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Abstract 

To a crucial extent, the efficiency of reading results from the fact that visual word recognition 

is faster in predictive contexts. Predictive coding models suggest that this facilitation results 

from pre-activation of predictable stimulus features across multiple representational levels 

before stimulus onset. Still, it is not sufficiently understood which aspects of the rich set of 

linguistic representations that are activated during reading – visual, orthographic, phonological, 

and/or lexical-semantic – contribute to context-dependent facilitation. To investigate in detail 

which linguistic representations are pre-activated in a predictive context and how they affect 

subsequent stimulus processing, we combined a well-controlled repetition priming paradigm, 

including words and pseudowords (i.e., pronounceable nonwords), with behavioral and 

magnetoencephalography measurements. For statistical analysis, we used linear mixed 

modeling, which we found had a higher statistical power compared to conventional multivariate 

pattern decoding analysis. Behavioral data from 49 participants indicate that word predictability 

(i.e., context present vs. absent) facilitated orthographic and lexical-semantic, but not visual or 

phonological processes. Magnetoencephalography data from 38 participants show sustained 

activation of orthographic and lexical-semantic representations in the interval before processing 

the predicted stimulus, suggesting selective pre-activation at multiple levels of linguistic 

representation as proposed by predictive coding. However, we found more robust lexical-

semantic representations when processing predictable in contrast to unpredictable letter strings, 

and pre-activation effects mainly resembled brain responses elicited when processing the 

expected letter string. This finding suggests that pre-activation did not result in ‘explaining 

away’ predictable stimulus features, but rather in a ‘sharpening’ of brain responses involved in 

word processing.  
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1  Introduction  

Predictive contexts can facilitate word processing, in the sense of increasing reading speed (e.g., 

Rayner et al., 2011) and decreasing neuronal activation elicited during recognition of expected 

words (as reflected, for example, in the reduction of the N400 component of the event-related 

brain potential; e.g., Kutas and Hillyard, 1984; Kutas and Federmeier, 2011). These often-

replicated findings have been linked to domain-general theories that postulate active, top-down 

(i.e., from hierarchically higher to lower processing levels) prediction of expected stimulus 

characteristics before actually perceiving the stimulus (predictive coding; cf. Rao and Ballard, 

1999; Friston, 2005). In line with this, several neuro-cognitive models of visual word 

recognition (e.g., Seidenberg and McClelland, 1989; Carreiras et al., 2014) assume context-

based prediction across multiple levels of linguistic processing, and it has been hypothesized 

that hierarchical predictions during reading involve the pre-activation of visual, pre-lexical (i.e., 

orthographic or phonological), and lexical-semantic representations of predicted words 

(Federmeier, 2007; Kuperberg and Jaeger, 2016). However, this proposal has not been 

systematically tested because currently, available evidence does not unambiguously 

differentiate between predictive pre-activation of representations at these different linguistic 

processing stages. 

 First studies showed that language-related brain regions can be activated before a highly 

expected stimulus appears (Dikker and Pylkkanen, 2011; Bonhage et al., 2015; Wang et al., 

2017), but did not further assess the nature of pre-activated representations. More recent work 

showed pre-stimulus effects of semantic category (Heikel et al., 2018; Wang et al., 2020) using 

multivariate pattern analysis techniques (King et al., 2018; Kragel et al., 2018), as well as pre-

stimulus effects of word frequency (Fruchter et al., 2015) using linear mixed models (LMMs; 

Baayen et al., 2008). These studies provide initial evidence that lexical-semantic 

representations are pre-activated before a predictable word appears. Also, several studies 

manipulating lexical-semantic context (e.g., the sentence context preceding the target word) 

found context-based modulations of brain activation in time windows associated with visual or 

pre-lexical processing (e.g., Lee et al., 2012; Brothers et al., 2015), which however provides 

only indirect evidence for predictive processing at other levels of linguistic representation than 

the lexical-semantic level. Studies that investigated pre-lexical context effects more directly 

found no (Eisenhauer et al., 2019) or only minimal effects (Nieuwland et al., 2018; Nicenboim 

et al., 2020), indicating that more statistically robust approaches may be needed for identifying 

the processes involved in pre-lexical pre-activation (see also Nieuwland, 2019, for a review).  

 Here, we combine behavioral and magnetoencephalography (MEG) data elicited during 
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processing of words and (orthographically legal and pronounceable) pseudowords, to 

investigate the mechanisms of predictive pre-activation at multiple levels of linguistic 

representation, i.e., visual, pre-lexical (orthographic and phonological), and lexical-semantic. 

Contextual predictability was explicitly controlled by using a repetition priming paradigm, 

which is a common approach for investigating predictive processing (e.g., Auksztulewicz and 

Friston, 2016; Grotheer and Kovács, 2016). In a first step, we conducted a behavioral 

experiment to determine which representational levels of visual word recognition are influenced 

by predictive processing. In detail, we determined whether context-dependent facilitation 

(‘priming’) interacts with quantitative metrics from psycholinguistics representing different 

stages of word processing, i.e., visual stimulus complexity (early visual processing; e.g., Pelli 

et al., 2006), orthographic word similarity (pre-lexical orthographic processing; e.g., Yarkoni 

et al., 2008a), the number of syllables (pre-lexical phonological processing; e.g., Álvarez et al., 

2010), and word frequency and stimulus lexicality (lexical-semantic processing; e.g., Forster 

and Chambers, 1973; Fiebach et al., 2002). Subsequently, MEG activity measured in an 

independent experiment was explored strictly for those metrics that interacted in behavior with 

contextual predictability (i.e., whose effects differed between primed vs. unprimed words). This 

procedure prevented the investigation of neurophysiological effects without a behavioral 

counterpart, which would be difficult to interpret (Krakauer et al., 2017).  

 We investigated MEG data given its excellent temporal resolution (Gross, 2019) to 

separate effects of predictive pre-activation and stimulus processing. We first investigated the 

neurophysiological correlates of predictability across representational levels during stimulus 

processing by assessing the interaction of context effects with psycholinguistic metrics. Based 

on the observed pattern of context effects, we were able to differentiate whether predictive 

processing in visual word recognition is based on predictive coding (according to which 

predictable stimulus features are ‘explained away’) or on a ‘sharpening’ mechanism (which 

postulates the suppression of noise for predictable stimuli; cf. Kok et al., 2012; Blank and Davis, 

2016). Crucially, we also assessed effects of psycholinguistic metrics in the delay period prior 

to predictable target letter strings. Detecting these effects would provide direct evidence for 

predictive pre-activation at the associated representational level. As a critical test case for a 

mechanistic contribution of the respective linguistic processing stage to context-dependent 

predictability, we hypothesized that the strength of pre-activation effects in the delay should be 

inversely related to the strength of neural effects measured during processing of the target. 

Finally, we localized the brain regions underlying the observed effects to assess whether the 

brain regions implicated in letter string processing are also implicated in predictive pre-
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activation.  

  

 

2  Methods  

2.1  Behavioral experiment 

2.1.1  Participants 

Forty-nine healthy, right-handed, native speakers of German recruited from university 

campuses (33 females, mean age 24.7 ± 4.9 years, range: 18–39 years) were included in the 

final data analyses. All participants had normal or corrected-to-normal vision, and normal 

reading abilities as assessed with the adult version of the Salzburg Reading Screening (the 

unpublished adult version of Mayringer and Wimmer, 2003). Further participants were 

excluded before the experiment due to low reading skills (i.e., reading test score below 16th 

percentile; N = 3) or participation in a similar previous experiment (N = 1), and during the 

course of the experiment due to failure to complete the experimental protocol (N = 8) and 

because of an experimenter error (mix-up of the pseudoword lists during the pre-experiment 

familiarization procedure; N = 1). All participants gave written informed consent according to 

procedures approved by the local ethics committee (Department of Psychology, Goethe 

University Frankfurt, application N° 2015-229) and received 10 € per hour or course credit as 

compensation. 

 

2.1.2   Stimuli and presentation procedure 

60 words and 180 pseudowords (five letters each) were presented (black on white background, 

14 pt., 51 cm viewing distance) in a repetition priming experiment consisting of two priming 

blocks and two non-priming blocks (120 trials per block; Fig. 1a) with a total duration of ~20 

min. This paradigm allows for strong predictions while maintaining the aspect of natural 

reading that letter strings are processed sequentially. For the present study, we focused on a 

subset of 60 pseudowords that were unfamiliar to the participants (‘novel pseudoword’ 

condition). However, note that around 90 min prior to the priming experiment described here, 

the pseudowords had been presented to the participants in another experiment not of interest 

for the present study, without any learning instruction. In addition, the experiment contained 

two further sets of 60 pseudowords each, which were familiarized prior to the experiment as 

described in Eisenhauer et al. (2019; behavioral experiment). A description of the learning 

procedure and the results can be found in Supporting Results 2. Participants learned meanings 

for one of these pseudoword sets (i.e., ‘semantic pseudowords’); however, this set was not part 
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of the present analysis as no comparable condition was included in the MEG dataset.  The 

pseudowords from the final set were familiarized via repeated presentation and reading aloud 

without learning a meaning for these pseudowords. Thus, these ‘familiar pseudowords’ were 

not associated with lexical-semantic representations, but were nevertheless familiarized at a 

pre-lexical level as participants gained familiarity with the orthographic and phonological 

structure of these pseudowords. These pseudowords were included in a control analysis (see 

below). The assignment of pseudoword sets to the three conditions (i.e., novel pseudowords, 

familiar pseudowords and semantic pseudowords) was varied across participants.  

 In priming blocks, a prime and a target stimulus were presented for 800 ms each, 

separated by a delay period of 800 ms during which a string of five hash marks was presented. 

Prime and target were identical in 75 % of trials. In non-priming blocks, a single letter string 

was presented for 800 ms in each trial. We choose extended presentation durations for the MEG 

study to separate effects of stimulus processing and pre-activation, which we expected during 

the delay period. Thus, for comparability, we also adopted the timing for the behavioral study. 

The inter-trial-interval was jittered between 800 and 1,200 ms (mean: 1,000 ms). Participants 

were asked to fixate the space between two vertical black bars at the center of the screen. Upon 

presentation of a letter string between the two lines, they had to indicate as quickly and 

accurately as possible whether it had a semantic association or not (which was the case for 50 

% of items, i.e., for words and for one list of pseudowords that had been semantically 

familiarized prior to the experiment). For simplicity, these judgments will be called lexical 

decisions in the following. The novel and familiar pseudowords used for the present analyses 

had no semantic associations. In priming blocks, participants responded only to the second (i.e., 

the target) letter string. Response hands and the order of blocks were counterbalanced across 

participants. Each letter string was presented in one priming trial and one non-priming trial.  

           Words and pseudowords were matched between lists (i) for orthographic similarity 

(‘word likeness’) using the Orthographic Levenshtein Distance 20 (OLD20; Yarkoni et al., 

2008a) based on the SUBTLEX-DE database  (Brysbaert et al., 2011) and (ii) with respect to 

the number of syllables (computed via Balloon, cf. Reichel, 2012; see also Table 1). Other 

psycholinguistic metrics of interest for our analyses were logarithmic word frequency and 

trigram frequency (i.e., the mean frequency of each trigram per word; obtained from 

SUBTLEX-DE), as well as visual complexity measures (perimetric complexity and the number 

of simple features), which were obtained for each letter from the GraphCom database (Chang 

et al., 2018) and averaged across the five letters of each stimulus (Table 1). The other two visual 

complexity parameters from GraphCom, i.e., the number of connected points and the number 
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of disconnected components, were not chosen for our analyses, the former due to its high 

correlation with the number of simple features (>.8 in our stimuli) and the latter due to its low 

variance across letters of the German language. For parameter correlations within words and 

pseudowords, see Figure S1 in Supporting Information. 

 

 

Figure 1. Experimental procedures. (a) Behavioral repetition priming paradigm. Two priming blocks (left) 

and two non-priming blocks (right) were presented in alternating order. In priming blocks, each trial 

consisted of a prime and a target stimulus presented for 800 ms each, separated by an interval of 

800 ms during which a string of five hash marks was presented. Stimuli could be words or 

pseudowords (PW). 75 % of trials were repetition trials with identical prime and target, while in the 

remaining 25 % two different letter strings were presented (non-repetition trials; not analyzed). In this 

case, prime and target could be from the same or from two different conditions, with all combinations 

of conditions appearing equally often. In non-priming blocks, only one word or pseudoword was 

presented in each trial. Participants were instructed to respond on each trial whether or not they had 

a semantic association with the target in priming blocks or with the isolated item in non-priming 

blocks. Before onset of the prime or the isolated item, two black vertical bars presented for 800 – 

1,200 ms indicated the center of the screen where participants were asked to fixate. Context effects 

were investigated by comparing isolated items from the non-priming blocks with the targets from the 

repetition trials. (b) Repetition priming paradigm during MEG recording. The presentation procedure 

was identical to the priming blocks in (a). There were no non-priming blocks. Additionally, after target 

offset two grey vertical bars were presented for 1,000 ms indicating a blinking period. Before the 

onset of the next trial, a blank screen was presented for 500 ms. Participants were instructed to 

silently read presented letter strings and to respond only to rare catch trials (i.e., presentation of the 

word Taste, Engl. button). Context effects were investigated by comparing primes to repeated 

targets. 
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2.1.3 Analyses 

Statistical Modeling. Linear mixed models (LMMs) were used to investigate the three-way and 

subordinate two-way interactions of each of the four visual and pre-lexical word parameters 

(see below) with the factors context (i.e., the priming effect of primed vs. unprimed stimuli) 

and stimulus lexicality (words vs. novel pseudowords) in log-transformed response times, using 

the lmerTest package (Kuznetsova et al., 2017) of the statistical software package R, version 

3.5.3, 2019-03-11 (R Development Core Team, 2008). The model structure is shown in the left 

panel of Figure 2. In the case of the word frequency parameter, only the interaction with context 

was included, as an interaction with lexicality is not possible (all pseudowords were assigned a 

word frequency of zero). Note that in the behavioral study, the factor context was 

operationalized as the contrast between repeated targets in priming blocks vs. single items in 

non-priming blocks. Therefore, ‘context’ here represents the effect of the presence vs. absence 

of contextual information on processing of the target stimulus, whereby only valid contextual 

information was considered while trials in which the target was preceded by a non-identical 

prime were discarded (analogous to the MEG experiment; see below). As a consequence, the 

priming condition had fewer trials (.75 x 60 = 45; minus errors) than the non-priming condition. 

However, LMMs with crossed random effects are optimal for the analysis of imbalanced data 

(Baayen et al., 2008). The two-way interaction terms between word parameters (e.g., word 

frequency) and context were used to determine whether the effect of the respective word 

parameter was modulated by a predictive context. The three-way interaction with lexicality 

additionally revealed whether the ‘context by word parameter’ modulations differed between 

words and pseudowords. This allowed us to assess whether context-based facilitation at the 

respective level relies on prior knowledge, which is available for words but not pseudowords. 

Note that we included these interaction terms, i.e., with context and lexicality, for all word 

parameters within one single LMM. Trials in which errors occurred (9.8 %) were excluded from 

analyses. We know from previous experience that trial order can have a strong effect on 

response times and neuronal activation. To explicitly account for this, trial order was included 

into the LMMs as fixed effect. Participant and item were included as random effects on the 

intercept. For visualization of partial effects, i.e., effects of a parameter of interest after 

partialing out all other effects in the LMM, we used the remef package (Hohenstein and Kliegl, 

2015). 
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 Investigated word parameters. Different descriptors of words were chosen in order to 

isolate different ‘levels’ of processing a word. ‘Early visual processing’ of a written word 

depends on the complexity of its physical appearance, which we here characterize, following 

Chang et al. (2018), using perimetric complexity (describing the density of black pixels in 

relation to white background which has previously been associated with letter identification 

efficiency; see Pelli et al., 2006) and the number of simple features that make up a word (i.e., 

the number of strokes per letter). ‘Pre-lexical processing’ of written words comprises 

phonological and orthographic processing (e.g., see Carreiras et al., 2014). Phonological 

processing can be captured by the number of syllables of a word (as syllables reflect sublexical 

units for sequential phonological processing; e.g., Álvarez et al., 2010; Chetail, 2014), and 

orthographic processing is captured by the orthographic Levenshtein distance 20 (OLD20, 

Yarkoni et al., 2008a) and by trigram frequency (e.g., Colegate and Eriksen, 1972; Chen et al., 

2015). Lastly, lexical processes of word identification are often associated with word frequency 

(e.g., Forster and Chambers, 1973; Fiebach et al., 2002), so that logarithmic word frequency 
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(Brysbaert et al., 2011) is included as a parameter representing ‘lexical-semantic processing’. 

Pseudowords were assigned a word frequency of zero as they did not appear in the SUBTLEX 

database. Finally, we included a binary lexicality contrast (words vs. pseudowords) comparing 

items with and without semantic associations investigating lexical-semantic processing.  

 Model comparisons. In cases with non-significant interaction effects on one or more 

processing levels, we repeated the analysis with a simpler model in which only the significant 

interactions and main effects were included. This sparser model was compared to the full model 

based on the difference in the Akaike information criterion (AIC). The AIC allows comparing 

models of different complexity (i.e., with more or fewer parameters included). A significantly 

lower AIC for a more complex model indicates an increase in model fit with the newly added 

parameter. If the AIC difference is positive or equal, the sparser model has a better fit, and the 

addition of the new parameter is not advised. Our results and interpretations will be based on 

the model that includes the set of parameters that lead to an optimal fit. 

 Control analyses. Besides our main analysis of interest described above, we performed 

two control analyses. First, we re-estimated the LMM with optimal fit while including the 

familiar as opposed to the novel pseudowords. This allowed us to assess whether the observed 

lexicality effects are driven by lexical-semantic information, which is available for words but 

neither pseudoword group. If this is the case, lexicality effects should be observed both for 

words vs. novel pseudowords as well as for words vs. familiar pseudowords. In contrast, if 

lexicality effects are based on the different general familiarity with words vs. novel 

pseudowords, the lexicality effect should be diminished when contrasting words with familiar 

pseudowords. 

 The analyses so far were focused on trials of repeated targets and isolated items. Trials 

of non-repeated targets, i.e., in which prime and target were not identical, were seldom (12.5 % 

of trials). In a second control analysis, we compared response times between repeated targets, 

non-repeated targets, and isolated letter strings irrespective of letter string characteristics. This 

analysis served as a manipulation check to confirm that responses to repeated targets 

(predictable letter strings) are faster than responses to both non-repeated targets (mispredicted 

letter strings) and isolated (unpredictable) letter strings. 
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 2.2  Magnetoencephalography (MEG) experiment 

2.2.1  MEG data  

We used data from a previously published repetition priming study (Eisenhauer et al., 2019; 

data publicly available from https://osf.io/fc69p/), comprising MEG recordings from 38 healthy 

right-handed native speakers of German (26 females) between 18 and 31 years of age and with 

normal reading abilities. We here provide a short description of the data acquisition and 

experimental procedures, and refer the reader to our earlier paper for a detailed description. 

Data were recorded using a MEG system with 269 operating third-order axial gradiometers 

(Omega 2005; VSM MedTech Ltd., Coquitlan, BC, Canada) at a sampling rate of 1,200 Hz, 

applying online filtering between 0.1 and 300 Hz. Procedures were approved by the local ethics 

committees (University Clinic of Goethe University Frankfurt, application N° 107/15; and 

Department of Psychology, Goethe University Frankfurt, application N° 2015-229). 

The experimental paradigm was similar to the behavioral experiment described above: 

During MEG acquisition, participants silently read words or pseudowords of five letters length 

(black on white background; 14 pt at 51 cm viewing distance), which were presented in a 

repetition priming paradigm with 75 % identical prime-target pairings (repetition trials) and 25 

% non-identical prime-target pairings (non-repetition trials; Fig. 1b). Prime and target stimuli 

were presented for 800 ms each, separated by a delay period of 800 ms during which a string 

of five hash marks was presented. Primes could either be real words, novel pseudowords (as 

defined above), or familiar pseudowords (without learned meaning). The pseudoword 

familiarization procedure and outcomes are described in Supporting Results 2. Each of these 

conditions consisted of 120 items, i.e., 60 stimuli presented twice. To ensure the participants’ 

attention to the presented letter strings, 80 additional catch trials were randomly interspersed 

into the trial sequence, during which the word Taste (Engl. button) indicated the requirement 

to press a button. In total, 440 trials were presented across three blocks with a total duration of 

~40 min. 120 trials per letter string condition were considered for analyses of prime and delay 

intervals whereas 90 items per condition were used for analyses of the target interval (as only 

75 % of trials were repetition trials; see also below). Words and both pseudoword groups were 

matched for OLD20 and number of syllables (see Table 1, also including further parameters, 

and Fig. S1 in Supporting Information for parameter correlations).  

 For source localization, structural magnetic resonance (MR) images obtained with a 1.5 

T Siemens magnetom Allegra scanner (Siemens Medical Systems, Erlangen, Germany) using 

a standard T1 sequence (3D MPRAGE, 176 slices, 1 x 1 x 1 mm voxel size, 2.25 s TR, 2.6 ms 

TE, 9° flip angle) were available for 34 participants (Eisenhauer et al., 2019). The MR images 
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contained fiducial markers for the two auricular MEG head localization coils to improve co-

registration with the MEG data. 

 

2.2.2  Preprocessing  

Initial preprocessing steps were performed with the FieldTrip toolbox, version 2013 01-06 

(http://fieldtrip.fcdonders.nl; Oostenveld et al., 2011) under MATLAB (version 2012b, The 

MathWorks Inc., Natick, MA). Parallel computations were performed using GNU Parallel 

(Tange, 2011). MEG data were segmented into epochs of 2,600 ms length, lasting from -200 

ms to 2,400 ms with respect to the onset of the prime. Trials contaminated with sensor jump or 

muscle artifacts, as well as trials in which the head position deviated more than 5 mm from the 

participant’s average head position across all trials, were rejected, and trials contaminated with 

eye blink, eye movement, or heartbeat artifacts were cleaned using Independent Component 

Analysis (ICA, Makeig et al., 1996). See Eisenhauer et al. (2019) and our analysis scripts 

(https://osf.io/fc69p/) for detailed procedures. After preprocessing, an average of 69 trials 

(range: 26 to 79) per condition remained for analyses involving both repetition and non-

repetition trials (see below), and an average of 51 trials (range: 37 to 106) remained for analyses 

including only repetition trials. Data were low-pass filtered at 20 Hz and baseline corrected 

using the time window from -110 to -10 ms; all samples between -110 and 2,400 ms were used 

for subsequent analyses. To reduce computational costs, the MEG data were down-sampled to 

40 Hz. 

 

2.2.3   Linear mixed model analyses  

The analysis pipeline for the MEG data is outlined in the right panel of Figure 2. In the light of 

the variability of previous findings with respect to whether predictive processing during word 

recognition includes multiple representational levels, we used LMMs for the MEG data 

analyses. LMMs provide a higher statistical power via single-trial analysis (e.g., Frömer et al., 

2018) and inclusion of crossed random effects (Baayen et al., 2008) as opposed to analyses 

performed on aggregated data. Also, LMMs are being used increasingly for the analysis of 

electrophysiological data (e.g., Fruchter et al., 2015; Payne et al., 2015).  

 LMMs were computed on event-related field (ERF) values separately for each time 

point of the baseline, prime, delay, and target time windows (resulting in one LMM per sampled 

time point). LMMs were computed in sensor space to reduce complexity (cf. 269 sensors vs. 

1,619 source voxels), while a subsequent source localization of significant sensor-level effects 

(see next section) revealed the underlying brain regions (cf. Manahova et al., 2018; Dijkstra et 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 24, 2021. ; https://doi.org/10.1101/2020.07.14.202226doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.14.202226
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

al., 2018 for a similar procedure). For the LMM analysis of the target time window, we excluded 

non-repetition trials (in which targets were not predictable) in order to focus on predictable 

targets only. For the remaining analyses (i.e., concerning prime and delay interval) we included 

repetition and non-repetition trials as these did not differ between repetition and non-repetition 

trials. The models were computed using the lmerTest package (Kuznetsova et al., 2017) in R, 

which allows computing p-values for LMMs (Luke, 2017). Resulting p-values were 

Bonferroni-corrected for multiple comparisons to a critical p-value of .05/101 = .000495. 

Following Krakauer et al., (2017), we focused on those effects for which a behavioral correlate 

was identified in the independent behavioral experiment, i.e., the pre-lexical/orthographic level 

of representation (reflected in a context x OLD20 interaction) and the lexical-semantic level of 

representation (reflected in context x lexicality and context x word frequency interactions; see 

Results below). Thus, we included as fixed effects only word frequency and the interaction of 

OLD20 with lexicality (words vs. novel pseudowords). As in the analysis of the behavioral 

experiment, trial order was included as additional fixed effect of no interest. All participants 

and MEG sensors were included simultaneously in each model, and random intercepts were 

estimated for these factors. Based on the logic of parsimonious mixed modeling (Bates et al., 

2018), the random effect of item was not included, because including it resulted in a high 

number of un-estimable models (i.e., non-convergence, unidentifiability, or singluar fit). Still, 

13.9 % of models (i.e., of the 101 models calculated for the different time points of the time 

windows of interest) were un-estimable and thus treated as if they were not significant. Word 

frequency, OLD20, and trial order were z-transformed to enhance the likelihood of convergence 

and the accuracy of parameter estimates (e.g., Harrison et al., 2018). Post hoc LMMs were 

computed separately for words and novel pseudowords to resolve interactions with lexicality 

as well as to obtain the frequency effect for words only; here, 7.9 and 5.0 % of models were un-

estimable, respectively.  

 To explicitly investigate the influence of context (i.e., prime vs. target) on the effects of 

interest, we combined data from prime and target time windows. We performed this analysis 

for each of the 32 time points of prime/target presentation, Bonferroni-corrected to a critical p-

value of .05/32 = 0.0015625. For the interaction of context and lexicality, we computed the full 

model controlling for effects of the frequency by context interaction and the three-way 

interaction of lexicality with OLD20 and context (18.8 % un-estimable). For the interaction of 

context and word frequency or OLD20, we computed separate post hoc models for words and 

pseudowords (21.9 and 9.4 % un-estimable, respectively). All models included trial order as an 

additional fixed effect, and participant and sensor as random effects on the intercept.  
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 As for the behavioral data, we performed a control analysis by re-estimating the LMMs 

while including familiar instead of novel pseudowords. The percentage of un-estimable models 

amounted to 15.6 % for the analysis including the interaction with context (just prime and target 

time windows) and 9.9 % for the analysis including all time windows (but no interaction with 

context). A control analysis including non-repeated trials irrespective of letter string 

characteristics was already performed in our previous study of the same MEG dataset 

(Eisenhauer et al., 2019; Fig. 4).  

 To assess if the strength of pre-activation (i.e., the LMM-based partial effect of 

psycholinguistic metrics detected as significant in the delay period) is related to the processing 

strength (i.e., partial effect) of unpredictable as well as predictable letter strings (i.e., prime and 

target, respectively) at time windows that show a context effect (i.e., a change in neural 

activation from prime to target), we computed pairwise Pearson correlations between 

significant time points from the delay interval with prime and target time points showing a 

significant interaction with context. In the initial analysis, we estimated the effect of interest 

(lexicality, word frequency, and OLD20 of words and pseudowords) for the specific time points 

at which the interaction with context was significant. We then aggregated the LMM-based 

partial effects across participants, sensors, and repeated item presentations before we estimated 

the correlations. However, in this initial analysis, we noted that almost all correlations were 

positive, even those between positive and negative effects, indicating that the correlations might 

be confounded by residual noise not representing the effect of interest. We therefore first 

performed an LMM analysis modeling the partial effect of the parameter of interest dependent 

on the parameter as well as on the random effect of item. Remember that we were not able to 

include the random effect of item in the original LMM analysis as this resulted in a high 

proportion of un-estimable models. Next, we re-estimated the effect of interest, partialing out 

the random effect of item. We then again performed the correlation analysis as described above, 

using the re-estimated effects. Indeed, in this analysis the sign of the correlation effects 

represented the sign of the observed effects, i.e., positive effects correlated negatively with 

negative effects. Obtained p-values were Bonferroni-corrected for the number of computed 

correlations (which could differ between the four psycholinguistic metrics). E.g., for lexicality, 

six time points were found significant during the delay, and seven time points showed a 

significant interaction with context, resulting in 190 correlations and consequently a 

Bonferroni-corrected critical p-value of .05/190 = 0.00026.   
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2.2.4 MEG source localization  

We estimated source locations from the ERF difference of words vs. novel pseudowords, high 

vs. low-frequency words, and high vs. low OLD20 (the latter separately for words and 

pseudowords). Word frequency and OLD20 contrasts were based on median splits to increase 

the signal-to-noise ratio compared to single-trial analysis (e.g., Gross et al., 2013). As time 

windows for source analysis we selected the significant time points of lexicality effects, word 

frequency effects (words only), and the OLD20 effects for words and pseudowords from the 

LMM analysis (see previous sections). Source localizations of effects obtained in the LMM 

analysis were conducted on the effects of interest after correcting for all other sources of 

variance in the model. To this end, we simulated the respective effect of interest from the LMM 

for each sensor in a way that controls all other effects, using the remef package (Hohenstein 

and Kliegl, 2015). This source localization procedure is optimal when for each time point, all 

data from all sensors is included in one model, which is possible since we treated the sensors 

as a random effect. The simulated data from the LMM projects the effect of interest onto the 

sensors after correcting for all confounding variables, and these simulated sensor data are then 

subjected to standard source reconstruction procedures as described below. This 

‘preprocessing’ procedure for source localization is a central feature of our LMM analysis and 

currently, to our knowledge, not used elsewhere.  

Source localization was performed using linearly constrained minimum variance 

(LCMV) spatial filters (Van Veen et al., 1997) in FieldTrip, Version 2016 10-24, for those 34 

participants for whom anatomical MR images were available. The procedure closely followed 

our earlier study (Eisenhauer et al., 2019) and is based on Manahova et al. (2018; see also 

Dijkstra et al., 2018; Mostert et al., 2018). Anatomical MR images were warped to an MNI-

space template comprising 1,619 voxels within the brain (10 mm resolution). Two-dimensional 

dipole moments were computed for each voxel location. A single shell forward model of the 

inner surface of the skull (Nolte, 2003) was used for lead field computation. The data covariance 

was regularized with a shrinkage parameter of 0.01. The localization approach comprised a 

permutation procedure with 1,000 analyses on shuffled data to account for noise. Please refer 

to Eisenhauer et al. (2019) for a detailed description of the permutation procedure. Finally, the 

signal of each source location was normalized by its variance to counter the depth bias. 

For visualization, LMM-based source localizations thresholded at 50 % of the peak 

activation across all time windows included in the respective contrast, as well as thresholded at 

90 % of the individual peak of the respective time point, were plotted on cortical surfaces using 

MRIcron (Rorden and Brett, 2000). In order to make the OLD20 source activation strengths 
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comparable between words and pseudowords, both were thresholded at 50 % of the peak 

activation for words. Also, we visualized source overlaps between the identified sources of 

prime, delay, and target, based on both the 50 and the 90 % threshold. Brain regions were 

identified from the MNI coordinates of the ≤3 most robust sources per contrast using the 

AtlasReader (Notter et al., 2019) in Python.  

 

2.3  Code and data accessibility 

The analysis code used for behavioral and MEG data analyses, as well as the behavioral data, 

are publicly available from https://osf.io/c7s2k/. The MEG and MRI data are publicly available 

from https://osf.io/fc69p/.  

 

 

3  Results  

3.1  Behavioral experiment: Identifying context-based facilitation effects 

In the data from the behavioral experiment, we investigated the influence of a predictive context 

(i.e., prime absent vs. present) on visual, orthographic, phonological, and lexical-semantic 

processes during visual word recognition. These different ‘levels’ of processing were 

approximated in a linear mixed model (LMM) analysis of response times by various 

psycholinguistic metrics. We thus modeled the influence of context on effects of (i) perimetric 

complexity and number of simple features of the stimuli (visual processing), (ii) OLD20 and 

trigram frequency (orthographic processing), (iii) number of syllables (phonological 

processing), and (iv) word frequency as well as lexicality (words vs. novel pseudowords; 

lexical-semantic processing).  

 As our hypotheses were focused on the interactions of these stimulus characteristics with 

context-dependent facilitation, we will in the following primarily report results involving 

context effects; full results of the LMMs can be found in associated Tables. In general, 

processing of expected items (i.e., targets preceded by an identical prime stimulus) was 

facilitated, i.e., they were responded to faster than unprimed items (significant main effect of 

context: p < 2e-16; Table 2). This context-dependent facilitation interacted with parametric 

predictors representing orthographic (i.e., OLD20) and lexical-semantic (i.e., word frequency 

and lexicality) but not visual or phonological processing (Table 2; see also Table S1 for the 

results of the full model). In order to implement an adequate statistical model, we removed the 

non-significant visual, orthographic (i.e., trigram-frequency), and phonological predictors from 

the full model and re-estimated the model. This reduced model is presented in Table 2; an 
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explicit model comparison indicated that the Akaike Information Criterion (AIC) of this simpler 

model was 21 points lower than that of the full model (chi-square = 11.051, df = 16, p = 0.806). 

Given that these two models did not differ statistically, the simpler model should be preferred 

(see Methods section).  

 With respect to orthographic processing, a significant 3-way interaction between context, 

lexicality (words vs. novel pseudowords), and OLD20 (p = .001; Table 2; see also Tables S2 

and S3 for resolving this interaction post hoc via two-way interactions) could be resolved to 

show significant negative effects of OLD20 on response times for novel pseudowords, with 

faster decision times particularly for expected pseudowords that have a high orthographic 

similarity to words (i.e., low OLD20; see Fig. 3a, Table 3, and Table S2). For words, we 

observed descriptively a negative effect of OLD20 for words presented in isolation and a 

positive effect for primed words (Fig. 3a), which resulted in a significant context by OLD20 

interaction for words (see post hoc statistics in Table S2). This interaction could, however, not 

be further resolved statistically in post hoc analyses (Table 3).  

 With respect to lexical-semantic processing, a significant interaction between context and 

word frequency (p < .001; Table 2) provided evidence for context-dependent facilitation of 

lexical-semantic processing. Post hoc evaluation showed significantly faster decision times to 

more frequent relative to less frequent words when presented in isolation (i.e., when not 

predictable), but no significant frequency effect for primed words (given generally faster 

responses; Fig. 3b; see also Table 3 for word frequency effects of words only, and Table S3 for 

word frequency effects combined across words and novel pseudowords, for which a word 

frequency of zero was assumed). Lexical-semantic processing as one locus of predictive effects 

is also supported by the observation of a context by lexicality interaction (p < .001; Table 2), 

which shows that the effect of context-dependent facilitation is generally much stronger for 

words than for novel pseudowords (see also Fig. 3a; compare also Eisenhauer et al., 2019). In 

addition, this was confirmed in a control analysis revealing stronger context-based facilitation 

effects for words than for familiar pseudowords (see Supporting Results 3). Finally, our 

manipulation check confirmed faster response times not only for repeated targets vs. primes, 

but also for repeated targets vs. non-repeated targets irrespective of psycholinguistic variables 

(see Supporting Results 4). To summarize, these behavioral results suggest that context-based 

facilitation involves processes at the pre-lexical orthographic and the lexical-semantic stages of 

visual word recognition, while no evidence was found for context effects at the level of visual 

or pre-lexical phonological processing. As a consequence, we explore the neurophysiological 

data with respect to neural signatures of predictive context effects and pre-activation effects of 
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OLD20 (orthographic similarity), word frequency, and lexicality. 

 

 

Figure 3. Behavioral results reflecting context-dependent facilitation. Comparison of response times 

representing (a) orthographic (OLD20 effect separated for words and pseudowords) and (b) lexical 

processing (word frequency effect) when stimuli were either predictable from context (i.e., repeated 

targets; orange lines and dots) or not (isolated presentation; blue lines and dots). Note that lower 

OLD20 values reflect higher word likeness, and, thus, orthographic familiarity. Displayed are 

logarithmic response times that represent the partial effects estimated from linear mixed models. 

Dots represent items averaged across participants. 

 

3.2  Investigation of orthographic and lexical-semantic representations in brain data 

MEG-measured event-related fields elicited by words and pseudowords of the present dataset 

were investigated in depth in our earlier publication. The previous findings revealed a context 

effect of lower neuronal activation for repeated targets (i.e., predictable letter strings) in 

comparison to both non-repeated targets (i.e., mispredicted letter strings) and primes (i.e., 

unpredictable letter strings) in left-lateralized language network regions (Eisenhauer et al., 

2019; Fig. 4; https://www.eneuro.org/content/eneuro/6/2/ENEURO.0321-

18.2019/F4.large.jpg). This finding confirms that our context manipulation was successful in 

facilitating the processing of predictable letter strings by reducing the required neuronal 

resources. In addition, the context effect of repeated targets vs. primes was stronger for words 

compared to both novel and familiar pseudowords within the left anterior temporal cortex 

(Eisenhauer et al., 2019; Fig. 5H-J 
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https://www.eneuro.org/content/eneuro/6/2/ENEURO.0321-18.2019/F5.large.jpg), indicating 

context-based facilitation in particular at the lexical-semantic level.  

The present work goes beyond this initial report and uses LMMs to directly assess (i) 

context effects during stimulus processing and their effect on orthographic and lexical-semantic 

levels of linguistic processing (represented by the psycholinguistic metrics OLD20, word 

frequency, and lexicality), and (ii) their dependency on pre-activation of orthographic and 

lexical-semantic representations during the prime-target interval. To this end, we first 

characterize the temporal dynamics of the effects of OLD20 (reflecting orthographic 

representations), as well as word frequency and lexicality (both reflecting lexical-semantic 

representations) by individually analyzing each time point across the entire trial. We then 

directly compare respective effects identified during processing of prime and target, to quantify 

context (i.e., repetition) effects at the respective level of representation. Third, we explore pre-

activation by testing for the presence of orthographic and lexical-semantic effects in the prime-

target delay. In detail, we assess whether these signatures of pre-activation correlate with 

activation during prime and target processing, primarily to determine how the processing of 

expected stimuli mechanistically depends on context-dependent pre-activation. 

Analogous to the statistical approach used for analyzing the data from the behavioral 

experiment, we investigated the effects of the three psycholinguistic metrics of interest on brain 

activation using linear mixed models (LMMs). LMMs model data at the level of individual 

trials, and thus result in high statistical power (Matuschek et al., 2017). Indeed, while we also 

investigated brain activation using a multivariate pattern decoding approach (see Supporting 

Results 5), which has been established in previous work for investigating brain responses in the 

absence of external stimulation (e.g., Simanova et al., 2015; Heikel et al., 2018), a power 

analysis indicated higher power and more reliable effect size estimates for LMMs in contrast 

to multivariate pattern decoding (see Supporting Results 6). Importantly, LMMs can estimate 

the effects of interest while controlling for confounding variables. Note that LMMs are 

calculated for every sample time point; in Figure 4, we visualize the LMM estimates, reflecting 

the modulation of the ERF amplitude at the respective time point. Higher absolute estimate 

values indicate a steeper regression slope, i.e., a stronger modulation of neuronal activation by 

the respective parameter. The slopes were thus our effect size measure of the respective 

stimulus characteristics in neuronal activation. In detail, high effect size values can be 

interpreted as a strong representation of the respective concept in neuronal activation as they 

indicate that neuronal activation differentiates between letter strings of higher vs. lower 

parameter values. In the presence of a negative ERF component, a positive estimate indicates 
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that letter strings with a higher value on the predictor variable (e.g., word frequency) have a 

less negative-going ERF, and vice versa for negative estimates. The scatterplots in Figure 4 

visualize partial effects for exemplary time points, i.e., they represent the data (averaged across 

participants) and the regression slopes for an effect of interest after partialing out all other 

effects from the LMMs.  

 Effects of orthographic representations. LMMs revealed a significant interaction 

between OLD20 and lexicality (words vs. novel pseudowords) – corresponding to the 

interaction found in our behavioral data – in several time windows (Bonferroni-corrected; 

marked with yellow in Fig. 4a,d). The interaction was found (i) during presentation of the prime 

between 215 and 265 ms and between 540 to 790 ms, (ii) during the prime-target delay at 

multiple time points  between 15 and  740 ms after prime offset (corresponding to 815 to 1540 

ms relative to prime onset), and (iii) during presentation of the target, i.e., between 190 and 215 

ms, as well as 590 and 690 ms after target onset (corresponding to 1790 to 1815 and 2190 to 

2290 ms relative to prime onset). The interaction resulted from predominantly negative effects 

for words (i.e., greater negative-going MEG activity the higher the OLD20 parameter, i.e., the 

less word-like a word was; see detailed effects in Fig. 4a) and mainly positive effects for novel 

pseudowords (Fig. 4d). The opposite effects of orthographic similarity (OLD20) on MEG 

responses elicited during word vs. pseudoword processing are also documented by a negative 

correlation of the two time courses of the OLD20 effect estimates (r = -.29; t(99) = -3.0; p = 

.003). Separate investigations of OLD20 effects for words vs. novel pseudowords revealed an 

early negative OLD20 effect for pseudowords (i.e., at 40 ms) during prime presentation (Fig. 

4d). In contrast, the OLD20 effect for words reached significance considerably later, at 215 ms 

during prime presentation (Fig. 4a). During target processing, OLD20 effects reached 

significance shortly before 200 ms, with a slightly earlier onset for pseudowords (165 ms) vs. 

words (190 ms). In the delay period, significant effects were more abundant for words (40.6 % 

of investigated time points) vs. pseudowords (18.8 %). When comparing the three time 

windows, words showed overlapping source activations in bilateral frontal and pseudowords in 

bilateral parietal regions (Fig. 4a,c vs. d,f). When quantifying the contextually-mediated effect 

of orthographic processing by directly contrasting OLD20 effects during prime and target 

processing, significant differences emerged at 215, 540, and 590 to 615 ms for words and at 

115, 190, 265 to 290, and 740 ms for pseudowords, reflecting a reversal of the effect direction 

from prime to target at these time points (i.e., from negative to positive or vice versa; marked 

by gray shading in Fig. 4a and Fig. 4d; see also Fig. 4b and Fig. 4e).  
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Figure 4. Effects of orthographic and lexical-semantic information across time and their brain 

localization. (a) Effects of OLD20 during word processing. Displayed are the estimates of linear 
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mixed models ± SE across time, including baseline, prime, delay, and target time windows. The 

salient red dots represent significant time points, excluding un-estimable models. Gray shading 

represents time points of a significant interaction between OLD20 and context (prime vs. target). 

Yellow circles represent time points of a significant interaction between OLD20 and lexicality (words 

vs. pseudowords; compare panel (b)). Black circles mark time points for which source localizations 

are shown. Source topographies display sources thresholded at 50 % of the overall peak (maximal 

activation across all time points; violet), as well as thresholded at 90 % of the individual peak per 

time point (yellow) within the left (LH) and right (RH) hemisphere. (b) Scatterplots depict model-

estimated partial effect sizes for three exemplary time points from prime, delay, and target time 

windows. In case of prime and target, a time point showing a significant interaction between the 

respective parameter and the prime/target difference was selected. (c) Activated sources from all 

significant time points (left) and overlapping sources during prime, delay, and target time windows 

(right), based on both the 50 % threshold of the overall peak as well as the 90 % threshold of the 

individual peak. (d,e,f), (g,h,i), and (j,k,l) show corresponding results for OLD20 during pseudoword 

processing, word frequency (for words only), and lexicality, respectively. To facilitate comparability 

of OLD20 source activation strengths for words and pseudowords, the 50 % threshold of OLD20 

source activations for words was used for pseudowords as well. See Table S10 for source 

coordinates. 

 

 

 To examine the influence of orthographic pre-activation (i.e., the OLD20 effects) on 

target processing, we correlated significant effect size estimates from the delay with all 

timepoints showing significant interactions with context (i.e., that show a relevant change from 

prime to target). First, we expect that time points within the delay period correlate positively 

when neuronal pre-activation is maintained stable across time (cf. King and Dehaene, 2014). 

Positive correlations between prime and delay might either reflect a ‘spill-over’ from prime 

processing, or a re-activation of representations activated while processing the prime, 

potentially facilitating the processing of the identical target. We expect a negative correlation 

between delay and target, when the higher delay activation results in more efficient target 

processing (i.e., as assumed by predictive coding; Friston, 2005). In contrast, if the observed 

reversal of the effect direction from prime to target already takes place during the delay, this 

could indicate that more extensive processing of the prime leads to more efficient pre-activation 

and target processing.   

Within the delay period (see black triangles in Fig. 5a,b), significant effects of OLD20 

are highly correlated, but more sustained across the delay for words than for novel pseudowords 

(Fig. 5a,b). This indicates a stable neuronal activation across the delay period for words, while 

pseudowords showed less orthographic pre-activation during the delay (see above). From prime 

to delay, the majority of significant correlations for words was positive (74.0 %), while 

significant correlations for novel pseudowords did not indicate a stable pattern as only 44.4 % 

were positive (see the dot-dashed black squares in Fig. 5a,b). Delay-target correlations (see the 

dashed line black squares in Figs. 5a,b) represent relationships between orthographic pre-

activation and processing of the expected item. For words, early target activation (215 ms) was 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 24, 2021. ; https://doi.org/10.1101/2020.07.14.202226doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.14.202226
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

 

Figure 5. Correlations between LMM-based partial effects across prime, delay, and target time points 

for (a) OLD20 effects for words, (b) OLD20 effects for pseudowords, (c) word frequency, and (d) 

lexicality. For the delay, correlations were computed for all time points showing a significant effect of 

the respective letter string characteristic, while for prime and target, time points at which effects 

changed between prime and target (as reflected in a significant interaction of the characteristic with 

the context effect) were selected. The time-resolved correlations are down–sampled by a factor of 

10. Significant correlations are shown below the diagonal, while all correlations are shown above the 

diagonal. Black triangles mark within-delay correlations, while the dot-dashed black square marks 

prime-delay correlations and the dashed line black square marks delay-target correlations. 

 

correlated positively, while late target activation (590 to 615 ms) was correlated negatively with 

orthographic delay activation (Fig. 5a). For novel pseudowords, the target activation was 

consistently positively correlated with the delay activation (Fig. 5b). To summarize, these 

findings indicate more sustained pre-activation of orthographic information for predicted words 

than pseudowords. However, pre-activated information more consistently resembled target 

effects for pseudowords compared to words; for words, early target effects resembled delay 
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activation, while late target effects indicated stronger facilitation with stronger pre-activation. 

 Lexical-semantic representations: Effects of word frequency. As for OLD20, we found 

significant effects of word frequency (investigated only for the word condition) at several time 

points across the prime, delay, and target time windows (Fig. 4g,h). Throughout the entire trial, 

we found predominantly negative effects (i.e., more negative/less positive activation for higher 

frequency words), with the exception of one single positive effect at 515 ms after prime onset. 

Specifically, negative effects were found in the time ranges of 40 to 65 ms and 240 to 340 ms 

after prime onset. During the prime-target delay, we observed negative effects at 115 ms and at 

several time points later in the delay, in the time range from 290 to 715 ms (i.e., 1090 to 1515 

ms relative to prime onset). During the target presentation, significant negative frequency 

effects were found in time windows starting earlier when compared to the prime interval, i.e., 

between 15 and 65 ms. In addition, negative frequency effects were found in the range from 

190 to 315 ms (1615 to 1665 ms and 1790 to 1815 ms relative to prime onset), but also at late 

time points (690 and 740 ms, i.e., 2290 and 2340 ms relative to prime onset). Sources of the 

word frequency effects across the three time windows were localized to frontal and parietal 

brain regions (Fig. 4i). 

To directly assess context-dependent word frequency effects, we compared word 

frequency effects between prime and target – statistically assessed as a context by frequency 

interaction. We identified significant interactions at 215, 465, 515, and 740 ms after stimulus 

onset (gray shading in Fig. 4g), indicating a reversal of the effect direction from prime to target. 

As for orthographic representations, we assessed correlations among effect strengths involving 

all time points with significant differences in frequency effects between prime and target (i.e., 

context x frequency interactions) and all significant time points from the delay period. 

Analogous to orthographic effects in the word condition, we found highly correlated effects 

within the delay period (Fig. 5c), suggestive of a consistent neuronal pre-activation of word 

frequency-related information. We found predominantly negative correlations when prime and 

delay periods were compared and predominantly positive correlations between pre-activation 

effects in the delay and target processing (75.0 % of significant correlations each). These 

findings suggest a reversal of the word frequency effect direction from prime to delay but 

relatively consistent neuronal activation patterns throughout the delay and target periods. 

           Lexical-semantic representations: Effects of lexicality. The time course of effect 

estimates for the second psycholinguistic metric of lexical-semantic processing, i.e., stimulus 

lexicality (words vs. novel pseudowords), was very similar to that of word frequency (r = .94; 

t(99) = 26.7; p < .001; compare Figs. 4g vs. j). In detail, during the presentation of the prime, 
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negative lexicality effects (reflecting more negative activation for pseudowords relative to 

words) reached significance at 40 to 65 and at 240 ms, and we found a positive effect at 515 

ms post-stimulus onset. During the delay, significant negative lexicality effects were found for 

several time points in the range from 290 to 615 ms (corresponding to 1090 to 1415 ms relative 

to prime onset). During the presentation of the target, significant negative effects were found at 

40 to 65, between 190 and 290 ms, and from 690 to 740 ms.  

  Context by lexicality interaction effects partly overlapped with context interactions 

involving word frequency: Lexicality effects (words vs. novel pseudowords) differed between 

prime and target at 190 to 215, 290, 515, and 690 to 740 ms after stimulus onset (gray shading 

in Fig. 4j; see also Fig. 4k). For the lexicality contrast of words vs. pseudowords, the interaction 

with the context effect of prime vs. target, as well as the lexicality effects during the delay, 

reached significance at time points similar to the words vs. novel pseudowords contrast (see 

Supporting Fig. S3). This finding indicates that the lexicality effects likely capture differences 

in lexical-semantic representations as opposed to general familiarity differences between the 

letter string groups (e.g., see Gregorova et al., 2021 for a finding indicating domain generality 

of lexical access).  

In the correlation matrices for the lexicality contrast of words vs. novel pseudowords 

we found a very clear picture (Fig. 5d). First, all effects within the delay were highly positively 

inter-correlated. Again, the prime and delay period effects showed negative correlations and 

delay and target period effects showed positive correlations. When localizing the lexicality 

effect, we found similar regions across prime, delay, and target time windows, located within 

frontal, temporal pole, and cerebellar regions. Thus, despite similar time courses, there is an 

apparent dissociation from the frequency effect (cf. Fig. 4g,i vs. j,l).  

 

 

4  Discussion 

We investigated the role of visual, orthographic, phonological, and lexical-semantic 

representations for context-dependent (i.e., predictive) facilitation of visual word recognition. 

Consistent with abundant previous literature (e.g., Tulving and Schacter, 1990; Kutas and 

Federmeier, 2011), context-dependent facilitation is reflected in faster response times and an 

amplitude reduction in the event-related fields (ERFs) for repeated relative to initial stimulus 

presentation (see Eisenhauer et al., 2019, Fig. 4, for ERFs from the present dataset). Our 

behavioral data indicate that orthographic and lexical-semantic, but not visual or phonological 

processing, interact with context-dependent facilitation. The MEG data show differential 
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effects of orthographic word similarity, word frequency, and lexicality on prime vs. target 

processing. Importantly, all three parameters also modulated brain activity in the delay interval, 

providing evidence for pre-activation of orthographic and lexical-semantic representations in 

predictive contexts. This finding is crucial as the majority of previous studies indicating 

predictive pre-activation in visual word recognition had not dissociated at what representational 

level information is pre-activated (e.g., Dikker and Pylkkänen, 2013; Bonhage et al., 2015; 

Wang et al., 2017).  Consequently, our findings further support the previous evidence for 

predictive pre-activation of lexical-semantic representations (Fruchter et al., 2015; Wang et al., 

2020) by showing that lexicality and word frequency are represented in neuronal activation 

patterns prior to predictable letter strings. In addition, our results extend previous findings by 

providing the first direct evidence for a pre-activation of orthographic information. A change 

in the direction of estimated effects reflected a change in the quality of pre-activated lexical-

semantic representations from prime to delay, while delay and target effects were positively 

correlated.  

 

4.1 Context-Dependent Facilitation of Visual Word Recognition 

Contextual facilitation was modulated by orthographic word similarity. As expected (e.g., 

Balota and Chumbley, 1984; Fiebach et al., 2007), we found fast non-word responses when 

orthographic familiarity is low. Predictability amplified this effect and reversed the weak 

OLD20 effect for words, suggesting an interactive role of orthographic processing and context-

dependent facilitation. Regarding lexical-semantic processing, we found stronger behavioral 

priming effects for words than pseudowords (replicating, e.g., Fiebach et al., 2005) and reduced 

word frequency effects for expected words (replicating, e.g., Forster and Davis, 1984; 

Kinoshita, 1995). As word frequency effects are typically interpreted as reflecting differences 

in the ease of lexical access (e.g., Coltheart et al., 2001), this (together with the generally faster 

target response times) indicates that the effort of accessing meaning is reduced in highly 

predictive contexts. Consistent with current literature, we found no evidence for context-based 

facilitation of visual (e.g., Slattery and Yates, 2018) or phonological processes (e.g., Nieuwland 

et al., 2018).    

 

4.2 Neurophysiological Mechanisms of Context-Dependent Facilitation 

Pre-lexical orthographic and lexical-semantic representations modulated brain activation 

during prime, delay, and target intervals. Orthographic familiarity elicited negative and positive 

effects for words and pseudowords, respectively, at around 200 and 500 ms. Lexical-semantic 
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effects were identified earlier (before 100 ms) and around 250 ms, both showing a negative 

modulation (e.g., more positive activation for words than pseudowords) independent of 

predictability. This result (and its localization to frontal brain areas) replicates early MEG 

effects obtained with similar stimuli (e.g., Wheat et al., 2010; Woodhead et al., 2014). These 

early effects might reflect top-down constraints from (higher) lexical-semantic to lower 

representational levels (e.g., Price and Devlin, 2011; Carreiras et al., 2014). A similar proposal 

for object recognition (Bar et al., 2006) suggests an initial coarse processing of visual stimuli, 

which can account for very early top-down effects. According to that model, low spatial 

frequency components are extracted very early from the visual input and are assumed to be 

transmitted very rapidly to frontal cortex, triggering higher-level representations that in turn 

constrain the subsequent more elaborate visual processing of the input (based on high spatial 

frequency input). The present data, however, provide no insights into how such ultra-fast 

processing of word semantics might be mechanistically implemented, given that the surface 

form of words provides no cues for their semantic meaning. 

Context-dependent changes of representations (i.e., from prime to target) started at ~100 

ms post-stimulus onset for orthographic (in pseudowords) and ~200 ms for lexical-semantic 

representations. These prime-target differences also involved qualitative changes, with larger 

activations for words vs. pseudowords at the prime and the inverse effect at the target. These 

findings suggest that context-dependent facilitation is implemented at orthographic and lexical-

semantic processing levels (e.g., Almeida and Poeppel, 2013; Brothers et al., 2015).  

Orthographic as well as lexical-semantic effects during the delay period emerged 

several hundred milliseconds before target onset (cf., e.g., Dikker and Pylkkänen, 2013; 

Gastaldon et al., 2020; for similar time windows of general word pre-activation effects; i.e., 

without resolving the level at which information was pre-activated). These effects were 

consistently positively correlated during the delay period, indicating the high stability of 

activated representations. Effects elicited during the delay reflect, by necessity, either a 'spill-

over' from processing the prime or predictive pre-activation of target-associated linguistic 

representations. However, we suggest that the observed delay effects reflect predictive pre-

activation for the following reasons: (i) Lexicality and word frequency effects during prime 

processing were mainly anticorrelated with delay effects, which is incompatible with spill-over 

as this would cause similar (i.e., positively correlated) neuronal activation patterns during prime 

and delay. (ii) Spill-over is expected to occur shortly after prime offset, with a sustained 

representation activated both at the end of prime presentation and the beginning of the delay. 

Still, no such pattern was observed for lexicality and word frequency. Rather, no significant 
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effects were found during the transition from prime to delay for a period of 575 and 400 ms, 

respectively. For OLD20 effects of words and pseudowords, correlations between prime and 

delay were partly positive (74 % for words and 44.4 % for pseudowords), and the time period 

of non-significant effects at the transition from prime to delay was comparatively short (i.e., 

125 ms for both conditions). Nevertheless, the direction of OLD20 effects changes at the end 

of prime presentation and again at the beginning of the delay, indicating that representations 

are not sustained over a longer period while transiting from prime to delay. This, however, is 

not compatible with a spill-over account of the present findings. In contrast to the 

anticorrelation of lexical-semantic effects during the delay with effects during prime 

presentation, delay and target effects were positively correlated. This finding indicates 

qualitative changes from prime to delay and pre-activation of target-associated representations. 

Early orthographic effects on word primes were anticorrelated with later prime effects (as well 

as delay and most of the target representations), suggesting that orthographic representations 

for words are relatively quickly transformed into preparatory codes (i.e., after lexical access 

which is achieved before 500 ms post-stimulus onset; e.g., Duñabeitia and Molinaro, 2014). 

The direct demonstration of orthographic pre-activation constitutes a theoretical advance of the 

present study, as previous evidence for predictive processing at the orthographic level had only 

been inferred indirectly from predictability effects after word onset (e.g., DeLong et al., 

2019).  Also, the findings described can be better explained by a predictive mechanism 

compared to spill-over effect. 

In line with previous observations (Dikker and Pylkkänen, 2013; Fruchter et al., 2015; 

Wang et al., 2017), similar brain regions were activated during stimulus processing and pre-

activation. In detail, source localization revealed lexical-semantic effects in frontal regions, 

replicating Fiebach et al. (2002) and Binder et al. (2003). For lexicality effects, this included 

the inferior frontal gyri as well as the temporal poles (previously implicated in lexical-semantic 

facilitation; Lau et al., 2013, 2016), which was expected given these regions form essential 

parts of the semantic network (e.g., Binder et al., 2009; Lambon Ralph et al., 2017). 

Furthermore, lexicality effects were localized to the cerebellum, which supports previous 

evidence that this brain structure is implicated in predictive processing of visual words (see 

review by Pleger and Timmann, 2018). In detail, it has been proposed that the cerebellum might 

serve a similar function during language processing as during motor control, i.e., representing 

internal models of contextually relevant stimuli such as words or objects (Moberget et al., 

2014). Localizations of word frequency effects, besides frontal regions, also involved parietal 

regions (cf. Desai et al., 2018). Orthographic effects were localized to frontal (in the case of 
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words) and parietal regions (in the case of pseudowords). Previous fMRI studies localized 

orthographic effects based on neighborhood measures (similar to the OLD20 measure used 

here) to regions implicated in orthographic processing (Yarkoni et al, 2008b; Braun et al., 2015) 

and/or to domain general regions (Fiebach et al., 2007; Yarkoni et al, 2008b; Braun et al., 2015). 

The sources found here fall into the latter category of regions previously associated with 

executive functions (e.g., Duncan, 2013), which might support (predictive) language processing 

(e.g., Ye and Zhou, 2009; Federmeier et al., 2020; Ryskin et al., 2020).  

 

4.3 Implications for Models of Predictive Coding  

The activation of linguistic representations before an expected linguistic stimulus is in line with 

the assumption of active prediction (as specified in predictive coding theory, e.g., Rao and 

Ballard, 1999). Kuperberg and Jaeger (2016) recently proposed that language comprehension 

involves predictive processes at multiple levels of the linguistic hierarchy. The present data 

support this hypothesis for orthographic and lexical-semantic, but not visual and phonological 

levels of word processing. Neither language-specific (Kuperberg and Jaeger, 2016) nor general 

theories of predictive coding (Friston, 2005) have discussed restrictions of predictive 

processing to certain levels of representation to the best of our knowledge. Therefore, this 

possibility should be explored further in future studies (see Gagl et al., 2020, for a recent 

example from pre-lexical orthographic processing). 

Our data also indicate more temporally extended effects of orthographic pre-activation 

for words than pseudowords. This finding suggests that the presence of prior stimulus 

knowledge modulates predictive pre-activation. For example, it may be easier to activate (parts 

of) pre-existing mental representations in a top-down guided manner, rather than activate a 

newly assembled set of orthographic features of a previously unknown pseudoword. This notion 

is also compatible with the absence of sustained orthographic effects for pseudowords in the 

second half of the delay. The restriction of orthographic delay effects for pseudowords to very 

early time windows could reflect residual activation (spill-over) from processing the prime as 

opposed to pre-activation of orthographic target characteristics. On the other hand, this is not 

directly compatible with the observed change in the direction of orthographic effects between 

prime and delay (as discussed above). In this context, it is also interesting to note that pre-

activation effects for lexical-semantic representations in the delay seem to temporally coincide 

with orthographic pre-activation for words but not pseudowords. 

Besides predictive pre-activation, effects in the delay period might alternatively be 

interpreted as reflecting a working memory representation of the prime. This alternative 
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explanation, in fact, cannot be excluded for the majority of studies investigating predictive pre-

activation. As predictions unequivocally require memory (e.g., Bar, 2009), pre-activation 

cannot easily be differentiated from a mnemonic representation. For example, it has been 

suggested that working memory, just like prediction, might correspond to the activation of one’s 

‘internal model of the world’ (e.g., Kok and de Lange, 2015). In addition, previous evidence 

indicated that individuals with higher working memory capacity show predictive behavior to a 

more substantial extent than persons with relatively lower working memory capacity, both in 

language processing (e.g., Huettig and Janse, 2016) and other domains (e.g., Cashdollar et al., 

2017). Nevertheless, our observation that effects in the delay period were predominantly anti-

correlated to effects elicited during prime processing rules out that these effects reflect a 

working memory representation of the prime (cf. Lee and Baker, 2016; Christophel et al., 2017). 

Instead, the positive correlation between the delay and target effects strengthens the 

interpretation that target characteristics are pre-activated during the delay.  

Predictive coding theories assume that internal models can ‘explain away’ the known 

part of expected sensory inputs and that this part of a stimulus as a consequence does not have 

to be processed. Accordingly, brain responses elicited during perception should carry more 

information about the stimulus when perceiving unpredictable in contrast to predictable stimuli 

(Kok et al., 2012; Blank and Davis, 2016). We found this pattern for OLD20, where more 

significant effects were observed on the prime than the target. For lexical-semantic metrics, we 

observed more significant effects on the target than on the prime. This finding may be more 

compatible with ‘sharpening’, an alternative account of repetition priming effects according to 

which noisy parts of the signal are suppressed when sensory input is predictable, while the 

signal’s informative components are sharpened (e.g., Kok et al., 2012). The sharpening theory 

does not rule out predictive processing per se but represents an alternative mechanism of how 

predictive processing may be implemented (Kok et al., 2012; Walsh et al., 2020). Interestingly, 

previous studies in the domain of auditory word recognition found evidence for predictive 

coding as opposed to sharpening at the acoustic/phonological level (Blank and Davis, 2016; 

Sohoglu and Davis, 2020). These findings correspond well with the present evidence for 

predictive coding at a similarly early level – orthographic processing – in visual word 

recognition. In contrast, the observation that lexical-semantic context effects are rather in line 

with sharpening is a novel finding (note that the lexical-semantic level was not included in the 

investigations of Blank and Davis, 2016, and Sohoglu and Davis, 2020). Potentially, this 

reflects the high relevance of lexical-semantic information in word recognition. As the goal of 

word recognition is meaning access, it seems plausible that lexical-semantic features are not 
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explained away but rather processed further, while a sharpening of these features nevertheless 

allows facilitated processing when predictable (i.e., as evident from the observed stronger 

reduction of behavioral response times for predictable words vs. pseudowords). 

          Also, the nature of correlations between delay and prime as well as delay and target seems 

to pose a challenge for predictive coding models. Predictive coding (Friston, 2005) assumes 

that the prediction contains relevant information about a stimulus, which is then suppressed 

when processing the expected stimulus. Accordingly, predictive coding would propose a 

positive correlation between unpredictable prime and delay representations, which was not 

observed for the majority of the present effects. Rather, the strong and sustained positive 

correlations between delay-period pre-activation and orthographic and lexical-semantic effects 

during the predictable target's processing indicate that similar representations are active before 

and during predictable stimulus processing. In contrast, representations during unpredictable 

prime processing were more variable (i.e., of positive and negative effect direction). Again, this 

pattern suggests a sharpening mechanism (e.g., Kok et al., 2012) that reduces the variability of 

neuronal responses for predictable compared to unpredictable contexts. Tentatively, we propose 

that initial prime processing might be rather noisy as the prime is unpredictable. However, once 

the prime stimulus has been identified, readers are able to pre-activate a noise-free 

(‘sharpened’) representation of the upcoming expected target stimulus. This representation is 

also activated during the processing of the predictable target, explaining the observed 

correlation between delay and target representations.  

 

4.4 Potential Limitations  

Three methodological considerations may influence the interpretation of our findings: First, the 

fixed stimulus length (five letters) and resulting restriction of variance in the phonological 

predictor (number of syllables) may have limited our ability to observe behavioral effects 

related to visual and phonological processing levels. An unbiased investigation of potential 

contributions of these processing levels in future work may require more variable stimulus 

materials. Second, all results of the present study depend on the adequacy of the predictor 

variables for describing the representations at different processing levels. However, all stimulus 

measures used here are very well-established in psycholinguistics, and thus appear to be the 

best possible choices. Finally, the long delay interval between prime and target strongly 

diverges from fast-paced natural reading. We considered this long interval necessary in order 

to separate possible effects of pre-activation from stimulus processing; however, future research 

should aim at investigating context effects across representational levels in visual word 
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recognition using a faster pacing of stimulus presentation or using natural reading combined 

with new analysis procedures (Dimigen and Ehinger, 2021). 

 

4.5 Conclusion 

We used linear mixed model analyses to show that in behavior and brain activation, context-

dependent facilitation of visual word recognition relies most strongly on orthographic and 

lexical-semantic processes. At these two levels of linguistic representation, information is 

represented consistently and in a temporally coordinated manner in brain signals before the 

stimulus is presented. Our findings indicate that neuronal language processing systems actively 

prepare for the upcoming word and thereby increase word recognition efficiency via a 

sharpening mechanism.  
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Tables 

Table 1. Stimulus parameters of words and pseudowords (PW) in the behavioral and MEG experiments 

 Minimum 

1st 

Quartile Median 3rd Quartile Maximum Mean SE 

Behavior: Logarithmic word frequency 

Words 0.000 1.518 1.971 2.189 3.301 1.933 0.095 

Behavior: OLD20 

Words 1.000 1.288 1.650 1.750 1.950 1.538 0.038 

PW set 1 1.000 1.500 1.650 1.762 2.000 1.605 0.032 

PW set 2 1.000 1.288 1.650 1.850 2.100 1.542 0.045 

PW set 3 1.000 1.337 1.700 1.850 2.300 1.596 0.044 

Behavior: Trigram frequency 

Words 1.806 2.556 2.793 3.162 3.773 2.837 0.056 

PW set 1 1.342  2.623  2.856  3.067 3.514 2.826   0.047  

PW set 2 1.176  2.567    2.833    3.136    3.136 2.792       0.063 

PW set 3 1.437    2.576    2.844    3.237    3.602 2.808    0.061 

Behavior: Number of syllables 

Words 1.00 2.00 2.00 2.00 3.00 1.833 0.059 

PW set 1 1.00 2.00 2.00 2.00 2.00 1.95 0.028 

PW set 2 1.00 2.00 2.00 2.00 2.00 1. 967 0.023 

PW set 3 1.00 2.00 2.00 2.00 2.00 1.9 0.039 

Behavior: Perimetric complexity 

Words 4.400    5.800    6.400    6.600    8.200 6.354    0.093 

PW set 1 5.000     5.800     6.300     6.800     7.800 6.320     0.083 

PW set 2 5.200    6.200    6.600    7.000    7.800 6.553    0.083 

PW set 3  5.000    5.950    6.600    7.000    7.800 6.457    0.090 

Behavior: Number of simple features 

Words 1.400    1.950    2.000    2.200 2.600    2.031    0.031 

PW set 1  1.200     1.800     2.000     2.200 2.600     1.950     0.038 

PW set 2 1.200    1.800    2.000    2.200 2.600    2.003    0.040 

PW set 3 1.400    1.800    2.000 2.200    2.400 1.973 0.040 

MEG: Logarithmic word frequency 

Words 0.000 1.512 2.229 2.858 4.032 2.137 0.115 

MEG: OLD20 

Words 1.600 1.750 1.850 1.900 2.050 1.825 0.013 

novel PW  1.250 1.637 1.750 1.863 2.300 1.743 0.027 

familiar PW 1.250 1.600 1.725 1.863 2.100 1.717 0.026 

MEG: Trigram frequency 

Words 1.773 2.573 2.785 3.070 3.778 2.804 0.049 

novel PW  1.176 2.402 2.684 2.915 3.597 2.649 0.060 
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familiar PW 1.342 2.585 2.684 2.919 3.425 2.670 0.407 

MEG: Number of syllables 

Words 1.00 2.00 2.00 2.00 2.00 1.817 0.050 

novel PW  1.00 2.00 2.00 2.00 2.00 1.933 0.032 

familiar PW 1.00 2.00 2.00 2.00 2.00 1.95 0.028 

MEG: Perimetric complexity 

Words 5.000    5.800    6.400    6.800    7.600 6.260    0.086 

novel PW  5.000     5.800     6.400     6.800     8.400 6.323     0.091 

familiar PW 5.200 5.800     6.200 6.800     7.800 6.327 0.627 

MEG: Number of simple features 

Words 1.400    2.000    2.200    2.400 2.800    2.160    0.038 

novel PW  1.200     1.800     2.000     2.200 2.400     1.983     0.040 

familiar PW 1.200     1.800     2.000     2.200 2.400     1.913     0.298 

See Figure S1 for parameter correlations. 
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Table 2. Results of the linear mixed model (LMM) investigating context effects (repeated target 

vs. isolated presentation) on word frequency, OLD20, and lexicality in behavioral response times  

 FE SE t p 

Context -0.278 0.013 -21.951 < 2e-16 

Word frequency -0.047 0.014 -3.312 0.001112 

Lexicality -0.019 0.027 -0.715 0.476 

OLD20                                                  -0.013 0.006 -2.078 0.038 

Trial order                                             -0.025 0.002 -10.03 < 2e-16 

Word frequency x Context  0.039 0.012 3.316 0.000918 

Lexicality x Context                       -0.131 0.023 -5.601 2.19e-08 

OLD20 x Context                                -0.018 0.007 -2.596 0.009450 

OLD20 x Lexicality                             0.007 0.011 0.603 0.547129 

OLD20 x Context x Lexicality           0.035 0.011 3.233 0.001230 

Bold numerals indicate significant effects, i.e., p < .05. FE = fixed effect estimates, SE = standard 

error. Word frequency for pseudowords was set to zero. No significant difference was found in a 

model comparison of this model with the full model shown in Table S1. Post hoc tests are shown 

in Table S2 and Table S3. 
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Table 3. Results of post hoc linear mixed models (LMMs) investigating word frequency and OLD20 effects on 

behavioral response times separately for repeated and isolated words and pseudowords 

 Words 

 Repeated Isolated  

 FE SE t p FE SE t p 

Word frequency 0.000 0.012 -0.041 0.967 -0.038 0.011 -3.499 0.00099 

OLD20 0.003 0.012 0.264 0.793 -0.005 0.011 -0.473 0.638 

Trial order -0.017 0.006 -2.749 0.0060 -0.023 0.004 -6.388 1.99e-10 

 Pseudowords 

 Repeated Isolated  

 FE SE t p FE SE t p 

OLD20 -0.032 0.011 -2.877 0.0047 -0.012 0.006 -2.095 0.038 

Trial order -0.027 0.007 -3.805 0.00015 -0.027 0.004 -6.298 3.53e-10 

Bold numerals indicate significant effects, i.e., p < .05. FE = fixed effect estimates, SE = standard error. 
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Supporting Information  

 

Predictive pre-activation of orthographic and lexical-semantic representations facilitates visual 

word recognition 

 

Susanne Eisenhauer1*, Benjamin Gagl1,2* & Christian J. Fiebach1,2,3  (*equal contribution) 

 

 

Supporting Materials. Correlations between stimulus parameters 

 

 

Figure S1. Correlations between 

stimulus parameters for words 

and pseudowords of (a) the 

behavioral and (b) the MEG 

experiment. PC: Perimetric 

complexity. SF: Number of sim-

ple features. Syll: Number of 

syllables. OLD20:  Orthographic 

Levenshtein Distance 20. 

Trigram: Logarithmic trigram 

frequency. Freq: Logarithmic 

word frequency. 
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Supporting Results 1. Additional linear mixed modeling results for behavioral data 

Table S1. Results of the full linear mixed model (LMM) of behavioral response times including – 

besides word frequency and OLD20 – also interactions of context (repeated target vs. isolated 

presentation) and lexicality with perimetric complexity, the number of simple features, the number 

of syllables, and trigram frequency 

 FE SE t p 

Context -0.275 0.013 -20.618 < 2e-16 

Word frequency -0.049 0.015 -3.271 0.00128 

Lexicality -0.014 0.028 -0.503 0.616 

OLD20                                                  -0.006 0.008 -0.801 0.424 

Perimetric complexity                                                      0.007 0.008 0.899 0.369 

Trigram frequency 0.008 0.008 0.966 0.335 

Simple features                                                     -0.004 0.006 -0.601 0.548 

Syllables                                              -0.004 0.010 -0.429 0.669 

Trial order                                             -0.025 0.002 -10.081 < 2e-16 

Word frequency  x Context  0.043 0.013 3.411 0.00065 

Lexicality x Context                       -0.139 0.025 -5.539 3.13e-08 

OLD20 x Context                                -0.014 0.009 -1.538 0.124 

OLD20 x Lexicality                             0.002 0.013 0.117 0.907 

Perimetric complexity x Context                                    0.012 0.009 1.345 0.179 

Perimetric complexity x Lexicality                                0.001 0.013 0.084 0.933 

Trigram frequency x Context                           0.001 0.009 0.146 0.884 

Trigram frequency x lexicality                      -0.006 0.014 -0.438 0.662 

Simple features x Context                                   -0.002 0.007 -0.265 0.791 

Simple features x Lexicality                               -0.007 0.014 -0.508 0.612 

Syllables x Context                             0.000 0.011 0.042 0.967 

Syllables x Lexicality                         0.001 0.012 0.121 0.904 

OLD20 x Context x Lexicality           0.036 0.013 2.760 0.00579 

Perimetric complexity x Context x Lexicality                       -0.014 0.013 -1.106 0.269 

Trigram frequency x Context x Lexicality               0.005 0.013 0.371 0.711 

Simple features x Context x Lexicality           0.018 0.013 1.384 0.167 

Syllables x Context x Lexicality                 0.009 0.013 0.660 0.509 

Bold numerals indicate significant effects, i.e., p < .05. FE = fixed effect estimates, SE = standard 

error. Word frequency for pseudowords was set to zero. 
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Table S2. Results of post hoc linear mixed models (LMMs) resolving the three-way interaction of context with OLD20 

and lexicality, as well as assessing the ‘classical’ word frequency effect which is typically estimated on words only, 

by estimating the two-way interactions of context with OLD20 and word frequency separately for words and 

pseudowords  

 Words Pseudowords 

 FE SE t p FE SE t p 

Context -0.375 0.007 -56.192 < 2e-16 -0.314 0.008 -40.853 < 2e-16 

Word frequency -0.031 0.008 -3.715 0.00042 - - - - 

OLD20 -0.006 0.008 -0.74 0.462 -0.013 0.006 -2.004 0.046 

Trial order -0.02 0.003 -6.249 4.5e-10 -0.03 0.004 -7.925 2.84e-15 

Word frequency x 

Context 
0.025 0.007 3.69 0.00023 - - - - 

OLD20 x Context 0.017 0.007 2.32 0.020 -0.018 0.008 -2.378 0.017 

Bold numerals indicate significant effects, i.e., p < .05. FE = fixed effect estimates, SE = standard error. 

 

 

 

 

Table S3. Results of post hoc linear mixed models (LMMs) resolving the interaction of context with word frequency 

as well as the three-way interaction of context with OLD20 and lexicality in behavioral response times by separately 

estimating word frequency effects and the OLD20 by lexicality interaction for repeated targets and isolated letter 

strings 

 Repeated target Isolated presentation 

 FE SE t p FE SE t p 

Word frequency -0.001 0.025 -0.043 0.966 -0.055 0.015 -3.772 0.00023 

Lexicality -0.166 0.047 -3.549 0.00057 -0.001 0.028 -0.031 0.976 

OLD20 -0.03 0.01 -3.085 0.0023 -0.012 0.006 -1.995 0.047 

Trial order -0.022 0.005 -4.587 4.63e-06 -0.026 0.003 -8.826 < 2e-16 

OLD20 x 

Lexicality 0.033 0.02 1.707 

 

0.090 0.007 0.011 0.588 

 

0.558 

Bold numerals indicate significant effects, i.e., p < .05. FE = fixed effect estimates, SE = standard error. Word 

frequency for pseudowords was set to zero. 
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Supporting Results 2. Pseudoword familiarization procedure and results 

Our lexicality contrast mainly focused on the classical contrast between words and novel 

pseudowords, i.e., pseudowords that are unfamiliar to participants. However, these two groups 

do not only differ in the presence vs. absence of lexical-semantic information, but also in 

general familiarity, as only words are encountered in everyday life. To be able to dissociate 

between lexical-semantic and familiarity effects, we performed a pseudoword familiarization 

procedure. After familiarizing participants with a group of pseudowords, we assessed the 

lexicality contrast of words vs. familiar pseudowords. This contrast focuses on lexical-semantic 

differences between words and pseudowords as opposed to differences in general familiarity. 

Nevertheless, one has to acknowledge that familiar pseudowords might even be considered 

more familiar than words at the pre-lexical level, as both groups were initially matched on pre-

lexical metrics (OLD20 and the number of syllables; cf. Eisenhauer et al., 2019) but only the 

familiar pseudowords were presented in the familiarization sessions. Still, we argue that effects 

that are found for words vs. novel pseudowords as well as for words vs. familiar pseudowords 

likely reflect differences in lexical-semantic processing. In the following, we first describe the 

familiarization procedure of the behavioral experiment and the MEG experiment, followed by 

the respective results.  

 

Pseudoword familiarization procedure and results for the behavioral experiment 

For the behavioral experiment, participants completed five pseudoword familiarization sessions 

over the course of three consecutive days. Pseudoword familiarization was adapted from 

Breitenstein et al. (2007) and followed the procedure for the behavioral experiment described 

in Eisenhauer et al. (2019). Each familiarization session consisted of reading aloud each to-be-

familiarized pseudoword from a list (mean error rate across sessions: 0.7 %). Then, participants 

completed a paired-associate learning as well as a naming task. During paired-association, 

pseudowords were presented for 800 ms, followed by the presentation of an object image until 

button press or for a maximum duration of 1500 ms. At the beginning of each trial, the center 

of the screen was indicated as fixation point by the presentation of two vertical bars for 1000 

ms. Each pseudoword was presented eight times, amounting to 960 trials in total. The ‘familiar 

pseudowords’ of interest for the present study were paired with a different object image (out of 

a set of 60 possible images) on each trial. The ‘semantic pseudowords’ not of interest for the 

present study were paired with the same object image in 75 % of trials. Participants were 

instructed to aim at learning a meaning for the pseudowords based on frequently co-occuring 

object images and were briefed that this would be possible only for half of the pseudowords. 
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They were asked to respond to each object image via button press whether it matched the 

preceding pseudoword or not, stressing both response time and accuracy. On each trial, a red 

and a green bar presented on either side of the object image indicated which response hand 

should be used for a match or non-match response, respectively. At the start of the first session, 

participants practiced the task with at least ten trials until they confirmed they had understood 

the instructions. We observed that the average accuracy improved across sessions for all 

conditions. In detail, for matching semantic pseudowords and objects, accuracy increased from 

44.1 % in session 1 to 91.9 % in session 5. For non-matching semantic pseudowords and 

objects, accuracy increased from 82.9 to 95.0 %. For familiar pseudowords, correct ‘non-match’ 

responses increased from 80.2 to 96.2 %.  

 In the naming task, each pseudoword was presented once and participants were 

instructed to name the associated object. In case they could not associate any object with a 

pseudoword, they were asked to respond ‘next’, which was the correct response for all familiar 

pseudowords. Naming accuracies improved from 22.6 % (range: 0 to 51.7 %) in session 1 to 

80.9 % (range: 38.3 to 100 %) in session 5 for semantic, and from 85.0 % (range: 53.3 to 98.3 

%) to 92.0 % (range: 45.0 to 100 %) for familiar pseudowords, confirming the majority of these 

pseudowords were not associated with a meaning.  

 At the end of the fifth familiarization session, participants completed an old/new 

recognition task in order to assess whether they recognized the trained pseudowords as familiar. 

In this task, each of the trained pseudowords was presented once until button press. In addition, 

a group of 120 filler pseudowords unfamiliar to the participants were presented. Participants 

pressed one of two buttons with their left or right index finger, indicating whether the presented 

pseudoword was familiar to them or not. Response hands were counterbalanced across 

participants. Due to a technical problem data of one participant were lost. Results confirmed 

that participants correctly recognized 93.9 % (range: 75.0 to 100 %) of semantic and 82.5 % 

(range: 21.7 to 100 %) of familiar pseudowords on average. In addition, 96.9 % (range: 90.0 to 

100 %) of filler pseudowords were correctly classified as unfamiliar. All accuracies were 

significantly higher than chance level (50 %; one-sided t-test by item; semantic pseudowords: 

t = 79.259, df = 179, p < 2.2e-16; familiar pseudowords: t = 35.454, df = 179, p < 2.2e-16; filler 

pseudowords: t = 101.62, df = 119, p < 2.2e-16). The high accuracy values demonstrate that 

participants have reached a high level of familiarity with the familiar pseudowords. Following 

a break after the old/new recognition task, participants completed the repetition priming task 

on the same day.  
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Pseudoword familiarization procedure and results for the MEG experiment 

Procedure and results for the pseudoword familiarization prior to the MEG experiment were 

described previously (Eisenhauer et al., 2019). Participants completed four familiarization 

sessions in the course of two consecutive days. In each session, participants read out 

pseudowords aloud from a list (mean error rate across sessions: 0.7 %) and performed an 

old/new recognition task as described above, presenting each of the 60 to be familiarized 

pseudowords two times, as well as 120 new filler pseudowords per session (no semantic 

pseudowords were presented). Due to a technical issue, data of sessions 3 and 4 were lost for 

one participant. Accuracies improved from 61.4 % in session 1 (range: 0.8 to 86.7 %) to 92.3 

% in session 4 (range: 70.0 to 99.2 %) for familiar pseudowords, and from 77.8% (range: 16.7 

to 99.2 %) to 91.3 % (range: 59.2 to 99.2 %) for filler pseudowords. Accuracies of the final 

session were significantly higher than chance for both conditions (50 %; one-sided t-test by 

item; familiar pseudowords: t = 51.4, df = 59, p < 2.2e-16; filler pseudowords: t = 34.7, df = 

119, p < 2.2e-16). 
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Supporting Results 3. Linear mixed modeling results for the lexicality contrast of words 

vs. familiar pseudowords 

Behavioral results 

 
Figure S2. Behavioral results reflecting context-dependent facilitation for words and familiar 

pseudowords. Comparison of response times representing (a) orthographic (OLD20 effect separated 

for words and familiar pseudowords) and (b) lexical processing (word frequency effect) when stimuli 

were either predictable from context (i.e., repeated targets; orange lines and dots) or not (isolated 

presentation; blue lines and dots). Note that lower OLD20 values reflect higher word likeness, and, 

thus, orthographic familiarity. Displayed are logarithmic response times that represent the partial 

effects estimated from linear mixed models. Dots represent items averaged across participants. 
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Table S4. Results of the linear mixed model (LMM) investigating context effects (repeated target 

vs. isolated presentation) on word frequency, OLD20, and lexicality (words vs. familiar 

pseudowords) in behavioral response times  

 FE SE t p 

Context -0.273 0.013 -20.316 < 2e-16 

Word frequency -0.046 0.013 -3.550 0.0005 

Lexicality -0.017 0.024 -0.690 0.491 

OLD20                                                  -0.009 0.005 -1.584 0.114 

Trial order                                             -0.026 0.002 -10.027 < 2e-16 

Word frequency x Context  0.039 0.012 3.220 0.001 

Lexicality x Context                       -0.135 0.024 -5.577 2.52e-08 

OLD20 x Context                                -0.001 0.007 -0.170 0.865 

OLD20 x Lexicality                             0.003 0.010 0.332 0.740 

OLD20 x Context x Lexicality           0.017 0.011 1.498 0.134 

Bold numerals indicate significant effects, i.e., p < .05. FE = fixed effect estimates, SE = standard 

error. Word frequency for pseudowords was set to zero. Post hoc tests are shown in Tables S5 to 

S7. 

 

 

 

Table S5. Results of post hoc linear mixed models (LMMs) estimating word frequency effects and the OLD20 by 

lexicality (words vs. familiar pseudowords) interaction on behavioral response times separately for repeated targets 

and isolated letter strings 

 Repeated target Isolated presentation 

 FE SE t p FE SE t p 

Word frequency -0.001 0.022   -0.067  0.947 -0.055 0.014 -3.805  0.0002 

Lexicality -0.016  0.042   -3.914  0.0001  0.003 0.027 0.107  0.915 

OLD20 -0.010 0.009 -1.116  0.266 -0.011 0.006 -1.777  0.077 

Trial order -0.021 0.005 -4.178     3e-05 -0.032   0.003 -10.300   < 2e-16 

OLD20 x 

Lexicality 

0.013 0.018 0.734  0.465 0.006 0.011 0.491  0.624 

Bold numerals indicate significant effects, i.e., p < .05. FE = fixed effect estimates, SE = standard error. Word 

frequency for pseudowords was set to zero. 
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Table S6. Results of post hoc linear mixed models (LMMs) estimating the two-

way interaction of context with OLD20 for familiar pseudowords in behavioral 

response times 

 Familiar Pseudowords 

 FE SE t p 

Context -0.308 0.008 -36.990   < 2e-16 

OLD20 -0.009 0.006 -1.490     0.137 

Trial order -0.033 0.004 -8.168  4.06e-16 

OLD20 x Context -0.002 -0.008 -0.198     0.843 

Bold numerals indicate significant effects, i.e., p < .05. FE = fixed effect 

estimates, SE = standard error. 

 

 

Table S7. Results of the post hoc linear mixed model (LMM) investigating OLD20 effects on behavioral response 

times separately for repeated and isolated familiar pseudowords 

 Familiar Pseudowords 

 Repeated Isolated  

 FE SE t p FE SE t p 

OLD20 -0.011 0.010 -1.052 0.295 -0.010 0.006 -1.795 0.0743 

Trial order -0.027 0.008 -3.459  0.0006 -0.040 0.005 -8.314    <2e-16 

Bold numerals indicate significant effects, i.e., p < .05. FE = fixed effect estimates, SE = standard error. 

 

 

MEG results 

 
Figure S3. Lexicality effect reflecting the contrast between words and familiar pseudowords in MEG-

measured brain responses. Displayed are the estimates of linear mixed models ± SE across time, 

including baseline, prime, delay, and target time windows. The salient red dots represent significant 

time points, excluding un-estimable models. Gray shading represents time points of a significant 

interaction between lexicality and context (prime vs. target). Note that the models were identical to 

the main model of words vs. novel pseudowords, i.e., the interaction of lexicality and context with 

OLD20 was also controlled for to allow comparability. However, OLD20 effects are not presented 

here as the interactions with OLD20 did not reach significance in the behavioral model of words and 

familiar pseudowords. 
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Supporting Results 4. Behavioral linear mixed modeling results comparing response 

times for repeated targets, isolated letter strings and non-repeated targets. 

 
Figure S4. Behavioral logarithmic response times to predictable (repeated targets), unpredictable 

(isolated items) and mispredicted letter strings (non-repeated targets). Dots represent items 

averaged across participants. 

 

 

 

Table S8. Results of the linear mixed model (LMM) investigating different context effects, i.e.,  

repeated target vs. isolated presentation; repeated target vs. non-repeated target; and non-repeated 

target vs. isolated presentation in behavioral response times  

 FE SE t p 

 Repeated target vs. isolated presentation 

Context -0.165 0.002 -74.12 <2e-16 

Trial order                                             -0.027 0.002 -12.69 <2e-16 

 Repeated vs. non-repeated target 

Context -0.130 0.007 -17.418 < 2e-16 

Trial order                                             -0.026 0.004 -7.443 1.09e-13 

 Non-repeated target vs. isolated 

presentation 

Context 0.007 0.003 2.648 0.008 

Trial order                                             -0.031 0.002 -13.748 < 2e-16 

Bold numerals indicate significant effects, i.e., p < .05. FE = fixed effect estimates, SE = standard 

error.  
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Supporting Results 5. Multivariate pattern decoding analysis and results 

 

We had initially favored multivariate pattern analysis (MVPA) as method of choice for the 

investigation of pre-activation effects in the MEG data, as previous studies had successfully 

decoded linguistic information from M/EEG data even in the absence of external stimulation 

(Simanova et al., 2015; Heikel et al., 2018). However, with this procedure we observed that the 

statistical power was limited and only resulted in significant findings for the strong and 

categorical lexicality effect during prime processing (Fig. S5). The absence of decodability of 

OLD20 and word frequency, i.e., the two investigated parametric variables, from MEG 

responses was unexpected (i) as both effects were found reliable in our behavioral data, and (ii) 

given that word frequency and orthographic similarity have in previous work been found to 

modulate M/EEG responses to words and pseudowords (e.g., Embick et al., 2001; Assadollahi 

and Pulvermüller, 2003; Vergara-Martínez and Swaab, 2012; Dufau et al., 2015; Gagl et al., 

2016; Carrasco-Ortiz et al., 2017). Effects of OLD20 and word frequency should thus at least 

be found to reliably modulate brain activity during the presentation of the prime. As this was 

not the case, we reasoned that the MVPA procedure might either lack the statistical power to 

capture these effects, or that confounding effects (e.g., due to correlated word characteristics) 

may have obscured the effects of interest. To overcome these potential limitations, we 

investigated effects of the three stimulus characteristics of interest on MEG-measured brain 

activation using linear mixed models (LMMs), analogous to the statistical approach used for 

analyzing the data from the behavioral experiment. To compare the two analysis approaches, a 

power analysis was calculated (Fig. S6).  

MVPA was performed using the SlidingEstimator function of the open-source package 

MNE-Python (https://martinos.org/mne/stable/index.html; Gramfort et al., 2014). Analyses 

involving the target time window were conducted exclusively on repetition trials (i.e., trials 

with identical primes and targets), whereas analyses of baseline, prime, and delay intervals 

included all available data (i.e., non-repetition and repetition trials). Decoding analyses were 

performed for each participant on the z-transformed multivariate pattern of neuronal responses 

measured at each of the 269 MEG sensors, which served as features. We used linear decoders 

(cf. King et al., 2020) with default parameters (alpha = 1) implemented in the Python-based 

scikit-learn package (Pedregosa et al., 2011). For the binary lexicality contrast (i.e., words vs. 

pseudowords), a Logistic Regression decoder was used on data stratified to contain 50 % of 

trials per condition, while continuous parameters were predicted using a Ridge Regression 

decoder (Tikhonov et al., 1977). In a 5-fold cross-validation approach, the decoder was trained, 
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in each iteration, on 80 % of the data and then used to predict the remaining 20 % of unseen 

data, such that each trial was used for testing only once. In detail, trials were randomly 

partitioned into five folds (with the constraint for the lexicality contrast that training and testing 

data both contained 50 % of trials from each letter string condition), each of which served as 

testing data once after the decoder had been trained on data from the remaining four folds, 

thereby allowing us to derive a prediction for all trials in the dataset. To counteract a potential 

influence of the assignment of trials into folds, this procedure was repeated 100 times with trials 

randomly assigned to the five partitions of data.  

 

 

 

Figure S5. Multivariate pattern analysis (MVPA) decoding performance quantified as the Pearson 

correlation coefficient between actual and predicted parameter values from ridge regression 

decoders ± SEM (a-b) or the area under the receiver operating characteristic curve from logistic 

regression decoders (d) for (a) OLD20 in words, (b) OLD20 in pseudowords, (c) word frequency (in 

words only), and (d) lexicality. Salient dots represent significant time points (Bonferroni-corrected 

one-sided Wilcoxon signed-rank test against chance, i.e., a correlation coefficient of zero or an 

accuracy of .5). The difference between prime and target did not reach significance for any contrast 

or time point (Bonferroni-corrected). (e) Source topographies display event-related field based 

sources of significant time points of the lexicality contrast, thresholded at 50 % of the overall maximal 

activation (violet) within the left (LH) and right (RH) hemisphere. Additionally, source activations 

thresholded at 90 % of the individual peak per time point are shown (yellow). For the prime contrast, 

source activations were averaged across significant time points. Note that no control of confounding 

factors, as for the LMM-based source analysis, was possible. (f) Overlapping sources during prime 

and delay time windows across all significant time points, thresholded at 50 % of the overall peak. 

See Table S9 for source coordinates. 
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Table S9. MNI coordinates and source location of the strongest clusters as well as the overlapping clusters for the lexicality 

contrast presented in Figure S4  

Time [ms] Cluster Peak MNI coordinates Region of cluster 

  x y z  

Prime 

      

290 to 440; 

540 

1 -53.5 -52.5 38.5 left angular gyrus/ inferior parietal lobule 

2 -30.5 -32.5 68.5 left postcentral gyrus 

3 2.5 11.5 68.5 right superior frontal gyrus 

Delay 

1265 1 -44.5 50.5 19.5 left frontal pole 

2 30.5 -30.5 69.5 right postcentral gyrus 

Prime/Delay Overlap 

 1 -39.5 -80.5 4.5 left lateral inferior occipital cortex 

2 44.5 20.5 40.5 right middle frontal gyrus 

3 -51.5 29.5 14.5 left inferior frontal gyrus pars triangularis 

Prime and delay clusters are based on the source activation thresholded at 90 % of the individual peak. Overlap estimation 

included all significant sources of the respective time windows, thresholded at 50 % of the overall peak.  
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Supporting Results 6. Power comparison between linear mixed modeling and MVPA 

decoding analysis 

 

To estimate the statistical power for LMM and MVPA analyses, we implemented a Monte-

Carlo simulation-based power analysis in R: As a first step, data (behavioral as well as MEG, 

independent analyses) were randomly sampled from the original datasets (the baseline in case 

of the MEG data), and split into two halves respecting the random effect structure of the dataset 

(e.g., the number of participants, and, in case of the LMM-based analysis, sensors). For the 

LMM-based analysis, we then added to one half of the dataset a specific value reflecting the to-

be-tested effect size and conducted statistical analyses as for the original dataset (including 

Bonferroni correction). For the MVPA analysis, we sampled from the classification accuracies 

of lexicality, added the critical effect size value, and then tested statistically against .5, i.e., the 

chance level for this analysis. We re-estimated these analyses 10,000 times for each effect size 

level (i.e., d values from 0.1 to 1), dataset (behavioral and MEG), and statistical analysis (LMM 

and MVPA), and recorded the p-values and estimated effect sizes from all tests. The probability 

of a test being significant at any given effect size represents the power. The mean of all effect 

size estimates from the significant tests allowed us to estimate the effect size bias, i.e., the 

likelihood that a significant finding represents an overestimated effect size. Inspection of the 

power curves (Fig. S6a) reveals that for the LMM analysis of the behavioral data, the present 

study achieved a power of greater than .9 at small effect sizes of .3. Thus, the likelihood of 

obtaining a significant result if a small effect exists in the population was greater than 90 %. 

This clearly reflects the benefit of modeling data at the level of the individual trial (as opposed 

to the ‘classical’ approach of aggregating trials by subject and condition before calculating 

statistics; see also Baayen et al., 2008). For the same effect size, the LMM analysis of brain 

data resulted in a power of around .6 and, alarmingly, for the MVPA analysis, the power of 

obtaining a statistically significant result was lower than .1. This finding confirms our intuition 

after the inspection of our brain activation results, i.e., that the MVPA analysis is much less 

powered. The consequences are severe, because there is a substantial possibility that significant 

MVPA findings may vastly overestimate the size of the true effect (Fig. S6b). This phenomenon 

is a frequent but unwanted effect of the correct practice of neglecting non-significant tests, so 

that significant effects of an underpowered study are often over-estimated in their effect size 

(e.g., Yarkoni, 2009). LMM analysis is much less susceptible to such overestimations, mainly 

because it can explicitly estimate crossed random effects (such as subjects and items) by 

modeling all data at the same time, while MVPA (and other methods) requires aggregation of 
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data points (for more detailed discussions, see Baayen et al., 2008; Bates et al., 2018). The 

higher power and reduced bias of the behavioral compared to the MEG analyses further 

supports our procedure of constraining MEG investigations based on behavioral results; this 

reduces the possibility of false-positive effects, which is generally high in very high-

dimensional datasets. 

 

 

Figure S6. (a) Power curve and (b) effect size inflation for the behavioral analysis and LMM as well as 

MVPA procedures used to analyze the MEG data.  
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Supporting Results 7. MNI coordinates and source locations of sources presented in 

Figure 4 

 

Table S10. MNI coordinates and source locations of the strongest clusters (thresholded at 90 % of the individual peak) 

presented in Figure 4, as well as of the largest overlapping clusters (based on both a 90 % threshold of the individual peak 

as well as a 50 % threshold of the overall peak) across prime, delay and target 

Contrast Time [ms] Cluster Peak MNI coordinates Region of cluster 

   x y z  

Prime 

 

Words vs. PW 40 1 -54.5 0.5 49.5 left precentral gyrus 

2 -34.5 -10.5 69.5 left precentral gyrus 

Words vs. PW 240 1 -22.5 52.5 -22.5 left frontal pole 

Word frequency 65 1 30.5 -84.5 44.5 right lateral superior occipital cortex 

2 42.5 -72.5 52.5 right lateral superior occipital cortex/ 

angular gyrus 

3 -42.5 42.5 32.5 left frontal pole 

Word frequency 240 1 -39.5 10.5 50.5 left middle frontal gyrus 

2 -30.5 10.5 64.5 left middle frontal gyrus 

3 40.5 9.5 64.5 right middle frontal gyrus 

Word OLD20 215 1 -42.5 54.5 20.5 left frontal pole 

2 30.5 -30.5 69.5 right postcentral gyrus 

Word OLD20 740 1 -24.5 19.5 60.5 left superior frontal gyrus 

2 -9.5 10.5 64.5 left superior frontal gyrus 

PW OLD20 40 1 40.5 -0.5 64.5 right precentral/ middle frontal gyrus 

2 19.5 -82.5 52.5 right lateral superior occipital cortex/ 

superior parietal lobule 

3 -0.5 0.5 69.5 left juxtapositional lobule/ superior 

frontal gyrus 

PW OLD20 740 1 -22.5 42.5 52.5 left frontal pole 

2 54.5 -69.5 29.5 right lateral superior occipital cortex 

3 -59.5 -9.5 -0.5 left anterior superior temporal gyrus 

Delay 

Words vs. PW 1240 1 -22.5 52.5 -22.5 left frontal pole 

2 20.5 50.5 -24.5 right frontal pole 

Words vs. PW 1415 1 -20.5 -19.5 69.5 left precentral gyrus 

Word frequency 1240 1 30.5 -94.5 20.5 right occipital pole 

2 24.5 -92.5 29.5 right occipital pole 

Word frequency 1515 1 19.5 -82.5 52.5 right lateral superior occipital cortex/ 

superior parietal lobule 
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2 -20.5 -69.5 60.5 left lateral superior occipital cortex/ 

superior parietal lobule 

3 44.5 20.5 50.5 right middle frontal gyrus 

Word OLD20 1115 1 40.5 9.5 64.5 right middle frontal gyrus 

Word OLD20 1540 1 -44.5 -21.5 60.5 left postcentral gyrus 

2 -49.5 -29.5 54.5 left postcentral gyrus 

PW OLD20 1090 1 40.5 -80.5 0.5 right lateral inferior occipital cortex/ 

occipital pole 

2 9.5 -82.5 52.5 right lateral superior occipital cortex/ 

superior parietal lobule 

3 -42.5 -52.5 62.5 left superior parietal lobule 

PW OLD20 1515 1 30.5 -10.5 69.5 right precentral gyrus 

Target 

Words vs. PW 1640 1 42.5 -72.5 52.5 right lateral superior occipital cortex/ 

angular gyrus 

Words vs. PW 1815 1 -22.5 52.5 -22.5 left frontal pole 

2 20.5 50.5 -24.5 right frontal pole 

Word frequency 1640 1 -20.5 -39.5 69.5 left postcentral gyrus 

Word frequency 1790 1 19.5 30.5 64.5 right superior frontal gyrus 

Word OLD20 1790 1 19.5 30.5 64.5 right superior frontal gyrus 

Word OLD20 2290 1 20.5 39.5 54.5 right frontal pole 

2 -22.5 42.5 52.5 left frontal pole 

3 -0.5 54.5 40.5 right/left superior frontal gyrus 

PW OLD20 1790 1 30.5 -50.5 69.5 right superior parietal lobule 

2 -19.5 -64.5 69.5 left lateral superior occipital cortex/ 

superior parietal lobule 

3 -19.5 -69.5 64.5 left lateral superior occipital cortex/ 

superior parietal lobule 

PW OLD20 2265 1 20.5 -84.5 54.5 right lateral superior occipital cortex/ 

superior parietal lobule 

2 -29.5 10.5 60.5 left superior frontal gyrus 

3 19.5 59.5 29.5 right frontal pole 

Prime/Delay/Target Overlap 

Words vs. PW  1 -5.5 36.5 -19.5 left/right frontal pole 

 2 -38.5 46.5 21.5 left frontal pole 

 3 35.5 -54.5 -51.5 right Cerebellum 

Word frequency  1 -22.5 -79.5 41.5 left lateral superior occipital cortex/ 

superior parietal lobule 

 2 34.5 -69.5 48.5 right lateral superior occipital cortex/ 

angular gyrus 

 3 22.5 16.5 61.5 right superior frontal gyrus 
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Word OLD20  1 32.5 11.5 57.5 right middle frontal gyrus 

 2 -21.5 41.5 51.5 left frontal pole 

 3 14.5 58.5 28.5 right frontal pole 

PW OLD20  1 36.5 -45.5 61.5 right superior parietal lobule 

 2 -28.5 -73.5 50.5 left lateral superior occipital cortex/ 

superior parietal lobule 

 3 -7.5 -60.5 66.5 left precuneus/ lateral superior occipital 

cortex 

PW = pseudowords. Up to three clusters per contrast are shown. 
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