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Abstract  
This study aimed at replicating a previously reported negative correlation between 

node flexibility and psychological resilience, i.e., the ability to retain mental health in 

the face of stress and adversity. To this end, we used multiband resting-state BOLD 

fMRI (TR = .675 sec) from 52 participants who had filled out three psychological 

questionnaires assessing resilience. Time-resolved functional connectivity was 

calculated by performing a sliding window approach on averaged time series 

parcellated according to different established atlases. Multilayer modularity detection 

was performed to track network reconfigurations over time and node flexibility was 

calculated as the number of times a node changes community assignment. In addition, 

node promiscuity (the fraction of communities a node participates in) and node degree 

(as proxy for time-varying connectivity) were calculated to extend previous work.  We 

found no substantial correlations between resilience and node flexibility. We observed 

a small number of correlations between the two other brain measures and resilience 

scores, that were however very inconsistently distributed across brain measures, 

differences in temporal sampling, and parcellation schemes. This heterogeneity calls 

into question the existence of previously postulated associations between resilience 

and brain network flexibility and highlights how results may be influenced by specific 

analysis choices.  

 

Author Summary  
We tested the replicability and generalizability of a previously proposed negative 

association between dynamic brain network reconfigurations derived from multilayer 

modularity detection (node flexibility) and psychological resilience. Using multiband 

resting-state BOLD fMRI data and exploring several parcellation schemes, sliding 

window approaches, and temporal resolutions of the data, we could not replicate 

previously reported findings regarding the association between node flexibility and 

resilience. By extending this work to other measures of brain dynamics (node 

promiscuity, degree) we observe a rather inconsistent pattern of correlations with 

resilience, that strongly varies across analysis choices. We conclude that further 

research is needed to understand the network neuroscience basis of mental health 

and discuss several reasons that may account for the variability in results. 
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Introduction  
Abundant literature in human clinical neuroscience has established a link between 

changes in intrinsic functional connectivity of large-scale brain networks and 

psychological disorders such as depression (Mulders et al., 2015) or schizophrenia 

(Dong et al., 2018; see also Menon, 2011 for a general overview). As a consequence, 

brain bases of preserving mental health in the face of stress and adversity (resilience) 

have also become a focus of interest (e.g., Southwick & Charney, 2012). Two recent 

studies (Long et al., 2019; Paban et al., 2019) have reported associations between 

psychological resilience and brain network dynamics using multilayer modularity, a 

relatively new tool from the evolving field of network neuroscience that integrates 

spatial and temporal information (Muldoon & Bassett, 2016). In both studies, resilience 

was assessed with a frequently-used questionnaire, the Connor-Davidson Resilience 

Scale (CD-RISC; Connor & Davidson, 2003), and network dynamics under task-free 

(resting-state) conditions were examined by detecting time-evolving patterns of non-

overlapping and coherent modules and by quantifying the frequency with which brain 

nodes switched between modules (node flexibility; Bassett et al., 2011).  

 

The link between resilience and brain network dynamics is motivated (a) by an 

assumed relationship between neuronal and cognitive flexibility (e.g., Braun et al., 

2015; Chen et al., 2016) and (b) given that resilience has been associated with higher 

cognitive flexibility, both in theoretical models (Southwick & Charney, 2012) and in 

empirical work (e.g., Genet & Siemer, 2011). While this would predict greater resilience 

in more (cognitively or neuronally) flexible persons, it has also been argued that 

cognitive flexibility might not be universally adaptive and that resilience may depend 

on an interplay between flexibility and stability (Parsons et al., 2016). This proposal 

receives support from observations of changes along flexibility-stability dimensions in 

psychiatric conditions, both behaviorally (e.g., rigid behaviors like rumination in 

depression; Nolen-Hoeksema et al., 2008) and neuronally (e.g., increased network 

flexibility, variability in patients with autism or schizophrenia; Gifford et al., 2020; 

Harlalka et al., 2019). These and similar results suggest that the extreme tails of the 

‘flexibility-stability’ distribution (Kashdan & Rottenberg, 2010) may indeed be related to 

psychopathology and that, accordingly, adaptive behavior in the ‘normal’ (i.e., 

unaffected) range depends on a balance between flexibility and stability. Whereas the 

above-cited work by Long et al. (2019) and Paban et al. (2019) took a primarily 
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neuroscientific perspective as a starting point, the psychological perspective offered 

here is not fully consistent with their empirical results. However, it may offer a valuable 

conceptual framework for a neuro-cognitive model of resilience and therefore calls for 

further empirical research to clarify the current inconsistencies. 

 

Paban et al. (2019) measured task-free EEG and conducted network analyses in 

source space. Negative correlations between node flexibility and resilience were 

observed in the alpha, beta, and delta frequency bands, including superior parietal 

cortex, medial orbitofrontal cortex, and cuneus. A subsequent resting state functional 

MRI (rs-fMRI) study (Long et al., 2019) also reports lower node flexibility in more 

resilient persons, primarily in visual cortices and the left medial-orbital superior frontal 

gyrus. Except for a partial overlap in visual regions (lingual gyrus), localization results 

differed between studies and Long et al. (2019) did not replicate correlations in ‘higher 

order’ (superior parietal, inferior frontal) areas reported by Paban et al. (2019). 

Whereas some of these inconsistencies may result from inherent differences between 

methods (e.g., differences in temporal resolution between fMRI and EEG), others may 

reflect specific methodological choices by the authors. For example, Long et al. (2019) 

studied BOLD ‘dynamics’ using only 12 non-overlapping time windows (each of 20 

sample points length, derived from 250 measurements of TR = 2 sec).  

 

Even though gold standards for analyses of dynamic multilayer modularity are yet to 

be established, recent studies suggest that more data are required for sensitive and 

reliable estimation of network dynamics from BOLD fMRI (Hindriks et al., 2016; Yang 

et al., 2021). To ameliorate such methodological shortcomings and to further our 

understanding of the relationship between resilience and brain network dynamics, we 

here replicate and extend these results using temporally highly resolved fMRI 

(multiband/MB sequence; MB factor 4; TR = .675 sec) from 52 healthy young adults 

who completed three resilience questionnaires. We first replicated Long et al.’s (2019) 

analysis pipeline as closely as possible, by down-sampling data to a TR of 2.025 sec 

and using the same analysis parameters. Following this, we explore effects of specific 

analysis choices (like different windowing schemes) on network flexibility. Lastly, we 

repeat correlation analyses with optimized denoising and the full temporal resolution 

of the MB data, resulting in a timeseries of 753 overlapping windows (Figure 1). Node 

flexibility was calculated as the number of times a node changes its community 
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assignment between windows, divided by the total possible number of changes 

(Bassett et al., 2011). Given the results of Long et al. (2019), we expected that 

resilience and node flexibility should be negatively correlated.  

 

To extend previous work, we also assessed node promiscuity and node degree, and 

their relation to resilience. Node promiscuity, the fraction of communities a node 

participates in at least once, and node flexibility are complementary measures that 

inform us whether brain dynamics per se (i.e., assessed via node flexibility) or the 

diversity of brain systems with which a node interacts (assessed via its promiscuity) 

may be associated with resilience. Node degree, in turn, is a proxy for dynamic 

connectivity that does not rely on modularity detection algorithms (and is thus invariant 

to potential algorithmic idiosyncrasy or parameter choices). However, previous work 

demonstrates that dynamic connectivity is related to various cognitive and behavioral 

traits, as well as clinical conditions like post-traumatic stress disorder (PTSD, often 

used as proxy for studies of resilience; Bolsinger et al., 2018; Jin et al., 2017; Lurie et 

al., 2020), which makes it a candidate marker for analyzing the neurobiology of 

resilience. To the best of our knowledge, relationships between resilience and 

promiscuity as well as degree have so far not been studied. Accordingly, we here aim 

at a more complete characterization of putative relationships between brain network 

dynamics and resilience. 
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Figure 1. Schematic illustration of the workflow, here visualized for analyses with original multiband 

data (TR = .675 sec), the Schaefer100 atlas, and overlapping sliding windows of size 100 sec and 
offset 1 TR (see Methods for details). Procedures for other parameter choices are analogous. 

Starting with the mean resting state time series, 753 functional connectivity matrices (layers) 
representing inter-correlations between the 100 different nodes were calculated via a sliding-

window approach; multilayer modularity detection was performed on ordinal layers. Network 
measures were calculated as described in the figure; see Methods section for further details. 

 
Results  
 
Behavioral Results: Subjective Resilience Ratings  
Descriptive statistics for resilience scales are listed in Table 1. Psychometric properties 

were satisfactory, with internal consistencies (Cronbach’s alpha) between .7 and .85 

(Table 1). Resilience scores in our sample were comparable to the respective original 
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publications for the German versions (CD-RISC: 30.6, Sarubin et al., 2015; RS-13: 70, 

Leppert et al., 2008; BRS: 3.58 and 3.37, Chmitorz et al., 2018). Resilience ratings 

were significantly intercorrelated: CD-RISC – RS, r = .60; CD-RISC – BRS, r = .61; 

BRS – RS, r = .45, all p < .001 (FDR-corrected for multiple comparisons).  

 

Table1. Descriptive statistics of resilience questionnaires (N = 52) 

 CDRISC RS BRS 
M (SD) 28.88 (4.73) 71.37 (10.06) 3.72 (.73) 

min – max 18 - 38 21 - 87 1.83 – 5.00 

a (95% CI) .70 (.56- .81) .85 (.79- .91) .82 (.73-.89) 

Note: M = mean, SD = standard deviation, min = minimum, max = maximum, a = Cronbach’s alpha, CI 

= confidence interval. 

 

Replication of Long et al. (2019)  
We replicated the analysis pipeline of Long et al. (2019) as closely as possible, 

involving down-sampling of multiband data by a factor of 3 to a virtual TR of 2.025 

seconds, use of the two parcellation schemes used by Long et al. (2019), i.e., AAL90 

and Power264 atlases, and the same denoising strategy (with 26 parameters) as used 

in that study. Age, gender, and framewise displacement were included as covariates 

of no interest (see Methods). Given that recent evidence implies that functionally 

derived parcellations outperform anatomical atlases like AAL (Dadi et al., 2019), we 

also conducted all analyses with a further atlas, the functionally defined parcellation 

scheme of Schaefer (100 nodes) which approximately matches the number of nodes 

in the AAL. Following Long et al. (2019), the down-sampled timeseries was segmented 

into non-overlapping windows of 20 TRs length, resulting in 15 time windows (as 

opposed to 12 in the original study). We did not replicate the correlation between global 

flexibility and CD-RISC reported by Long et al. (2019; all p >= .33), but observe a 

borderline significant correlation between global flexibility (AAL atlas) and the BRS 

resilience score (r = -.33, p = .05). Across the three parcellation schemes and resilience 

questionnaires, we did not observe any further significant effects, neither at global, 

subnetwork, or node level (Table 2). 
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Table 2: Correlations between global flexibility and resilience scales according to the 

pipeline used in Long et al. (2019) 

atlas resilience scales 

 CD-RISC BRS RS 

AAL 90 r = -.14, p = .33 r = -.33, p = .05 r = -.20, p = .23 

Power 264 r = .06, p = .87 r = -.02, p = .87 r = -.03, p = .87 

Schaefer 100 r = -.01, p = .94 r = -.12, p = .58 r = -.16, p = .58 

 

 
Effects of overlapping vs. non overlapping time windows  
Segmenting the timeseries into non-overlapping windows results in a low number of 

sample points, generally not considered sufficient for analyzing network dynamics. 

Many studies today segment BOLD timeseries into overlapping windows, as this allows 

for an estimation of network dynamics with greater sensitivity and reliability (Hindriks 

et al., 2016; Lurie et al., 2020; Yang et al., 2021). When analyzing our down-sampled 

data with a high number of overlapping windows (i.e., 251; see Methods), nodal 

flexibility was scaled by a factor of ~1/10; cp. y axis scaling of Figures 2A and 2B), as 

expected given the higher overlap between consecutive windows. However, high 

spatial similarity was preserved between node flexibility derived from down-sampled 

data with overlapping vs. non-overlapping windows (r = .90, p < .0001; Figure 2C,D), 

indicating that there are no qualitative differences between windowing schemes. We 

thus use overlapping windows for all further analyses.   
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Figure 2. Influence of methodological differences in dynamic network analysis on node flexibility. 
Node flexibility for the down-sampled data (TR = 2.025 sec) with (A) non-overlapping (window size 

= 20TR) vs (B) overlapping windows (window size = 50TR). Overlaying rescaled variants of both 
arrays indicates (C) only minor differences between node flexibility values derived from different 
window schemes and (D) high spatial similarity, i.e., a high correlation coefficient, between (A) and 

(B). (E) Node flexibility for the original data (multiband, TR = .675 sec), across nodes (x axis) as a 
function of window size (40 to 100 sec length) using overlapping windows (F) The distribution of 

flexibility values across nodes shows high spatial similarity (all correlations p < .0001). For the 
analyses shown in (E) and (F), flexibility values were derived after repeating the modularity 

detection algorithm analyses 10 times and choosing the run yielding the highest modularity value 
Q (see Methods for details). 
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Dynamic network measures in original vs. down-sampled functional 
connectivity data  
Analyses of network dynamics may be limited by lower temporal resolutions (which 

was here simulated by downs-sampling to allow for a direct replication of the results 

by Long et al., 2019). As compared to the original data (TR = .675 sec), down-sampling 

shifted node flexibility (calculated using over-lapping windows; see previous section) 

towards higher values. However, high spatial similarity (i.e., correlation) exists between 

the distribution of nodal flexibility in original vs. down-sampled data (r = .95, p < .0001). 

As outlined above, we will in the following also investigate node promiscuity and 

degree as further measures of brain network flexibility. We thus also explore how these 

measures are affected by down-sampling of the BOLD data: As for flexibility, down-

sampling led to higher promiscuity values, but a high spatial similarity was preserved 

(r = .93, p < .0001). We observed a significantly lower nodal degree in the down-

sampled data (0.06 – 0.61% significant connections; M = 0.20) compared to the original 

data (0.12 – 0.75%; M = 0.33), t(99) = 13.93, p < .0001, which is consistent with a 

recent report by Pedersen et al. (2018) that fewer data result in lower nodal degree 

values.  
 

Correlation between dynamic functional connectivity measures and resilience  
Given that no previous data exist to derive specific hypotheses concerning the 

relationship between resilience and node promiscuity as well as degree, all 

subsequently reported associations were tested two-sided using Spearman 

correlations. Correlations were calculated for all three parcellations, for original (TR = 

.675 sec) and down-sampled (TR = 2.025) data, using an optimized denoising strategy 

(36 parameters; see Methods), overlapping time windows, and the same covariates as 

during the replication attempt reported above.   

In the original data, we observed two significant positive correlations at the nodal level 

of the Power264 atlas between flexibility of a cingulo-opercular node (#54) and the CD-

RISC (r = .52, p = .02), and between promiscuity of a visual node (#165) and the BRS 

resilience score (r = .57, p = .004). After down-sampling (but now exploiting higher 

temporal resolution due to the overlapping windowing scheme), the AAL-based 

analysis yielded a significant association between the promiscuity of the left pallidum 

(node level, AAL) and BRS resilience (r = -.49, p = .02). In the Schaefer100 analysis, 

significant negative correlations emerged between the degree of a visual node (left 
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Vis_7) and the RS score (r = -.48, p = .03), as well as between global degree and BRS 

resilience (r = - .35, p = .03). In the Power264 atlas we observed two borderline 

significant results, between the BRS resilience score and the degree of the subcortical 

RSN (r = -.37, p = .05) and the cerebellar RSN (r = -.37, p = .05). No correlation was 

observed for any additional tested combination (see Table 3). Figures 3-5 visualize 

nodal and RSN results in an exemplary manner for the Schaefer100 parcellation. 

 

Table 3: Significant correlations between measures of brain dynamics (node flexibility, 

node promiscuity, and node degree) and psychological resilience as measured with 

three different scales (CDRISC, BRS, RS; see Methods for details). All combinations 

of atlases and levels of analyses were computed, but only significant results are 

described in the table. 

atlas level of analysis 
 node RSN global 
Original Data    

 

AAL 90 

 

 

 

  

 

Power 264 

flexibility node #54: 

CDRISC (r = .52, p = 

.02) 

promiscuity node 

#165: BRS (r = .57, p 

= .004) 

  

 

Schaefer 100 

 

 

  

 

 

   

Down-sampled 
Data 

   

 

AAL90 

promiscuity pallidum 

(L): BRS (r = -.49, p 

= .02) 
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Power264 

 degree 

subcortical: 

BRS (r = -.37, p = 

.05) 

degree 

cerebellar: 

BRS (r = -.37, p = 

.05) 

 

 

Schaefer100 

degree Vis_7 (L): 

RS (r = -.48, p = .03) 

 

 global degree: 

BRS (r = - .35, p = 

.03) 
Note: RSN, resting state network: analyses with node-level measures averaged within (functionally) 

defined subnetworks. Global: analyses based on average across values of all nodes. Original Data, 

multiband BOLD EPI (TR = .675 sec). Down-sample Data, virtual down-sampling of multiband data to a 

TR of 2.025 sec. AAL90, Power264, SCHAEFER100, different parcellation schemes as described in the 

Methods section. Note that eight nodes were excluded from analyses with the Power264 atlas due to 

BOLD signal dropout. L= left hemisphere. 

 

 
Figure 3. Correlations between network measures and resilience at the level of resting state 

networks (RSN) in the Schaefer100 atlas for the (A) original data (multiband; TR = .675 sec) and 
(B) down-sampled data (TR = 2.025 sec; see Methods for details). The number in each cell 

represents the respective correlation coefficient; all p > .12. Network labels: Con = frontoparietal-
control, Sal = salience/ventral attention, Lim = limbic, Dor = dorsal attention, Som = somatomotor, 
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DMN = default mode, Vis = visual. Resilience questionnaires: CD-RISC = Connor-Davidson 

Resilience Scale, BRS = Brief Resilience Scale, RS = Resilience Scale. 
 

Figure 4. Correlations between network measures and resilience at the nodal level for the original 

(multiband) data (TR = .675 sec) in the Schaefer100 atlas. Node names are depicted on the x-axis 
ticks; for a detailed list see https://bit.ly/3yvOBwz. LH = left hemisphere, RH = right hemisphere. 

Figure S1 in the Supplemental Material depicts the same correlations, but without including 
covariates (see Follow-up Analyses in the Results section). 
 

 
Figure 5. Correlations between network measures and resilience at the nodal level for the down-
sampled data (TR = 2.025 sec) in the Schaefer100 atlas (all p > .10). Node names are depicted on 

the x-axis ticks; for a detailed list see https://bit.ly/3yvOBwz. LH = left hemisphere, RH = right 
hemisphere. The significant correlation between the degree of node Vis_7 and the RS scale is 

highlighted by white rectangle. Figure S2 in the Supplemental Material depicts the same 
correlations, but without including covariates (see Follow-up Analyses in the Results section). 
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Follow-up Analyses 
To further investigate putative factors that may have influenced reported results, we 

conducted several post-hoc analyses on data derived from the Schaefer100 

parcellation.   

 

Effects of covariates. Re-calculation of all node-level correlations without covariates 

yielded of results comparable to the above-reported findings (cf. Supplementary File 

1, Figures S1 and S2). Correlations for original (MB) resolution: -.41 < r < .44, all p > 

.11.  For down-sampled data, the above-reported significant correlation for one visual 

node disappeared (-.43 < r < .30, all p > .14).  

 

Effects of window length. To explore how node flexibility changes as a function of 

window length, node flexibility was calculated for window lengths between 40 and 100 

sec in steps of 20 (original/MB data). Similar to the effect of down-sampling (see 

above), we observed an increase in node flexibility with decreasing window size 

(Figure 2E), however with high spatial similarity of flexibility values across window 

sizes, all r > .87, p < .0001 (Figure 2F). We did not observe any significant correlations 

between node flexibility and resilience when varying the window size between 40 and 

80 sec (all p > .13). 

 

Effects of denoising. While repeating the correlation analyses (Schaefer100 

parcellation, overlapping windows) after denoising with a 26-parameter regression 

model (following Long et al., 2019) as opposed to the 36-parameter model used above, 

no correlations with resilience were found at global (multiband: all p > .54; down-

sampled: all p > .74) or nodal level (multiband: all p > .15; down-sampled: all p > .53). 

In the RSN analysis, significant negative correlations were found between degree of 

the limbic RSN and all resilience scales (multiband; CD-RISC: r = .-39, p = .03; BRS: 

r = .-44, p = .008; RS: r = .-40, p = .03; down-sampled: all p > .16).  

 

Effects of spatial resolution. As the Schaefer atlas is available in multiple parcellations, 

it is best-suited to investigate the influence of spatial resolution. Using 200 (vs. 100) 

nodes, we did not observe any correlation on the global level, neither for original (all p 

> .50), nor down-sampled (all p > .13) data. While there were also no significant 

correlations on the RSN level for original data (all p > .29), degree of the limbic RSN 
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was negatively correlated to both CD-RISC (r = -.57, p < .001) and RS (r = -.38, p = 

.04) in down-sampled data. No significant effects emerged at nodal level (original: all 

p > .36; down-sampled: all p > .10).  

 

Effects of motion. For the 26-parameter denoised data, we observed a significant 

correlation between global flexibility and mean FD (r = .38, p = .02, FDR-corrected) 

derived from the original (multiband) data, whereas no other brain measure was 

correlated with FD for original or down-sampled data (all p > .11) and no correlations 

emerged after optimized (36-parameter plus despiking) denoising (original: all p > .63; 

down-sampled: all p > .05).  

 

 

Discussion  
The present study investigated associations between intrinsic functional brain 

connectivity dynamics and psychological resilience. More specifically, we explored 

whether a previously reported negative correlation between resilience and node 

flexibility as determined using resting state BOLD fMRI (Long et al., 2019) can be 

replicated in multiband BOLD data with higher temporal resolution (TR = .675 sec). 

Additionally, we aimed at extending previous findings by including two further metrics 

of network dynamics, as well as two further questionnaires measuring slightly different 

theoretical conceptions of resilience. Correlation analyses were performed at different 

topological scales, i.e., for whole brain, (functional) sub-networks, and nodes. Results 

did not support the previously reported negative association between node flexibility 

and resilience, neither in a direct replication matching as closely as possible 

methodological parameters of the original study, nor when extending the methodology 

in terms of higher temporal resolution, finer-grained sliding window approach, or further 

network measures. In these analyses, we found a small number of significant 

correlations that were distributed rather inconsistently across different measures of 

brain dynamics and resilience, across atlases, and across sampling schemes: For 

multiband data (original time resolution; Power264 parcellation), flexibility of a cingulo-

opercular node correlated with resilience measured using the CD-RISC questionnaire 

and promiscuity of a visual node correlated with BRS resilience, however both in the 

opposite direction relative to Long et al. (2019). For down-sampled data, we observed 

negative correlations between global degree and BRS and between the degree of a 
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visual node and the RS score (Schaefer100 parcellation). After increasing the spatial 

resolution to 200 nodes (follow-up analysis), these effects disappeared, and negative 

resilience correlations emerged for the limbic network (CDRSIC, RS). When using less 

stringent denoising (as in the original study), we also observed negative correlations 

with limbic network degree (all three resilience scales), for multiband but not down-

sampled data. When applying the AAL atlas, a negative correlation emerged with 

promiscuity for a subcortical node (pallidum; BRS). Of note, we also observed a 

borderline significant (p = .05) negative correlation between global flexibility and 

resilience (BRS) in the direct replication. We do not consider this strong support in 

favor of a replication since we found no similar effects using the Power264 or 

Schaefer100 atlases or with the other two questionnaires. In sum, these 

heterogeneous results cannot be considered a successful replication. The fact that the 

limbic network was involved in these correlations multiple times suggests that its role 

for resilience should be investigated further. On the other hand, these effects were not 

consistent, so that they should be treated with caution. Lastly, post-hoc analyses 

conducted with multiband data and the Schaefer100 parcellation suggest invariance 

of results against changes in windowing schemes (size, overlap of windows). In the 

following, we will discuss potential limitations of the present study, which may be 

important when considering reasons for differences between present and previous 

results. We then discuss in more depth factors that may account for the failed 

replication of the results of Long et al. (2019).  

 

Potential Limitations 
Potential limitations of investigating network dynamics in BOLD data with low temporal 

resolution, as in the original study, have already been discussed in the Introduction. 

When analyzing temporally highly-resolved multiband data, we chose the window size 

to be equal to 1/fmin (Leonardi & Van De Ville, 2015). We cannot rule out that such long 

window sizes might hamper the sensitivity to small changes, as calculating connectivity 

matrices over longer periods serves as a smoothing kernel minimizing the ability to 

resolve TVFC (Vergara et al., 2019). However, this disadvantage of MB-EPI is more 

than compensated by the ability to acquire more data in the same time, the possibility 

to investigate faster dynamics, and to thus better disentangle neural and physiological 

signals (Yang & Lewis, 2021). Furthermore, we showed empirically that node flexibility 

was largely robust against changes in window size.  
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Potential limitations may also stem from the questionnaires used: Short versions of two 

scales (CD-RISC: 10 items, RS: 13 items) were used due to timing constraints, 

whereas the long (25-items) CD-RISC was used by Long et al. (2019). However, we 

deem this unproblematic as validity studies show that the short versions can be 

considered valid and reliable instruments for measuring trait resilience (Chmitorz et al., 

2018; Leppert et al., 2008; Sarubin et al., 2015). Our data confirm this, as all 

questionnaires showed satisfying levels of internal consistency.  

 

Methodological considerations 
Even though the overall direction of correlations between node flexibility and resilience 

was the same in two previous publications using fMRI (Long et al., 2019) and EEG 

(Paban et al., 2019), neural localizations partly differed. Adding to this heterogeneity, 

correlation results in the present study were highly inconsistent (see above) and results 

thus provide no strong evidence for an association between network dynamics and 

resilience. This demonstrates the importance of replication attempts also in network 

neuroscience studies of brain-behavior correlations. To support such work in the 

future, we have compiled a list of methodological features that we have found important 

in the present replication study (Table 4).   

 

 

Table 4: Recommendations for individual difference research using dynamic functional 

connectivity 

 

area keyword recommendation 

methodological parcellations test different parcellation schemes and 

atlases  

    test different node resolutions to explore 

stability of effects (currently only for 

Schaefer atlas possible) 
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  preprocessing,  

denoising 

optimize preprocessing and denoising 

strategies to different types of functional 

connectivity indices   

    test influence of different denoising 

pipelines to identify possible relationship 

between motion and measure of interest 

    exclude high motion subjects (rather strict 

than lenient if amount of data allows for) 

  sliding-window 

technique, dynamic 

functional connectivity 

test different windowing schemes (e.g., 

size of windows, amount of overlap) 

    use sufficient amount of data, if possible, 

e.g., via multiband fMRI (but take into 

account that acceleration decreases 

signal-to-noise-ratio) or longer 

measurements 

  multilayer modularity test different parameter settings 

psychological construct of interest incorporate different measures for (e.g., 

two resilience scales) or aim for a 

complete characterization (i.e., all 

possible metrics) for the construct of 

interest, if possible 

  brain – construct of 

interest relationship / 

confounding variables 

motivate in/exclusion of covariates (test 

both if applicable) 

    provide descriptive statistics for 

measures of interest 
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    provide reliability measures (if applicable) 

replications method section provide enough detail to allow for 

replication attempts 

Note: This brief list of recommendations does not claim to be complete, but rather advocates 

to always aim at incorporating the most recent findings and empirical evidence from 

methodological studies.  

 

Physiological Noise and Preprocessing. When applying less stringent denoising, a 

positive correlation between global flexibility and mean framewise displacement (FD) 

emerged (in multiband time resolution, overlapping windows), suggesting that 

increased motion inside the scanner may artificially alter functional connectivity and 

network flexibility. We did not observe any other correlation between dynamic brain 

measures and motion, suggesting that denoising approaches and their effectiveness 

may interact with temporal sampling schemes (i.e., MB vs conventional EPI). This 

underscores the importance of incorporating recent empirical insights regarding 

denoising strategies for module detection and analyses of network reconfigurations 

(Lydon-Staley et al., 2018). 

 

Sliding Window Technique. Both windowing schemes used in our study (overlapping 

vs non-overlapping) are among the most-used approaches within the sliding window 

framework (Iraji et al., 2020). For window-based TVFC analyses, window length is a 

critical aspect, as it has to balance the ability of  robustly estimating TVFC (which 

benefits from higher numbers of timepoints) against susceptibility to noise (Damaraju 

et al., 2020; Iraji et al., 2020). Extensive studies have evaluated the impact of different 

window types, lengths, and overlap on TVFC, however without yet identifying a gold 

standard (e.g., Abrol et al., 2017; Shakil et al., 2016). At present, lengths between 30s 

and 100s are commonly used (see Figure S1 in Preti et al., 2017). Within this range, 

one would however assume that strong effects should be robust against specific 

analysis choices (compare, e.g., Damaraju et al., 2020 vs. Haimovici et al., 2017). This 

is supported by our follow-up analyses showing that results did not vary between 

different window schemes or sizes.  
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Reliability.  Recent research suggests that multilayer modularity in particular (Yang et 

al., 2021) and TVFC in general (Hindriks et al., 2016) are a function of scanning 

duration and that rs-fMRI sequences around 10 min with standard TRs (as used by 

Long et al., 2019) are not sufficient for reliable parameter estimation. As reliability 

strongly influences which correlations are detectable (Hedge et al., 2018), short 

measurements may be prone to false positive correlations. Yang et al. (2021) propose 

that at least 20 min of rs-fMRI is needed for reliable multilayer modularity analysis - in 

that study based on a TR of 1.45 sec and non-overlapping windows of size 100 sec. 

Here, we measured 10 minutes of rs-fMRI with a TR of about half that length and used 

a substantially larger number of windows, intentionally selected to allow for reliable 

multilayer analyses. Yang et al. (2021) also suggest that the standard settings for intra- 

and interlayer parameters ( 	𝛾  = 𝜔  = 1) in dynamic network measures may not 

necessarily turn out to be optimal across datasets and across different network 

measures in terms of reliability. However, when varying the intra- and interlayer 

parameters beyond the standard setting (in the original/MB data, Schaefer100 atlas; 

see Supplementary File), we did not observe any significant correlations between node 

flexibility or promiscuity and resilience scores, except for a single correlation between 

the flexibility of a visual node and BRS when setting 𝛾 = 1.4	(r = .50, p = .02). This 

correlation, however, points into the opposite direction of what had been reported 

before (Long et al., 2019). We can thus conclude that the specific choice of intra- and 

inter-layer parameters has no strong effect on detecting resilience-flexibility 

correlations. 

 

Resilience questionnaires. It is also important that the behavioral variables of interest 

show satisfying psychometric properties. Internal consistencies for the resilience 

questionnaires were satisfactory, ranging from .70 to .85. When investigating individual 

differences, samples should not be too homogeneous on the target measures, as inter-

person variability is a precondition for detecting correlations. Even though CD-RISC 

data appear to be in a somewhat narrower range and more left-skewed than in Long 

et al. (2019), both the RS-13 and the BRS show sufficient variability (Table 1), which 

increases confidence that our results are not driven by a lack of heterogeneity. 

Moreover, resilience scores in our sample were distributed similar to the respective 

original publications of these measures. It is however difficult to compare our 

behavioral results directly to the studies by Paban et al. (2019) and Long et al. (2019), 
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as the former did not report descriptive values (but high internal consistency: 

Cronbachs a = .90), whereas the latter did report descriptive statistics but no 

psychometrics. 

 

Conclusion 
To summarize, our results do not provide support for the previously reported negative 

association between node flexibility and psychological resilience. We extended 

previous studies by including additional measures of functional connectivity dynamics 

and two further resilience questionnaires and found only weak and inconsistent 

evidence of associations between network dynamics and resilience, mostly for node 

degree, a proxy for TVFC, but not for node flexibility or promiscuity. Our study 

highlights how specific degrees of freedom in the analysis of functional connectivity 

may influence the presence or absence of effects of interest. This underscores the 

need for testing the robustness and generalizability of proposed effects via replication. 

 

 
Methods  
Code and data have been deposited at https://zenodo.org/ under the 

doi:10.5281/zenodo.5113574 and will be made publicly available after an embargo 

period that ends December 31, 2024.  

 

Participants 
In total, N = 69 right-handed University students were enrolled in the study, of whom 

N = 60 completed the study protocol and were included for further analyses. All 

participants were native speakers of German, right handed, and between 18 and 35 

years old; absence of current psychiatric episode was assured with a structured 

interview (MINI; Sheehan et al., 1998). This sample size was based on considerations 

of statistical power for investigating across-participant relationships between BOLD 

activation and cognitive flexibility (see preregistration: https://osf.io/a64jn); the task-

free (resting state) fMRI data reported here were acquired together with the pre-

registered task-based fMRI experiments. During image quality checks and pre-

processing, eight datasets were excluded from further analyses (four due to low quality 

of questionnaire data and four due to motion artifact; see below for details of exclusion 

criteria), so that the reported analyses are based on data from 52 participants (26 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 1, 2021. ; https://doi.org/10.1101/2021.07.20.452941doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.20.452941
http://creativecommons.org/licenses/by-nc-nd/4.0/


23	
	

females, 25 males, 1 diverse; 18-34 years; mean age 24.0 ± 3.7). Using the pwr 

package in R (Champely et al., 2017), we estimated that our final sample size of N = 

52 has a power of > .99 to detect correlational effects of the size reported by Long et 

al (2019), i.e., of around r = .55. All participants provided written informed consent and 

all procedures were approved by the Ethics Committee of the Department of 

Psychology of Goethe University Frankfurt, Germany.  

 

Functional MR Image Acquisition  
Resting state functional MRI (rsfMRI) data were collected prior to task-based fMRI 

(which is not part of the present report; see previous paragraph) on a 3-T Siemens 

Prisma MR-Scanner equipped with a 32-channel head coil, using a multiband (MB-

factor = 4) echo planar imaging (EPI) sequence with the following parameters: 900 

volumes (10:14 min), TR =  675 ms, TE = 30 ms, voxel size = 3 mm3, flip angle = 60°, 

FoV = 222 mm, acquisition matrix = 74x74, 40 slices. During the rsfMRI measurement, 

participants were asked to keep their eyes open and gaze at a white fixation cross, 

located at the center of a screen (NNL; Nordic Neuro Lab, 40’’, 1920x1080, 60Hz), to 

stay relaxed and not to think about anything specific. In a separate session, a T1 

weighted (T1w) 3D structural MR scan was acquired with a MPRAGE sequence (4:26 

min, voxelsize = 1 mm3, TR = 1900 ms, TE = 2.52 ms, acquisition matrix = 256x256, 

192 slices) for purposes of co-registration between functional and structural data.  

 

Resilience Questionnaires 
The psychological construct ‘resilience’ was quantified using German versions of three 

self-report questionnaires, the 10 item version of Connor-Davidson Resilience Scale 

(CD-RISC – 10 items; Connor & Davidson, 2003; German version by Sarubin et al., 

2015), the Brief Resilience Scale BRS – 6 items (Smith et al., 2008; German version 

by Chmitorz et al., 2018), and the Resilience Scale (RS – 13 items; Wagnild & Young, 

1993; German version by Leppert et al., 2008). Note that short versions of the 

questionnaires were selected, as the present study was part of a more extensive study 

protocol and the short-version have been shown to allow for a time-efficient data 

collection with comparable validity and reliability (Chmitorz et al., 2018; Leppert et al., 

2008; Sarubin et al., 2015). We included the CD-RISC and BRS because of their good 

ratings in an evaluation study by Windle and colleagues (2011). The RS was 

additionally chosen to increase comparability with other research, as this questionnaire 
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is frequently used in resilience research. In addition, the selected questionnaires also 

differ in that CD-RISC and RS define resilience as a personality trait, whereas 

resilience is understood as an outcome in the BRS (see original publications for more 

details). Resilience questionnaires were filled out during an informational preparation 

session for the fMRI measurements and administered online using Unipark software 

(EFS Survey, Questback GmbH). As completion time of online questionnaires has 

been identified as the most reliable indicator of data being meaningful or meaningless 

(Leiner, 2013), we evaluated the quality of questionnaire data using a quality index 

provided by the Unipark system that compares the completion time of each participant 

with the average completion time of our sample. As preregistered (https://osf.io/c94y8) 

participants with an Unipark quality index of .20 or lower were excluded, resulting in 

exclusion of five participants (see also Leiner, 2013 for a similar criterion). Resilience 

scores were calculated according to the respective manuals. For each resilience scale, 

we also assessed internal consistency by calculating Cronbach’s alpha and its 95% 

confidence interval (CI).  

 

MR Data Quality Control 
Quality of imaging data was assessed using both fMRIPREP´s visual reports as well 

as MRIQC 0.15.2rc1 (Esteban et al., 2017, 2019). T1w and functional images for each 

participant were visually checked for signal artifacts, whole brain coverage, and correct 

alignment between structural and functional data. Following a procedure proposed by 

Faskowitz and colleagues (2019) functional data were excluded if marked as an outlier 

(i.e., exceeding 1.5 x the inter-quartile-range either from Q1 or Q3) in more than 50% 

of the MRIQC quality metrics: dvars, tsnr, snr, efc, aor, aqi (see the MRIQC 

documentation, (Esteban et al., 2017), for more information about these metrics). 

Given the sensitivity of resting state analyses to movements and given that some of 

the aforementioned metrics are influenced by motion, we additionally included 

framewise displacement (FD) as a metric for quantifying motion artifacts (Maknojia et 

al., 2019). Due to the higher sampling rate of multiband EPI, motion parameters exhibit 

a high frequency (HF) component resulting from head motion due to respiration (Power 

et al., 2019) that is usually not observable with standard single-band fMRI (Williams & 

Van Snellenberg, 2019). With this ‘spurious’ HF motion component, the head appears 

to be in constant motion and summary measures (such as FD) might be contaminated, 

leading to exaggerated flagging of ‘bad’ volumes. Note that this applies less to 
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subsequent functional connectivity measures, as those are routinely band-pass 

filtered, whereas summary measures (e.g., FD) are calculated on raw motion 

parameters (Gratton et al., 2020; Power et al., 2019; Williams & Van Snellenberg, 

2019). We therefore calculated filtered FD (FDfilt) from Butterworth-filtered raw head 

movement traces to better isolate ‘true’ head movements (Power et al., 2019). 

Following Lydon-Staley et al. (2018), we excluded subjects with mean FDfilt >0.2 mm 

or >20 volumes with FDfilt >0.25 mm to ensure high data quality. We excluded four 

subjects based on their FDfilt, while no subject was excluded based on MRIQC´s 

metrics.  

 

Image Preprocessing 
T1w and rfMRI images were preprocessed using fMRIPREP 20.1.1 (Esteban et al., 

2019) which is based on Nipype 1.5.0 (Gorgolewski et al., 2011). A boilerplate text 

released under a CC0 license describing preprocessing details can be found in the 

Supplementary File. For further pipeline information, see fMRIPREP´s documentation 

(Esteban et al., 2019). Due to the use of MB data and the high sampling rate, no slice 

time correction was applied (see e.g., Glasser et al., 2013). Distortion corrected 

functional images in T1w space were further denoised using the XPC Engine 1.2.1 

(Ciric et al., 2017). We implemented a denoising strategy that has been shown to be 

relatively effective in mitigating motion artifacts in the study of dynamic functional 

connectivity, (multilayer) subnetwork detection and measures of module 

reconfiguration (Lydon-Staley et al., 2018). BOLD data was first demeaned, detrended, 

and despiked on a voxelwise basis (instead of using more aggressive censoring 

methods that may result in varying window lengths across participants; (Hutchison et 

al., 2013) and then temporally filtered with a first-order Butterworth-filter using a 

passband of 0.01 – 0.08 Hz. These operations were followed by a confound 

regression, that included (1) six motion estimates derived from fMRIPREPs 

realignment, (2) mean signals from white matter (WM) and cerebrospinal fluid (CSF), 

(3) mean global signal, (4) temporal derivatives of these 9 regressors, as well as (5) 

the quadratic terms of all 18 parameters, resulting in a 36-parameter model to obtain 

residual BOLD time series. All regressors were also bandpass filtered to avoid 

reintroducing noise caused by a frequency-dependent mismatch (Hallquist et al., 

2013). For the direct replication of Long et al. (2019) and to directly test the influence 

of different denoising schemes, we also implemented a more lenient 26-paramter 
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denoising approach which included 24 motion parameters following (Friston et al., 

1996) together with mean signals from WM and CSF. Within the XCP engine, the 

Schaefer (resolution: 100, 200; Schaefer et al., 2018), AAL90 (Tzourio-Mazoyer et al., 

2002), and Power264 (Power et al., 2011) atlases were transformed to native T1 space 

and resampled to match the BOLD images (see Supplemental Material for details). For 

each subject the whole brain was parcellated into distinct regions and a functional time 

series was extracted for each region, corresponding to the average across all voxels 

within that region.   

 

Time Varying Functional Connectivity (TVFC) 
All subsequent TVFC analyses were performed with the numpy (1.18.5; Harris et al., 

2020) and scipy (1.5.0, SciPy 1.0 Contributors et al., 2020) packages in python 3.8.3. 

 

Down-Sampling and window scheme. To directly replicate findings described in Long 

et. al (2019) and to investigate if different sampling rates (i.e., MB-EPI vs conventional 

EPI) yield different results, we down-sampled our original resting state BOLD 

timeseries by a factor of three to resemble a TR of 2 as closely as possible (3 x .675 

sec = 2.025 sec). Raw motion traces were also down-sampled accordingly, and FD 

was calculated without filtering. For the direct replication, we segmented the time 

series into 15 non-overlapping windows with length of 20 TR (40,5 sec), analogous to 

the windowing scheme used in Long et al., 2019. As this low number of windows may 

hamper the ability to investigate brain network dynamics (Hindriks et al., 2016; Lurie 

et al., 2020; Yang et al., 2021), we additionally used overlapping windows that were 

shifted by a single timepoint (TR). All windows were tapered with a Hamming filter to 

reduce potential edge artifacts and to suppress spurious correlations (Shakil et al., 

2016; Zalesky et al., 2014), and pairwise Pearson correlation coefficients between all 

nodes were calculated within each window. 

For analyses of the ‘original’ MB data with high temporal resolution, we used a fixed 

window length of 148 time-points (100 sec), that satisfies the frequency criterion that 

the length should be at least be equal to 1/fmin (Leonardi & Van De Ville, 2015) and 

allows for a full oscillation of the slowest frequency in the range of 0.01 – 0.08Hz. After 

down-sampling, sliding window correlations with an adjusted window length of 50 

timepoints (101.25 s) and subsequent TVFC and modularity analyses were calculated 

as described above. To investigate whether the calculated network measures differ 
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between original and down-sampled data and to rule out any idiosyncratic algorithmic 

behavior (i.e., from multilayer modularity), we compared all three metrics at the nodal 

level, as these were the starting points for all subsequent measures. For node flexibility 

and node promiscuity we calculated the spatial similarity (i.e., Spearman correlation 

coefficient) between mean values per node (average over participants) in the original 

and down-sampled data, to explore whether nodes behave in comparable manner in 

both time series. As the down-sampling creates ‘sparser’ data and disrupts the 

smoothness of the original data (which might result in more abrupt changes in 

community-assignments), we anticipated a tendency towards higher values for both 

metrics in the down-sampled data. For node degree, we expected lower values in the 

down-sampled data, as a recent study by Pedersen et al. (2018) showed that nodal 

degree decreased with less available data and thus tested this hypothesis using a 

paired t-test. 

 
We calculated the standard deviation (SD) of each node x node correlation (i.e., node-

node connection or edge) over time as a proxy for TVFC (often also referred to as 

‘dynamic’ connectivity; Lurie et al., 2020). To test whether these SDs likely reflect ‘true’ 

dynamics, we benchmarked these estimates against phase randomized surrogate 

(null) data that preserved auto-correlation, power spectral density and stationary cross 

correlation of the observed data (Lurie et al., 2020; Prichard & Theiler, 1994; Savva et 

al., 2019). More precisely, we created 500 surrogates for each subject by phase 

randomizing the empirical timeseries obtained from the 100 nodes. To preserve the 

correlative structure between node timeseries, all signals were multiplied by the same 

uniformly random phase and the SD for each edge was calculated, respectively (see 

Savva et al., 2019 for a detailed description of phase randomization). The empirically 

observed SDs were ranked against this null distribution and p-values were obtained 

by dividing the number of times SDsurr >= SDreal by the number of surrogates. Given 

that each subject has 4,950 unique connections, FDR-correction (p < 0.05) was 

applied to reduce type-I-errors.  

To describe ‘dynamics’ in nodal space, we calculated the nodal degree metric as the 

binary sum of significant (i.e., ‘dynamic’) connections for each node (Pedersen et al., 

2018). Of note, when testing TVFC with surrogate null data, one needs to be cautious 

as the absence of significance (relative to the null model) does not necessarily indicate 

the absence of dynamic connectivity. This interpretation depends heavily on the null 
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model applied, and the data may contain meaningful fluctuations relative to other 

definitions of the null model (see Lurie et al., 2020 for a comprehensive overview). 

 

Multilayer Modularity  
For multilayer modularity, negative correlations in each node x node matrix (i.e., per 

subject and time window) were set to zero and correlations were z-transformed as 

done in previous studies (e.g., Finc et al., 2020; Pedersen et al., 2018). We constructed 

an ordinal multilayer network in which each layer (i.e., time window) represents a 

weighted adjacency matrix. To assess the spatiotemporal community structure and to 

track network reconfigurations, each node was linked to itself across layers. To detect 

communities (i.e., groups of nodes that are more densely connected to one another 

than to the rest of the network), we used the multilayer counterpart (Mucha et al., 2010) 

of the modularity function proposed by Newman and Girvan (2004). To optimize the 

multilayer modularity function, we used an iterative and generative Louvain like 

algorithm (implemented with code from Jeub et al., 

https://github.com/GenLouvain/GenLouvain; see Supplementary File for details). The 

tunable parameters 𝛾 and 𝜔 were held constant across layers and set to unity, as had 

been done in previous studies (e.g., Braun et al., 2015; Yin et al., 2020). As the 

modularity approach is not deterministic, we repeated it 100 times for each participant 

and chose the run yielding the highest modularity value, as e.g., done in Finc et al. 

(2020). We also tested the influence of varying the intra- and interlayer parameters 

beyond the standard setting in the original data (see Supplementary File) but found no 

substantial influence on the reported results. 

 

Time Resolved Analyses of Brain Network Reconfiguration 
Within the time-varying community framework, we assessed node flexibility as the 

number of times a node changes its community assignment between adjacent layers, 

normalized by the total number of possible changes. Node flexibility can be interpreted 

as a metric that allows to quantify reconfigurations of functional connectivity patterns 

that a brain region undergoes over time (Braun et al., 2015). To enrich the 

spatiotemporal description of a node, we further calculated node promiscuity, defined 

as the fraction of communities a node participates in at least once, across all layers. 

This metric allows to quantify the distribution of a node`s connections over time, e.g., 

whether high flexibility stems from a switching between two communities or an evenly 
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distributed allegiance to a larger number of different modules (Garcia et al., 2018; 

Papadopoulos et al., 2016). The higher the nodal promiscuity, the more modules a 

node participates at least once across time. For each of the three node-specific 

measures of dynamic network reconfiguration, i.e., flexibility, promiscuity, and degree, 

we additionally calculated the respective global measure as the average across all 

nodes, as well as network-specific measures by averaging across all nodes belonging 

to the respective resting-state sub-networks (RSNs), which varied across atlases. 

  

Correlation Analyses 
All correlational analyses were performed with the pingouin statistics package (0.3.11; 

Vallat, 2018) in python 3.8.3. To test for associations between resilience and time-

varying brain network measures, we calculated partial (Spearman) correlations with 

age, gender, and FD included as covariates of no interest. Note that unlike Long et al. 

(2019), years of education was not included as covariate, as all participants were 

students and years of education were thus not acquired in our study. Correlations were 

performed at the global, nodal, and network-specific levels for all pairwise 

combinations between resilience questionnaires (CD-RISC, BRS, RS) and network 

measures (flexibility, promiscuity, degree). Results were corrected for multiple 

statistical comparisons using the false discovery rate (p < .05; Benjamini & Hochberg, 

1995).  

 

Follow-up Analyses  
Lastly, to more directly assess the effect of specific analysis choices on observed 

correlations between network measures and resilience, we varied a number of such 

factors systematically, using as ‘standard’ for comparison the analysis pipeline based 

on MB data parcellated using the Schaefer100 atlas, 36-parameter denoising, and 

overlapping sliding window scheme. We investigated the effects of including vs. 

excluding covariates, varying sliding window size (in a frequently used range between 

40 and 100 sec in steps of 20 sec; (Preti et al., 2017), and how the two different 

denoising pipelines affect resilience correlations. Lastly, we also explored within the 

same parcellation scheme (the Schaefer atlas) the effects of increasing the spatial 

resolution (i.e., from 100 to 200 nodes).  
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