the grouping rule (F(2,58) 
= 0.819, p = 0.446, ηp2 = 0.027).  

In summary, the phrasal boundary better explained the temporal modulation of EEG power than the 
other three musical criteria. But the cadence also showed comparable capacity of explaining the phrasal 
segmentation results. This suggests that the phrasal segmentation observed was partly driven by the cadence of 
the music pieces, but cannot be fully attributed to the cadence structures in the music pieces.   
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Fig. S5. Phrasal segmentation in the Global reversal condition, related to Fig. 3&4.  
(A) Illustration of phrasal segmentation in the Global reversal condition. We hypothesized in the beginning that 
the phrasal structures in the Global reversal condition preserved the original phrasal boundaries (upper part of 
the plot). However, the data in Fig. 3&S4 suggest that the neural signals did not lock to the original phrasal 
boundaries but shifted forward, which was probably due to the fact that the brain segments a musical phrase after  
the end beat of a musical phrase in the Original condition, which was the onset beat in the Global reversal 
condition according to the pre-defined phrasal boundaries (lower part of the plot). This means that the phrasal 
boundaries in the Global reversal condition shifted one beat forward. See Table S2 for the cadences of the Global 
reversal condition.    

(B) Illustration of phasal segmentation in the Global reversal through an example excerpt. In the Original 
condition, phrasal boundaries end after the beat marked by purple-filled circle (potentially a strong beat); in the 
Global reversal condition, phrasal boundaries end after the beat marked by purple-filled circle. But, as the beat 
order was reversed in the Global reversal, the phrasal boundaries shifted one beat forward.  

(C) TRFs of phrasal boundaries at 75 bpm. The peak latency of TRF in the Global reversal was close to the beat 
position of ‘b1’, instead of around ‘0’ - the pre-defined phrasal boundary in the Original condition and the Local 
reversal condition. This indeed suggests that the phrasal boundaries shifted one beat forward in the Global 
reversal condition. 

(D) EEG power of an example music piece in the Global reversal condition. The x axis marks the pre-defined 
phrasal boundaries. The dashed line represents the new phrasal boundaries shifted forward by one beat. Indeed, 
the data show that the neural signals were advancing as music unfolded and led over the new phrasal boundaries 
by the end of the music piece.  

(E) Illustration of neural phase shift in the Global reversal condition. We plot the neural phases similarly as in 
Fig. 5B, but in the upper panel using the pre-defined phrasal boundaries whereas in the lower panel using the 
new phrasal boundaries. It can be clearly seen in the lower panel that the neural phrases led over the phrasal 
boundaries by the end of the music piece.   
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Fig. S6. Peak frequency of group-averaged EEG power, related to Fig. 4. 
(A) We automatically detected the peak frequency of the phrasal segmentation for each music piece within the 
significant frequency ranges around F0 defined in Fig. 3C. The circle color codes for the reversal conditions. The 
crosses right above the x axis indicate the music pieces in which no peak frequency was able to be detected using 
our algorithm. The thin black line indicates the phrase rate at each tempo.  

(B) We calculated the percentage of the peak frequencies that are above the phrase rate at each tempo for each 
condition. The y axis represents the percentage with ‘1’ indicating that all the peak frequencies are above the 
phrase rate. The data is consistent with the results of PPPi in Fig. 5, showing that, when the phrase precession 
occurred, the peak frequency of the phrasal segmentation was larger than the phrase rate of the music pieces.   

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 15, 2021. ; https://doi.org/10.1101/2021.07.15.452556doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452556
http://creativecommons.org/licenses/by-nc-nd/4.0/


 65 

 
Fig. S7. PPPi derived from individual participants at different bandwidths (see Methods), 
related to Fig. 4.  
(A) PPPi of each music piece from individual participants. We followed the same analysis procedure as in Fig. 
5F but calculated PPPi for each participant first and then averaged the PPPi values over all the participants. The 
bandwidth used to calculate PPPi was varied systemically from ± 0.05 octave around the phrase rate at each 
tempo to ± 0.14 octave. The error bars represent ±1 standard error of mean over the participants.  

(B) Averaged PPPi for each condition. We averaged PPPi over nine music pieces in each condition for each 
participant and then conducted a two-way rmANOVA (Tempo * Condition) at each bandwidth over participants. 
The error bars represent ±1 standard error of mean over the participants. 
1) Bandwidth ± 0.05 octave (65 bpm: 0.1328 – 0.1423 Hz; 75  bpm: 0.1509 – 0.1617 Hz; 85 bpm: 0.1711 – 

0.1833 Hz): Tempo (F(2,56) = 7.27, p = 0.002, ηp2 = 0.206); Condition (F(2,56) = 2.72, p = 0.075, ηp2 = 
0.089); the interaction (F(4,112) = 1.20, p = 0.314, ηp2 = 0.041). 

2) Bandwidth ± 0.08 octave (65 bpm: 0.1301 – 0.1453 Hz; 75  bpm: 0.1478 – 0.1651 Hz; 85 bpm: 0.1675 – 
0.1872 Hz): Tempo (F(2,56) = 1.94, p = 0.153, ηp2 = 0.065); Condition (F(2,56) = 3.75, p = 0.030, ηp2 = 
0.118); the interaction (F(4,112) = 0.60, p = 0.664, ηp2 = 0.021). 

3) Bandwidth ± 0.11 octave (65 bpm: 0.1274 – 0.1484 Hz; 75  bpm: 0.1447 – 0.1686 Hz; 85 bpm: 0.1641 – 
0.1911 Hz): Tempo (F(2,56) = 0.78, p = 0.463, ηp2 = 0.027); Condition (F(2,56) = 3.63, p = 0.033, ηp2 = 
0.115); the interaction (F(4,112) = 1.26, p = 0.291, ηp2 = 0.043). 

4) Bandwidth ± 0.14 octave (65 bpm: 0.1248 – 0.1515 Hz; 75  bpm: 0.1418 – 0.1721 Hz; 85 bpm: 0.1604 – 
0.1951 Hz): Tempo (F(2,56) = 1.32, p = 0.276, ηp2 = 0.045); Condition (F(2,56) = 3.14, p = 0.051, ηp2 = 
0.101); the interaction (F(4,112) = 0.65, p = 0.628, ηp2 = 0.023). 
When the bandwidth is narrow (± 0.05 octave), the main effect of Tempo is significant. When the bandwidth 

increased, the main effect of Tempo was not significant anymore. This potentially explained that the effect of the 
Tempo on PPPi was modulated or driven by the bandwidth. As the spectral range of the phrasal segmentation 
varied with the tempi, the frequency range for calculating PPPi needs to properly cover the spectral components 
relevant to the phrasal segmentation. When the bandwidth was too narrow, it distorted the estimation of PPPi – 
the center frequency of a frequency band used at the large tempo fell below the peak frequencies of the music 
pieces, so the peak frequencies of all the conditions are seemingly larger than the center frequency and the PPPi 
was overestimated. 

The main effect of Condition is significant when the bandwidth is ± 0.08 octave (p = 0.030) or ± 0.11 octave 
(p = 0.033), but not when the bandwidth is ± 0.05 octave (p = 0.075) or ± 0.014 octave (p = 0.051). The reason is 
probably that, if the bandwidth is too narrow, the spectral components relevant to the phrasal segmentation were 
not fully included; if the bandwidth is too wide, the frequency range included the spectral components that were 
unrelated to the phrasal segmentation. Note that, in Fig. 5, the bandwidth was not determined arbitrarily or varied 
manually but was derived in a data-driven way from the significant frequency ranges in Fig. 4C.  
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Table S1. Selected chorales and their predefined phrasal structures marked by fermatas. 

No. Piece code Piece Name Phasal structure (beats per phrase) 
0 BWV 255 Ach Gott und Herr 4 4 8 4 4 8 
1 BWV153/1 Ach Gott, vom Himmel sieh darein 8 8 8 8 8 8 8 
2 BWV 3/6 Ach Gott, wie manches Herzeleid 8 8 8 8 
3 BWV267 An Wasserflüssen Babylon 8 8 8 8 8 8 8 8 8 12 
4 BWV 6/6 Erhalt uns Herr, bei deinem Wort 8 8 8 8 
5 BWV 248 Ermuntre dich, mein schwacher Geist 8 8 8 8 8 8 8 8 
6 BWV 86/6 Es ist das Heil uns kommen her 8 8 8 8 8 8 8 
7 BWV 308 Es spricht der Unweisen Mund wohl 8 8 8 8 8 8 8 
8 BWV 20/7 11 O Ewigkeit, du Donnerwort 12 12 12 12 12 12 
9 BWV 245/5 Vater unser im Himmelreich 8 8 8 8 8 8 8 8 
10 BWV 110/7 Wir Christenleut 8 8 8 8 8 8 
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Table S2. Musical segment boundaries determined according to voice leading, cadence, and group preference 
rule. The numbers below refer to the number of beats within a segment determined by each musical criterion.  

 

 

 

 

Piece number 

and condition 
Voice leading Cadence Grouping rule 

1 Original 4 4 4 4 4 4 4 4 8 8 8 4 4 4 4 4 4 4 4 4 4 4 4 8 4 4 4 4 4 4 4 4 4 4 4 5 7 

1 Global reversal 4 4 6 2 6 2 5 4 4 3 5 4 4 3 8 5 9 7 4 4 3 5 4 4 3 8 8 6 3 4 3 5 4 4 3 5 3 

1 Local reversal 5 3 5 3 5 3 5 3 6 2 6 2 4 4 5 3 5 3 5 3 5 3 6 2 6 2 8 5 3 5 3 5 3 5 3 6 2 6 2 8 

2 Original 8 8 8 8 8 8 8 8 3 5 8 8 8 

2 Global reversal 8 8 8 8 8 8 9 7 2 6 8 2 7 7 

2 Local reversal 8 8 8 8 8 8 8 8 8 8 8 8 

3 Original 8 8 8 8 8 8 8 8 8 12 8 8 8 8 8 8 8 8 8 12 8 8 8 8 8 8 8 8 8 12 

3 Global reversal 12 9 9 15 7 9 7 9 7 12 9 9 8 7 7 9 7 9 7 12 8 8 8 8 8 8 8 8 8 

3 Local reversal 8 8 8 8 8 7 9 8 7 13 8 8 8 8 4 4 12 4 8 8 8 4 8 8 8 8 8 8 4 4 8 8 12 

4 Original 8 8 8 8 8 8 8 8 8 8 8 8 

4 Global reversal 7 9 4 4 8 7 5 4 6 4 6 2 6 4 4 4 4 4 4 

4 Local reversal 8 6 10 8 8 9 7 8 8 8 8 8 

5 Original 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 5 3 8 5 3 5 3 8 8 8 

5 Global reversal 8 11 6 8 10 6 10 5 8 11 8 6 10 6 10 5 8 8 8 8 8 8 8 8 

5 Local reversal 7 8 8 8 8 8 9 8 16 16 7 8 10 7 2 5 3 6 2 5 3 6 8 2 6 8 4 4 

6 Original 4 4 4 4 4 4 4 4 8 8 8 4 4 8 4 4 8 8 8 8 4 4 8 4 4 8 9 7 8 

6 Global reversal 8 8 8 6 10 6 10 8 8 5 3 4 4 4 4 4 4 4 4 3 5 3 5 4 4 4 4 4 4 4 4 4 4 

6 Local reversal 7 7 9 7 10 6 10 5 3 5 3 5 3 5 3 6 8 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

7 Original 8 8 8 8 8 8 8 8 4 4 8 4 4 8 8 8 4 4 4 5 3 4 4 5 3 4 8 3 5 

7 Global reversal 8 7 8 8 9 7 9 9 8 6 8 5 4 7 5 4 4 4 8 4 4 3 4 5 4 3 4 5 4 

7 Local reversal 8 7 9 7 9 7 9 8 8 8 8 8 8 8 8 9 7 9 7 8 8 

8 Original 12 12 12 12 12 12 12 12 4 5 3 12 12 12 9 3 12 4 8 12 12 12 

8 Global reversal 8 11 6 11 8 8 8 12 12 13 11 13 11 12 12 12 12 12 12 12 

8 Local reversal 4 4 4 8 4 8 5 8 4 11 8 4 12 12 12 13 11 12 3 9 12 8 4 12 12 12 

9 Original 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 

9 Global reversal 4 4 8 8 4 4 8 8 4 4 8 8 8 8 8 8 8 8 8 4 4 8 8 8 8 8 8 8 

9 Local reversal 1 7 8 8 1 7 8 8 8 4 4 8 8 8 8 8 8 8 8 4 4 8 4 4 4 4 8 4 4 4 4 8 

10 Original 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 

10 Global reversal 8 7 12 8 8 5 8 7 3 3 5 17 5 3 5 4 4 8 4 4 4 4 8 

10 Local reversal 8 8 9 7 7 9 8 8 9 7 7 9 8 8 8 8 8 8 
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Table S3. Correlations between the neural tracking at each tempo and the score at the music training subscale of 
the GOLD-MSI. As the main effect of Condition was not significant (see main text), we averaged Cacoh values 
over the conditions before computing the correlation.  
 
 
  

Beat rate 
Tempo (bpm) 65 75 85 

r 0.366 0.327 0.317 
p value 0.050 0.082 0.093 

     
Note rate 

Tempo (bpm) 65 75 85 
r 0.465 0.391 0.439 

p value 0.010 0.035 0.017 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 15, 2021. ; https://doi.org/10.1101/2021.07.15.452556doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452556
http://creativecommons.org/licenses/by-nc-nd/4.0/


 70 

Table S4. Correlations between RMS in the early and late regions and the score at the music training subscale of 
the GOLD-MSI for each tempo and each condition.  
 

 
 

 

 

 

 
 

 

Early period (0.03 - 0.1 s) 
Tempo (bpm) 65 75 85 

Condition Local Global Original Local Global Original Local Global Original 
r 0.349 0.351 0.445 0.428 0.376 0.316 0.328 0.402 0.372 

p value 0.063 0.062 0.016 0.021 0.045 0.095 0.082 0.031 0.047  
          

Late period (0.12 - 0.25 s) 
Tempo (bpm) 65 75 85 

Condition Local Global Original Local Global Original Local Global Original 
r 0.255 0.276 0.361 0.314 0.304 0.251 0.279 0.308 0.278 

p value 0.182 0.148 0.055 0.098 0.109 0.188 0.142 0.104 0.145 
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