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 3 

Abstract 37 

Reliable, easy-to-handle phenotypic screening platforms are needed for the 38 

identification of anti-SARS-CoV-2 compounds. Here, we present caspase 3/7 activity 39 

as a read-out for monitoring the replication of SARS-CoV-2 isolates from different 40 

variants, including a remdesivir-resistant strain, and of other coronaviruses in a broad 41 

range of cell culture models, independently of cytopathogenic effect formation. 42 

Compared to other cell culture models, the Caco-2 subline Caco-2-F03 displayed 43 

superior performance, as it possesses a stable SARS-CoV-2 susceptible phenotype 44 

and does not produce false-positive hits due to drug-induced phospholipidosis. A 45 

proof-of-concept screen of 1796 kinase inhibitors identified known and novel antiviral 46 

drug candidates including inhibitors of PHGDH, CLK-1, and CSF1R. The activity of the 47 

PHGDH inhibitor NCT-503 was further increased in combination with the HK2 inhibitor 48 

2-deoxy-D-glucose, which is in clinical development for COVID-19. In conclusion, 49 

caspase 3/7 activity detection in SARS-CoV-2-infected Caco-2F03 cells provides a 50 

simple phenotypic high-throughput screening platform for SARS-CoV-2 drug 51 

candidates that reduces false positive hits. 52 

 53 

 54 
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 4 

Introduction 56 

There is an ongoing search for antiviral drugs against SARS-CoV-2 that can 57 

complement the currently available monoclonal antibody preparations and the three 58 

approved small-molecule drugs remdesivir, molnupiravir, and nirmatrelvir [Gao & Sun, 59 

2021]. Effective antiviral drugs and drug combinations will be particularly important for 60 

immunocompromised individuals, who cannot effectively be protected by vaccination 61 

[Gentile & Schiano Moriello, 2022]. 62 

Previous research has shown that the efficacy of antiviral agents may differ 63 

between SARS-CoV-2 variants and cell culture models [Dittmar et al., 2021; Bojkova 64 

et al., 2022; Zhao et al., 2022]. Some cell culture models may produce false positive 65 

hits due to unspecific effects on the host cell metabolism such as phospholipidosis that 66 

do not translate into in vivo activity [Tummino et al., 2021]. Moreover, continued SARS-67 

CoV-2 passaging in cell culture may change virus biology, including virus sensitivity to 68 

antiviral drugs [Ogando et al., 2020; Ramirez et al., 2021; Szemiel et al., 2021]. Thus, 69 

simple and robust cell culture assays that can cover a broad spectrum of SARS-CoV-70 

2 variants (including primary clinical isolates) are required to accelerate the 71 

identification of anti-SARS-CoV-2 drug candidates. 72 

Many assays measure SARS-CoV-2-induced host cell destruction (cytopathic 73 

effect, CPE) or host cell viability for the identification of antiviral agents [Bojkova et al. 74 

2020; Riva et al., 2020; Touret et al., 2020; Zhang et al., 2020; Ellinger et al., 2021; 75 

Van Damme et al., 2021; Yan et al., 2021a]. However, such assays are not suitable for 76 

SARS-CoV-2 culture systems that do not display virus-induced cytotoxicity [Caccuri et 77 

al., 2020; Liao et al., 2020; Bielarz et al., 2021; Wurtz et al., 2021].  78 

Antibody-based detection of viral antigens and/ or double-stranded RNA is an 79 

alternative approach [Dittmar et al., 2021; Garcia et al. 2021], but requires more 80 
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manual handling. Assays using genetically modified cells, genetically modified SARS-81 

CoV-2 strains, and SARS-CoV-2 replicons have also been developed [Thi Nhu Tao et 82 

al., 2020; Xie et al., 2020; He et al., 2021; Van Damme et al., 2021], but cover only the 83 

limited number of virus strains that they have been established for. 84 

An ideal assay would enable high throughput screening of wild-type SARS-CoV-85 

2 including the most current clinical isolates in all available cell culture systems in a 86 

very simple format that can be applied by many research groups. Such an assay would 87 

also enable the phenotypic resistance testing of virus isolates, which is relevant given 88 

that the use of antiviral drugs seems to be inevitably associated with the formation of 89 

resistant virus variants [Hiscox et al., 2021; Szemiel et al., 2021; Yang et al., 2022]. 90 

Here, we introduce an effective screening assay for the identification of 91 

compounds that inhibit SARS-CoV-2 replication based on measuring caspase 3/7 92 

activity using a one-step read-out assay (Caspase-Glo® 3/7 Assay System, Promega). 93 

This assay works across different coronaviruses including many SARS-CoV-2 strains 94 

and clinical isolates as well as across a broad range of cell culture models, including 95 

those in which SARS-CoV-2 infection does not result in a recognizable virus CPE.  The 96 

Caco-2 subline Caco-2-F03 was identified as preferred cell culture model, as it is easy-97 

to-handle, displays a stable susceptibility phenotype, and does not produce false 98 

positives due to drug-induced phospholipidosis. A validation screen of 1796 kinase 99 

inhibitors confirmed the suitability of our platform and identified 81 compounds that 100 

reduced virus-induced caspase activation by more than 90%, including known as well 101 

as novel drug candidates such as PHGDH, CLK-1, and CSFR inhibitors. 102 

103 
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 6 

Results 104 

Caco-2 cells as SARS-CoV-2 infection model 105 

The human colon carcinoma Caco-2 cell line was established by Jorgen Fogh 106 

(Memorial Sloan-Kettering Cancer Center, New York) in 1974 [Fogh et al., 1977] and 107 

has been used for the cultivation of human pathogenic viruses including influenza 108 

viruses and coronaviruses since 1985 [Reigel, 1985; Collins, 1990; Chan et al., 2013a]. 109 

We already used Caco-2 cells  (obtained from DSMZ, Braunschweig, Germany) for the 110 

cultivation of the close SARS-CoV-2 relative SARS-CoV starting in 2003 [Cinatl et al., 111 

2003; Cinatl et al., 2004] and they also enabled us and others to quickly cultivate 112 

SARS-CoV-2 isolates when this novel virus emerged [Bojkova et al., 2020; Bojkova et 113 

al., 2020a; Bojkova et al., 2020b; Hoehl et al., 2020; Klann et al., 2020; Toptan et al., 114 

2020; Bojkova et al., 2021; Ellinger et al., 2021; Gower et al., 2021; Widera et al., 115 

2021]. 116 

In our hands, Caco-2 cells (obtained from DSMZ, Braunschweig, Germany at 117 

the time) have been highly permissive to SARS-CoV and SARS-CoV-2 and developed 118 

a pronounced cytopathogenic effect (CPE) in response to infection with both viruses 119 

[Cinatl et al., 2003; Cinatl et al., 2004; Bojkova et al., 2020b; Bojkova et al., 2021]. In 120 

other studies, however, Caco-2 cells displayed low SARS-CoV-2 susceptibility and no 121 

CPE formation [Chu et al., 2020; Lee et al., 2020; Yeung et al., 2021]. 122 

To further investigate these discrepancies, we ordered fresh Caco-2 cells from 123 

the following sources: DSMZ (Braunschweig, Germany, designated as Caco-2A), 124 

Sigma (Taufkirchen, Germany, Caco-2B), and CLS (Eppelheim, Germany, Caco-2C). 125 

To discriminate our original Caco-2 cell line from these other ones, we will refer to it as 126 

Caco-2-F03 from now on. 127 

An initial short tandem repeat (STR) analysis confirmed that all Caco-2 cell lines 128 

share the reference profile (Suppl. Table 1). However, Caco-2A, Caco2-B, and Caco-129 
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 7 

2C cells displayed low SARS-CoV-2 permissiveness as indicated by low viral spike (S) 130 

protein levels and a lack of CPE formation compared to Caco-2-F03 (Figure 1A, Figure 131 

1B).  132 

 133 

 134 

Figure 1. Susceptibility of Caco-2 cells to SARS-CoV-2 infection. A) Percentage 135 

of SARS-CoV-2-infected cells detected in Caco-2 cell lines from different sources 136 
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 8 

infected with different SARS-CoV-2 isolates at a multiplicity of infection (MOI) 0.01 as 137 

determined by immunostaining for the viral spike (S protein) 48h post infection. B) 138 

Cytopathogenic effect (CPE) formation in SARS-CoV-2 (MOI 0.01)-infected Caco-2 139 

cell lines from different sources as determined 48h post infection. C) Susceptibility of 140 

Caco-2-F03 cells to a broad range of SARS-CoV-2 isolates after different times of 141 

cultivation. Cells had been frozen at passage 14 and were now resuscitated and 142 

cultivated for a further 30 passages. SARS-CoV-2 susceptibility was determined by 143 

immunostaining for S 48h after SARS-CoV-2 (MOI 0.01) infection 3 and 30 passages 144 

post resuscitation. D) ACE2 and TMPRSS2 levels in Caco-2-F03, Caco-2A, and 145 

single-cell derived clones from Caco-2A. E) Susceptibility of Caco-2A clones to 146 

selected SARS-CoV-2 isolates as indicated by immunostaining for S and CPE 147 

formation in SARS-CoV-2 (MOI 0.01)-infected cells 48h post-infection. F) Correlation 148 

of S staining and CPE formation with cellular ACE2 levels. 149 

 150 

Caco-2-F03 cells remained permissive to SARS-CoV-2 for 30 passages after 151 

the resuscitation of cells that had been frozen at passage 14 (Figure 1C), suggesting 152 

that their SARS-CoV-2 permissiveness phenotype is stable during prolonged culturing. 153 

In agreement, we have used Caco-2-F03 cells since 2003 for the cultivation of initially 154 

SARS-CoV and later SARS-CoV-2 [Cinatl et al., 2003; Cinatl et al., 2004; Bojkova et 155 

al., 2020b; Bojkova et al., 2021]. 156 

Further investigations revealed that Caco-2-F03 cells display high levels of the 157 

cellular SARS-CoV and SARS-CoV-2 receptor ACE2 and the protease TMPRSS2, 158 

which cleaves and activates S for ACE2 binding [Hoffmann et al., 2020], than Caco-159 

2A, Caco-2B, and Caco-2C (Figure 1D, Suppl. Figure 1).  160 

 161 
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 9 

The Caco-2A cell line contains SARS-CoV-2-susceptible subpopulations 162 

One explanation for these differences between Caco-2-F03 and Caco-2A, 163 

Caco-2B, and Caco-2C is that we may have inadvertently enriched a SARS-CoV-2-164 

permissive subpopulation during Caco-2 cultivation. To test this hypothesis, we 165 

established 21 single cell-derived clones from Caco-2A by limited dilution. Four of 166 

these clonal sublines were highly susceptible to SARS-CoV-2 infection as 167 

demonstrated by high S protein levels and CPE formation (Figure 1E), supporting the 168 

hypothesis that Caco-2-F03 has been derived from a SARS-CoV- and SARS-CoV-2-169 

permissive subpopulation of our original Caco-2 cell line. There was some level of 170 

correlation between the SARS-CoV-2 susceptibility of Caco-2A clones and the cellular 171 

ACE2 levels (Figure 1F) but not between SARS-CoV-2 susceptibility and the cellular 172 

TMPRSS2 levels (Suppl. Figure 1). This suggests that ACE2 levels are more important 173 

for the SARS-CoV-2 susceptibility of Caco-2 cells than TMPRSS2 levels and that 174 

additional mechanisms are also likely to be involved.  175 

 176 

Caspase 3/7 activity for the quantification of the replication of SARS-CoV-2 and 177 

other coronaviruses 178 

Coronavirus replication, including that of SARS-CoV-2, has been shown to 179 

result in the activation of caspases including the initiator caspases 8 and 9 and the 180 

effector caspase 3 [Conolly & Fearnhead, 2017; Bojkova et al. 2020a; Bojkova et al. 181 

2020b; Li et al., 2020; Ren et al., 2020]. 182 

Quantification of caspase activity in Caco-2-F03 cells infected with different 183 

SARS-CoV-2 isolates at a multiplicity of infection (MOI) of 0.01 48h post infection using 184 

the Caspase-Glo assay kit (Promega) resulted in substantially higher signal-to-basal 185 

(S/B) ratios for caspase-3/7 (5.9- to 7.7-fold) than for caspase-8 (1.3- to 1.6-fold) and 186 

caspase-9 (1.5- to 2.2-fold) (Figure 2A). Caspase 3/7 activity also resulted in higher Z’ 187 
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 10 

scores (0.7-0.9) than caspase 8 (0.5-0.7) and caspase 9 (0.3-0.8) activity (Figure 2A), 188 

indicating higher assay robustness [Zhang et al., 1999). Hence, caspase 3/7 activity 189 

detection was selected for further investigation as potential screening endpoint 190 

method.  191 

 192 

 193 

Figure 2. Caspase 3/7 activity for the quantification of the replication of SARS-194 

CoV-2 and other coronaviruses. A) Caspase 3/7, caspase 8, and caspase 9 activity 195 

in Caco-2-F03 cells infected with a range of different SARS-CoV-2 isolates (MOI 0.01), 196 

as determined by Caspase-Glo assay assay (Promega) 48h post infection. Higher 197 

signal-to-basal (S/B) ratios and Z’ scores indicate higher assay robustness. B) 198 

mock virus
0

1×10 4

2×10 4

3×10 4

ca
sp

as
e 

3/
7 

ac
tiv

ity
 (R

LU
)

MERS-CoV
0.6
8.6

Z´score:
S/B ratio:

mock virus
0

1×10 4

2×10 4

3×10 4

ca
sp

as
e 

3/
7 

ac
tiv

ity
 (R

LU
)

SARS-CoV

0.7
6.1

Z´score:
S/B ratio:

mock virus
0

1×10 4

2×10 4

3×10 4

ca
sp

as
e 

3/
7 

ac
tiv

ity
 (R

LU
)

HCoV-229E
Z´score: 0.7

S/B ratio: 2.3

1×10 3

1×10 4

1×10 5

1×10 6

Caspase 3/7

RL
U

mock
virus

Vero Caco-2-F03
0.8 0.7

S/B ratio: 14.4 8.7
Z´score:

<0.0001
<0.0001

0.0

0.5

1.0

1.5

MTT

Ab
so
rb
an
ce <0.0001

mock
virus

0.3 0.8
1.5 2.9

Vero Caco-2-F03

<0.0001

1×10 5

1×10 6

1×10 7

1×10 8

ATP
RL
U

mock
virus

-0.5 0.6
1.4 3.3

Vero Caco-2-F03

0.2371

<0.0001

0
2
4
6
8

10 Caspase 3/7

n-
fo

ld
 c

ha
ng

e

Z´score: 0.9 0.7 0.9 0.7 0.8
S/B ratio: 6.7 6.8 7.4 5.9 7.6

0.8
7.1

0.8
6.1

0
2
4
6
8

10 Caspase 8

n-
fo

ld
 c

ha
ng

e

Z´score: 0.7 0.5 0.6 0.5 0.6
S/B ratio: 1.6 1.6 1.5 1.3 1.6

0.3 -0.3
1.6 1.5

0
2
4
6
8

10 Caspase 9

n-
fo

ld
 c

ha
ng

e

Z´score: 0.8 0.7 0.8 0.3 0.7
S/B ratio: 2.1 2.1 1.9 1.5 2.2

mock
D614
G614
Alpha
Beta
Zeta
Delta
Omicron

0.2
2.0

0.1
1.8

C
G

E

Figure 2
A

D

B F

H

0

20

40

60

80

100

%
 o

f i
nf

ec
te

d 
ce

lls

mock
virus

Ve
ro

Cac
o-

2-
F0

3

moc
k 1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 18 20 21 22 24

0

2×104

4×104

6×104

8×104

1×105

ca
sp

as
e 

3/
7 

ac
tiv

ity
 (R

LU
) mock

virus
SARS-CoV-2 isolates

moc
k 1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 18 20 21 22 24

0

1×102

2×102

3×102

4×102

5×102

sp
ik

e+
 a

re
a

mock
virus

SARS-CoV-2 isolates

moc
k 1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 18 20 21 22 24

104

106

108

1010

1012

vi
ra

l R
N

A 
co

pi
es

/m
l

mock
virus

SARS-CoV-2 isolates

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 17, 2022. ; https://doi.org/10.1101/2022.07.17.500346doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.17.500346
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

Caspase 3/7 activity as determined by Caspase-Glo assay, C) SARS-CoV-2 Spike (S) 199 

protein staining, and D) virus titers as indicated by genomic RNA copy numbers 200 

determined by qPCR in Caco-2-F03 cells infected with a wide range of uncharacterized 201 

SARS-CoV-2 isolates (MOI 0.01) 48h post infection. E) Representative images 202 

indicating CPE formation in G614 (MOI 0.01)-infected Caco-2-F03 and Vero cells 48h 203 

post infection as indicated by phase contrast microscopy and immunofluoresce 204 

staining for the viral S protein in combination with DAPI-stained nuclei. F) 205 

Quantification of cellular S protein levels in Caco-2-F03 cells infected with G614 (MOI 206 

0.01) 48h post infection by immunostaining. G) Only caspase 3/7 activity but not 207 

viability assays (MTT, CellTiter-Glo measuring ATP production) reflects G614 (MOI 208 

0.01) replication 48h post infection in Vero cells, which do not display a virus-induced 209 

CPE. G614 (MOI 0.01)-infected Caco-2-F03 cells served as a control that displays a 210 

CPE. P values were calculated by one-way ANOVA. H) Caspase 3/7 activity in Caco-211 

2-F03 cells infected with MERS-CoV, SARS-CoV, and HCoV-229E (MOI 0.01) as 212 

determined 48h post infection including S/B ratios and Z’ scores. 213 

 214 

Caspase 3/7 activity displayed an MOI-dependent increase in Caco-2-F03 cells 215 

24 h post infection (Suppl. Figure 2A), which mirrored CPE formation (Suppl. Figure 216 

2B). 48h post infection, such differences were not detectable anymore (Suppl. Figure 217 

2A, Suppl. Figure 2B). Moreover, infection of Caco-2-F03 cells with an additional 21 218 

clinical SARS-CoV-2 isolates (after a maximum of two passages in Caco-2-F03 cells) 219 

also resulted in effective caspase 3/7 activation (Figure 2B), which reflected viral spike 220 

(S) protein levels and virus titers (as indicated by genomic RNA copy numbers) (Figure 221 

2C, Figure 2D). UV-inactivated virus did not cause caspase 3/7 activation (Suppl. 222 
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Figure 2C), further confirming that SARS-CoV-2-induced caspase 3/7 activation 223 

depends on virus replication. 224 

However, caspase 3/7 activation does not appear to be critically involved in 225 

SARS-CoV-2 replication as the clinically approved pan-caspase inhibitor emricasan 226 

[Shiffman et al., 2010] did not interfere with SARS-CoV-2 replication and CPE 227 

formation, despite suppressing caspase 3/7 activity (Suppl. Figure 3). 228 

 229 

Caspase 3/7 activity for the monitoring of SARS-CoV-2 replication in the 230 

presence and absence of a virus-induced cytopathogenic effects (CPE) 231 

The caspase 3/7 assay also enabled the monitoring of SARS-CoV-2 replication 232 

in Vero cells, in which SARS-CoV-2 does not induce a CPE and in which SARS-CoV-233 

2 replication cannot be monitored by viability assays such as the MTT assay (measures 234 

oxidative phosphorylation in the mitochondria) and the Cell TiterGlo assay (Promega, 235 

measures cellular ATP production) (Figure 2E-G).  236 

 237 

Caspase 3/7-induction by additional coronaviruses 238 

Caspase 3/7 activity also indicated replication of the additional human-239 

pathogenic coronaviruses SARS-CoV, MERS-CoV, and HCoV-229E in CaCo-2-F03 240 

cells in Caco-2-F03 cells (Figure 2H).  241 

 242 
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Caspase 3/7 activity for the monitoring of SARS-CoV-2 replication in primary 243 

human cell cultures 244 

Furthermore, SARS-CoV-2-induced caspase 3/7 activity was detected in 245 

primary cultures of normal human cells, including induced pluripotent stem cell-derived 246 

cardiomyocytes (CMS), air liquid interface (ALI) cultures of bronchial epithelial (HBE) 247 

cells, and hepatocytes (PHH) (Suppl. Figure 4A). Immunoblots for the viral 248 

nucleoprotein (NP) were used to confirm SARS-CoV-2 infection in these primary cell 249 

cultures (Suppl. Figure 4B). ALI HBE did not display disruption of cellular barrier during 250 

SARS-CoV-2 infection as measured by transepithelial electrical resistance (TEER) and 251 

LDH release (Suppl. Figure 4C and D), whereas CMS and PHH displayed a CPE in 252 

response to SARS-CoV-2 infection (Suppl. Figure 4E and F). This is agrees with our 253 

previous results that caspase 3/7 activity is a suitable read-out method for monitoring 254 

SARS-CoV-2 infection both in the presence and absence of a virus-induced CPE. 255 

Taken together, detection of caspase 3/7 activity does not only enable the 256 

monitoring of the replication of a wide range of SARS-CoV-2 variants and clinical 257 

isolates (and of other coronaviruses). It is also a suitable read-out for SARS-CoV-2 258 

replication across many different susceptible permanent cell lines and human primary 259 

cultures, independently of whether SARS-CoV-2 induces a CPE in these systems. 260 

 261 

Caspase 3/7 activity for the identification of antiviral drugs 262 

Next, we compared caspase 3/7 activity and S protein staining for the detection 263 

of the antiviral activity of drugs with known efficacy against SARS-CoV-2, including 264 

remdesivir (RNA-dependent RNA polymerase (RdRp) inhibitor), EIDD-1931 (active 265 

form of molnupiravir that induces ‘error catastrophe’ in newly produced SARS-CoV-2 266 

genomes), ribavirin (broad-spectrum antiviral drug), nirmatrelvir (3C-like protease/ 267 
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main protease inhibitor), and nafamostat (TMPRSS2 inhibitor) [Apaydın et al., 2021; 268 

Simonis et al., 2021] in SARS-CoV-2 variant G614-infected Caco-2-F03 cells. Both 269 

detection methods resulted in very similar IC50s (concentrations that inhibit virus 270 

activity by 50%) (Figure 3A).  271 

 272 

 273 

Figure 3
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Figure 3. Caspase 3/7 activity for the determination of the antiviral activity of 274 

anti-SARS-CoV-2 agents and neutralization assays. A) Dose-response curves and 275 

concentrations that inhibit virus infection by 50% (IC50) of antiviral agents as 276 

determined by caspase 3/7 activity and immunostaining for the coronavirus S protein 277 

in G614 (MOI 0.01)-infected Caco-2-F03 cells 24h post infection. B) Effects of the 278 

approved anti-SARS-CoV-2 drug remdesivir on cellular levels of the viral NP protein in 279 

G614 (MOI 1)-infected air liquid interface (ALI) cultures of primary human bronchial 280 

epithelial (HBE) cells 120h post infection. C) Effects of remdesivir on caspase 3/7 281 

activity and virus titers (genomic RNA copy numbers determined by PCR) in G614 282 

(MOI 1)-infected ALI HBE cultures 120h post infection. D) Effects of remdesivir on 283 

caspase 3/7 activity and virus titers in G614 (MOI 1)-infected primary human 284 

cardiomyocytes (CMS) 48h post infection. E) Correlation of the neutralization capacity 285 

of sera derived from seven donors two weeks after their second dose of the mRNA-286 

1273 vaccine determined by caspase 3/7 activity or cytopathogenic effect (CPE) 287 

scoring in D614, Alpha and Delta-infected Caco-2-F03 cells 48h post infection. F) 288 

Determination of neutralization titers by caspase 3/7 activity or CPE scoring using sera 289 

derived from seven donors two weeks after their second dose of the mRNA-1273 290 

vaccine in Caco-2-F03 cells infected with D614, Alpha, and Delta isolates 72h post 291 

infection. P values were calculated using paired t-test. 292 

 293 

Caspase 3/7 activity also enabled the monitoring of the antiviral activity of 294 

remdesivir in SARS-CoV-2-infected primary ALI HBE and HNE cell cultures that do not 295 

display a recognizable CPE. The validity of the results obtained by caspase 3/7 assay 296 

was confirmed by determining virus titers and Western Blot analysis of SARS-CoV-2 297 

N protein levels (Figure 3B,C). Finally, caspase 3/7 activity reflected the effect of 298 

remdesivir on SARS-CoV-2 replication in CMS (Figure 3D). 299 
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Taken together, these findings demonstrate that caspase 3/7 activity enables 300 

the monitoring of the antiviral drug response in a broad range of cell culture models. 301 

 302 

Caspase 3/7 activity for the determination of neutralizing antibody titers 303 

Caspase 3/7 activity also enabled the determination of neutralizing antibody 304 

titers in sera derived from seven donors two weeks after their second dose of the 305 

mRNA-1273 vaccine, as indicated by a close correlation with results obtained by CPE 306 

scoring in Caco-2-F03 cells infected with different SARS-CoV-2 variants (Figure 3E, 307 

F). The neutralization capacity of the sera was higher against the early SARS-CoV-2 308 

strain FFM3 (G614) than against Alpha (B1.1.7) and Gamma (P.2) variant isolates 309 

(Figure 3F), which is in line with the immune evasion properties documented for these 310 

variants [Zhang et al., 2021]. 311 

 312 

Caspase 3/7 activity for detection of SARS-CoV-2 resistance 313 

Next, we tested whether the caspase 3/7 activity assay may be used for 314 

phenotypic screens identifying resistant virus strains. To establish a drug-resistant 315 

strain, SARS-CoV-2 strain FFM3 (G614) was passaged in the presence of increasing 316 

remdesivir concentrations starting with 0.5 µM (the IC50 concentration) until it could 317 

be cultivated in the presence of remdesivir 2µM (FFM3rREM). FFM3rREM displayed a 318 

significantly reduced sensitivity to remdesivir, as indicated by determination of cellular 319 

S levels in Caco-2-F03 and Calu-3 cells (Figure 4A) and by caspase 3/7 activity in 320 

Caco-2-F03 cells (Figure 4B). Interestingly, this remdesivir-resistant strain displayed 321 

increased sensitivity to EIDD-1931 and ribavirin relative to the parental strain (Figure 322 

4A,B). 323 

 324 
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 325 

Figure 4. Caspase 3/7 activity for the phenotypic resistance testing of SARS-326 

CoV-2 strains. A) Drug dose response curves and concentrations that reduce cellular 327 

levels of the SARS-CoV-2 S protein by 50% (IC50) in Caco-2-F03 and Calu-3 cells as 328 

determined by immunostaining 24h (Caco-2-F03) or 48h (Calu-3) post infection with 329 

the SARS-CoV-2 strain FFM3 or its remdesivir-adapted substrain FFM3rREM at MOI 330 

0.01. B) Drug concentrations that reduce caspase 3/7 activity in FFM3 and FFM3rREM 331 
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(MOI 0.01)-infected Caco-2-F03 cells 48h post infection. C) Sequence variants in 332 

FFM3rREM compared to FFM3. D) The polymerase complex with nsp7 and nsp8 and 333 

a template-primer RNA (cyan and deep teal) and remdesivir (magenta) bound. 334 

Gly671Ser is shown in red (as serine). E) The SARS-CoV-2 polymerase Gly671Ser 335 

sequence variant. Residue 671 is shown in red as serine, which would be able to form 336 

a hydrogen bond with Thr402 which would not be present as Gly671. All p values were 337 

calculated by two-way ANOVA. 338 

 339 

Sequencing of FFM3rREM identified a 154452G>A mutation (present in >90% 340 

of alleles) in the coding region of the RNA-dependent RNA polymerase, which results 341 

in a change from glycine to serine in position 671(Gly671Ser) (Figure 4C). Gly671Ser 342 

is located in the polymerase domain of the RNA-dependent RNA polymerase in close 343 

vicinity to where RNA leaves (or enters) the active site (Figure 4D). Gly671Ser could 344 

have an effect on the protein structure, as it is located in a bend between two beta 345 

sheets, where glycine often has an important role. Additionally, Gly671Ser introduces 346 

a side chain capable of forming a hydrogen bond with Thr402 on an adjacent loop 347 

(Figure 4E), which could have an effect on the flexibility and conformation of the 348 

protein. Therefore, Gly671Ser seems likely to reduce either the binding affinity for 349 

remdesivir or to enable the polymerase to overcome the effect of the drug. 350 

Although our structural analysis plausibly explains why Gly671Ser in the RNA-351 

dependent RNA polymerase is likely to mediate remdesivir resistance, it would have 352 

been impossible to determine this as a resistance variant without the prior knowledge 353 

that the change had happened in response to SARS-CoV-2 adaptation to remdesivir. 354 

Hence, this finding emphasizes the relevance of phenotypic assays for the 355 

identification of resistant strains that cannot be identified by the analysis of viral 356 

genomic information and the subsequent elucidation of the underlying resistance 357 
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mechanisms. Notably, the caspase 3/7 activity assay also provides an easy-to-use 358 

read-out for such phenotypic virus resistance testing approaches. 359 

 360 

Comparison of Caco-2F03 with other cell line candidates for the identification of 361 

anti-SARS-CoV-2 drug candidates in screening assays 362 

Next, we directly compared Caco-2F03 to other SARS-CoV-2 cultivation models 363 

that could be used for the identification of anti-SARS-CoV-2 drug candidates in 364 

screening assays. We focused on permanent cell lines that are easy to cultivate and 365 

maintain. 366 

Suitable cell line candidates should be highly permissive for a broad spectrum 367 

of SARS-CoV-2 variants and display high caspase 3/7 activity upon infection. We had 368 

already shown that Caco-2-F03 cells display high susceptibility to a broad range of 369 

SARS-CoV-2 isolates (Figure 2). Here, we directly compared the susceptibility of 370 

A549-ACE2, Calu-3, Vero, and Caco-2-F03 cells to D614, G614, Alpha, Beta, and 371 

Delta isolates. S immunostaining and caspase 3/7 activity showed that Caco-2-F03 372 

displayed the most pronounced broad-spectrum permissiveness to all tested SARS-373 

CoV-2 isolates (Suppl. Figure 5A, 5B). 374 

Recently, drug-induced phospholipidosis was demonstrated to affect antiviral 375 

screens by causing false positive hits due to unspecific effects that do not translate 376 

into the clinical setting [Tummino et al., 2021]. In particular, cationic amphiphilic drugs 377 

such as hydroxychloroquine were found to induce phospholipidosis [Tummino et al., 378 

2021]. Hence, SARS-CoV-2 culture systems for phenotypic antiviral screening would 379 

ideally avoid false positives due to phospholipidosis. 380 

Treatment with hydroxychloroquine resulted in considerable phospholipidosis 381 

and inhibited a Delta isolate in A549-ACE2 and Vero cells but not in Calu-3 or CaCo-382 

2-F03 cells (Suppl. Figure 5C, 5D). Due to the susceptibility to the broadest range of 383 
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SARS-CoV-2 isolates and the insensitivity to drug-induced phospholipidosis, we 384 

selected Caco-2-F03 cells for a proof-of-concept screen for anti-SARS-CoV-2 drug 385 

candidates. 386 

 387 

Proof-of-concept kinase inhibitor screen for drug candidates that inhibit SARS-388 

CoV-2 replication 389 

Next, we used the caspase 3/7 activity assay in Caco-2F03 cells to screen the 390 

Kinase Inhibitor Library (96-well)-L1200 (Selleck) for anti-SARS-CoV-2 drug 391 

candidates (Figure 5A, Suppl. File 1). All compounds were tested at a concentration of 392 

10µM. Z’scores were determined as quality controls on all plates as previously 393 

described [Xu et al., 2016], and only plates with a Z´score ≥ 0.5 were further analyzed 394 

(Figure 5B). Moreover, remdesivir (10 µM) was used as positive control on each plate 395 

and produced consistent results (Figure 5B). 396 

 397 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 17, 2022. ; https://doi.org/10.1101/2022.07.17.500346doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.17.500346
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

 398 

Figure 5. Proof-of-concept screen for anti-SARS-CoV-2 drug candidates using 399 

the Caco-2-F03 cell line platform and caspase 3/7 activity as read-out method. A) 400 

Overview of the proof-of-concept screen for anti-SARS-CoV-2 compounds using the 401 

Kinase inhibitor library L-1200 (Selleckchem, Germany) containing 1796 compounds 402 

(Selleckchem, Germany) in Delta (MOI 0.01)-infected Caco-2-F03 cells using caspase 403 

3/7 activity as read-out 48h post infection. For the screen, every compound was tested 404 
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at a concentration of 10 and 1 µM. 21 selected hits were then confirmed by determining 405 

drug-response curves. B) Quality controls, Z’scores served as quality controls (left). 406 

Only plates with a Z´score ≥ 0.5 were further analyzed. Remdesivir (10 µM) was used 407 

as positive control on each plate and produced consistent results (right). C) Number of 408 

hits at different inhibition cut-offs. D) Visualization of the distribution of hits according 409 

to their targets. Targets for which inhibitors were selected for confirmation are 410 

indicated. E) Heatmaps of the anti-SARS-CoV-2 activity of 21 hits by the determination 411 

of dose-response in Delta and Omicron (MOI 0.01)-infected Caco-2-F03 cells using 412 

immunostaining for the viral S protein as read-out 24h post infection. 413 

 414 

All compounds were tested at a concentration of 10µM, which resulted in 81 415 

hits, when we considered ³ 90% inhibition of caspase 3/7 activity as a cut-off (Figure 416 

5C). Most hits were identified among inhibitors that target dehydrogenases, CaMK, 417 

mTOR, ULK, CLK-1, TOPK, CSF-1R, and PAK (Figure 5D). CaMK, mTOR, ULK, 418 

TOPK (also known as PBK), and PAK had already been proposed as antiviral drug 419 

targets for SARS-CoV-2 [Shahinozzaman et al., 2020; Jamaly et al., 2021; Shang et 420 

al., 2021; Agrawal et al., 2022; Basile et al., 2022]. However, we could not find any 421 

information on potential anti-SARS-CoV-2 effects caused by CLK-1 or CSF-1R 422 

inhibition. We also included the phosphoglycerate dehydrogenase (PHGDH) inhibitor 423 

NCT-503 [Pacold et al., 2016; Hamanaka et al., 2018] in our confirmation experiments. 424 

Although dehydrogenases had been known to contribute to SARS-CoV-2 replication 425 

[Shang et al., 2021], PHGDH had not previously been shown to be involved. 426 

In addition to inhibitors of the targets described above, ROCK and CDK 427 

inhibitors were also included into the confirmation experiments. ROCK was described 428 

to be involved in the SARS-CoV-2-induced suppression of the host cell interferon 429 

response [Zhang et al., 2021a]. CDK inhibitors had previously been shown to inhibit 430 
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SARS-CoV-2 replication [Gutierrez-Chamorro et al., 2021; Hahn et al., 2021]. The 431 

determination of dose-response curves for all of the 21 inhibitors using immunostaining 432 

for the SARS-CoV-2 S protein confirmed the results of the screen (Figure 5E, Suppl. 433 

Figure 6).  434 

 435 

PHGDH inhibitor NCT-503 as anti-SARS-CoV-2 drug candidate 436 

Since PHGDH is a new potential antiviral drug target for the treatment of SARS-437 

CoV-2 infection, we further investigated NCT-503. To investigate whether PHGDH 438 

inhibition is critical for NCT-503-mediated SARS-CoV-2 inhibition, we compared its 439 

effects and those of a chemically closely related analogue, which does not inhibit 440 

PHGDH and is commonly used as inactive NCT-503 control (Suppl. Figure 7A) [Pacold 441 

et al., 2016; Arlt et al., 2021], for antiviral activity. Only NCT-503 but not the inactive 442 

control inhibited Delta- and Omicron-induced caspase 3/7 activation indicating that the 443 

antiviral effects of NCT-503 are indeed mediated by PHGDH inhibition (Suppl. Figure 444 

7B). 445 

 446 
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 447 

Figure 6. Investigation of the anti-SARS-CoV-2 effects of the PHGDH inhibitor 448 

NCT-503 alone or in in combination with 2-Deoxy-D-glucose (2DG). A) Scheme of 449 

the testing of NCT-503 for anti-SARS-CoV-2 activity in air liquid interface (ALI) cultures 450 

of primary human bronchial epithelial (HBE) cells. Effect of NCT-503 on (B) caspase 451 

3/7 activity, (C) virus titers (determined as genomic RNA copy numbers by qPCR), (D) 452 

transepithelial electrical resistance (TEER), and (E) LDH release in ALI HBE cultures 453 

infected with Delta (MOI 1) 120h post infection. F) Anti-SARS-CoV-2 effects of NCT-454 
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503 in combination with 2-Deoxy-D-glucose (2DG). Illustration of how NCT-503 and 455 

2DG can exert combined effects on a common metabolic pathway. G) Representative 456 

fluorescence images indicating the number of Delta and Omicron (MOI 0.01)-infected 457 

cells in NCT503 and/ or 2DG-treated Caco-2-F03 cultures 24h post infection. H) and 458 

I) Weighted combination indices (CIwt) determined by the method of Chou and Talalay 459 

[Chou, 2006] indicating a strong synergism of NCT-503 and 2DG. 460 

 461 

NCT-503 also inhibited SARS-CoV-2 replication in primary human bronchial 462 

epithelial cell air-liquid interface (ALI) cultures (Figure 6A) as indicated by SARS-CoV-463 

2-induced caspase 3 activity (Figure 6B), viral titers (determined as copy numbers of 464 

genomic RNA by PCR) (Figure 6C), cell layer integrity (Figure 6D), and lack of SARS-465 

CoV-2-induced cytotoxicity (as indicated by LDH release) (Figure 6E). 466 

Taken together, NCT-503 is a novel antiviral drug candidate for the treatment of 467 

SARS-CoV-2 infections that inhibits virus replication via PHGDH inhibition and is 468 

effective in different model systems including primary human bronchial epithelial cell 469 

ALI cultures, the system considered to be most physiologically relevant [Mulay et al., 470 

2021]. 471 

 472 

NCT-503 in combination with 2-Deoxy-D-glucose (2DG) 473 

The discovery of PHGDH as novel antiviral drug target and of NCT-503 as 474 

antiviral drug candidate offers potential additional opportunities for combination 475 

therapies that display higher efficacy than either single treatment. 476 

De novo serine synthesis is a side branch of glycolysis that includes the 477 

conversion of the glycolytic intermediate 3-phosphoglycerate (3PG) into 3-478 

phosphohydroxypyruvate (3PHP) by PHGDH (Figure 6F) [Geeraerts et al., 2021]. The 479 

production of 3PG in the glycolytic cycle depends on the phosphorylation of glucose 480 
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into glucose-6-phosphate (G6P) by hexokinase II (HK2) as an initial step (Figure 6F) 481 

[Pajak et al., 2020]. Notably, the HK2 inhibitor 2-Deoxy-D-glucose (2DG) has already 482 

been shown to inhibit SARS-CoV-2 replication [Bojkova et al., 2020; Bojkova et al., 483 

2021a]. Hence, we hypothesized that the combined inhibition of de novo serine 484 

synthesis by 2DG and NCT-503 may result in further enhanced antiviral effects (Figure 485 

6F). 486 

Indeed, the combination of 2DG and NCT-503 resulted in stronger Delta and 487 

Omicron BA.1 inhibition than either drug alone (Figure 6G, Suppl. Figure 7C). The 488 

determination of combination indices (CIs) by the method of Chou and Talalay [Chou, 489 

2006] indicated a strong synergism of NCT-503 and 2DG against both SARS-CoV-2 490 

isolates (Figure 6H, Figure 6I). 491 

 492 

  493 
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Discussion 494 

Here, we developed a novel screening assay for the identification of anti-SARS-495 

CoV-2 compounds, based on using caspase 3/7 activity determined by the Caspase-496 

Glo® Assay System as read-out indicating SARS-CoV-2 replication. This one step 497 

read-out assay can be used by the large number of laboratories, which are equipped 498 

with the required plate readers that are in common use. Moreover, the assay is widely 499 

(potentially universally) applicable to different SARS-CoV-2 strains and clinical isolates 500 

as well as cell culture systems, as indicated by our wide range of pilot experiments. 501 

Moreover, our findings show that caspase 3/7 activity can also be used to determine 502 

SARS-CoV-2 replication in neutralization assays determining the antibody response in 503 

the plasma of individuals and for the phenotypic resistance testing of virus variants. 504 

Notably, the caspase 3/7 assay also detects SARS-CoV-2 replication in cultivation 505 

systems that do not develop a CPE and in which viability assays such as the MTT 506 

assay and the Cell Titer Glo® Assay did not reflect SARS-CoV-2 replication.  507 

For our proof-of-concept experiment for phenotypic resistance testing, we 508 

established a remdesivir-resistant SARS-CoV-2 strain by adapting the SARS-CoV-2 509 

strain FFM3 to replication in the presence of remdesivir. Our results confirmed previous 510 

observations [Szemiel et al., 2021; Yang et al., 2022] demonstrating that SARS-CoV-511 

2 resistance formation against clinically approved antiviral drugs poses a relevant risk. 512 

Notably, the genetic sequence of our remdesivir-adapted SARS-CoV-2 strain would 513 

not have enabled us to identify this as a resistant strain by a genotypic approach, which 514 

emphasizes the potential need for effective phenotypic resistance testing platforms in 515 

the future. 516 

In addition to identifying an easy-to-handle read-out assay for anti-SARS-CoV-517 

2 agent screens, we were also interested in identifying a well-suited cell culture 518 

platform. We considered permanent cell lines to be the most promising candidates, 519 
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because they are readily available and require a minimum of handling. A number of 520 

continuous cell lines (e.g. A549-ACE, Calu-3, Vero, Caco-2) had already been used in 521 

different phenotypic screening approaches for the identification of antiviral drug 522 

candidates against SARS-CoV-2 [Dittmar et al., 2021; Ellinger et al., 2021; Xu et al., 523 

2021]. Based on our comparison of different candidate cell lines, however, we 524 

identified Caco-2-F03 as the best platform, as it displayed susceptibility to the widest 525 

range of SARS-CoV-2 strains and isolates and was not affected by drug-induced 526 

phospholipidosis that has been shown to result in false-positive hits during the testing 527 

of anti-SARS-CoV-2 drug candidates [Tummino et al., 2021]. 528 

Notably, Caco-2 cells were (in contrast to Calu-3, A549, or Vero cells) shown to 529 

be highly susceptible to seasonal coronaviruses such as HCoV-229E or HCoV-OC43 530 

[Collins, 1990; Tang et al., 2005; Yoshikawa et al., 2010; Michaelis et al., 2011; Chan 531 

et al., 2013; Ramani et al., 2021]. In this context, we found here that the caspase 3/7 532 

assay also enabled the monitoring of HCoV-229E replication in Caco-2-F03 cells, 533 

indicating that this may also serve as a unique broad-spectrum drug screening platform 534 

for (seasonal) coronaviruses. 535 

Our study also provided an explanation for the contradictory findings on the 536 

SARS-CoV-2 susceptibility of Caco-2 cells reported in previous studies [Bojkova et al., 537 

2020; Bojkova et al., 2020b; Chu et al., 2020; Hoehl et al., 2020; Klann et al., 2020; 538 

Lee et al., 2020; Toptan et al., 2020; Bojkova et al., 2021; Ellinger et al., 2021; Gower 539 

et al., 2021; Widera et al., 2021; Yeung et al., 2021]. When we investigated newly 540 

acquired Caco-2 cell lines from different providers (DSMZ, CLS, Sigma) for SARS-541 

CoV-2 susceptibility, they did indeed not present the level of SARS-CoV-2 542 

permissiveness that we find in our Caco-2-F03 cell line. The subsequent analysis of 543 

21 clonal sublines of the newly purchased lowly SARS-CoV-2-susceptible Caco-2 cell 544 

line from DSMZ (Caco-2A) resulted in a broad range of susceptibility phenotypes, 545 
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suggesting that a highly SARS-CoV-2-susceptible subpopulation has inadvertently 546 

become the dominant population in our Caco-2-F03 cell line. Notably, the susceptibility 547 

phenotype of Caco-2-F03 appears to be stable, as we have used this cell line for the 548 

cultivation of SARS-CoV and SARS-CoV-2 since 2003 [Cinatl et al., 2003; Cinatl et al., 549 

2004]. Moreover, the SARS-CoV-2 susceptibility phenotype of Caco-2-F03 was 550 

maintained for a further 30 passages within the current study. Notably, such phenotypic 551 

differences between samples of the same cell line obtained from different sources is 552 

not surprising and has been described for different cell lines [Feichtinger et al., 2016; 553 

Ben-David et al., 2018; Liu et al., 2019]. 554 

Next, we used the caspase 3/7 activity assay in Caco-2-F03 cells to screen the 555 

Kinase Inhibitor Library (96-well)-L1200 (Selleck) for anti-SARS-CoV-2 drug 556 

candidates, which resulted in 81 hits that reduced SARS-CoV-2-induced caspase 3/7 557 

activity by ³ 90%. These hits included inhibitors of known potential anti-SARS-CoV-2 558 

drug targets (CaMK, mTOR, ULK, TOPK, PAK, ROCK, CDK) [Shahinozzaman et al., 559 

2020; Jamaly et al., 2021; Ellinger et al., 2021; Shang et al., 2021; Zhang et al., 2021b; 560 

Agrawal et al., 2022; Basile et al., 2022] and those that interfere with drug targets that 561 

had not previously been identified to be relevant during SARS-CoV-2 replication (CLK-562 

1, CSF-1R). We determined dose response curves for 21 out of these 81 hit 563 

compounds using immunostaining for the viral S protein, which confirmed their anti-564 

SARS-CoV-2 activities. 565 

Among these hits, we further investigated the phosphoglycerate dehydrogenase 566 

(PHGDH) inhibitor NCT-503 [Pacold et al., 2016; Hamanaka et al., 2018], as it 567 

interferes with a dehydrogenase that had not previously been shown to be involved in 568 

SARS-CoV-2 replication. In addition to NCT-503, we tested a structurally closely 569 

related analogue that does not inhibit PHGDH [Pacold et al., 2016; Arlt et al., 2021]. 570 
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This inactive NCT-503 analogue did not affect SARS-CoV-2 replication, indicating that 571 

the anti-SARS-CoV-2 effects of NCT-503 are caused by its effect on PHGDH.  572 

PHGDH activity is critically involved in de novo serine synthesis [Geeraerts et 573 

al., 2021], a pathway downstream of the glycolytic cycle that depends on the 574 

phosphorylation of glucose into glucose-6-phosphate (G6P) by hexokinase II (HK2) as 575 

initial step [Pajak et al., 2020]. Since the HK2 inhibitor 2-Deoxy-D-glucose (2DG) has 576 

already been shown to inhibit SARS-CoV-2 replication [Bojkova et al., 2020; Bojkova 577 

et al., 2021a], we tested whether the combined interference with this pathway using 578 

NCT-503 and 2DG resulted in further increased antiviral effects. Indeed, the 579 

combination resulted in strongly synergistic anti-SARS-CoV-2 activity. Such antiviral 580 

combination therapies have been suggested to be of critical importance for the 581 

sustained control of virus outbreaks, as they are not only more effective but also 582 

anticipated to reduce and, ideally, prevent resistance formation [White et al., 2021].  583 

In conclusion, we here present a novel phenotypic screening platform for the 584 

identification of drug candidates with activity against SARS-CoV-2 and other 585 

coronaviruses based on the determination of caspase 3/7 activity using the one-step 586 

Caspase-Glo® 3/7 Assay System as read-out. Caspase 3/7 activity is also a suitable 587 

read-out for neutralization assays and phenotypic resistance testing. The Caco-2-F03 588 

cell line was identified as the best-suited cell culture platform. It is susceptible to a 589 

particularly broad range of SARS-CoV-2 isolates and its susceptibility phenotype 590 

remains stable over many passages. Moreover, Caco-2-F03 is not affected by 591 

phospholipidosis, which is known to cause false-positive hits during the testing of 592 

potential anti-SARS-CoV-2 agents [Tummino et al., 2021]. Hence, the determination 593 

of caspase 3/7 activity in SARS-CoV-2-infected Caco-2-F03 cells represents a newly 594 

established screening platform that is easy-to-use also for groups without experience 595 

in drug discovery projects. A proof-of-concept screen of a kinase inhibitor library 596 
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containing 1796 compounds resulted in known and novel anti-SARS-CoV-2 drug 597 

targets. The PHGDH inhibitor NCT-503 was identified as novel antiviral drug 598 

candidate, whose activity was further increased by 2DG (an inhibitor of the PHGDH 599 

upstream HK2), which is under clinical development for the treatment of COVID-19 600 

treatment [Sahu & Kumar, 2021].  601 

 602 

  603 
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Material and methods 604 

Cell culture 605 

Caco-2A (DSMZ), Caco-2B (Sigma), Caco-2C (CLS), Vero (DSMZ), Calu-3 606 

(ATCC), and Caco-2-F03 (Resistant Cancer Cell Line collection, 607 

https://research.kent.ac.uk/industrial-biotechnology-centre/the-resistant-cancer-cell-608 

line-rccl-collection/) were grown at 37 °C in minimal essential medium (MEM) 609 

supplemented with 10% fetal bovine serum (FBS), 100 IU/mL penicillin, and 100 μg/mL 610 

streptomycin. All culture reagents were purchased from Sigma. A549-ACE2 611 

(Invivogen) was grown in DMEM supplemented with 10% FBS, 2% L-glutamine, 100 612 

μg/ml normocin, 0.5 μg/ml puromycin, 100 IU/mL penicillin, and 100 μg/mL of 613 

streptomycin. All cell lines were regularly authenticated by short tandem repeat (STR) 614 

analysis and tested for mycoplasma contamination. 615 

Primary bronchial epithelial cells were isolated from the lung explant tissue of a 616 

patient with lung emphysema as previously described [van Wetering et al., 2000]. For 617 

differentiation into air-liquid interface (ALI) cultures, cells were resuscitated, passaged 618 

once in PneumaCult-Ex Medium (StemCell technologies), and seeded on transwell 619 

inserts (12-well plate, Sarstedt) at 4x104 cells/insert. After reaching confluence, 620 

medium on the apical side of the transwell insert was removed and medium in the 621 

basal chamber was replaced with PneumaCult ALI Maintenance Medium (StemCell 622 

Technologies) including Antibiotic/Antimycotic solution (Sigma Aldrich) and MycoZap 623 

Plus PR (Lonza). Criteria for successful differentiation were the development of ciliary 624 

movement, an increase in transepithelial electric resistance, and mucus production. 625 

Human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) of 626 

two donors were obtained with an embryoid body-based protocol as previously 627 

described [Breckwoldt et al., 2017]. hiPS-CMs were cultured in RPMI/B27 medium at 628 

37 °C and 5 % CO2 for 4 to 5 days prior to viral infection. 629 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 17, 2022. ; https://doi.org/10.1101/2022.07.17.500346doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.17.500346
http://creativecommons.org/licenses/by-nc-nd/4.0/


 33 

Primary human hepatocytes (PHHs) were isolated as previously described 630 

[Vondran et al., 2008] and were maintained in William’s Medium E (PAN Biotech, 631 

Aidenbach, Germany) containing 10% fetal bovine serum (Biochrom, Cambridge, UK) 632 

and 10,000 U penicillin/streptomycin, 1% L-glutamine, 1% non-essential amino-acids, 633 

5mmol/L Hepes (Thermo Fisher Scientific, Schwerte, Germany), 2% dimethyl sulfoxide 634 

(DMSO, Roth, Karlsruhe, Germany), 5 µg/mL insulin, and 0.05 mmol/L hydrocortisone 635 

(Sigma Aldrich, Munich, Germany). 636 

 637 

Virus preparation and infection of different cell types 638 

Caco-2-F03 cells were used for the isolation SARS-CoV-2 variants applied in this 639 

study. Information on the following isolates is available from GenBank: D614 (SARS-640 

CoV-2/FFM1,  MT358638), G614 (SARS-CoV-2/FFM7,  MT358643), Alpha (SARS-641 

CoV-2/FFM-UK7931/2021,  MZ427280), Beta (SARS-CoV-2/FFM-ZAF1/2021, 642 

MW822592), Delta (SARS-CoV-2/FFM-IND8424/2021, MZ315141), Zeta (SARS-CoV-643 

2/FFMBRA1/2021, MW822593), Omicron (SARS-CoV-2/FFM-SIM0550/2021, 644 

OL800702). Additional isolates were not further characterized. SARS-CoV-2 stocks 645 

were cultivated for a maximum of three passages in Caco-2-F03 cells and stored at –646 

80°C. SARS-CoV stocks were prepared on Caco-2-F03 cells as previously described 647 

[Cinatl et al., 2004]. MERS-CoV was obtained from BEI Resources (EMC/2012, NR-648 

44260) and passaged once on Vero cells prior experiments. Viral stocks of HCoV-229E 649 

(ATCC no. CCL-137) were prepared using Caco-2-F03 cells. Virus titers were 650 

determined as TCID50/mL in confluent cells in 96-well microtiter plates. 651 

Primary bronchial and nasal epithelial cells in ALI cultures were infected with 652 

SARS-CoV-2 from the apical site. The inoculum was incubated for 2 h, then removed 653 

and cells were washed three times with PBS. For testing of antiviral activity of drugs, 654 
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the compounds were added after the infection period from both the apical and the basal 655 

site. The apical medium was removed after one day. 656 

 657 

Caspase activity assay 658 

Caspase 3/7, 8 and 9 activity was measured using the Caspase-Glo assay kit 659 

(Promega, Madison, WI, USA), according to the manufacturer’s instructions. Briefly, 660 

100 μL of Caspase-Glo reagent were added to each well, mixed, and incubated at room 661 

temperature for 30 min. Luminescence intensity was measured using an Infinite M200 662 

microplate reader (Tecan). 663 

 664 

Viability assay 665 

Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-666 

diphenyltetrazolium bromide (MTT) dye reduction assay. 25 µL of MTT solution (2 667 

mg/mL in PBS) were added per well, and the plates were incubated at 37 °C for 4 h. 668 

After this, the cells were lysed using 100 µL of a buffer containing 20% sodium 669 

dodecylsulfate and 50% N,N-dimethylformamide with the pH adjusted to 4.7 at 37 °C 670 

for 4 h. Absorbance was determined at 560 nm (reference wavelength 620 nm) using 671 

a Tecan infinite M200 microplate reader (TECAN). 672 

Alternatively, cell viability was determined using the CellTiter-Glo (Promega), 673 

which measures ATP production, according to the manufacturer’s protocol. 674 

Luminescence was measured on a Tecan infinite M200 microplate reader (TECAN).  675 

 676 

Immunocytochemistry of viral antigen 677 

Cells were fixed with acetone:methanol (40:60) solution and immunostaining 678 

was performed using a monoclonal antibody directed against the spike (S) protein of 679 
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SARS-CoV-2 (1:1500, Sinobiological), which was detected with a peroxidase-680 

conjugated anti-rabbit secondary antibody (1:1,000, Dianova), followed by addition of 681 

AEC substrate. The S positive area was scanned and quantified by the Bioreader® 682 

7000-F-Z-I microplate reader (Biosys). The results are expressed as percentage of 683 

inhibition relative to virus control which received no drug. 684 

 685 

Immunofluorescence labeling 686 

Cells were fixed with 3% PFA permeabilized with 0.1 % Triton X-100. Prior to 687 

primary antibody labeling, cells were blocked with 5% donkey serum in PBS or 1% 688 

BSA and 2% goat serum in PBS for 30 minutes at room temperature. Spike (S) protein 689 

was detected using a specific antibody (1:1500, Sinobiological) and an Alexa Fluor 488 690 

anti-rabbit secondary antibody (1:200, Invitrogen). The nucleus was labeled using 691 

DAPI (1:1000, Thermo Scientific). Cardiomyocytes were counterstained with Alexa 692 

FluorTM 647 Phalloidin (1:100, #A22287, Invitrogen). Images were taken using 693 

Spark® Mulitmode microplate reader (TECAN) at 10x magnification. 694 

 695 

Immunoblot assay 696 

Cells were lysed using Triton-X-100 sample buffer (Sigma-Aldrich), and proteins 697 

were separated by SDS-PAGE. Detection occurred by using specific antibodies 698 

against GAPDH (1:1000 dilution, #2275-PC-100, Trevigen), SARS-CoV-2 NP (1:1000 699 

dilution, #40143-R019, Sino Biological), ACE2 (1:500 dilution, #ab15348, Abcam), and 700 

TMPRSS2 (1:1000 dilution, Recombinant Anti-TMPRSS2 antibody [EPR3861], 701 

#ab92323, Abcam) followed by incubation with IRDye-labeled secondary antibodies 702 

(LI-COR Biotechnology, IRDye®800CW Goat anti-Rabbit, 926-32211, 1:40,000) 703 

according to the manufacturer’s instructions. Protein bands were visualized by laser-704 
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induced fluorescence using an infrared scanner for protein quantification (Odyssey, Li-705 

Cor Biosciences, Bad Homburg, Germany). 706 

 707 

qRT-PCR 708 

SARS-CoV-2 RNA from cell culture supernatant samples was isolated using 709 

AVL buffer and the QIAamp Viral RNA Kit (QIAGEN) according to the manufacturer’s 710 

instructions. Quantification of viral RNA was performed as previously described 711 

[Bojkova et al., 2020; Toptan et al., 2020] using primers targeting the RNA-dependent 712 

RNA polymerase (RdRp): RdRP_SARSr-F2 (GTG ARA TGG TCA TGT GTG GCG G) 713 

and RdRP_SARSr-R1 (CAR ATG TTA AAS ACA CTA TTA GCA TA). Standard curves 714 

were created using plasmid DNA (pEX-A128-RdRP) harboring the corresponding 715 

amplicon regions for RdRP target sequence according to GenBank Accession number 716 

NC_045512. All quantification experiments have been carried out with biological 717 

replicates. 718 

 719 

Neutralization assay 720 

Serum of double mRNA-1273-vaccinated individuals was serially diluted and pre-721 

incubated with 4000 TCID50/mL of SARS-CoV-2 variants at 37°C for 1 h prior transfer 722 

to Caco-2-F03 monolayers in 96 well plate. The neutralization titer was determined 723 

either by visual scoring of CPE 72 h post infection or caspase 3/7 activity 724 

measurement. 725 

 726 

Selection of drug-resistant variant 727 

SARS-CoV-2/FFM3 was serially passaged with increasing concentration 728 

(starting concentration - 500nM) of remdesivir in Caco-2-F03. Viral replication was 729 
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monitored by observation for any cytopathogenic effect present in the culture. Infected 730 

cultures were frozen at −80°C and thawed once prior a passaging. Virus was serially 731 

passaged by using 1 aliquot of viral stock from the preceding passage to infect fresh 732 

Caco-2-F03 cells (MOI of 0.1) in the presence of increasing concentrations of 733 

compound for a total of 30 passages,resulting in a strain that could be readily passaged 734 

in the presence of remdesivir 2 μM (FFM3rREM). 735 

 736 

Sequencing 737 

Extracted nucleic acid was DNase treated, reverse transcribed, and randomly 738 

amplified using a Sequence-Independent Single-Primer Amplification (SISPA) method 739 

described previously [Lewandowski et al., 2019]. Illumina sequencing used the Nextera 740 

XT protocol with 2 × 150-bp paired-end sequencing on a MiSeq. 741 

 742 

Phospholipidosis quantification 743 

Phospholipidosis was assessed as previously described [Tummino et al., 2021]. 744 

Cells were treated with hydroxychloroquine in the presence of 7.5 μM 745 

nitrobenzoxadiazole-conjugated phosphoethanolamine (NBD-PE) (ThermoFisher). 746 

Images were taken and the fluorescence was quantified using a Spark® Mulitmode 747 

microplate reader (TECAN). 748 

 749 

Screening assay 750 

The Kinase inhibitor library L-1200 (Selleckchem) containing 1796 compounds 751 

was tested in a proof-of-concept screen in Delta-infected Caco-2-F03 cells for the 752 

identification of antivirally active agents. Caco-2-F03 cells were seeded into 96-well 753 

plates (50,000 cells/well) and incubated at 37°C for 4 days. After the cells reached 754 
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confluence, the supernatant was replaced by 25 µL/well of medium containing the 755 

ABCB1 inhibitor zosuquidar (final concentration 1 µM), 25 µL/well of medium 756 

containing kinase inhibitors (final concentration 10 µM) in singlets, and 50 µL/ well 757 

SARS-CoV-2 suspension (MOI 0.01). Remdesivir (10 µM) was used as positive 758 

control. Plates were incubated at 37°C for 48h prior to the measurement of caspase 759 

3/7 activity as described above. For each plate the Z´ score, a measure of statistical 760 

effect size and an index for assay quality control, was calculated by: Z′= 1 − 761 

(3*s.d.signal + 3*s.d.basal)/(Meansignal − Meanbasal). Only plates with Z´score ≥ 0.5 762 

were further analyzed. 763 

 764 

Drug combination studies 765 

To evaluate antiviral activity of drug combinations, drugs were tested alone or 766 

in fixed combinations at 1:2 dilutions using monolayers of Caco-2-F03 cells infected 767 

with the indicated SARS-CoV-2 isolates at MOI 1. Antiviral effects were detected 24 h 768 

post infection by immunofluorescence staining for S protein. The calculation of IC50, 769 

IC75, IC90 and IC95 for single drugs and their combinations as well as combination 770 

indices (CIs) was performed using the software CalcuSyn (Biosoft) based on the 771 

method of Chou and Talalay [Chou, 2006]. The weighted average CI value (CIwt) was 772 

calculated according to the formula: CIwt [CI50 + 2CI75 + 3CI90 + 4CI95]/10. CIwt values 773 

were calculated for mutually exclusive interactions where CIwt<1 indicates synergism, 774 

CIwt =1 indicates additive effects, and CIwt ˃1 suggest antagonism. 775 

 776 

Statistical analysis 777 

The results are expressed as the mean ± standard deviation of at least three 778 

experiments. The Student’s t-test was used for comparing two groups. Three and more 779 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 17, 2022. ; https://doi.org/10.1101/2022.07.17.500346doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.17.500346
http://creativecommons.org/licenses/by-nc-nd/4.0/


 39 

groups were compared by ANOVA. GraphPad Prism 9 was used to determine IC50 780 

and CC50. 781 

  782 
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