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 117 

Summary 118 

Fungi play pivotal roles in ecosystem functioning, but little is known about their global patterns of 119 

diversity, endemicity, vulnerability to global change drivers and conservation priority areas. We 120 

applied the high-resolution PacBio sequencing technique to identify fungi based on a long DNA 121 

marker that revealed a high proportion of hitherto unknown fungal taxa. We used a Global Soil 122 

Mycobiome consortium dataset to test relative performance of various sequencing depth 123 

standardization methods (calculation of residuals, exclusion of singletons, traditional and SRS 124 

rarefaction, use of Shannon index of diversity) to find optimal protocols for statistical analyses. 125 

Altogether, we used six global surveys to infer these patterns for soil-inhabiting fungi and their 126 

functional groups. We found that residuals of log-transformed richness (including singletons) against 127 

log-transformed sequencing depth yields significantly better model estimates compared with most 128 

other standardization methods. With respect to global patterns, fungal functional groups differed in 129 

the patterns of diversity, endemicity and vulnerability to main global change predictors. Unlike α-130 

diversity, endemicity and global-change vulnerability of fungi and most functional groups were 131 

greatest in the tropics. Fungi are vulnerable mostly to drought, heat, and land cover change. Fungal 132 

conservation areas of highest priority include wetlands and moist tropical ecosystems. 133 

 134 

Introduction 135 

Human activities affect nearly all habitats through changes in climate and land-use, which in turn alter 136 

vegetation cover and composition. These changes negatively impact many species that have narrow 137 

environmental tolerances and limited dispersal capacity across anthropogenic landscapes (Schulte to 138 

Bühne et al. 2020). Anthropogenic impacts most strongly affect endemic species – i.e., taxa with small 139 

distribution ranges and narrow ecological niches (Brook et al. 2008). Diversity of endemic plants and 140 

animals is higher in areas characterized by historical stability, high precipitation, environmental 141 

heterogeneity, and insularity. Unfortunately, these areas usually coincide with major human 142 

degradations of the environment (Kier et al. 2009; Stein et al. 2014; Sandel et al. 2020).  143 
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Unlike the situation with plants and animals, global patterns of fungal diversity, endemism and 144 

vulnerability to environmental change remain virtually unknown (Cameron et al. 2019; Guerra et al. 145 

2021b; but see Talbot et al. 2014; Davison et al. 2015). This is alarming, given the fundamental roles 146 

that fungi play in carbon and nutrient cycling processes (Wardle & Lindahl 2014; Crowther et al. 2019). 147 

Comparative studies have indicated that aboveground and belowground biodiversity are driven by 148 

different environmental predictors at local and global scales (Cameron et al. 2019; Le Provost et al. 149 

2021). This suggests differential responses of macro- and microorganisms to land use and climate 150 

changes (Guerra et al. 2021b). As for plants and animals, soil fungal communities are likely vulnerable 151 

to global change drivers. For instance, high-temperature stress (Malcolm et al. 2008; Barcenas-Moreno 152 

et al. 2009; Morgado et al. 2015; Misiak et al. 2021) and prolonged drought (Schmidt et al. 2017; de 153 

Vries et al. 2018) can alter fungal growth, functionality and community composition. Likewise, changes 154 

in land use that result in habitat fragmentation may lead to shifts in prevalence of pathogenic, 155 

mutualistic, and free-living fungal groups (Brinkmann et al. 2019; Makiola et al. 2019; Le Provost et 156 

al. 2021; Rodriguez-Ramos et al. 2021).  157 

While thousands of plant and animal species are listed as threatened on the IUCN global Red List, only 158 

262 out of an estimated 2.2-3.8 million fungal species (Hawksworth & Lücking 2017) have been listed 159 

as such. The majority of these are from high-income countries in temperate regions (IUCN 2021) and 160 

are from fungal groups that make conspicuous macroscopic fruiting bodies (Cui et al. 2021). However, 161 

the vast majority of fungi produce no or inconspicuous fruiting bodies and are therefore hard to survey, 162 

which has hampered their conservation assessment (Gonçalves et al. 2021).  163 

Here we used the most advanced high-resolution sequencing technology to globally survey soil fungal 164 

diversity and assess their endemicity and vulnerability to global change. We hypothesized that i) the 165 

endemicity of fungi is relatively higher in the tropics due to greater regional climatic stability; and ii) 166 

vulnerability of fungi to global change is highest in habitats experiencing the strongest global warming 167 

effects (polar regions) and intensive land use (dry tropics). We predicted that because of their intimate 168 

associations with other organisms, endemicity and vulnerability patterns are more evident for 169 

macrofungi and biotrophic groups compared with saprotrophic microfungal groups. We then propose 170 

global conservation priorities for these ecologically pivotal fungi. 171 

 172 

Results and Discussion 173 

Fungal diversity 174 

We used the recently generated Global Soil Mycobiome consortium dataset (GSMc; 3,200 plots, 175 

Tedersoo et al. 2021b) along with data from five other global soil surveys (Fig. 1; see methods) and 176 

international nucleotide sequence databases to determine the diversity and endemicity of fungal 177 
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functional groups – viz. arbuscular mycorrhizal (AM) fungi, ectomycorrhizal (EcM) fungi, non-EcM 178 

Agaricomycetes (mostly saprotrophic macrofungi), molds, pathogens, opportunistic human parasites 179 

(OHPs, mostly thermophilic saprotrophs), early-diverging unicellular lineages (mostly chytrids, 180 

aphelids, and rozellids), and yeasts. Compared to previous meta-analytical approaches (e.g. Vetrovsky 181 

et al. 2019), our cumulative data comprise the largest available globally standardized database based 182 

on directly comparable soil sampling and long-read molecular analysis protocols. Collectively, all 183 

datasets yielded 20,182,427 fungal reads composed of 905,841 ‘species’ – operational taxonomic 184 

units (OTUs), each defined as <98% sequence similarity of the rRNA ITS barcode from all other 185 

OTUs. The genera Tomentella (Basidiomycota), Penicillium (Ascomycota), and Mortierella 186 

(Mortierellomycota) were the most species-rich (Fig. 1). 187 

We combined machine-learning and general linear modeling (GLM) approaches to find the best 188 

predictors of fungal species richness and the Shannon index of diversity for settling the contrasting 189 

results obtained from previous global studies (Tedersoo et al. 2014; Egidi et al. 2019; Vetrovsky et al. 190 

2019). At the site scale (α-diversity), the best supported results were obtained for residuals of 191 

logarithm-transformed richness accounting for sequencing depth (Fig. 2). Since the datasets were 192 

retrieved using different sampling design and therefore differed strongly in the inferred richness (Fig. 193 

3), we focused mainly on analyses of the largest, GSMc dataset. Total fungal richness had a broadly 194 

unimodal relationship with soil pH (R2
adj=0.133) and responded positively to vegetation age 195 

(R2
adj=0.045; Fig. 4). Deserts and Antarctic habitats supported the lowest richness among all biomes 196 

(Fig. 4). We validated the results using several datasets, in which fungal richness had a unimodal 197 

relationship with soil pH and positive response to mean annual precipitation (MAP)(Fig. 5). Across 198 

datasets, fungal γ-diversity at the ecoregion level was best explained by average MAP (R2
adj=0.179; 199 

Fig. 6). The differences in richness trends between α-diversity and γ-diversity indicate that high 200 

precipitation favors niche differentiation at the regional scale, as reflected by higher turnover between 201 

sites (i.e. increasing α- to γ-diversity). 202 

Our results thus update previous patterns of α-diversity decrease (Tedersoo et al. 2014) or increase 203 

(Vetrovsky et al. 2019) at high latitudes and confirm relatively lower fungal diversity in Antarctica. 204 

The latter pattern has been/can be ascribed to low plant diversity and coverage (Newsham et al. 2016). 205 

The more prominent latitudinal gradient in γ-diversity reflects a greater positive effect of MAP on the 206 

regional fungal species pool. Disregarding Antarctica, the lack of a global α-diversity latitudinal 207 

gradient in fungi is unique among terrestrial organisms (Kinlock et al. 2018). By comparison, the γ-208 

diversity patterns detected resemble those found for soil fauna (Aslani et al. 2022; Potapov et al. 209 

2022) and protistan parasites (Oliverio et al. 2020), all which show slight richness peaks in tropical 210 

latitudes. The distinctly weaker latitudinal diversity gradients of soil organisms compared with most 211 

aquatic and terrestrial macro-organisms may be related to indirect effects of temperature-related 212 

climatic variables as well as soil pH and C/N ratio as main drivers of soil habitat quality. The 213 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 19, 2022. ; https://doi.org/10.1101/2022.03.17.484796doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.17.484796
http://creativecommons.org/licenses/by-nc-nd/4.0/


differences may also be related to higher dispersal capacity of soil organisms who have microscopic 214 

body sizes or dispersal propagules (Soininen et al. 2013; Aslani et al. 2022). 215 

 216 

Fungal endemicity 217 

To estimate relative endemism among the world’s ecoregions (Fig. 7; Table 1; see methods), we 218 

combined indices of community similarity, uniqueness, and species ranges into an overall endemicity 219 

index (see Methods). Five metrics were combined, including the number and proportion of endemic 220 

species, mean maximum geographical range of species, Jaccard index, and beta-sim index (Box 1). 221 

We found that endemicity of all fungi peaked in moist tropical biomes and it was positively related to 222 

mean annual air temperature (MAT; R2
adj=0.277; Fig. 8) and soil acidity (R2

adj=0.108; Table 2).  223 

While endemicity patterns of non-EcM Agaricomycetes and AM fungi were similar to those shown 224 

for all fungi, different patterns were found for other functional groups. Endemicity of EcM fungi was 225 

related to high mean annual precipitation (MAP) (R2
adj=0.147). Molds, pathogens and yeasts showed 226 

multiple endemicity hotspots. Molds (R2
adj=0.199) and pathogens (R2

adj=0.105) had relatively greater 227 

endemicity in strongly acidic or alkaline soils, indicating that extreme soil conditions may support 228 

unique soil biota, with limited effective dispersal across edaphically extreme habitats. Human 229 

footprint (see Methods) had a weak negative effect on endemicity of all fungi (R2
adj=0.018), 230 

pathogens (R2
adj=0.015), and OHPs (R2

adj=0.056), suggesting that anthropogenic habitat loss or 231 

homogenization may affect endemic species (Finderup Nielsen et al. 2019). European ecoregions had 232 

the lowest endemicity for all fungi (R2
adj=0.065), pathogens (R2

adj=0.086) and unicellular fungi 233 

(R2
adj=0.035) compared with those of other areas. Averaged current aerial bioclimatic variables better 234 

explained endemicity compared with the ranges of those variables or bioclimatic variables of soil and 235 

last glacial maximum (LGM). Climate change since the LGM had a weak positive effect on 236 

endemicity of molds (mean diurnal range and overall climate change: R2
adj=0.073) and OHPs 237 

(isothermality and mean diurnal range: R2
adj=0.056) but not other groups. 238 

We found that patterns in fungal endemicity were relatively consistent among the five individual 239 

endemicity indices and that they resemble endemicity patterns of vascular plants and animals, which 240 

exhibit major hotspots in wet tropical habitats (Kier et al. 2009; Barlow et al. 2018). However, 241 

endemicity patterns in fungi were somewhat weaker, which may reflect the greater long-distance 242 

dispersal capacity of fungal spores relative to propagules of plants and animals (Golan & Pringle 2017). 243 

In terms of the greater macroorganism richness and endemicity found in the tropics, the literature 244 

abounds with hypotheses, including narrower niche breadth, more asymmetric interactions (i.e., greater 245 

specialization), climatic stability, and more rapid evolution due to environmental energy (Vazquez & 246 

Stevens 2004; Brown 2013) in the tropics than elsewhere. Negligible effects of the LGM suggest that 247 
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climatic stability is not an important driver of fungal endemicity, a pattern that contrasts with those of 248 

plants and animals (Rosauer & Jetz 2015). The greater phylogenetic diversity of fungi noted for the 249 

tropics (e.g. Tedersoo et al. 2018) may in part reflect tropical origins for many lineages, as well as the 250 

radiation and rapid speciation of a limited number of EcM fungal genera into higher latitude areas 251 

(Kennedy et al. 2012; Sanchez-Ramirez et al. 2015). On a global scale, plant diversity does not appear 252 

to be causally related to fungal diversity (Tedersoo et al. 2014), but there is some evidence for stronger 253 

mutualistic plant-fungal interactions related to high rainfall (Põlme et al. 2018). Pathogenic interactions 254 

warrant further research in this respect, given their major importance as regulators of plant diversity 255 

(Chen et al. 2019). Tropical soil fungi have relatively greater dispersal limitations (Bahram et al. 2013) 256 

and narrower distribution ranges (Tedersoo et al. 2014), suggesting that high local diversity may 257 

contribute to greater regional-scale endemicity. 258 

 259 

Vulnerability of fungi to global change drivers 260 

Communities with many species at their environmental niche limits may be particularly vulnerable to 261 

local extinctions (Watson et al. 2013; Smith et al. 2020b). Thus, we evaluated the relative vulnerability 262 

of soil fungal functional groups by estimating the percentage of species occurring at their upper niche 263 

limits to three major global change drivers – land use (land cover change), heat (maximum monthly 264 

temperature), and drought (lowest quarterly precipitation). We projected to the year 2070 relative to the 265 

2015 baseline, using the average vulnerability index (Smith et al. 2020b), land use extrapolations of the 266 

LUH2 global dataset (Hurtt et al. 2020), and climatic extrapolations based on the CCS8.5 scenario 267 

(Karger et al. 2021). For all fungi taken together, predicted vulnerability to heat (best predictor: 268 

maximum monthly temperature; R2
adj=0.583) and drought (precipitation seasonality; R2

adj=0.456) were 269 

the greatest in the tropical and subtropical latitudes. Vulnerability to land use change (isothermality; 270 

R2
adj=0.145) peaked in the tropics. The overall additive global change vulnerability was thus the highest 271 

in densely populated tropical and subtropical regions. Fungal functional groups had similar 272 

vulnerability patterns, which were mostly related to temperature. Among fungal groups, average 273 

vulnerability scores were highest for AM and EcM symbionts and unicellular fungi, but these scores 274 

differed only slightly across the global change drivers (Fig. 9). The actual vulnerability is probably 275 

underestimated for biotrophic pathogens and EcM fungi, because these groups associate with a limited 276 

number of plant species and are sometimes host-specific (Kennedy et al. 2015). Therefore, the loss of 277 

one of the few key symbiotic partners may greatly reduce the biotic niche of specialist fungi. 278 

Patterns of vulnerability in fungi are somewhat similar to those of terrestrial plants and animals, 279 

where vulnerability peaks in drylands prone to desertification (Warren et al. 2013), arctic/alpine areas 280 

(cold-adapted species), and regions with dense human populations (Watson et al. 2013). The 281 

relatively low vulnerability to heat in tundra-inhabiting fungi can be explained by their relatively high 282 
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temperature optima (Maynard et al. 2019; but see Misiak et al. 2021), acclimation (Romero-Olivares 283 

et al. 2017), and poleward migration potential, despite relatively greater predicted warming in Arctic 284 

ecosystems. Above certain tolerance thresholds, soil organisms may be physiologically constrained by 285 

increasing soil temperature and evaporation, lower soil water potentials, and loss of oxygen due to 286 

greater respiration and faster decomposition, which result in hampered soil functioning and ecosystem 287 

multifunctionality (Delgado-Baquerizo et al. 2017). Open areas are predicted to increase due to 288 

climate change and human activities. This will further expose soil to solar radiation and result in the 289 

loss of fungal plant hosts. While here we calculated average vulnerabilities by adding up the effects of 290 

individual drivers, global change impacts tend to be synergistic (Rillig et al. 2019), so actual 291 

vulnerabilities may be much higher.  292 

  293 

Implications for conservation 294 

Most fungi and soil organisms do not enjoy the protection and conservation measures that are 295 

afforded to more “charismatic” animals and plants (Ducarme et al. 2013). Nonetheless, fungi and 296 

other soil biota are pivotal to soil health, nutrient cycling, water storage, food security, and many 297 

other ecosystem services. Their biodiversity should hence be brought to the center stage of global 298 

sustainability thinking and conservation planning. For example, these organisms should be factored in 299 

when selecting protected areas otherwise based on plant and animal conservation (Guerra et al. 300 

2021a). The fact that many EcM and plant pathogenic fungal species are associated with specific host 301 

plants indicates that on the local scale it is not only the narrowly-distributed species but also unique 302 

biotic associations that require focused conservation measures. From the fungal perspective, it is 303 

particularly important to protect plant species that act as hubs in modules of biotic interaction 304 

networks, because these hub species typically associate with multiple, distinct fungal partners (Põlme 305 

et al. 2018). In other cases, certain unique plant species or higher taxonomic groups should be 306 

prioritized. For example, in southern South America, the drought-sensitive tree family Nothofagaceae 307 

is the only group known to support EcM fungi that are endemic to this area (Godoy & Marin 2019) 308 

Although the vulnerability to environmental change differed among fungal groups, their overall global 309 

patterns were similar. This suggests that broad habitat conservation measures may work for most 310 

fungal groups, including macroscopic non-EcM Agaricomycetes and EcM fungi as well as more 311 

cryptic pathogens and other groups. To accomplish this, fungi need to be incorporated into 312 

conservation frameworks (Gonçalves et al. 2021). Actions to fill existing information gaps at the local 313 

and global levels must also be taken, and global-scale surveys should take into account the soil 314 

biodiversity assessments, complementing the traditional collections-based assessment with 315 

metabarcoding of environmental DNA. This applies to national conservation evaluation programs and 316 

engagement in global policy-making initiatives, such as the System of Environmental Economic 317 
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Accounting of the United Nations, World Biodiversity Forum, and Post-2020 Global Biodiversity 318 

Framework. Furthermore, promoting the red-listing of endangered fungal species at the national and 319 

global levels is critical (FAO 2020; IUCN 2021). Fungi need active and specific inclusion in national 320 

and global conservation policies and strategies, not just passive and implicit protection.  321 

Our study provides evidence that soil fungi may be highly vulnerable to global change, which needs 322 

to be considered when planning how to preserve these key organisms in a changing world. As with 323 

plants and animals, fungi appear to be environmentally sensitive due to the strong impacts that land 324 

cover change, low moisture, and high temperatures have on taxonomic and functional composition 325 

(Brinkmann et al. 2019; Makiola et al. 2019; this study). The endemicity of fungi is highest in tropical 326 

forest biomes (Kier et al. 2009; this study), so conservation measures advocated for tropical plants and 327 

animals (Brooks et al. 2006; Barlow et al. 2018) are likely to conserve fungi. Tropical forests are 328 

under continued threat from deforestation and degradation driven by expanding agriculture, extractive 329 

industries, and infrastructural projects (Bebbington et al. 2018). Conservation of herbaceous wetlands, 330 

tropical rainforests and tropical woodlands is supported by our global fungal conservation priority 331 

map that accounts for endemicity, vulnerability, and γ-diversity (Fig. 10). Additionally, given the 332 

importance of soil pH for soil microbial diversity and composition, it is essential to prioritize areas 333 

with high pedodiversity or mixed landscapes including bogs, various forest types, and grasslands. As 334 

a crucial measure, desertification and loss of soil organic matter needs to be controlled by reducing 335 

the conversion of primary forest to crops and pasture (Smith et al. 2020a). This is important not only 336 

to prevent land degradation processes from impairing bacterial and fungal diversity, but also to sustain 337 

the capacity of drylands to provide essential functions and services, such as soil fertility, carbon 338 

storage, and food production for more than one billion people (Sivakumar 2007; Delgado-Baquerizo 339 

et al. 2018). 340 

 341 

Conclusions 342 

 In conclusion, soil fungi show strong endemicity patterns, which differ by functional groups and are 343 

driven by both climatic and edaphic factors. Fungal groups also differ strongly in their relative 344 

vulnerability scores to global change, which peak in heavily populated tropical dryland areas. 345 

Unfortunately, these are the very areas most prone to further land degradation and desertification. 346 

Fungal endemicity and vulnerability patterns only partly mirror those of vascular plants and animals, 347 

which may be ascribed to their more efficient dispersal mechanisms. Global conservation efforts 348 

should include fungal biodiversity surveys alongside assessments of soil health, below-aboveground 349 

feedbacks, and areas of highest conservation priority, to secure the protection of habitats. Even more, 350 

they should include the monitoring of regional fungal communities over time, to pick relevant 351 
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changes and to provide early warning signals of impending change. What we do not know, we cannot 352 

efficiently manage or protect. 353 

 354 

Methods 355 

Datasets 356 

To study fungal endemicity and vulnerability to global change, we combined data from the Global 357 

Soil Mycobiome consortium (GSMc) open dataset (Tedersoo et al. 2021b) with materials from five 358 

other global soil biological surveys (Fig. 1) – BIODESERT (Maestre et al. 2022), MUSGONET 359 

(including the natural sites in Delgado-Baquerizo et al. 2021), CLIMIFUN (Bastida et al. 2021), 360 

GlobalAM (Davison et al. 2021), GlobalWetlands (Bahram et al. 2022) as well as Sanger sequence 361 

data from soil-inhabiting fungi obtained from the UNITE database (Nilsson et al. 2019) covering 362 

GenBank. We obtained the DNA from all five surveys and performed new DNA metabarcoding 363 

analyses following the protocols outlined for the GSMc dataset (Tedersoo et al. 2021b).  364 

All datasets comprised information on geographical coordinates and soil pH. Based on geographical 365 

coordinates, we assigned the following climatic and land cover metadata to the samples: i) CHELSA 366 

v2.1 bioclimatic variables for the period 1981-2010 (Karger et al., 2020), ii) CHELSA-TraCE21k 367 

v1.0. for the LGM (Karger et al. 2021), and iii) CHELSA v2.1 climate  extrapolations for the year 368 

2070 following the RCP8.5 global warming scenario with SSP5 socioeconomic conditions and the 369 

GFDL-ESM4 global circulation model (Karger et al., 2020); iv) normalized difference vegetation 370 

index (NDVI; Filipponi et al. 2018); v) SoilGrids v.2 soil pH from 0-5 cm depth (Poggio et al., 2021); 371 

vi) land cover type using Copernicus classification v.3 (Buchhorn et al. 2020) for the year 2015; and 372 

vii) human footprint index based on the Land-Use Harmonization (LUH2; Hurtt et al., 2020) or the 373 

year 2015 and 2070 extrapolation. Based on original descriptions of vegetation (age, cover, relative 374 

abundance of species, fire history) or remote sensing data (Google Maps), samples were assigned to 375 

biomes (Olson et al. 2001) and land cover types. Based on Z-transformed differences in present and 376 

LGM bioclimatic variables, we calculated for each sample an averaged LGM climate change index. 377 

Further, for each sample we estimated the human footprint index as the cumulative sum of land-use 378 

state transitions, with the year 1960 used as a baseline. 379 

 380 

Bioinformatics 381 

To infer fungal species and taxonomy, we used a long-read sequencing approach involving the 382 

ribosomal RNA 18S gene V9 subregion, ITS1 spacer, 5.8S gene, and ITS2 spacer to enhance 383 
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taxonomic resolution and accuracy. We used degenerate, universal eukaryotic primers to cover as 384 

many divergent taxa within the fungi and micro-eukaryotes as possible (Tedersoo et al. 2021a). The 385 

amplicon samples were prepared in 82 PacBio SMRTbell sequencing libraries and sequenced on 48 386 

PacBio Sequel 8M SMRT cells. The obtained reads were quality-filtered, demultiplexed to samples, 387 

trimmed to include only the full-length ITS region, and clustered to operational taxonomic units 388 

(conditionally termed as species) at 98% sequence similarity, which roughly corresponds to species-389 

level divergence. Taxonomy was assigned based on information from the 10 best BLASTn matches 390 

against the UNITE 9.1 beta dataset (https://doi.org/10.15156/BIO/1444285). The resulting species-by-391 

sample matrices were manually checked library-wise for external and cross-contamination and rates 392 

of index switching artifacts. We excluded several samples for which we suspected contamination, and 393 

removed rare occurrences of dominant species using the following thresholds: abundances = 1 for 394 

species with total abundance of >99 and abundances = 2 for species with total abundance of >999. 395 

Based on FungalTraits 1.3 (Põlme et al. 2020), species belonging to the kingdom Fungi were assigned 396 

to functional groups based on ecological or physiological characters: i) AM fungi (including all 397 

Glomeromycota but excluding all Endogonomycetes, because there is not enough information to 398 

distinguish AM species from free-living species); ii) EcM fungi (excluding dubious lineages); iii) 399 

non-EcM Agaricomycetes (mostly saprotrophic fungi with macroscopic fruiting bodies; iv) molds 400 

(including Mortierellales, Mucorales, Umbelopsidales, and Aspergillaceae and Trichocomaceae of 401 

Eurotiales and Trichoderma of Hypocreales); v) putative pathogens (including plant, animal and 402 

fungal pathogens as primary or secondary lifestyles); vi) OHPs (excluding Mortierellales); vii) yeasts 403 

(excluding dimorphic yeasts); and viii) other unicellular (non-yeast) fungi (including chytrids, aphids, 404 

rozellids, and other early-diverging fungal lineages). Other groups such as lichen-forming fungi were 405 

not considered, owing to their relative infrequency in soil across samples and ecoregions. Among 406 

these groups, mostly non-EcM Agaricomycetes and EcM fungi comprise many red-listed species of 407 

conspicuous conch-shaped, resupinate, or stipitate fruiting bodies and are hence considered to be of 408 

relatively higher conservation interest (Cao et al. 2021; IUCN 2021). 409 

 410 

Fungal diversity 411 

To assess patterns in global fungal α-diversity, we first calculated the residuals of logarithmically-412 

transformed fungal richness and richness of major functional groups by performing linear regression 413 

against the logarithm of sequencing depth. We also compared other approaches such as residuals from 414 

untransformed richness against square-root-transformed and log-transformed sequencing depth 415 

(Tedersoo et al. 2014), exclusion of singletons, Shannon index of diversity, traditional rarefaction 416 

(depth, 500 reads), and SRS-rarefaction (Beule & Karlovsky 2020) to 500 (minimum) or 3894 417 

(median) reads (Fig. 2). Because the approach including singletons and log-log transformation for 418 
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selecting residuals resulted in best-supported models (Fig. 2), we chose this approach for further 419 

analyses. Because the sampling protocols differed in sampling area size, number of subsamples and 420 

DNA extraction protocols, we included only the GSMc dataset in analyses of fungal richness and 421 

composition. The GSMc dataset furthermore featured information about vegetation (age, proportion 422 

of dominant plant taxa and mycorrhiza types, fire history) soil properties (C, N, P, K, Ca, Mg 423 

concentration), and sampling date. Based on geographical coordinates and sampling dates, we 424 

calculated geographic and temporal eigenvectors using the adespatial package of R (Dray et al. 2018). 425 

Phylogenetic eigenvectors were calculated for woody plant species composition by mapping the taxa 426 

to a multigene vascular plant phylogram (Qian & Jin 2016).  427 

Because of metadata availability and comparability, we exclusively used the GSMc dataset (3200 428 

composite samples by 722,682 species) to estimate the best predictors of fungal α-diversity and 429 

composition and to update global fungal diversity distribution maps. We first calculated the residuals 430 

of logarithmically-transformed fungal richness and richness of major functional groups by performing 431 

linear regression against the logarithm of sequencing depth. Besides richness residuals and Shannon 432 

index of diversity, we calculated fungal phylogenetic diversity (PD), mean phylogenetic distance 433 

(MPD), and mean neighbor taxonomic distance (MNTD) indices based on a classification tree 434 

(Tedersoo et al. 2018) using the PhyloMeasures package of R (Tsirogiannis & Sandel 2016). For 435 

predictors, we included biome and continent (dummy variables), bioclimatic, edaphic, and vegetation-436 

related variables, as well as eigenvectors of woody plant phylogenetic composition, spatial and 437 

temporal distance. Using random forest, we retrieved 20 candidate variables for GLM modeling. In 438 

GLM modeling, we included quadratic terms to account for non-linearity. To avoid an excessive 439 

number of predictors, only significant variables (P<0.001; R2>0.020) were kept in the final models. 440 

We also performed additional correlation analyses to illustrate the latitudinal gradient of α-diversity 441 

and γ-diversity. For generating fungal diversity maps, we performed additional analyses using 442 

bioclimatic variables, database pHH20(0-5 cm), human footprint index and Copernicus land use categories 443 

and their interactions with continuous predictors as described for vulnerability maps. The GSMc 444 

dataset-based α-diversity analyses were validated by performing similar analyses using other datasets. 445 

Richness residuals were calculated separately for these data and all datasets were subjected to model 446 

selection for soil pH and bioclimatic variables, because information about other predictors was 447 

inconsistent. We also modeled various versions of soil pH including the original measurements of 448 

pHKCl as well as pHH20 extrapolations for soil depths of 0-5 cm, 0-30 cm, and 15-30 cm. Since the 449 

pHKCl fit significantly better into global models (Fig. 2B) and pHH20 extrapolations were missing for 450 

smaller islands and Antarctic habitats, we used pHKCl in subsequent analyses. 451 

For γ-diversity, logarithmically-transformed cumulative ecoregion (see below) species richness was 452 

subjected to model selection against the logarithmically-transformed number of samples and 453 

sequencing depth to calculate residual richness. Residual richness and endemicity indices of all fungi 454 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 19, 2022. ; https://doi.org/10.1101/2022.03.17.484796doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.17.484796
http://creativecommons.org/licenses/by-nc-nd/4.0/


and functional groups were subjected to random forest machine learning analysis to pre-select ten 455 

most important variables for GLM. 456 

 457 

Endemicity 458 

To infer endemicity patterns in fungi, samples (including data obtained from UNITE, covering 459 

International Nucleotide Sequence Databases entries) were assigned to ecological regions (Olson et al. 460 

2001) based on their geographical coordinates, allowing a 10-km of buffer zone between a terrestrial 461 

ecological region and water (due to low resolution of the map layers in shore areas). Based on 462 

climatic and floristic similarities, the ecological regions were further aggregated into larger areas or 463 

split into smaller, geographically distinct units, which we refer to as ecoregions (Fig. 7). Each of 174 464 

ecoregions comprised 1 to 45 soil samples, with surplus samples excluded randomly. Five indices of 465 

endemism – viz., the number of endemic species (weight = 16.7%), proportion of endemic species 466 

(weight = 16.7%), mean maximum geographical range of taxa (weight = 33.3%), Jaccard index 467 

(weight = 16.7%), and beta-sim index (weight = 16.7%) – were selected for calculating the averaged 468 

endemicity index based on the community matrix (Crisp et al. 2001; Villéger & Brosse 2012; Box 1). 469 

The former two and latter two indices reflect similar aspects of endemicity and were therefore 470 

downweighted. To account for differences in sampling intensity, we calculated residuals for the 471 

numbers of all species and endemic species by regressing these against the logarithmically-472 

transformed number of samples and sequencing depth.  473 

Of the indices used, only the number and proportion of endemic taxa were significantly positively 474 

correlated with species richness (all fungi: r=0.707 and r=0.212, respectively), whereas others had no 475 

significant correlation. Furthermore, species richness was not included among the best predictors of 476 

averaged endemicity, indicating that these metrics are independent. Endemicity indices were 477 

calculated using the betapart package v.1.5.4 (Baselga & Orme 2012) of R v.4.1.10 (R Core Team 478 

2022). Endemicity indices of all fungi and functional groups were subjected to random forest machine 479 

learning analysis to pre-select the ten most important variables for GLM. We used the variance (as 480 

coefficient of variation) and averaged values of bioclimatic variables, area, latitude, longitude, 481 

altitude, and soil pH as well as continents (dummy variables) to explain endemicity. GLMs were fitted 482 

using second-order polynomial terms for continuous variables. Only significant variables (P<0.050; 483 

r2>0.020) were kept in the final models. Based on the predictions revealed by GLMs, endemicity 484 

maps were constructed using the sf v.1.0-5 (Pebesma 2018) package of R. 485 

  486 

 487 
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Global change vulnerability 488 

The vulnerability of soil fungal groups was estimated relative to three global change drivers – heat 489 

(maximum monthly temperature), drought (negative of inverse hyperbolic sine-transformed 490 

precipitation in the driest quarter), and land cover change – for the year 2070 (relative to 2015 491 

baseline) using the community-mean percentile vulnerability index (V2; Smith et al. 2020b). This 492 

index is based on averaging percentiles of all species at a given global change driver value. 493 

 494 

where aij is the presence (0 or 1) of species j in site i, Fj(xi) is the percentile of species j given site 495 

parameter value xi, xi is the parameter value of site i, and n is the total number of species observed. 496 

Precipitation in the driest quarter was selected as a proxy for drought, because bioclimatic variables 497 

cover larger areas (including islands) and offer greater resolution compared with other measures of 498 

soil water content and indicators of drought. The vulnerability scores were calculated for each soil 499 

sample using vuln v.0.0.05 (Smith et al. 2020b) package of R. We also constructed the average 500 

vulnerability score by equally weighting all components. The vulnerability scores were unrelated to 501 

sequencing depth and sample size. We performed a similar random forest and GLM modeling 502 

exercise for determining the main predictors of vulnerability as described above, but allowed 503 

interaction terms between categorical and continuous predictors and used a more relaxed threshold for 504 

keeping variables in the model (P<0.001; R2>0.01) due to greater sample size. To construct 505 

vulnerability maps we used a regression-kriging approach (Hengl & MacMillan 2019). To predict 506 

vulnerability scores for each global driver and estimate their prediction uncertainty, thin plate splines 507 

(basis dimensionality = 3) were fitted using a generalized additive model (GAM) with mgcv v.1.8-38 508 

(Wood 2011) package. To incorporate the spatial autocorrelation signal, we calculated residuals at the 509 

sampling sites and used inverse distance weighting (IDW) to interpolate residuals beyond the 510 

sampling sites. To obtain final vulnerability predictions, interpolated residuals were added to the 511 

results based on the predicted regression part. By using the relative vulnerability values, we also 512 

prepared the map of fungal vulnerability ascribed to each of the three components. Vulnerability maps 513 

were visualized using the raster v.3.5-9 (Hijmans 2021) package of R. 514 

The maps for conservation priorities were calculated for all fungi using sampling points used in 515 

vulnerability analyses, except points corresponding to cropland and urban and village land cover. For 516 

each sampling point, the respective average endemicity, γ-diversity, and vulnerability scores were z-517 

transformed, followed by adding a constant (5, to exclude negative values), multiplied (to downweigh 518 
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areas with any low values), and used in a regression-kriging approach (Table 3) as described for 519 

vulnerability.  520 

Based on methods comparison, we conclude that inclusion of singletons may increase richness model 521 

performance at relatively low sequencing depth in high-quality, third-generation sequencing datasets. 522 

Furthermore, residuals of log-transformed richness against log-transformed sequencing depth yields 523 

significantly better model estimates compared with most other standardization methods. Richness data 524 

from studies with different sampling designs must not be pooled in a common analysis unless the 525 

factor “study” or sampling attributes (e.g. number of subsamples, volume of samples) are accounted 526 

for. Use of original soil pH data strongly outperforms extrapolated data; therefore, soil pH 527 

extrapolations should not be used for testing relative effects of edaphic and climatic and other 528 

properties. This probably applies to other edaphic and vegetation-related values that greatly vary on a 529 

local scale. 530 
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Figures 784 

 785 

 786 

 787 

Fig. 1.  Distribution of samples and fungal species across datasets. (A) Global sampling map, with different 788 
symbols representing different datasets; (B) species distribution of fungi among datasets, with the proportion of 789 
unique and shared species indicated in the diagram; (C) Krona chart indicating taxonomic distribution of fungal 790 
species (interactive chart can be browsed at https://plutof.ut.ee/#/doi/10.15156/BIO/2483900); (D) species 791 
richness and total read abundance of the top 10 most diverse fungal genera. 792 
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 793 

 794 

Fig. 2. Comparison of (A) richness proxies (use of log-transformation, residuals of sequencing depth, SRS 795 
or simple rarefaction) and (B) measures of soil pH on analytical performance. Relative goodness was 796 
estimated based on the determination coefficients of the best models (A) or pH-only models (B).  In left panels, 797 
significant among-group differences are indicated with different letters based on Tukey Posthoc tests; bars, 798 
means; whiskers, SE. Soil pHKCl were determined experimentally, whereas pHH2O were obtained from Poggio et 799 
al. (2021). 800 
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 802 

 803 

Fig. 3. Relative ‘species’ accumulation curves (A-C), sequencing depth (D) and ‘species’ richness (E-F) 804 
across four datasets. (A) The log-log relationship between the number of reads and ‘species’ richness that was 805 
used for calculation of residuals and further analyses; (B-C) Relatively lower performance of log-linear 806 
relationships of log-transformed and square-root-transformed sequencing depth; (D) Initial differences in 807 
sequencing depth among datasets; (E-F) Fungal ‘species’ richness differences relative to the average in the raw 808 
data (F) and residuals of the log-log regression analysis (F). In D-F, boxes indicate standard errors around the 809 
mean and whiskers indicate 95% confidence intervals; letters above whiskers indicate statistically significant 810 
differences among datasets (using log-transformed data for D-E). These analyses indicate that the log-log 811 
transformation for calculating residuals is relatively more robust compared with other methods and that richness 812 
estimates from studies with different methods cannot be directly compared. 813 
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 814 

 815 

Fig. 4. Response of α-diversity of all fungi to soil pH, vegetation age, mean annual precipitation, latitude, 816 
biomes, and land cover categories. For continuous predictors, black lines indicate linear and polynomial fits 817 
and red lines indicate lowess fits. For categorical predictors, boxes represent standard error around the mean 818 
(central line), whiskers depict 95% CI and letters above boxes indicate statistically significant different groups 819 
(P<0.001). 820 
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 822 

 823 

Fig. 5. Comparison of α-diversity patterns in all fungi across four most inclusive datasets: (A) best models 824 
(only bioclimatic variables and soil pH were included in model selection), (B) lowess regression curves for 825 
the best-fitting climatic predictor, and (C) lowess regression curves for soil pH. 826 

 827 

 828 

 829 

Fig. 6. The effect of average mean annual precipitation on γ-diversity of fungi at the ecoregion scale. Black 830 
line, best quadratic fit; red line, lowess curve. 831 
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 835 

Fig. 7. Distribution of 174 ecoregions used in endemicity analyses. Ecoregions excluded from the analyses 836 
due to the lack of data are indicated in gray. Their explanation is given in Table 1. 837 

 838 
 839 

 840 

 841 

Fig. 8. The effect of average mean annual precipitation on endemicity of fungi at the ecoregion scale. 842 
Black line, best quadratic fit; red line, lowess curve. 843 
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 845 

Fig. 9. Vulnerability of fungi and functional groups to global change drivers. Different letters indicate 846 
statistically significant (P<0.001) differences among functional groups (a-e) and among global change drivers 847 
within functional groups (x-z).  848 
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 852 

 853 

Fig. 10. Relationships between conservation priority areas with mean annual temperature (A) and 854 
Copernicus land cover types (B). In A, black and red lines indicate best-fitting linear and lowess functions, 855 
respectively. In B, central lines and whiskers indicate mean and standard errors, respectively; letters above 856 
whiskers indicate statistically significant differences among land cover types. 857 
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 859 

 860 

Box 1. Calculation of endemicity indices and correlation among standardized indices for all fungi and 861 
among functional groups. 862 
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Table 1. The ecoregions used in endemicity analyses. 864 

Ecoregion number Putative name 
1 Alaskan forests 
2 Alaskan tundra 
3 Albertine Rift montane forests 
4 Yunga 
5 Alps conifer and mixed forests 
6 Altai steppes and semideserts 

7 Anatolian forests 
8 Andaman Islands rain forests 
9 Yucatan forests 

10 Antarctic desert 
11 Appalachian mixed forests 
12 Appennine forests 
13 Arabic drylands 
14 Argentina savanna 
15 Australia Central drylands 
16 Australia E subtropical woodlands 
17 Australia NE savannas 
18 Australia NW savannas 
19 Australia SE shrublands and savannas 
20 Australia SE temperate forests 
21 Australia SW woodlands 
22 Australia W savannas 
23 Australia W shrublands 
24 Balkan forests 
25 Baltic mixed forests 
26 Benelux Atlantic mixed forests 
27 Borneo-Java rain forests 
28 Botswana woodlands 
29 Brazil S forests 
30 Burman forests 
31 Caatinga 
32 California Sierra Nevada forests 
33 Cameroon W forests 
34 Canada N boreal forests 
35 Canada NE boreal forests 
36 Canada NW boreal forests 
37 Canary Islands dry woodlands and forests 
38 Cape fynbos 
39 Cape karoo 
40 Cape thickets 
41 Cape Verde Islands dry forests 
42 Caucasia 
43 Central American forests 
44 Central Asian drylands 
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45 Central Atlantic rain forests 
46 Central Congolian forests 
47 Central European mixed forests 
48 Central Siberian tundra 
49 Central Sudanian savanna 
50 Cerrado 
51 Chaco 
52 Chilean matorral 
53 China Central forests 

54 China E forests 
55 Colombia montane forests 
56 Zimbabwe-Mozambique woodlands 
57 Colombia N forests 
58 Colombia SW dry forests 
59 Colombia W forests 
60 Crete Mediterranean forests 
61 Cuba forests 
62 Czech mixed forests 
63 Da Hinggan-Dzhagdy Mountains conifer forests 

64 East African shrublands 
65 East African woodlands 
66 East Asian drylands 
67 East European forest steppe 
68 East Guinean forests 
69 East Himalayan forests 
70 East Siberia forest and mountain tundra 
71 West Amazon forests 
72 Eastern South African woodlands 
73 Estonian Sarmatic mixed forests 
74 Ethiopian montane woodlands 
75 Fiji forests 
76 Finland taiga 
77 Florida forests 
78 France Atlantic mixed forests 
79 Great Britain Forests 
80 Great Lakes forests 
81 Zambia woodlands 
82 Greenland tundra 
83 Hawaii forests 
84 Highveld grasslands 
85 Iceland boreal birch forests and alpine tundra 
86 Zagros Mountains forest steppe 
87 Isthmian forests 
88 Japan forests 
89 Kalahari xeric savanna 
90 Victoria Basin forest-savanna mosaic 
91 Karakoram drylands 
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92 Western Ghats forests 
93 Korean forests 
94 Latvian Sarmatic mixed forests 
95 Lesser Antilles forests 
96 Madagascar woodlands 
97 Madeira evergreen forests 
98 Magellanic subpolar forests 
99 Manchurian forests 

100 Mascarene forests 
101 Western European broadleaf forests 
102 Mexico NE shrublands and forests 
103 Mexico NW deserts and montane forests 
104 Mexico S dry forests 
105 Mexico SW lowland forests 
106 Mexico SW montane forests 
107 Mongolian deserts 
108 Mongolian steppe 

109 Namib drylands 
110 New Caledonia forests 
111 New Guinea forests 
112 New Zealand forests 
113 North African woodlands 
114 North Amazon forests 
115 North Atlantic rain forests 
116 North India moist forests 
117 Northeast Siberian taiga 
118 Northeast Siberian tundra 

119 Northern Indochina subtropical forests 
120 Northern Zanzibar-Inhambane coastal forest mosaic 
121 Western Congolian forests 
122 West Sudanian savanna 
123 Oman drylands 
124 Pacific deserts 
125 Pannonian forests 
126 Pantelleria-Lampedusa forests 
127 Patagonian steppe 
128 Peninsular Malaysian rain forests 
129 West Siberian forests 
130 Polynesian forests 
131 Portugal woodlands 
132 Puerto Rico forests 
133 Puna 
134 Queensland tropical rain forests 
135 Russian Sarmatic mixed forests 
136 Russian taiga 
137 Sahelian drylands 
138 Sardinian-Corsican forests 
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139 Scandinavian coastal conifer forests 
140 Scandinavian Montane Birch forest and grasslands 
141 Scandinavian Sarmatic mixed forests 
142 Scandinavian taiga 
143 Sicilian forests 
144 South Asian drylands 
145 South Atlantic rain forests 
146 South Caspian forests 
147 South Siberian steppe 

148 Southeast African bushveld 
149 Southeast Amazon forests 
150 Southern Indochina tropical forests 
151 Spain woodlands 
152 Sri Lanka forests 
153 Subantarctic islands tundra 
154 West Himalayan forests 
155 Svalbard Arctic desert 
156 Taiwan forests 
157 Tarim basin drylands 

158 Tasmanian forests 
159 Tenasserim-South Thailand semi-evergreen rain forests 
160 Tibetan steppe 
161 Trans-Baikal forests 

162 Transylvanian forests 
163 West Guinean forests 
164 USA California chaparral 
165 USA Central forests and grasslands 
166 USA NE hemiboreal forests 
167 USA SE forests 
168 USA Southern Rockies and steppe 
169 USA western steppe and montane forests 
170 USA-Canada Pacific forests and grasslands 
171 USA-Canada Rockies and central forests and grasslands 
172 Ussuri broadleaf and mixed forests 
173 Valdivian temperate forests 
174 Venezuela woodlands 
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Table 2. The best predictors of endemicity indices in ecoregions for all fungi. 867 

  DF Sum of squares Mean squares F-value R2
adj P-value Trend 

MATmean 2 27.2 13.6 97.4 0.277 <0.001 U-shaped 

soil pHmean 1 10.6 10.6 38.2 0.108 <0.001 negative 

subcontinent: Europe 1 6.5 6.5 23.5 0.065 <0.001 negative 

human footprint index 1 2.1 2.1 7.5 0.018 0.007 negative 

error 168 48.3           

 868 

Table 3. The best models of conservation priority co-kriging maps for fungi. All P-values are <0.001. 869 

  Df Sum of squares Mean squares F-value R2
adj Trend 

air MAT1 2 2133 1066 1426 0.266 positive 

MPWM 1 992 992 663 0.134 positive 

climate isothermality 1 169 169 113 0.023 positive 

MAP 2 167 84 112 0.022 positive 

Land cover type2 7 128 18 12 0.015   

Land cover type x MAP 7 121 17 12 0.014   

error 2477 3705 

   

  

1Abbreviations: MAP, mean annual precipitation; MAT, mean annual temperature; MPWM, mean 
precipitation of wettest month; 

2Copernicus land cover types: broadleaf forest, mixed forest, coniferous forest, shrubland, tundra, grassland, 
desert, wetland (note that cropland and urban and village biomes were excluded). 
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