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Abstract

A core challenge in cognitive and brain sciences is to assess whether different bio-

logical systems represent the world in a similar manner. Representational Similarity

Analysis (RSA) is an innovative approach that addresses this problem by looking for

a second-order isomorphisim in neural activation patterns. This innovation makes it

easy to compare latent representations across individuals, species and computational

models, and accounts for its popularity across disciplines ranging from artificial in-

telligence to computational neuroscience. Despite these successes, using RSA has

led to difficult-to-reconcile and contradictory findings, particularly when compar-

ing primate visual representations with deep neural networks (DNNs): even though

DNNs have been shown to learn and behave in vastly different ways to humans, com-

parisons based on RSA have shown striking similarities in some studies. Here, we

demonstrate some pitfalls of using RSA and explain how contradictory findings can

arise due to false inferences about representational similarity based on RSA-scores.

In a series of studies that capture increasingly plausible training and testing scenar-

ios, we compare neural representations in computational models, primate cortex and

human cortex. These studies reveal two problematic phenomena that are ubiquitous
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in current research: a “mimic effect”, where confounds in stimuli can lead to high

RSA-scores between provably dissimilar systems, and a “modulation effect”, where

RSA-scores become dependent on stimuli used for testing. Since our results bear on

a number of influential findings, such as comparisons made between human visual

representations and those of primates and DNNs, we provide recommendations to

avoid these pitfalls and sketch a way forward to a more solid science of representation

in cognitive systems.

Introduction 1

How do other animals see the world? Do different species represent the world in a similar 2

manner? How do the internal representations of AI systems compare with humans and 3

animals? The traditional scientific method of probing internal representations of humans 4

and animals (popular in both psychology and neuroscience) relates them to properties of 5

the external world. By moving a line across the visual field of a cat, Hubel & Wisel [1] 6

found out that neurons in the visual cortex represent edges moving in specific directions. 7

In another Nobel-prize winning work, O’Keefe, Moser & Moser [2,3] discovered that neu- 8

rons in the hippocampus and entorhinal cortex represent the location of an animal in the 9

external world. Despite these successes it has proved difficult to relate internal repre- 10

sentations to more complex properties of the world. Moreover, relating representations 11

across individuals and species is challenging due to the differences in experience across 12

individuals and differences of neural architectures across species. 13

These challenges have led to recent excitement around multivariate analyses methods, 14

such as Multi-Voxel Pattern (MVP) Classification, which uses machine learning algorithms 15

to decode neural activity [4]. MVP classification assesses whether a brain region codes 16

for a stimulus feature by examining whether the feature can be easily decoded from 17
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neural response patterns in the region. However, there are at least two issues with using 18

MVP classification for comparing mental representations across individuals. Firstly, just 19

because a stimulus feature can be easily decoded from neural response patterns in a region 20

does not imply that downstream regions in the brain actually decode this information [5]. 21

Different individuals (or species) may use this information in different ways and MVP 22

classification does not provide a way of capturing this. Secondly, there are methodological 23

limitations on mapping brain regions and neural activity patterns between individuals and 24

species. Therefore, even if two individuals represent a visual stimulus in the same manner, 25

a decoder trained on one individual will show a significant performance drop when applied 26

across individuals [6]. 27

A newer addition to multivariate analysis, Representation Similarity Analysis (RSA), 28

is specifically designed to compare representations between different systems and over- 29

comes some of these obstacles. RSA usually takes patterns of activity from two systems 30

and computes how the distances between activations in one system correlate with the 31

distances between corresponding activations in the second system (see Figure 1). Rather 32

than compare each pattern of activation in the first system directly to the corresponding 33

pattern of activation in the second system, it computes representational distance matri- 34

ces (RDMs), a second-order measure of similarity that compares systems based on the 35

relative distances between neural response patterns. This arrangement of neural response 36

patterns in a representational space has been called a system’s representational geome- 37

try [7]. The advantage of looking at representational geometries is that one no longer 38

needs to match the architecture of two systems, or even the feature space of the two 39

activity patterns (see Supplementary Information, Section A for a brief history of RSA 40

and its philosophical origins). One could compare, for example, fMRI signals with single 41

cell recordings, EEG traces with behavioural data, or vectors in a computer algorithm 42
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Figure 1: RSA calculation. (A) Stimuli from a set of categories (or conditions) are used as inputs
to two different systems (for example, a human brain and a primate brain). Activity from regions of
interest is recorded for each stimulus. Pair-wise distances in activity patterns are calculated to get the
representational geometry of each system. This representational geometry is expressed as a representa-
tional dissimilarity matrix (RDM) for each system. Finally, an RSA score is determined by computing
the correlation between the two RDMs. It is up to the resercher to make a number of choices during
this process including the choice of distance measure (e.g., 1-Pearson’s r, Euclidean distance etc.) and a
measure for comparing RDMs (e.g., Pearson’s r, Spearman’s ρ, Kendall’s τ , etc.).

with spiking activity of neurons [8]. RSA is now ubiquitous in computational psychology 43

and neuroscience and has been applied to compare object representations in humans and 44

primates [9], representations of visual scenes by different individuals [6, 10], representa- 45

tions of visual scenes in different parts of the brain [11], to study specific processes such 46

as cognitive control [12] or the dynamics of object processing [13], and most recently, to 47

relate neuronal activations in human (and primate) visual cortex with activations of units 48

in Deep Neural Networks [14–18]. 49

However, this flexibility in the application of RSA comes at the cost of inferences one 50

can draw from this analysis. If the goal of the neuroscientist, psychologist or AI researcher 51
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is to establish whether two systems are similar in mechanism, feature representation or 52

information processing, then RSA may not be the correct analytical method to use. This 53

is because RSA is a second-order measure – it looks at the similarity of similarities – that 54

abstracts over mechanism, feature representations and information processing. This point 55

has been made before. For example, Haxby et al. [4] write that the disadvantage of using 56

RSA is that: 57

...one cannot investigate whether the spaces in different subjects share the 58

same feature tuning functions or how these tuning function codes differ for 59

different brain regions. One cannot predict the response to a new stimulus in 60

a subject on the basis of the responses to that stimulus in other subjects. One 61

cannot predict the tuning function for individual neural features in terms of 62

stimulus features, precluding investigators from predicting the response pat- 63

tern vector for a new stimulus on the basis of its features. [pg. 446] 64

Despite these warnings, RSA continues to be used to infer that different individuals or 65

brain regions or computational models have similar mechanism (that is, they are similar 66

in nested functions and algorithms that transform inputs into neural response vectors). 67

One area where these conclusions are frequently made is the comparison between the 68

hierarchical representations in the visual cortex and Deep Neural Networks (DNNs). For 69

example, Cichy et al. [17] observed a correspondence in the RDMs of DNNs performing 70

object categorization and neural responses in human visual cortex recorded using MEG 71

and fMRI. Based on this correspondence, the authors concluded that: 72

...hierarchical systems of visual representations emerge in both the human 73

ventral and dorsal visual stream as the result of task constraints of object 74

categorization posed in everyday life, and provide strong evidence for object 75
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representations in the dorsal stream independent of attention or motor inten- 76

tion. [pg. 5] 77

Thus, the correspondence in RDMs is used to infer the mechanism of emergence of visual 78

representations. Based on a similar comparison, Kriegeskorte [19] concluded that: 79

Deep convolutional feedforward networks for object recognition are not bio- 80

logically detailed and rely on nonlinearities and learning algorithms that may 81

differ from those of biological brains. Nevertheless they learn internal repre- 82

sentations that are highly similar to representations in human and nonhuman 83

primate IT cortex. [pg. 441] 84

While authors are sometimes careful in stating that the term ‘similarity in representations’ 85

is used as a shorthand for a ‘similarity in representational geometries’, they nevertheless 86

also invite the reader to accept that different systems show similar representational ge- 87

ometries because it is likely that they also use similar mechanisms to transform sensory 88

information into latent representations, or they use similar (downstream) mechanisms to 89

decode these latent representations. But how safe are these assumptions? 90

The main goal of our paper is to show that high RSA scores should not be used to infer 91

two systems have similar mechanisms. In Study 1, in a bare-bones setup, we show that 92

it is possible for two systems to transform input stimuli through known functions that 93

are vastly different but end up with similar representational geometries. In particular, 94

the study shows that 1) the presence of second-order confounds in the training data 95

can lead systems to mimic each other’s representational geometry even in the absence of 96

mechanistic similarity, and 2) the intrinsic structure of datasets rather than mechanistic 97

alignment can lead to artifactual modulation of RSA scores. Then in Studies 2 and 3 98

we show these problems extend to more complex datasets directly relevant to artificial 99
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intelligence and computational neuroscience by making comparisons within and between 100

sets of artificial and biological systems. Finally, in Study 4, we show that not only are 101

misleadingly high RSA scores possible in practice but they are also highly plausible given 102

the hierarchical structure of categories in datasets that are routinely used. 103

Our demonstrations provide an explanation of how these phenomena, which arise 104

ubiquitously, can lead to incorrect inferences and contradictory or paradoxical findings. 105

For example, it has been recently observed that correlations in representational geometries 106

between human visual cortex and DNNs can vary from being close to the noise ceiling 107

to being uncorrelated based on the visual stimuli used in the experiments [20]. Since our 108

results have considerable generality with respect to current practices across multiple fields, 109

we discuss the implications for published results, including a discussion of two alternative 110

philosophical perspectives on the nature of mental representations that our findings speak 111

to. We conclude by providing some general recommendations regarding how to best use 112

RSA going forward. 113

Results 114

Proof of concept 115

It may be tempting to infer that two systems which have similar representational geome- 116

tries for a set of concepts do so because they encode similar properties of sensory data and 117

transform sensory data through a similar set of functions. In this section, we show that 118

it is possible, at least in principle, for qualitatively different systems to end up with very 119

similar representational geometries even though they (i) transform their inputs through 120

very different functions, and (ii) select different features of inputs. 121
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Study 1: Demonstrably different transformations of inputs can lead to low 122

or high RSA-scores We start by considering a simple two-dimensional dataset and 123

two systems where we know the closed-form functions that project this data into two 124

representational spaces. This simple setup helps us gain a theoretical understanding of 125

the circumstances under which it is possible for qualitatively different projections to show 126

similar representational geometries. 127

Consider a population of animate and inanimate objects that consist of four categories 128

of objects – birds, dogs, airplanes and bicycles. Each object in this population will have a 129

set of stimulus features, using which one can map each exemplar from all four categories 130

into a feature space. In Figure 2A (left), we show a hypothetical 2D feature space where 131

exemplars from each category cluster together. Futhermore, we consider two datasets 132

sampled from this population – Dataset A (Figure 2A, middle) which consists of birds 133

and bicycles and Dataset B (Figure 2A, right) which consists of dogs and airplanes. Both 134

datasets consist of animate and inanimate objects, but they differ in how items in each 135

category are represented in the input space. 136

Now, consider two information-processing systems that re-represent Dataset A into 137

two different latent spaces (Figure 2B). These could be two recognition systems designed 138

to distinguish animate and inanimate categories. We assume that we can observe the 139

representational geometry of the latent representations of each system and we are inter- 140

ested in understanding whether observing a strong correlation between these geometries 141

implies whether the two systems have a similar representational space – that is, they 142

project inputs into the latent space using similar functions. To examine this question, we 143

consider a setup where we know the functions, Φ1 and Φ2, that map the inputs to the 144

latent space in each system. We will now demonstrate that even when these functions are 145

qualitatively different from each other, the geometry of latent representations can nev- 146
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ertheless be highly correlated. We will also show that the difference in representational 147

spaces becomes more clear when one considers a different dataset (Dataset B), where in- 148

puts projected using the same functions now lead to a low correlation in representational 149

geometries. 150

We can compute the geometry of a set of representations by establishing the pair- 151

wise distance between all vectors in each representational space Φ. There are many 152

different methods of computing this representational distance between any pair of vectors, 153

all deriving from the dot product between vectors (see, for example, Figure 1 in [21]). 154

Previous research has shown that the choice of the distance metric itself can influence the 155

inferences one can draw from one’s analysis [21, 22]. However, here our focus is not the 156

distance metric itself, but the fundamental nature of RSA. Therefore, we use the same 157

generic distance metric – the dot product – to compute the pair-wise distance between 158

all vectors in both representational spaces. In other words, the representational distance 159

d[Φ(xi),Φ(xj)], between the projections of any pair of input stimuli, xi and xj into a 160

feature space Φ, is proportional to the inner product between the projections in the feature 161

space: 162

d[Φ(xi),Φ(xj)] ∝ Φ(xi) · Φ(xj) (1)

And we can obtain the representational geometry of the input stimuli {x1, . . . ,xn} in 163

any representational space Φ by computing the pairwise distances, d[Φ(xi),Φ(xj)] for all 164

pairs of data points, (i, j). Here, we assume that the projections Φ1 and Φ2 are such that 165

these pairwise distances are given by two positive semi-definite kernel functions κ1(xi, xj) 166

and κ2(xi, xj), respectively: 167
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d[Φ1(xi),Φ1(xj)] ∝ Φ1(xi) · Φ1(xj) = κ1(xi, xj) (2)

d[Φ2(xi),Φ2(xj)] ∝ Φ2(xi) · Φ2(xj) = κ2(xi, xj) (3)

Now, let us consider two qualitatively different kernel functions: κ1(xi, xj) = e
||xi−xj ||

2

2σ2 168

is a radial-basis kernel (where σ2 is the bandwidth parameter of the kernel), while κ2(xi, xj) =169

xT
i xj

||xi||||xj ||
is a cosine kernel. In other words, Φ1 and Φ2 are two fundamentally different pro- 170

jections of the inputs {x1, . . . ,xn} – while Φ2 maps a 2D input xi into a 2D feature space, 171

Φ1 maps the same 2D input into an infinite-dimensional space. Nevertheless, since cosine 172

and RBF kernels are Mercer kernels, we can compute the distances (as measured by the 173

dot product) between each pair of projected vectors using the kernel trick [23, 24]. That 174

is, we can find the distance between any pair of points in the representational space by 175

applying the kernel function to those points in the input space. These pairwise distances 176

are shown by the kernel matrices in Figure 2B. 177

Next, we can determine how the geometry of these projections in the two systems 178

relate to each other by computing the correlation between the kernel matrices, shown on 179

the right-hand-side of Figure 2B. We can see from these results that the kernel matrices 180

are highly correlated – i.e., the input stimuli are projected to very similar geometries in 181

the two representational spaces. 182
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Figure 2: Mimic and modulation effect in representational geometries. (A) An example of a
population of animate (birds, dogs) and inanimate (planes, bikes) objects, plotted in a hypothetical
2D stimulus feature space. Two datasets are sampled from this population: In Dataset A (middle),
the Euclidean distance (in input space) between categories mirrors the Cosine distance, while in
Dataset B (right) it does not. (B) Simulation where two systems transform stimuli in Dataset A
into latent representations such that the (dot product) distance between latent vectors is given
by RBF and Cosine kernels, respectively. As Euclidean and Cosine distances in the input space
mirror each other, the representational geometries (visualised here using kernel matrices) end up
being highly correlated (shown using Pearson (ρ), Spearman (rs) and Kendall’s (τ) correlation
coefficients on the right). We call this strong correlation in representational geometries despite a
difference in input transformation a mimic effect. (C) Simulation where objects in Dataset B are
projected using same transformations as (B). The (dot product) distance is still given by the same
(RBF and Cosine) kernels. However, for this dataset, the Euclidean and Cosine distances in input
space do not mirror each other and as a consequence, the representational geometries show low
correlation. Thus the correlation in representational geometries depends on how the datasets are
sampled from the population. We call this change in correlation a modulation effect.
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If one did not know the input transformations and simply observed the correlation 183

between kernel matrices, it would be tempting to infer that the two systems Φ1 and Φ2 184

transform an unknown input stimulus x through a similar set of functions – for example 185

functions that belong to the same class or project inputs to similar representational spaces. 186

However, this would be an error. The projections Φ1(x) and Φ2(x) are fundamentally 187

different – Φ1 (radial basis kernel) projects an input vector into an infinite dimensional 188

space, while Φ2 (cosine kernel) projects it onto a unit sphere. The difference between these 189

functions becomes apparent if one considers how this correlation changes if one considers a 190

different set of input stimuli. For example, the set of data points from Dataset B (sampled 191

fromt the same population) are projected to very different geometries, leading to a low 192

correlation between the two kernel matrices (Figure 2C). 193

In fact, the reason for highly correlated kernel matrices in Figure 2B is not a similarity 194

in the transformations Φ1 and Φ2 but the structure of the dataset. The representational 195

distance between any two points in the first representational space, d[Φ1(xi),Φ1(xj)], is 196

e
||xi−xj ||

2

2σ2 . That is, the representational distance in Φ1 is a function of their Euclidean 197

distance ||xi − xj|| in the input space. On the other hand, the representational dis- 198

tance between any two points in the second representational space, d[Φ2(xi),Φ2(xj)], is, 199

xT
i xj

||xi||||xj ||
. That is, the representational distance in Φ2 is a function of their cosine distance 200

in the input space.. These two stimulus features – Euclidean distance and cosine distance 201

– are confounds that lead to the same representational geometries for certain datasets. 202

In Dataset A, the stimuli is clustered such that the Euclidean distance between any two 203

stimuli is correlated with their cosine distance (see Figure 2A, middle). However, for 204

Dataset B, the Euclidean distance is no longer correlated with the angle (see Figure 2A, 205

right) and the confounds lead to different representational geometries, as can be seen in 206

Figure 2C. Thus, this example illustrates two effects: (i) a mimic effect, where two sys- 207
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tems that transform sensory input through very different functions end up with similar 208

representational geometries (Figure 2B) , and (ii) a modulation effect, where two systems 209

that are non-identical have similar representational geometries for one set of inputs, but 210

dissimilar geometries for a second set (compare Figures 2B and 2C). 211

Study 2: Complex systems encoding different features of inputs can show a 212

high RSA-score Study 1 made a number of simplifying assumptions – the dataset was 213

two-dimensional, clustered into two categories and we intentionally chose functions Φ1 214

and Φ2 such that the kernel matrices were correlated in one case and not correlated in the 215

other. It could be argued that, even though the above results hold in principle, they are 216

unlikely in practice when the transformations and data structure are more complex. For 217

example, it might be tempting to assume that accidental similarity in representational 218

geometries becomes less likely as one increases the number of categories (i.e., clusters or 219

conditions) being considered. However, In Figure 3 we illustrate how complex systems 220

transforming high-dimensional input from a number of categories may achieve high RSA 221

scores. Even though one system extracts surface reflectance and the other extracts global 222

shape, they can end up with very similar representational geometries. This would occur 223

if objects similar in their reflectance properties were also similar in shape (e.g., glossy 224

balloons and light bulbs) and if objects dissimilar according to reflectance properties were 225

also dissimilar in shape (e.g., dogs and light bulbs). This is the mimic effect, where 226

representational geometries of these two systems end up being similar because reflectance 227

and shape are second-order confounds in this dataset. Conducting RSA on this dataset 228

will show a high correlation in RDMs, even though the latent representations in these 229

systems are related to very different stimulus features. 230

To demonstrate this empirically, we now consider a more complex setup, where the 231
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Figure 3: Example of a second-order confound. Two systems, one forming representations based on
surface reflectance of objects (while ignoring all other features such as colour or texture) and the other
based on global shape (while ignoring other features), can have very similar representational geometries.
This similarity would lead to a high RSA score but would not justify an inference about the representations
being similar.

transformations Φ1 and Φ2 are modelled as feedforward deep neural networks (DNNs), 232

trained to classify a high-dimensional dataset into multiple categories. Many studies that 233

use RSA compare systems using naturalistic images as visual inputs [9, 14]. While using 234

naturalistic images brings research closer to the real-world, it is also well-known that 235

datasets of naturalistic images frequently contain confounds – independent features that 236

can predict image categories [25]. We will now show how the simplest of such confounds, 237

a single pixel, can lead to a high RSA score between two DNNs that encode qualitatively 238

different features of inputs. 239

Consider the same setup as above, where an input stimulus, x, is transformed to a 240

representation space by two systems, Φ1 and Φ2. Instead of a two-dimensional input space, 241

x now exists in a high-dimensional image space and Φ1 and Φ2 are two versions of a DNN – 242

VGG-16 – trained to classify input images into different categories. We ensured that Φ1 and 243
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Figure 4: Training and testing DNNs with different feature encodings. Panel A shows the
training procedure for Studies 2–4, where we created two versions of the original dataset (gray), one
containing a confound (blue) and the other left unperturbed (yellow). These two datasets were used to
train two networks (gray) on a categorisation task, resulting in two networks that learn to categorise
images either based on the confound (projection Φ2) or based on statistical properties of the unperturbed
image (projection Φ1). Panel B shows the testing procedure where each network was tested on stimuli
from each dataset – leading to a 2x2 design. Performance on these datasets was used to infer the features
that each network encoded and their internal response patterns were used to calculate RSA-scores between
the two networks.

Φ2 were qualitatively different transformations of input stimuli by making the networks 244

sensitive to different predictive features within the stimuli. The first network was trained 245

on an unperturbed dataset, while the second network was trained on a modified version 246

of the dataset, where each image was modified to contain a confound – a single pixel in a 247

location that was diagnostic of the category (see Figure 4 for the general approach). 248

The locations of these diagnostic pixels were chosen such that they were correlated to 249

the corresponding representational distances between classes in Φ1. Our hypothesis was 250

that if the representational distances in Φ2 preserve the physical distances of diagnos- 251

tic pixels in input space, then this confound will end up mimicking the representational 252

geometry of Φ1, even though the two systems use qualitatively different features for clas- 253

sification. Furthermore, we trained two more networks, Φ3 and Φ4, which were identical 254
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Figure 5: Study 2 confound placement. The representational geometry (Panel A and B) from the
network trained on the unperturbed CIFAR-10 images is used to determine the location of the single
pixel confound (shown as a red patch here) for each category. In the ‘Positive’ condition (Panel C), we
determined 10 locations in a 2D plane such that the distances between these locations were positively
correlated to the representational geometry – illustrated here as the red patches in Panel C being in
similar locations to category locations in Panel B. These 10 locations were then used to insert a single
diagnostic – i.e., category-dependent – pixel in each image (Insets in Panel C). A similar procedure was
also used to generate datasets where the confound was uncorrelated (Panel D) or negatively correlated
(not shown here) with the representational geometry of the network.

16

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 18, 2022. ; https://doi.org/10.1101/2022.04.05.487135doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.05.487135
http://creativecommons.org/licenses/by-nc/4.0/


to Φ2, except these networks were trained on datasets where the location of the confound 255

was uncorrelated (Φ3) or negatively correlated (Φ4) with the representational distances 256

in Φ1 (see Figure 5 and Methods for details). 257

Classification accuracy (Figure 6 (left)) revealed that the network Φ1, trained on the 258

unperturbed images, learned to classify these images and ignored the diagnostic pixel 259

– that is, it’s performance was identical for the unperturbed and modified images. In 260

contrast, networks Φ2 (positive), Φ3 (uncorrelated) and Φ4(negative) failed to classify the 261

unperturbed images (performance was near chance) but learned to perfectly classify the 262

modified images, showing that these networks develop qualitatively different representa- 263

tions compared to normally trained networks. 264

Next we computed pairwise RSA scores between the representations at the last con- 265

volution layer of Φ1 and each of Φ2,Φ3 and Φ4 (Figure 6 (right)). When presented un- 266

perturbed test images, the Φ2,Φ3 and Φ4 networks all showed low RSA scores with the 267

normally trained Φ1 network. However, when networks were presented with test images 268

that included the predictive pixels, RSA varied depending on the geometry of pixel loca- 269

tions in the input space. When the geometry of pixel locations was positively correlated 270

to the normally trained network, RSA scores approached ceiling (i.e., comparable to RSA 271

scores between two normally trained networks). Networks trained on uncorrelated and 272

negatively correlated pixel placements scored much lower. 273

These results mirror Study 1: we observed that it is possible for two networks (Φ1 and 274

Φ2) to show highly correlated representational geometries even though these networks 275

learn to classify images based on very different features. One may argue that this could 276

be because the two networks could have learned similar representations at the final con- 277

volution layer of the DNN and it is the classifier that sits on top of this representation 278

that leads to the behavioural differences between these networks. But if this was true, it 279
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Figure 6: Study 2 results. Left: Performance of normally trained networks did not depend on whether
classification was done on unperturbed CIFAR-10 images or images with a single pixel confound (error
bars represent 95% CI, the dashed line represents chance performance). All three networks trained on
datasets with confounds could perfectly categorise the test images when they contained the confound (blue
bars), but failed to achieve above-chance performance if the predictive pixel was not present (yellow bars).
Right: The RSA score between the network trained on the unperturbed dataset and each of the networks
trained on datasets with confounds. The three networks showed similar scores when tested on images
without confounds, but vastly different RSA scores when tested on images with confounds. Networks in
the Positive condition showed near ceiling scores (the shaded area represents noise ceiling) while networks
in the Uncorrelated and Negative conditions showed much lower RSA.
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would not explain why RSA scores diminish for the two other comparisons (with Φ3 and 280

Φ4). This modulation of RSA-scores for different datasets suggests that, like in Study 1, 281

the correlation in representational geometry is not because the two systems encode similar 282

features of inputs, but because different features mimic each other in their representational 283

geometries. 284

Re-examining some influential findings 285

In Studies 1 and 2, we showed that it is possible for qualitatively different systems to 286

end up with similar representational geometries. However, it may be argued that while 287

this is possible in principle, it is unlikely in practice in real-world scenarios. In the fol- 288

lowing two studies, we consider real-world data from some recent influential experiments, 289

recorded from both primate and human cortex. We show how RSA-scores can be driven 290

by confounds in these real-world settings and how properties of training and test data 291

may contribute to observed RSA-scores. 292

Study 3: Neural activations in monkey IT cortex can show a high RSA-score 293

with DNNs despite different encoding of input data In our next study, we con- 294

sider data from experiments comparing representational geometries between computa- 295

tional models and macaque visual cortex [14, 26]. The experimental setup was similar 296

to Study 2, though note that unlike Study 2, where both systems used the same archi- 297

tecture and learning algorithm, this study considered two very different systems – one 298

artificial (DNN) and the other biological (macaque IT cortex). We used the same set of 299

images that were shown to macaques by Majaj et al. [27] and modified this dataset to 300

superimpose a small diagnostic patch on each image. In the same manner as in Study 2 301

above, we constructed three different datasets, where the locations of these diagnostic 302
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Figure 7: Study 3 results. Left: Classification Performance of the network trained on unperturbed
images (Normal condition) did not depend on the presence or absence of the confound, while performance
of networks trained with the confound (Positive, Uncorrelated and Negative conditions) highly depended
on whether the confound was present (dashed line represents chance performance). Right: RSA-scores
with macaque IT activations were low for all three conditions when images did not contain a confound
(yellow bars). When images contained a confound (blue bars), the RSA-scores depended on the condition,
matching the RSA-score of the normally trained network (grey band) in the Positive condition, but
decreasing significantly in the Uncorrelated and Negative conditions. The grey band represents a 95%
CI for the RSA-score between normally trained networks and macaque IT activations.

patches were either positively correlated, uncorrelated or negatively correlated with the 303

RDM of macaque activations. We then trained four CNNs. The first CNN was pre- 304

trained on ImageNet and then fine-tuned on the unmodified dataset of images shown to 305

the macaques. Previous research has shown that CNNs trained in this manner develop 306

representations that mirror the representational geometry of neurons in primate inferior 307

temporal (IT) cortex [14]. The other three networks were trained on the three modi- 308

fied datasets and learned to entirely rely on the diagnostic patches (accuracy on images 309

without the diagnostic patches was around chance). 310

Figure 7 (right) shows the correlation in representational geometry between the macaque 311

IT activations and activations at the final convolution layer for each of these networks. 312

The correlation with networks trained on the unmodified images is our baseline and shown 313

as the gray band in Figure 7. Our first observation was that a CNN trained to rely on 314

20

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 18, 2022. ; https://doi.org/10.1101/2022.04.05.487135doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.05.487135
http://creativecommons.org/licenses/by-nc/4.0/


the diagnostic patch can indeed achieve a high RSA score with macaque IT activations. 315

In fact, the networks trained on patch locations that were positively correlated to the 316

macaque RDM matched the RSA score of the CNNs trained on ImageNet and the unmod- 317

ified dataset. This shows how two systems having very different architectures, encoding 318

fundamentally different features of inputs (single patch vs naturalistic features) can show 319

a high correspondence in their representational geometries. We also observed that, like 320

in Study 2, the RSA score depended on the clustering of data in the input space – when 321

patches were placed in other locations (uncorrelated or negatively correlated to macaque 322

RDMs) the RSA score became significantly lower. 323

Study 4: High RSA-scores may be driven by the structure of testing data All 324

the studies so far have used the same method to construct datasets with confounds – we 325

established the representational geometry of one system (Φ1) and constructed datasets 326

where the clustering of features (pixels) mirrored this geometry. However, it could be 327

argued that confounds which cluster in this manner are unlikely in practice. For example, 328

even if texture and shape exist as confounds in a dataset, the inter-category distances 329

between textures are not necessarily similar to the inter-category distances between shape. 330

However, categories in real-world datasets are usually hierarchically clustered into 331

higher-level and lower-level categories. For example, in the CIFAR-10 dataset, the Dogs 332

and Cats (lower-level categories) are both animate (members of a common higher-level 333

category) and Airplanes and Ships (lower-level categories) are both inanimate (members 334

of a higher-level category). Due to this hierarchical structure, Dog and Cat images are 335

likely to be closer to each other not only in their shape, but also their colour and texture 336

(amongst other features) than they are to Airplane and Ship images. In our next simula- 337

tion, we explore whether this hierarchical structure of categories can lead to a correlation 338
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Figure 8: Exploiting intrinsic dataset hierarchy in order to place confounds. The top panel
shows the hierarchical structure of categories in the dataset, which was used to place the single pixel
confounds. The example at the bottom (middle) shows one such hierarchical placement scheme where
the pixels for Inanimate images were closer to the top of the canvas while Animate images were closer to
the bottom. Within the Animate images, the pixels for Humans and Animals were placed at the left and
right, respectively, and the pixels for bodies (B) and faces (F) were clustered as shown.

in representational geometries between two systems that learn different feature encodings. 339

For this study, we selected a popular dataset used for comparing representational 340

geometries in humans, macaques and deep learning models [15,28]. This dataset consists 341

of six categories which can be organised into a hierarchical structure shown in Figure 8. [9] 342

showed a striking match in RDMs for response patterns elicited by these stimuli in human 343

and macaque IT. For both humans and macaques, distances in response patterns were 344

larger between the higher-level categories (animate and inanimate) than between the 345

lower-level categories (e.g., between human bodies and human faces). 346

We used a similar experimental paradigm to the above studies, where we trained 347
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networks to classify stimuli which included a single predictive pixel. But instead of using 348

an RDM to compute the location of a diagnostic pixel, we used the hierarchical categorical 349

structure. In the first modified version of the dataset, the location of the pixel was based 350

on the hierarchical structure of categories in Figure 8 – predictive pixels for animate 351

kinds were closer to each other than to inanimate kinds, and pixels for faces were closer 352

to each other than to bodies, etc. One such configuration can be seen in Figure 8. In the 353

second version, the predictive pixel was placed at a random location for each category 354

(but, of course, at the same location for all images within each category). We call these 355

conditions ‘Hierarchical’ and ‘Random’. [15] showed that the RDM of average response 356

patterns elicited in the human IT cortex (Φ1) correlated with the RDM of a DNN trained 357

on naturalistic images (Φ2). We explored how this compared to the correlation with the 358

RDM of a network trained on the Hierarchical pixel placement (Φ3) and Random pixel 359

placement (Φ4). 360

Results for this study are shown in Figure 9. We observed that representational ge- 361

ometry of a network trained on Hierarchically placed pixels (Φ3) was just as correlated to 362

the representational geometry of human IT responses (Φ1) as a network trained on natu- 363

ralistic images (Φ2). However, when the pixel locations for each category were randomly 364

chosen, this correlation decreased significantly. These results suggest that any confound in 365

the dataset (including texture, colour or low-level visual information) that has distances 366

governed by the hierarchical clustering structure of the data could underlie the observed 367

similarity in representational geometries between CNNs and human IT. More generally, 368

these results show how it is plausible that many confounds present in popular datasets 369

may underlie the observed similarity in representational geometries between two systems. 370

The error of inferring a similarity in mechanism based on a high RSA score is not just 371

possible but also probable. 372
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Figure 9: Study 4 results. Left: Performance of normally trained networks did not depend on whether
the confound was present. Networks trained with the confound failed to classify stimuli without the
confound (yellow bars) while achieving near perfect classification of stimuli with the confound present
(blue bars, dashed line represents chance performance). Right: RSA with human IT activations reveals
that, when the confound was present, the RSA-score for networks in the Hierarchical condition matched
the RSA-score of normally trained network (gray band), while the RSA-score of the network in the
Random condition was significantly lower. The grey band represents 95% CI for the RSA score between
normally trained networks and human IT.

Discussion 373

In four studies, we have illustrated a number of conditions under which it can be problem- 374

atic to infer a similarity of representations between two systems based on a correlation in 375

their representational geometries. In particular, we showed that two systems may trans- 376

form their inputs through very different functions and encode very different features of 377

inputs and yet have highly correlated representational geometries. Of course, one may 378

acknowledge that a second-order isomorphism of activity patterns does not strictly imply 379

that two systems are similar mechanistically but still assume that it is highly likely to 380

be the case. That is, as a practical matter, a researcher may assume that RSA is a reli- 381

able method to compare systems. However, our findings challenge this assumption. We 382

show how a high RSA score between different systems can not only occur in a bare-bones 383

simulation (Study 1), but also in practice, in high-dimensional systems operating on high- 384
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dimensional data (Studies 2–3). Furthermore, we show that the hierarchical structure of 385

datasets frequently used to test similarity of representations lends itself to a high RSA 386

score arising because of second-order confounds present in the dataset (Study 4). There- 387

fore, second-order confounds driving high RSA scores is not only possible but plausible. 388

One limitation of our method is that we manually insert a confound in input stimuli 389

(in Studies 2–4) and train a network based on this confound. Even though our find- 390

ings demonstrate that second-order confounds are plausible, they do not allow us to infer 391

whether such confounds are present in existing datasets and driving the observed similar- 392

ity in existing studies. In our view, there are two methods one could use to check whether 393

confounds are driving results of RSA. The best way would be to identify the stimulus 394

features in a dataset that mimic each other in representational space (e.g. shape and re- 395

flectance in Figure 3). This is not straightforward to do in high-dimensional stimuli, such 396

as naturalistic images, which consist of millions of features. However, another approach is 397

more tractable: conduct controlled experiments to establish whether the two systems are 398

representing information in similar ways. We have argued for this approach in relation 399

to making inferences about mechanistic similarity between DNNs and humans [29]. In 400

fact, research relating DNNs to human vision provides a striking case of a disconnect 401

between RSA and behavioural findings from psychology [29–31]. The findings here may 402

explain contradictory RSA scores between DNNs and human visual processing as pointed 403

out by Xu and Vaziri-Pashkam [20]. At the very least, a researcher claiming that two 404

systems are mechanistically similar to one another based on high RSA scores should have 405

an explanation for this discrepancy. 406

A related point has been made by Kriegeskorte and Diedrichson [32] and Kriegeskorte 407

and Wei [33], who point out that two systems may have the same representational geome- 408

try, even if they have a different activity profile over neurons. In this sense, the geometry 409
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abstracts away the information about how information was distributed over a set of neu- 410

rons. Kriegeskorte and Diedrichson [32] equate this loss in information to “peeling a layer 411

of an onion” – downstream decoders that are sensitive to the representational geometry 412

rather than activity profiles over neuron populations can focus on difference in information 413

as reflected by a change in geometry and be agnostic to how this information is distributed 414

over a set of neurons. We agree that this invariance over activity profiles is indeed a useful 415

property of representational geometries for downstream decoders. However, we are not 416

aware of any studies that highlight how representational geometries also abstract over be- 417

haviourally relevant stimulus properties . While abstracting over activity profiles may be 418

useful, abstracting over stimulus properties loses an important piece of information when 419

comparing representations across brain regions, individuals, species and between brains 420

and computational models. Our studies show how two systems may appear similar based 421

on their representational geometries in one circumstance (e.g. Figure 2B) but drastically 422

different in another circumstance (Figure 2C). 423

It is important to note how our results differ from previous studies exploring limita- 424

tions of RSA. A number of studies have focused on the importance of how neural data is 425

pre-processed and how the distance between neural patterns is computed. For example, 426

Ramirez [34] found that pre-processing steps, such as centering (de-meaning) activation 427

vectors may lead to incorrect inference about the representational geometry of activations. 428

He demonstrated that subtracting the mean from activations could change the rank or- 429

der of similarity between conditions. In turn, this could lead to clearly distinct RDMs 430

becoming highly correlated and vice-versa. While this is an important methodological 431

point, it is clearly distinct from the point we are making in this study. Indeed, the results 432

here are agnostic of the data pre-processing steps and hold whether or not activations are 433

centered. 434
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Some previous studies have also explored how confounds present in data can influence 435

the results of RSA. For example, Henriksson et al. [35] and Cai et al. [36] demonstrated 436

that RDMs measured based on fMRI data can be severely biased because of temporal 437

and spatial correlations in neural activity. These authors have pointed out that if activity 438

patterns from different brain regions are recorded during the same trial, the similarity 439

estimates will be exaggerated due to correlated neural fluctuations in these regions. Sim- 440

ilarly, neural activity is correlated over time, which means estimated similarity based on 441

activity patterns from the same imaging run also introduces a strong bias in RDMs. These 442

sources of bias are important to understand, but they can also be addressed by a more 443

careful task design and analysis [36]. In contrast, the confounds that are highlighted in 444

this study exist in the stimulus itself. Therefore, even if one were to completely mitigate 445

the bias in estimating RDMs, the types of confounds we highlight in our work would still 446

pose problems when drawing inferences from correlation in RDMs. 447

Similarly, previous research has also highlighted the importance of choosing the correct 448

distance metric when using RSA. For example, Ramirez [22] compared Euclidean distance 449

with an angular metric (such as cosine similarity) and showed that the choice of distance 450

metric can reveal different aspects of the same fMRI data. They argued that the Euclidean 451

distance is particularly sensitive to the mean activity over a recorded voxel. Based on this 452

analysis, Ramirez [22] suggested using an angular distance metric, especially when neural 453

signal is aggregated over large number of neurons. Similarly, in another exhaustive study 454

over distance measures, Bobadilla-Suarez et al. [21], evaluated neural similarity using 455

various distance measures, including angle-based measures (cosine, Pearson, Spearman) 456

and magnitude-based measures (Euclidean, Mahalanobis, Minkowski) and found that the 457

choice of metric significantly influenced the measured similarity. They also found that 458

there was no one metric that outperformed all others – rather, the preferred metric varied 459
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across different studies, but was consistent across brain regions within a study. The choice 460

of distance metric is again a related but orthogonal issue to the one we highlight in this 461

study. Our results show that representational geometry loses information about stimulus 462

features and different stimulus features (and indeed transformations of input stimulus) 463

can lead to the same geometry. This is fundamental to the nature of representational 464

geometries, rather than a consequence of the distance metric used. 465

Of course, the problem of confounds in stimuli is not unique to RSA and will affect 466

other statistical analyses, including multivariate regression methods such as MVP classi- 467

fication. Indeed, the problem of confounds in stimuli is well appreciated in many different 468

contexts [25, 37, 38], but there has been no consideration of whether these confounds are 469

contributing to RSA findings. Perhaps this is because, unlike for MVP classification, a 470

confound for RSA needs to not only help decode category membership, but also lead to 471

a second-order isomorphism. Nevertheless, as we illustrate in Figure 3, there could be 472

confounds with a second-order similarity structure in many datasets that are the product 473

of unexpected properties of the world or the product of how these datasets are curated or 474

hierarchically organized. This is problematic as we have clearly shown that these second 475

order confounds can drive high RSA scores. 476

A reader could ask why these results matter. Couldn’t a researcher take the view 477

that representational geometry is representation and therefore, a strong correlation in 478

representational geometries between two systems is sufficient to infer that the systems are 479

representing the world in a similar manner? This question goes to the heart of an existing 480

debate in philosophy, where philosophers distinguish between the externalist and holistic 481

views on mental representations. According to the first view, the content of representa- 482

tions is determined by their relationship to entities in the external world. This perspective 483

is implicitly taken by most neuroscientists and psychologists, who are interested in com- 484
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paring mechanisms underlying cognitive processes – that is, they are interested in the set 485

of nested functions and algorithms responsible for transforming sensory input into a set 486

of activations in the brain. From this perspective, our finding that high RSA scores can 487

be obtained between systems that work in qualitatively different ways poses a challenge 488

to researchers using RSA to compare systems. 489

Alternatively, a researcher may reject an externalist view and adopt the perspective 490

that representations obtain their meaning based on how they are related to each other 491

within each system, rather than based on their relationship to entities in the external 492

world. That is, “representation is the representation of similarities” [39]. From this per- 493

spective, as long as the two systems share the same relational distances between internal 494

activations, one can validly infer that the two systems have similar representations. That 495

is, a second-order isomorphism implies a similarity of representations, by definition. This 496

view has been called holism in the philosophy of mind [40, 41] and is related to a similar 497

idea of meaning holism in language, which is the idea that the meaning of a linguistic 498

expression is determined by its relation to other expressions within a language [42, 43]. 499

For example, Firth [44] (p. 11) writes: “you shall know a word by the company it keeps”. 500

Similarly, Griffiths and Steyvers [45], and Griffiths, Steyvers, and Tenenbaum [46] have 501

adopted meaning holism accounts of semantic representations in neural networks. More 502

recently, Piantadosi and Hill [47] have argued that large language models capture im- 503

portant aspects of meaning and approximate human cognition because they represent 504

relations between concepts and their roles within a representational geometry. Even if a 505

researcher was to adopt this holistic perspective on representations, our results should still 506

be of interest to them as they show that the similarity between representational geometries 507

can vary based on the visual stimulus that is used to compare them (the modulation ef- 508

fect). Additionally, our results show that adopting this view misses the information about 509
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differences in mechanistic processes that a psychologist or neuroscientist is frequently in- 510

terested in, for instance, whether the visual system processes surface reflectance or shape 511

(or the location of diagnostic pixels) in order to identify objects. Fodor and Lepore long 512

ago criticized this philosophical stance [41,48], and interestingly, this philosophical debate 513

played an important part in the development of RSA (see Supplementary Information, 514

Section A). Unfortunately, this debate has largely been ignored by researchers who use 515

RSA as a method to compare similarity of systems. 516

In closing, we describe our recommendations for practitioners who find RSA to be 517

useful for their research goals. These will be especially relevant to the large majority 518

of researchers in computational, cognitive, and systems neuroscience, cognitive scientists 519

and AI practitioners, who are interested in mechanistic similarities (i.e., they adopt an 520

externalist position). But they should also be relevant to adopters of the holistic view 521

who are interested in how observed representational geometries depend on the stimulus 522

used to extract them. 523

First, since the intrinsic structure of datasets can artificially modulate RSA scores, 524

researchers should compare systems on a wider variety of datasets and sampling schemes 525

than currently done. Second, given that confounding features can lead to mimicked rep- 526

resentational geometries, researchers should consider running additional controlled ex- 527

periments to rule out this possibility when inferences hinge crucially on it. Third, when 528

studies are conducted to search for evidence of mechanistic similarity between two or more 529

systems, researchers should use a wider range of complementary methods, each addressing 530

the others’ blindspots (e.g., RSA combined with neural predictivity [14], MVPC [6, 49], 531

CCA [50], SVCCA [51], CKA [52]). 532

Lastly, perhaps the most important general recommendation we make is that re- 533

searchers should acknowledge, procedurally and in writing, which inferences are afforded 534
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by the use of RSA, and what dissimilarities remain possible despite having observed a 535

given pattern of RSA scores. To this end, we believe that general statements of simi- 536

larity tend to obfuscate rather than accurately summarize any set of RSA-based results. 537

Instead, we urge researchers using RSA (1) to justify the use of this method by theoret- 538

ically motivated interest in representational geometry or otherwise consider other tools 539

that best fit their goals, and (2) to state in precise terms that RSA scores reflect the 540

similarity of representational geometries in particular, and generally avoid underspecified 541

claims of similarity. 542

Methods 543

Dataset generation and training 544

All DNN simulations (Studies 2–4) were carried out using the Pytorch framework [53]. 545

The model implementations were downloaded from the torchvision library. Networks 546

trained on unperturbed datasets in all studies were pre-trained on ImageNet as were 547

networks trained on modified datasets in Study 2. Networks trained on modified datasets 548

in Studies 3 and 4 were randomly initialised. For the pre-trained models, their pre-trained 549

weights were downloaded from torchvision.models subpackage. 550

Study 1 Each dataset in Study 1 consists of 100 samples (50 in each cluster) drawn 551

from two multivariate Gaussians, N (x|µ,Σ), where µ is a 2-dimensional vector and Σ is 552

a 2 × 2 covariance matrix. In Figure 2A, the two Gaussians have means µ1 = (1, 8) and 553

µ2 = (8, 1) and a covariance matrices Σ1 = Σ2 = 1
2
I, while in Figure 2B the Gaussians 554

have means µ1 = (1, 1) and µ2 = (8, 8) and a covariance matrices Σ1 = I, Σ2 = 8I. 555

All kernel matrices were computed using the sklearn.metrics.pairwise module of the 556
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scikit-learn Python package. 557

Study 2 First, a VGG-16 deep convolutional neural network [54], pre-trained on the 558

ImageNet dataset of naturalistic images, was trained to classify stimuli from the CIFAR-10 559

dataset [55]. The CIFAR-10 dataset includes 10 categories with 5000 training, and 1000 560

test images per category. The network was fine-tuned on CIFAR-10 by replacing the 561

classifier so that the final fully-connected layer reflected the correct number of target 562

classes in CIFAR-10 (10 for CIFAR-10 as opposed to 1000 for ImageNet). Images were 563

rescaled to a size of 224× 224px and then the model learnt to minimise the cross-entropy 564

error using the RMSprop optimizer with a mini-batch size of 64, learning rate of 10−5, 565

and momentum of 0.9. All models were trained for 10 epochs, which were sufficient for 566

convergence across all datasets. 567

Second, 100 random images from the test set for each category were sampled as in- 568

put for the network and activations at the final convolutional layer extracted using the 569

THINGSVision Python toolkit [56]. The same toolkit was used to generate a representa- 570

tional dissimilarity matrix (RDM) from the pattern of activations using 1-Pearson’s r 571

as the distance metric. The RDM was then averaged by calculating the median distance 572

between each instance of one category with each instance of the others (e.g., the median 573

distance between Airplane and Ship was the median of all pair-wise distances between 574

activity patterns for airplane and ship stimuli). This resulted in a 10× 10, category-level, 575

RDM which reflected median between-category distances. 576

Third, three modified versions of the CIFAR-10 datasets were created for the ‘Positive’, 577

‘Uncorrelated’ and ‘Negative’ conditions, respectively. In each dataset, we added one 578

diagnostic pixel to each image, where the location of the pixel depended on the category 579

(See Figure 5). The locations of these pixels were determined using the averaged RDM 580

32

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 18, 2022. ; https://doi.org/10.1101/2022.04.05.487135doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.05.487135
http://creativecommons.org/licenses/by-nc/4.0/


from the previous step. We call this the target RDM. In the ‘Positive’ condition, we 581

wanted the distances between pixel placements to be positively correlated to the distances 582

between categories in the target RDM. We achieved this by using an iterative algorithm 583

that sampled pixel placements at random, calculated an RDM based on distances between 584

the pixel placements and computed an RSA score (Spearman correlation) with the target 585

RDM. Placements with a score above 0.70 were retained and further optimized (using 586

small perturbations) to achieve an RSA-score over 0.90. The same procedure was also 587

used to determine placements in the Uncorrelated (optimizing for a score close to 0) and 588

Negatively correlated (optimizing for a negative score) conditions. 589

Finally, datasets were created using 10 different placements in each of the three condi- 590

tions. Networks were trained for classification on these modified CIFAR-10 datasets in the 591

same manner as the VGG-16 network trained on the unperturbed version of the dataset 592

(See Figure 4). 593

Study 3 The procedure mirrored Study 2 with the main difference being that the target 594

system was the macaque inferior temporal cortex. Neural data from two macaques, as well 595

as the dataset were obtained from the Brain Score repository [26]. This dataset consists 596

of 3200 images from 8 categories (animals, boats, cars, chairs, faces, fruits, planes, and 597

tables), we computed an 8×8 averaged RDM based on macaque IT response patterns for 598

stimuli in each category. 599

This averaged RDM was then used as the target RDM in the optimization procedure to 600

determine locations of the confound (here, a white predictive patch of size 5×5 pixels) for 601

each category. Using a patch instead of a single pixel was required in this dataset because 602

of the structure and smaller size of the dataset (3200 images, rather than 50,000 images 603

for CIFAR-10). In this smaller dataset, the networks struggle to learn based on a single 604
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pixel. However, increasing the size of the patch makes these patches more predictive 605

and the networks are able to again learn entirely based on this confound (see results 606

in Figure 6). In a manner similar to Study 2, this optimisation procedure was used 607

to construct three datasets, where the confound’s placement was positively correlated, 608

uncorrelated or negatively correlated with the category distances in the target RDM. 609

Finally, each dataset was split into 75% training (2432 images) and 25% test sets 610

(768 images) before VGG-16 networks were trained on the unperturbed and modified 611

datasets in the same manner as in Study 2. One difference between Studies 2 and 3 612

was that here the networks in the Positive, Uncorrelated and Negative conditions were 613

trained from scratch, i.e., not pre-trained on ImageNet. This was done because we wanted 614

to make sure that the network in the Normal condition (trained on ImageNet) and the 615

networks in the Positive, Uncorrelated and Negative conditions encoded fundamentally 616

different features of their inputs – i.e., there were no ImageNet-related features encoded by 617

representations Φ2,Φ3 and Φ4 that were responsible for the similarity in representational 618

geometries between these representations and the representations in macaque IT cortex. 619

Study 4 The target system in this study was human IT cortex. The human RDM 620

and dataset were obtained from [9]. Rather than calculating pixel placements based on 621

the human RDM, the hierarchical structure of the dataset was used to place the pixels 622

manually. The dataset consists of 910 images from 6 categories: human bodies, human 623

faces, animal bodies, animal faces, artificial inanimate objects and natural inanimate 624

objects. These low-level categories can be organised into the hierarchical structure shown 625

in Figure 8. Predictive pixels were manually placed so that the distance between pixels 626

for Animate kinds were closer together than they were to Inanimate kinds and that faces 627

were closer together than bodies. This can be done in many different ways, so we created 628
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five different datasets, with five possible arrangements of predictive pixels. Results in 629

the Hieararchical condition (Figure 9) are averaged over these five datasets. Placements 630

for the Random condition were done similarly, except that the locations were selected 631

randomly. 632

Networks were then trained on a 6-way classification task (818 training images and 92 633

test images) in a similar manner to the previous studies. As in Study 3, networks trained 634

on the modified datasets (both Hierarchical and Random conditions) were not pre-trained 635

on ImageNet. 636

RDM and RSA computation 637

For Studies 2-4 all image-level RDMs were calculated using 1−r as the distance measure. 638

RSA scores were computed as the Spearman rank correlation between RDMs. 639

In Study 2, a curated set of test images was selected due to the extreme heterogeneity 640

of the CIFAR-10 dataset (low activation pattern similarity between instances of the same 641

category). This was done by selecting 5 images per category which maximally correlated 642

with the averaged activation pattern for the category. Since CIFAR-10 consists of 10 643

categories, the RSA-scores in Study 2 were computed using RDMs of size 50× 50. 644

In Study 3, the dataset consisted of 3200 images belonging to 8 categories. We first 645

calculated a full 3200× 3200 RDM using the entire set of stimuli. An averaged, category- 646

level, 8 × 8 RDM was then calculated using median distances between categories (in 647

a manner similar to that described for Study 2 in the Section ‘Dataset generation and 648

training’). This 8 × 8 RDM was used to determine the RSA-scores. We also obtained 649

qualitatively similar results using the full 3200× 3200 RDMs. These results can be found 650

in the Supplementary Information, Section B. 651

In Study 4, the dataset consisted of 818 training images and 92 test images. Kriegesko- 652
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rte et al. [9] used these images to obtain a 92×92 RDM to compare representations between 653

human and macaque IT cortex. Here we computed a similar 92× 92 RDM for networks 654

trained in the Normal, Hierarchical and Random training conditions, which were then 655

compared with the 92 × 92 RDM from human IT cortex to obtain RSA-scores for each 656

condition. 657

Testing 658

In Study 2, we used a 4× 2 design to measure classification performance for networks in 659

all four conditions (Normal, Postive, Uncorrelated and Negative) on both unperturbed 660

images and modified images. We computed six RSA-scores: three pairs of networks – 661

Normal-Positive, Normal-Uncorrelated and Normal-Negative – and two types of inputs – 662

unperturbed and modified test images. The noise ceiling (grey band in Figure 6) was de- 663

termined in the standard way as described in [57] and represents the expected range of the 664

highest possible RSA score with the target system (network trained on the unperturbed 665

dataset). 666

In Study 3, performance was estimated in the same manner as in Study 2 (using a 667

4×2 design), but RSA-scores were computed between RDMs from macaque IT activations 668

and the four types of networks – i.e. for the pairs Macaque-Normal, Macaque-Positive, 669

Macaque-Uncorrelated and Macaque-Negative. And like in Study 2, we determined each 670

of these RSA-scores for both unperturbed and modified test images as inputs to the 671

networks. 672

In Study 4, performance and RSA were computed in the same manner as in Studyn 3, 673

except that the target RDM for RSA computation came from activations in human IT 674

cortex and the networks were trained in one of three conditions: Normal, Hierarchical 675

and Random. 676
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Data analysis 677

Performance and RSA scores were compared by running analyses of variance and Tukey 678

HSD post-hoc tests. In Study 2 and 3, performance differences were tested by running a 679

4 (type of training) by 2 (type of dataset) mixed ANOVAs. In, Study 4, the differences 680

were tested by running a 3x2 mixed ANOVA. 681

RSA scores with the target system between networks in various conditions were com- 682

pared by running 3x2 ANOVAs in Studies 2 and 3, and a 2x2 ANOVA in Study 4. We 683

observed that RSA-scores were highly dependent on both the way the networks were 684

trained and also the test images used to elicit response activations. 685

For a detailed overview of the statistical analyses and results, see Supplemental Informa- 686

tion Section C. 687

Data Availability 688

Confound placement coordinates (Studies 2-4), unperturbed datasets (Studies 3 and 4), 689

macaque activation patterns and RDMs (Study 3) and human RDM (Study 4) are avail- 690

able at OSF. 691
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