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In brief

Studying ion channel diversity in neuronal models we show how robust biological

systems may evolve not despite but because of their complexity.

Highlights

• 15 channel model of hippocampal granule cells (GCs) reduces to 5 ion chan-

nels without loss of spiking behaviour.

• But knocking out ion channels can be compensated only in the full model.

• Random sampling leads to ∼ 6% solutions in full but only ∼ 1% in reduced

model.

• Law of large numbers generalises our observations to other complex biologi-

cal systems.
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Abstract 1

The electrical and computational properties of neurons in our brains are deter- 2

mined by a rich repertoire of membrane-spanning ion channels and elaborate 3

dendritic trees. However, the precise reason for this inherent complexity remains 4

unknown. Here, we generated large stochastic populations of biophysically real- 5

istic hippocampal granule cell models comparing those with all 15 ion channels 6

to their reduced but functional counterparts containing only 5 ion channels. 7

Strikingly, valid parameter combinations in the full models were more frequent 8

and more stable in the face of perturbations to channel expression levels. Scaling 9

up the numbers of ion channels artificially in the reduced models recovered 10

these advantages confirming the key contribution of the actual number of ion 11

channel types. We conclude that the diversity of ion channels gives a neuron 12

greater flexibility and robustness to achieve target excitability. 13

Significance statement 14

Over the course of billions of years, evolution has led to a wide variety of biolog- 15

ical systems. The emergence of the more complex among these seems surprising 16

in the light of the high demands of searching for viable solutions in a corre- 17

spondingly high-dimensional parameter space. In realistic neuron models with 18

their inherently complex ion channel composition, we find a surprisingly large 19

number of viable solutions when selecting parameters randomly. This effect is 20

strongly reduced in models with fewer ion channel types but is recovered when 21

inserting additional artificial ion channels. Because concepts from probability 22

theory provide a plausible explanation for this improved distribution of valid 23

model parameters, we propose that this may generalise to evolutionary selection 24

in other complex biological systems. 25
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Introduction 26

Throughout evolution, biological cells have emerged with increasing diversity and 27

complexity. Optimising for multiple objectives while keeping an ever larger num- 28

ber of cell parameters within a viable range seems a daunting task for evolutionary 29

processes; and it remains unclear how such a multi-objective optimisation can be 30

achieved in the corresponding high dimensional parameter space. Here we explore 31

the counter-intuitive hypothesis that increasing the number of mechanisms – i.e. 32

increasing the biological complexity – potentially helps systems to evolve more 33

quickly, easily and efficiently towards satisfying a large number of objectives. 34

Neurons are a good example of complex cells, typically exhibiting a great diversity 35

in the expression of ion channels as products of such evolutionary optimisation. 36

The channel parameters must be tuned to cooperatively generate multiple features 37

of neuronal spiking behaviour. A palette of such spiking features has been suc- 38

cessfully used in computational biophysical neuron models for multi-objective 39

optimisation (MOO) using genetic algorithms (Druckmann, 2007). Mammalian 40

neurons contain a large variety of ion channels types in their membrane (Coetzee 41

et al., 2006) producing a wide range of possible spiking mechanisms with varying 42

temporal dynamics and excitability (Connors and Gutnick, 1990). Interestingly, a 43

number of these ion channel variants exhibit overlapping functional properties 44

(Coetzee et al., 2006; Rudy, 1988; Herrera-Valdez et al., 2013; Marder and Goaillard, 45

2006; Olypher and Calabrese, 2007; Hille, 2001; Goaillard and Marder, 2021). A 46

large body of literature has explored the reason for this high diversity (Marder, 47

2011; Prinz et al., 2004; Golowasch et al., 2002; O’Leary et al., 2013). However, it 48

remains unclear what role exactly the diversity of ion channel types plays regard- 49

ing evolution and its contribution to functional mechanisms that impact neuronal 50

computations. 51

Neuronal computation relies on the morphology as well as on the diversity and 52

distribution of ion channels in the membrane of the dendritic tree, the soma, and 53

4/52

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 21, 2022. ; https://doi.org/10.1101/2021.05.04.442120doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.04.442120
http://creativecommons.org/licenses/by-nc-nd/4.0/


Biophysical complexity supports robust function Schneider et al.

the axon initial segment. Even small changes in the distribution of ion channels can 54

change the activity in neurons drastically (Achard and De Schutter, 2006). Large 55

differences in experimental measurements have been observed from cell to cell, 56

day to day and animal to animal in data from the same classes of cells (Marder and 57

Goaillard, 2006; Golowasch et al., 2002; Golowasch and Marder, 1992; MacLean et 58

al., 2003; Swensen, 2005; Schulz et al., 2006, 2007). The expression levels of these ion 59

channel types can vary several-fold across neurons of a defined type (Marder and 60

Goaillard, 2006; Prinz et al., 2004; Golowasch et al., 2002; Golowasch and Marder, 61

1992; MacLean et al., 2003; Schulz et al., 2006). However, many detailed biophysical 62

models of single cells ignore this variability in electrophysiological data and search 63

for a fixed set of parameters that replicates an average behaviour of a particular 64

cell type (Golowasch et al., 2002). 65

How can neurons manage to achieve a functional target activity with such a wide 66

ion channel diversity? Using a spike-feature-based multi-objective approach, we 67

generated large population parameter sets of dentate granule cell (GC) models 68

with different numbers of ion channel types in order to investigate the potential 69

advantages of ion channel diversity. We then tested to which degree the different 70

models could compensate for pathological channel loss. Furthermore, we inves- 71

tigated differences in functional parameter sets, taking into account stochastic 72

fluctuations in channel-coding gene expression. Finally, we studied the stability of 73

the different models against ion channel alterations due to e.g. protein turnover. 74

We found that in all cases the complete GC model with all ion channel types was 75

more robust, stable and had more valid parameter combinations than its reduced 76

counterparts. 77

5/52

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 21, 2022. ; https://doi.org/10.1101/2021.05.04.442120doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.04.442120
http://creativecommons.org/licenses/by-nc-nd/4.0/


Biophysical complexity supports robust function Schneider et al.

Figure 1. Simplified as well as realistic complex ion conductance-based models capture multiple
spiking features of real granule cells (GCs)
A, (Top) 3D-reconstructed mouse GC morphology used for our simulations (Schmidt-Hieber et al.,
2007). (Bottom) Spike features used to calculate the multi-objective fitness of the GC model. B,
Membrane potential during 200ms lasting current clamp of 90pA. The coloured curves show the
relative contribution of all implemented ion channels to the total inward (See next page)
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Figure 1. (continued) and outward current at each time step (during the second and third spike)
as a percentage of the total current. The black filled curves illustrate the total inward and outward
currents on a logarithmic scale. This plot was inspired by Alonso and Marder (2019).C, Contribution
of currents to total inward and outward current in reduced models and models that compensate for
the knock out of the BK (Left) and Cav22 (Right) channel. Similar visualisation and current injection
procedure as in B.

Results 78

We used a recently established multi-compartmental model comprising the 15 79

different voltage or calcium-dependent ion channels that were described in mouse 80

GCs (Beining et al., 2017). The model was specifically designed to reproduce the 81

results not of a single experiment but of a large series of experiments and was 82

based on raw electrophysiology traces. Its parameters were fitted to reproduce 83

the experimental data for a number of different reconstructed (see example in Fig- 84

ure 1A, Top, from Schmidt-Hieber et al., 2007) and synthetic neuronal morphologies 85

making the model robust within the GC morphological space. Furthermore, the 86

resulting model readily generalised to rat GCs as well as to adult born mouse GCs 87

(i.e. GCs from adult mouse neurogenesis) after incorporating the known changes in 88

morphology and ion channel composition. The model can therefore be considered 89

to be robust and comprehensive. This makes it an experimentally validated tool 90

to study the impact of complex ion channel compositions on robustness of the 91

spiking output. To this end, we employed a population (also called “ensemble” 92

or “database”) modelling approach, which allowed us to explore the multidimen- 93

sional parameter space in large populations of stochastically generated models 94

(Prinz et al., 2003; Gunay et al., 2008; Britton et al., 2013; Sekulic et al., 2014; Rathour 95

and Narayanan, 2019; Jedlicka et al., 2022). 96
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The GC model cost function 97

First, we developed a cost function for an automated evaluation of the validity of 98

diverse models, which differed in their ion channel combinations and densities. 99

Since no quantitative data exists on the particular expression of the various ion 100

channels in individual GCs, some form of fitting procedure of channel densities 101

was required in the construction of the GC model. The model consists of 27 conduc- 102

tance parameters, which precludes a comprehensive grid scan for parameter fitting 103

due to the long computing time in a 27 dimensional parameter space. The model 104

has therefore previously been largely tuned manually with expert knowledge 105

from GC biology. To assess the quality of any individual set of parameters more 106

automatically, we designed a fitness function that quantified the distance to experi- 107

mental spiking data and was inspired by approaches used previously (Druckmann, 108

2007; Beining et al., 2017, see Methods, Figure S1). A number of different methods 109

have been proposed to quantify the quality of a set of parameters in relation to 110

neuronal activity (Achard and De Schutter, 2006; Bahl et al., 2012; Keren et al., 2005; 111

Vanier and Bower, 1999). While most studies focus on reproducing an average 112

electrophysiological activity pattern, we wanted to focus on the distribution of 113

valid parameter combinations in the GC model taking into account the variability 114

present in experimental data. 115

We therefore used a multi-objective fitness function based on spike features, which 116

allowed us to search for optimal trade-offs between different firing properties 117

(Druckmann, 2007). We extracted 9 different spiking features from raw electrophys- 118

iology traces during a 200ms current clamp injection with 50 and 90pA at the soma 119

(Figure 1A, Bottom, see Methods). We then compared the values for these features 120

between the model and the experimental data. To generate a population of GC 121

model instances that reflected the full range of firing properties, we calculated the 122

deviation from the experimental mean in units of experimental standard deviation 123

(SD) (Druckmann, 2007). In order to become a valid parameter combination in the 124

GC model, the error value was required to be less than two SDs away from the 125
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experimental average of each feature. 126

A manual search for parameter sets fulfilling this requirement was very time- 127

consuming and could never be exhaustive. There are various automated parameter 128

search methods, such as gradient descent methods, genetic algorithms, simulated 129

annealing, and stochastic search methods, which make the search for parameters 130

more efficient (Vanier and Bower, 1999; Mitchell, 1998; Kirkpatrick et al., 1983; 131

Press et al., 2007). Since we were starting from a valid parameter combination, 132

we decided to use a gradient descent algorithm (Press et al., 2007) in combination 133

with random parameter space exploration (see Methods). This method also led 134

to good parameter combinations within a few iteration steps when starting from 135

random parameter sets for which the model deviated from the experimental results. 136

By combining random parameter exploration with a gradient descent method, 137

parameter combinations could even be found when starting from initial parameter 138

sets for which the models produced no spikes at all (Figure S2). 139

Reduction of channel diversity 140

Electrophysiological signatures of neurons of the same class are often unique 141

allowing a loose classification of cell types by their electrophysiology. However, 142

the spiking mechanisms often include multiple ion channels with overlapping 143

functionality to achieve these specific spiking behaviours (Coetzee et al., 2006; 144

Olypher and Calabrese, 2007; Marder, 2011; Bean, 2007; O’Leary et al., 2014; Drion 145

et al., 2015; Goaillard and Marder, 2021). Thus, an important question is, how 146

many channels are functionally necessary for a given cell type. We addressed this 147

question in GCs whose membrane contains a large palette of voltage- and calcium- 148

dependent conductances (Beining et al., 2017). The compact activity together with 149

the multitude of ion channels in the corresponding GC model (Figure 1C) suggests 150

that a reduction of channels without losing accurate model performance might be 151

possible. Therefore, we explored this possibility by incremental simplification of 152

the GC model. First, we reduced the number of voltage-dependent conductances 153
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in the highly detailed multi-compartmental model of GCs by 6 channels (removing 154

Cav12, Cav13, Cav32, Kv11, Kv14, SK, Figure 1C, Leftmost). This left a total of 13 155

parameters when expression in the different regions of the neuron are taken into 156

account. Thereupon, we gradually reduced the number of remaining channels to 157

a minimum of 5 ion channels (9 total parameters, leaving only the leak channels 158

pas, as well as Kir21, Na8st, BK and Cav22) finding parameter combinations that 159

satisfied our cost function using the search algorithm (Figure 1C, Center left). 160

To visualise the contribution of individual currents to neuronal model activity, we 161

employed a recently developed method of plotting the time course of the relative 162

contribution of each ionic current (Alonso and Marder, 2019). Overall, as expected, 163

the electrophysiological activity of the different valid models in Figure 1C was 164

similar (for overview, see Figure S3). Despite the large variations in the number of 165

ion channels, the course of the total inward and outward current flow displayed 166

only slight changes between the three different baseline models (Figure 1B, C). 167

Since GCs have a relatively simple electrophysiological repertoire (nevertheless 168

responsible for sophisticated integration of excitatory and inhibitory information), 169

a small number of membrane time constants was sufficient to generate adequate 170

firing patterns. The presence of K+ and Ca2+ channels with overlapping physio- 171

logical functionality ensured that many of the channels were not crucial for the 172

maintenance of functional activity. Only the composition of the inward and out- 173

ward currents differed. In the 5−channel model, the calcium-sensitive potassium 174

channel (BK) took over the role that 8 different K+ conductances had shared in the 175

non-reduced model (Figure 1C). BK thereby became the only remaining K+ channel 176

overall. In interaction with the Ca2+ conductances (Cav22), the BK channel was 177

responsible for repolarising the membrane potential following an action potential 178

in the 5−channel model. 179

Recent experimental and theoretical studies demonstrated that neurons can com- 180

pensate for pathological changes such as channel loss, genetic overexpression, 181

morphological changes or increased input activity by up- and downregulation of 182

the remaining ion channels (Guo et al., 2005; Nerbonne et al., 2008; Aizenman et al., 183
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2003; Turrigiano et al., 1999; O’Leary et al., 2010; Young et al., 2009; Stegen et al., 2012). 184

This ability should be impaired in the reduced model where less redundancy exists. 185

Indeed, we found that blocking the BK or N-type Cav22 channels in the full model 186

was readily rescued by contributions from other channels (Figures 1C, Right). It is 187

noticeable that the loss of the BK channel was compensated by a strong upregu- 188

lation of another calcium-sensitive channel (SK), as well as of voltage-dependent 189

potassium channels (Kv 7.2/3, Kv 1.1, Kv 2.1, Figure S4, Left). Neither loss of BK 190

nor Cav22 could be compensated for in the reduced 5−channel model since it had 191

only one active gating mechanism per ion type. Even the 9−channel model was not 192

able to compensate for the pathological loss of Cav22 or BK. As expected, therefore, 193

the full GC model’s diversity contributed to the model’s robustness with respect to 194

the loss of specific ion channels through existing ion channel redundancies. 195

Random parameter tuning as a viable approach to selecting GC 196

model 197

Even though small changes in the ion channel expression level can already lead 198

to drastic changes in neuronal activity, several experimental studies observed 199

that intrinsic properties of nerve cells can vary considerably across neurons of 200

the same type (Golowasch et al., 2002; Golowasch and Marder, 1992; MacLean et 201

al., 2003; Swensen, 2005; Schulz et al., 2006, 2007). Moreover, theoretical investi- 202

gations demonstrated that indistinguishable network and single neuron activity 203

can be obtained from a large variety of model parameter settings (Prinz et al., 204

2004; Golowasch et al., 2002). This raises the question of whether the diversity of 205

voltage- and calcium-dependent conductances has an effect on the variability of 206

valid parameter sets in the GC model leading to realistic spiking activity. 207

In order to check this, we first generated 20, 000 random model instances for each 208

of the three baseline models by randomly sampling the individual conductance 209

densities within a range between 0× and 2× the value in the baseline model. As 210

11/52

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 21, 2022. ; https://doi.org/10.1101/2021.05.04.442120doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.04.442120
http://creativecommons.org/licenses/by-nc-nd/4.0/


Biophysical complexity supports robust function Schneider et al.

the ohmic relations between current and voltage were consistent with experimental 211

results in all cases (see Figure S3B), we did not change the densities of the leak 212

channel or the inward-rectifying Kir21 channel, which primarily contribute to 213

the passive properties of the neuron. The population of functional parameter 214

combinations enabled us to calculate the Pearson’s correlation coefficient r for all 215

pairs of conductance density parameters. We found weak pairwise correlations 216

indicating low dependencies between each pair of channels and thus increasing 217

the robustness of the model (Figure S5). It is likely that higher-order correlations 218

are more prevalent in the higher-dimensional models, allowing for more different 219

solutions that compensate for fluctuations in the expression of a single channel. 220

The strongest pairwise correlation was observed between the expression levels of 221

the Na+ channel in the soma and in the AIS (r = −0.95). The sodium channel is 222

essential for spike initiation and its presence in different regions of the GC suggests 223

that compensatory mechanisms could simply be instantiated by maintaining a 224

balance between the same currents in different regions, which results in a significant 225

anticorrelation. Interestingly, the reduced models showed stronger and different 226

correlations between the channels than the full model. 227

In our selection of random parameter combinations, we found suitable models cov- 228

ering the entire sample range of the majority of parameters (Figure 2). In all cases, 229

the most constrained parameter was the density of the 8−state Na+ channel. This 230

channel models the behaviour of all Na+ conductances using a single maximum 231

conductance parameter (Schmidt-Hieber et al., 2007), so it is unsurprising that the 232

neuron’s behaviour is more sensitive to changes in this maximum. In addition, the 233

reduction of channel diversity in the 5−channel model limited the variability of 234

the calcium-dependent potassium channel BK (Figure 2, Right). Surprisingly, the 235

overall percentage of randomly selected parameter combinations that were valid 236

increased with the number of ion channels (Figures 3A, B, ∼ 0.7% with 5 channels 237

(for 9 total parameters), ∼ 3.3% with 9 channels (13 parameters), and ∼ 5.7% with 238

15 channels (27 parameters)). 239
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Figure 2. Valid parameter combinations in the fully complex model are well spread.
(Top) Activity traces of 4 randomly picked valid parameter combinations in each of the GC models
of different complexity. (Bottom) Coloured dots illustrate conductance densities of the four valid
parameter combinations shown in top traces. The grey violin plots delimit the entire range covered by
the valid parameter combinations. Conductances are weighted by the surface area of the corresponding
membrane regions.

The distribution of voltage- and calcium-activated channels in cell membranes 240

is under continuous regulation (Raj and van Oudenaarden, 2008; Gal et al., 2010; 241

Marder et al., 2014). On the one hand, the cell is subject to homeostatic regulation 242

maintaining its electrical activity despite changes in its environment and input. On 243

the other hand, the proteins are constantly exchanged during the lifetime of a cell. 244

In order to investigate the stability of the valid parameter combinations in the differ- 245

ent models in face of parameter perturbations due to e.g. protein exchange during 246

the lifetime of a cell, we performed random walks in the parameter space. Starting 247

from a valid parameter set that accurately reproduced the experimentally derived 248

behaviour, we iteratively changed each parameter by random steps between −5% 249

and +5% of the current parameter values (counting changes in all parameters as 250

one step). The random walk stopped as soon as the parameter combination became 251

invalid, i.e. the cost function for the resulting model increased beyond 2 standard 252
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deviations away from experimental results. Interestingly, the average number 253

of possible random parameter changes before model failure increased with the 254

number of ion channels in the models (Figure 3C). 255

Toy model points to law of large numbers 256

As shown in the previous sections, we observed an increase in valid random param- 257

eter sets when biophysical models of neurons became more complex. One possible 258

explanation could be the fact that the more complex models included different ion 259

channels of a similar type. Since some of these ion channels show very similar 260

gating dynamics (see for example Cav22, Ca12 and Cav13, see Figure 1) their 261

functional contributions may be partially redundant. A theorem from probability 262

theory, namely the law of large numbers can play a role under such circumstances. 263

The law of large numbers states that increasing the number of samples (in our 264

case ion channels of a similar type) described by a random variable will move 265

the average over the samples closer to the expected mean value. For example, 266

throwing multiple fair dice with sides numbered between 1 and 6 and adding 267

the results will tend to give a result that is relatively closer to the expected value 268

(the number of dice multiplied by 3.5) as more dice are used. Since in our case 269

we sample conductances of similar ion channels, the average conductance would 270

therefore converge towards the starting parameter set that we know is functional. 271
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Figure 3. Valid parameter combinations in the fully complex model are more stable as compared
to reduced models.
A, Percentage of valid random parameter combinations in the total population in the 2−fold range.
B, Percentage of valid random parameter combinations in samples with different ranges around the
valid reference parameter combination. Each sample contained 5, 000 parameter combinations. C,
Random walk through the parameter space starting from valid combinations in models of different
complexity. Relative percentage distribution of the maximum number of random steps the respective
models could undergo without losing their valid GC spiking behaviour. Bin size is 4 steps. Asterisks
indicate mean number of steps the corresponding models could undergo while maintaining realistic
activity. Performed for 2, 000 repetitions per model. A–C, Colours were Green: full model, Orange:
9−channel model, Purple: 5−channel model. D, Reproduction of A–C with a toy model representing
the model result as the average value of 1 (blue), 5 (red) and 8 (green) uniform random variables
between 0 and 2. Bottom panels, Illustration of how the distribution of solutions becomes narrower
when the number of variables is increased. This effect is explained by the law of large numbers while
the Gaussian distribution results from the central limit theorem.
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In order to illustrate this we designed a simple toy model using random variables 272

for each parameter. Here, we represented each open parameter of the model by 273

one random variable with a homogeneous probability of throwing any number 274

between 0 and 2 corresponding to the parameter ranges used in the neuronal 275

model between 0× and 2× the default value (Figure 3D, Bottommost). To keep 276

things simple for explanatory purposes, we set the model outcome to be the 277

statistical mean of the values of all separate random variables. The law of large 278

numbers predicts a decreasing variance of the mean value with an increasing 279

number of independent random variables as illustrated in the sketch at the bottom 280

of Figure 3D. The central limit theorem in turn predicts a Gaussian distribution for 281

this mean over a broad range of different probability distributions for each random 282

variable separately. In analogy to our neuronal modelling, we then constrained 283

valid parameter combinations by a cost function allowing a maximal distance of 284

0.015 from the mean value, i.e. 1, averaged over all random variables. 285

The analogy here is limited since, in contrast to the channels in the GC model, all 286

variables in our toy model are functionally the same and independently regulated. 287

Moreover, the GC compartmental model applies complex nonlinear and dynamic 288

transformations of the starting parameter space, including distinct jumps in the cost 289

function when the model no longer produces action potentials, to reach the cost (or 290

function) space; in the toy model the parameter and function spaces are effectively 291

indistinguishable. However, despite its simplicity, our toy model was able to 292

qualitatively reproduce all results from our GC model in Figure 3A–C (Figure 3D). 293

Adding correlations to the parameter space does not qualitatively change the 294

results (Figure S6A). An important observation here is that the constraint on 295

functionality implies negative correlations between the values of the individual 296

random variables that make up valid points in the parameter space, despite these 297

variables being generated independently or with positive correlations. In fact, 298

under the toy model framework, the pairwise correlations within variables that 299

produce valid models are almost completely independent of any correlations used 300

to generate the overall population from which valid models are drawn (Figure S6B). 301
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The output correlations are instead dependent on the number of variables, with 302

higher numbers of variables leading to weaker pairwise correlations. This result 303

agrees with the finding of stronger pairwise correlations between channel densities 304

in the 5-channel model compared to the full compartmental model (Figure S5). 305

The law of large numbers therefore provides a plausible explanation why a larger 306

number of random instances in the more complex neuron model would more 307

readily linger around their target functionality. 308

Additional model robustness through artificial ion channel iso- 309

forms 310

We have shown that the electrophysiological behaviour of GCs can be maintained 311

despite a reduction of ion channel diversity from 15 channels to 5 channels. How- 312

ever, our results also suggest that this loss of ion channels goes along with a 313

decrease in stability, a loss of compensatory opportunities, and a significant de- 314

crease in the valid model percentage within a randomised sample. From our toy 315

model based on probability theory we postulate that it might be the mere number 316

of ion channels that contribute to the increased robustness observed in the full 317

model rather than the particular ion channel composition present there. In order to 318

validate this hypothesis, we chose to start from the reduced model and increase 319

the number of ion channels in an artificial way to check whether we could recover 320

the robustness present in the realistic full model. 321

In order to establish a quantitative relation between channel diversity and model 322

stability in such a way, we scaled up the 5−channel model’s diversity by adding 323

more instances of the calcium (Cav22) and potassium channels (BK) remaining 324

in that model. These artificial isoforms of the existing ion channels distinguished 325

themselves from the original Cav22 and BK by randomised time constants (within a 326

two-fold range of the original parameters) to allow for different dynamics through 327

the new ion channel isoforms. 328
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Figure 4. Artificial expansion of ion channel diversity recovers and enhances the proportion of
valid parameter combinations in the reduced 5-channel model
A, Populations of expanded dentate GC models with 0 − 20 added artificial ion channel isoforms.
Left panel, The plot shows the percentage of functional parameter combinations in a population
of randomly sampled channel densities. Black dots show the populations where all ion channels
(including the 8−state Markov chain modelled Na+ channel) were sampled in a 0− 2× range. Blue
dots show the populations where only potassium and calcium channels were sampled in a 0 − 2×
range. Right panel, Similar plot as in Figure 3B for the black models from the left panel. B, Similar
overall analysis as in A but for a CA1 pyramidal cell model (Jarsky et al., 2005).

To examine the proportion of valid parameter combinations with increasing num- 329

ber of ion channels, we created a multitude of functional GC models with up to 20 330

additional ion channel isoforms (for 35 distinct channels in total). For each given 331

number of ion channel isoforms, we randomly sampled all conductance values 332

in a two fold range. Thereupon we selected the three parameter combinations 333

with the best fitness value for each number of ion channel isoforms and improved 334

their performance by applying a gradient descent algorithm. We then followed 335

the same procedure as in Figure 3. Using this approach, the percentage of valid 336

parameter combinations steadily increased with the number of additional ion chan- 337

nel isoforms until reaching a plateau between 15 and 20 additional ion channel 338

isoforms, for a total of 105 to 140 additional parameters (Figure 4A). To further 339

generalise our findings in Figure 4A we have applied the same procedure to a 340
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different neuronal model type, one simulating a CA1 pyramidal neuron (Jarsky 341

et al., 2005; Cuntz et al., 2021, Figure 4B). Viewed together, these results show the 342

major contribution of ion channel diversity by demonstrating that scaling up the 343

numbers of ion channels artificially in the reduced models leads to more frequent 344

valid parameter combinations. This is in line with the law of large numbers. 345

Discussion 346

In this study, we explored the complex landscape of valid parameter combinations 347

in a parameter space of a detailed multi-compartmental model of dentate GCs and 348

its simplified versions with reduced numbers of ion channels (Figure 1). We used a 349

population modelling approach (Gunay et al., 2008; Marder, 2011; Britton et al., 2013; 350

Sekulic et al., 2014) to find multiple ion channel parameter combinations for models 351

that successfully reproduced the electrophysiological data (Figures 2 and S1). We 352

show that the biologically realistic GC model (full model) with many redundant 353

ion channel types was more robust to ion channel perturbations than valid models 354

with reduced ion channel diversity. Importantly, noisy ion channel expression 355

simulated by random parameter combinations produced ∼ 6× more valid GC 356

model instances in the full model as compared to the reduced models (Figure 3). 357

The robustness in the reduced model was recovered when adding artificial isoforms 358

of existing ion channels (Figure 4) indicating that it is indeed the number of 359

channels that produces this effect. We argue that this increased robustness comes 360

in part from a direct consequence of basic probability theory. 361

Robustness through ion channel degeneracy in complex GC models 362

Most neurons contain more than a dozen different ion channels. While early 363

computational models implemented considerably fewer channels than known in 364

biology, more and more models exist that contain a realistic number of mechanisms 365
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(e.g. Beining et al., 2017; Hay et al., 2011). Although the different potassium chan- 366

nels in mammalian cortical neurons differ genetically, some are remarkably similar 367

in their functional contribution to the electrophysiological activity of neurons (Co- 368

etzee et al., 2006; Drion et al., 2015). This functional similarity is often referred to 369

as degeneracy (Goaillard and Marder, 2021) and is not a phenomenon restricted 370

to neurobiology (Edelman and Gally, 2001; Tononi et al., 2002). Depending on 371

the computations a neuron should implement, its dynamics only need to cover 372

certain relevant time scales, e.g. in the form of different time constants of its gating 373

variables (Gjorgjieva et al., 2016). Since five channels were sufficient to support re- 374

alistic voltage dynamics at relevant time scales, we were able to reduce the original 375

variety of ion channels without observing a significant loss in the performance of 376

the model. In our study, GCs with their compact electrophysiological repertoire 377

did not require a large variety of ion channels to reproduce their characteristic 378

activity patterns. To replicate the 9 experimentally derived spiking properties, the 379

models required only one active channel of each of the different subgroups of ion 380

channels (one Na+-, one K+- and one Ca2+-channel, as well as the leak channels; 381

Figure 1C). 382

Experimental as well as theoretical studies from the last decades revealed that phar- 383

macological manipulations like the blockage or upregulation of intrinsic or synaptic 384

mechanisms, resulting in a pathological cellular activity on a short timescale, can 385

be compensated by up- and downregulation of the remaining conductances on 386

a long timescale (MacLean et al., 2003; Swensen, 2005; O’Leary et al., 2014; Drion 387

et al., 2015; Guo et al., 2005; Nerbonne et al., 2008; Stegen et al., 2012; MacLean 388

et al., 2005). Interestingly, not all manipulations can be compensated by mecha- 389

nisms of homeostatic regulation (Zhang et al., 2003; Yang et al., 2022), indicating 390

differences in the capability of homeostatic compensation between ion channels as 391

well as types of neurons. As opposed to other studies using biophysically realistic 392

mechanisms of homeostatic intrinsic plasticity based on calcium signals (O’Leary 393

et al., 2013, 2014; Abbott and LeMasson, 1993; Golowasch et al., 1999; Liu et al., 394

1998; Franci et al., 2020; see also Yang et al., 2022), we decided to use a gradient 395
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descent approach to investigate the large and complex parameter space of possible 396

intrinsic compensations. We chose this mathematical approach also because the 397

biophysical mechanisms of intrinsic plasticity are not yet fully understood in detail. 398

The implementation of biophysically incomplete mechanisms of intrinsic plasticity 399

could lead to unnecessary limitations on the regulatory mechanisms and erroneous 400

conclusions. A homeostatic mechanism based on a single feedback signal (O’Leary 401

et al., 2013, 2014) that has been suggested to play a role in model robustness was 402

not compatible with our model in our hands since it decreased ion channel degen- 403

eracy. This is in agreement with a recent study (Yang et al., 2022) that provided 404

new insights into the complex relationship between ion channel diversity and 405

homeostatic co-regulation of ion channel densities. The study by Yang et al. (2022) 406

suggested the necessity of more than one master feedback regulator (i.e. more 407

regulators than just global calcium) for homeostatic feedback loops, which must 408

co-tune numerous degenerate and pleiotropic ion channels to achieve multiple 409

regulated functions or objectives (cf. Pallasdies et al., 2021; Jedlicka et al., 2022). 410

Viewed together, we believe that diversity and (multi-signal) feedback can act as 411

independent mechanisms to ensure viable and robust solutions to multi-objective 412

optimisation problems of neurons. 413

We demonstrated that the full GC model was capable of compensating the loss of 414

any potassium and calcium channels by up- and downregulation of the remaining 415

ion channels (Figure 1C). In contrast, the different reduced models relied on the 416

presence of certain indispensable ion channels, without which they could not 417

capture main electrophysiological characteristics of GCs. Figure S4 shows that 418

there can be as much as a 20−fold variability in the density of voltage-dependent 419

ion channels. Experimental studies have observed variations of a similar order of 420

magnitude as a result of compensatory mechanisms (MacLean et al., 2003). The 421

ability of these models to compensate for losses of ion channels can be attributed 422

to the overlapping or degenerate physiological function of the present potassium 423

and calcium channels (Mishra and Narayanan, 2021). 424

The reduction of the diversity of gating mechanisms goes along with a loss of space 425
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to manoeuvre in the process of achieving functional target activity (O’Leary et al., 426

2013; Drion et al., 2015). In case of a loss of the BK channel, several potassium 427

channels (see Figure S4) were upregulated, and thus maintained the functional 428

behaviour of the cell. In line with the concept of degeneracy (Druckmann, 2007; 429

Aizenman et al., 2003), the overlapping functionality of different channels enabled 430

the neuron, depending on the given conditions, to achieve a target spiking be- 431

haviour in a number of different ways. 432

In addition, we tested the stability of the differently reduced models against ran- 433

dom parameter perturbations, in order to simulate putative protein exchange 434

during the lifetime of a cell. The ongoing protein replacement is one of the rea- 435

sons for the continuous regulation of voltage- and calcium-dependent channels 436

in cell membranes (Raj and van Oudenaarden, 2008; O’Leary et al., 2014; Gal et 437

al., 2010). Although no homeostatic tuning mechanism with dynamic feedback 438

was implemented, valid parameter combinations in the complete model were able 439

to endure far more random parameter perturbations while maintaining realistic 440

activity than the ones in the reduced models (Figure 3C). This is in agreement with 441

experimental studies, which have shown that, although homeostatic tuning rules 442

can compensate for many perturbations and knock-outs of ion channels, not all 443

channel deletions and perturbations can be compensated for (Zhang et al., 2003). A 444

challenge for future experimental work will be to uncover the long-term effects of 445

ion channel knock-outs in GCs in order to find out whether our theoretical results 446

of the outstanding robustness of GCs against channel deletions can be observed in 447

biology. 448

Random parameter selection as a viable fitting strategy for neurons 449

Like many biological processes, gene expression is a largely stochastic process 450

resulting in considerable heterogeneity of mRNA and protein levels (Raj and van 451

Oudenaarden, 2008; Gal et al., 2010; Sigal et al., 2006). This noise in gene expression 452

is one reason for the cell-to-cell variability. However, noise in gene expression 453
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could be harmful for achieving functional parameter sets of ion channel expression 454

during developmental maturation or during pathological perturbations. Neurons 455

are thought to target certain desired set points (or set ranges) in the output space 456

(i.e. function or behaviour space) corresponding to valid points or subspaces in the 457

high-dimensional parameter space of expression levels of ion channels (Jedlicka 458

et al., 2022). Our simulations show that the subspace around these target values 459

in parameter space tends to be more densely filled with functional model param- 460

eters than non-valid parameters (Figure 3B), particularly in higher dimensions. 461

Accordingly, despite fluctuations, high-dimensional models are more likely to 462

end up in functional subspaces. Even without the implementation of homeostatic 463

regulation processes, the chance of obtaining a functional ion channel expression 464

level is relatively high. This implies that the degeneracy between ion channel 465

types and isoforms supports robust excitability profiles in neurons despite ran- 466

dom fluctuations in the expression of ion channels. Our computational analysis 467

indicates that a complex high-dimensional parameter space supports the stabil- 468

ity of neuronal excitability against perturbations that would push neurons into 469

non-functional subspaces. The reason is that the topology of the high-dimensional 470

space increases the likelihood of neurons returning into functional subspaces by 471

random ion channel parameter adjustments. An interesting extension would be to 472

compare the efficiency of activity-dependent regulation (O’Leary et al., 2014; Franci 473

et al., 2020; Yang et al., 2022) implemented with single or multiple homeostatic error 474

signals (Yang et al., 2022), with the multi-objective optimisation (Druckmann, 2007; 475

Van Geit et al., 2008; Pallasdies et al., 2021; Jedlicka et al., 2022) that arises naturally 476

from stochastically exploring high-dimensional parameter spaces. 477

Due to the diversity of electrophysiological mechanisms, the cell is able to generate 478

valid electrophysiological activity by random selection of parameters with a high 479

chance of success despite stochastic fluctuations in the expression of channel- 480

coding genes. We showed that there was a clear relation between the number of 481

intrinsic mechanisms and the chance to obtain a valid set of parameters from a 482

random sample around a valid point in parameter space that produces functional 483
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activity in output space (Figures 3A, B, and 4). Furthermore, we showed that 484

many other parameter combinations existed around such a functional point in 485

the parameter space that fulfilled our criteria for functional activity. While in a 486

random 0 − 2× fold sample of the initial model, about ∼ 5.7% of the parameter 487

combinations showed valid GC activity, this proportion decreased steadily to 488

∼ 0.7% with a reduction of the model (Figure 3A). In the closer surrounding of the 489

baseline models this difference was even more obvious. While in the unreduced 490

model in the close neighbourhood of ±20% of the initial parameter sets over 80% 491

of the models showed characteristic GC activity, in the heavily reduced model it 492

was only about 30% (Figure 3B). 493

Similar to Olypher and Calabrese (2007) and Achard and De Schutter (2006) we 494

showed that near each functional point in the parameter space many other pa- 495

rameter sets exist whose activity matches the activity of the original parameter 496

set (Figure S7 – S9). Instead of talking about parameter sets, one might rather 497

speak about subspaces that show functional behaviour. These subspaces can have 498

different densities of parameter sets showing characteristic electrophysiological 499

activity. This depends to a great extent on the diversity of the channels (Figures 3A, 500

B, and 4A, Left panel). Furthermore, different valid subspaces with the same 501

diversity differ in their density of functional solutions located in this subspace. In 502

order to be as robust as possible against perturbations and to simplify the process 503

of parameter fitting, it seems reasonable for a neuron to target as densely populated 504

a subspace as possible. 505

Ion channel correlations and random expression 506

When analysing the conductance values of the different types of ion channels in 507

the valid models, we observed that some pairs of ion channels shared significant 508

correlations (Figure S5, Red squares). This is in line with experimental studies 509

of cell-to-cell variations in ion channels showing that some ion channels are co- 510

expressed and might be co-regulated (Schulz et al., 2006, 2007; Khorkova and 511
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Golowasch, 2007; Tapia et al., 2018; Iacobas et al., 2019; Fujita et al., 2020; Kodama et 512

al., 2020). Future large-scale analysis of channel expression in real populations of 513

GCs might validate the diversity of and correlations between expression levels in 514

our population models. 515

In our simulations, the ion channel correlations arose from constraints on the 516

resultant functionality because our model-generating strategy sampled the ion con- 517

ductance levels independently. Although our population modelling was inspired 518

by random noise in gene expression, it does not imply that random noise is the only 519

or predominant source of cell-to-cell variability in ion channel expression. Since the 520

above mentioned experimental studies found ion channel co-expression, it is likely 521

that a great amount of the cell-to-cell variability in ion channel expression is due 522

to transcription regulatory mechanisms, and only to some extent to the unreliable 523

and noisy nature of gene expression mechanisms. Moreover, the widespread ion 524

channel co-variations, which suggest structured ion channel expression in high- 525

dimensional space, might arise potentially from homeostatic feedback mechanisms 526

(O’Leary et al., 2013, 2014; Franci et al., 2020; Yang et al., 2022; see above). These ob- 527

servations and models do not undermine our modelling strategy, but complement 528

and extend our assumption that some of the variability in ion channel expression 529

is due to intrinsic noise in the expression machinery. 530

Probabilistic toy model and law of large numbers 531

We have put forward the law of large numbers as a possible explanation for our 532

observations in the GC model. As a consequence of the law of large numbers, a 533

model containing more ion channels tends to exhibit a behaviour that is closer 534

to its expected target behaviour (Figure 3). Accordingly, we were able to recover 535

the amount of robustness observed in our full model when adding artificial ion 536

channel isoforms (Figure 4). This is a strong indicator that indeed the number of 537

ion channels and not their specific composition leads to the effect that we observed. 538
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However, this interpretation is not mutually exclusive to the complementary in- 539

sight from biophysical modelling that 15-channel model is more robust than the 540

5-channel one due to the increasing timescale and voltage coverage with the in- 541

creasing number of ion channels (due to the partial, but not complete, redundancy 542

between similar ion channels). The abstract toy model does not account for these 543

two (time and voltage-related) mechanistic aspects but offers an intuition for the 544

impact of the number of ion channel instances and their stochastic variation. The 545

increase in the number of identical random variables in the toy model is analogous 546

to the increase in the number of random instances of different ion channels. The 547

main biological insight from the toy model is that if neuron samples conductances 548

of similar ion channels around a functional point in parameter space, with the 549

increasing number of channels the average conductance will converge towards 550

the valid parameter set that produces functional behaviour. In summary, both 551

biophysical and toy models indicate that the large number of ion channel subtypes 552

and isoforms expressed by a neuronal type supports the tuning and robustness of 553

the electrophysiological phenotype. 554

Conclusions and outlook 555

Overall, our results suggest that the diversity of ion channels allows for increased 556

robustness and higher flexibility of finding a solution in the complex parameter 557

space of a neuron’s excitability. It will be interesting to investigate whether our 558

findings here translate to other biologically complex systems, in which case they 559

will most likely affect our general understanding of how evolution deals with 560

complex organisms. 561

26/52

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 21, 2022. ; https://doi.org/10.1101/2021.05.04.442120doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.04.442120
http://creativecommons.org/licenses/by-nc-nd/4.0/


Biophysical complexity supports robust function Schneider et al.

Acknowledgments 562

This work was supported by BMBF (No. 01GQ1406 - Bernstein Award 2013 to HC, 563

No. 031L0229 - HUMANEUROMOD to PJ) and by funds from the von Behring 564
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The granule cell (GC) model 582

The GC model used in this study has been fully described in (Beining et al., 2017). 583

Briefly, the model was designed to reproduce passive and active GC properties as 584

determined by voltage and current clamp experiments, dendritic patch recordings 585

of bAPs, and intracellular calcium imaging. In order to reduce the number of 586

parameters and to speed up simulations we simplified the morphology by deleting 587

the artificially added axon. The loss of the axon was compensated by slight changes 588

of the maximum conductances in the axon initial segment (AIS). Since the HCN 589

channel in its original form had no influence on control GC activity, we did not 590

take it into account. The compartment-specific distributions of ion channels are 591

shown in Table S1. Detailed descriptions of the individual ion channels can be 592

found in Beining et al. (2017). We used a realistic three-dimensional granule cell 593

morphology from Schmidt-Hieber et al. (2007). 594

Stimulation protocols and cost function 595

Instead of using a single optimal error function, we decided to adopt a strategy 596

that allows to take into account several potentially important properties of GC 597

activity. To get a first impression of the “goodness of a model”, we compared the 598

experimental (Mongiat et al., 2009) and the model spiking-properties following 599

a 200ms current injection of 50 or 90pA. The stimulation protocol was as follows: 600

50ms prerun without stimulation, followed by 200ms somatic current injection of 601

50 or 90pA followed by a 50ms long period without current injection. 602

We extracted the following 9 spiking properties (Figures 1A) from the raw traces 603

of current injections with 50 and 90pA: 604

1. Numbers of spikes fired within 200ms under current clamp. 605

2. Latency of first spike after stimulus onset in ms. 606
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3. The voltage threshold was defined as the voltage at which the rate of change 607

of membrane potential exceeded 15mV
ms

. 608

4. Average amplitude of spikes. 609

5. The fast after hyperpolarisation (fAHP) amplitude was calculated as the 610

voltage difference between the spiking threshold and the minimum potential 611

within 5ms after a spike. 612

6. Absolute value of fast after hyperpolarisation (fAHP) amplitude. 613

7. The action potential width was measured at half the height of the spike 614

amplitude. 615

8. Interspike interval (ISI) in ms between the first and second spike during 616

current clamp. 617

9. The adaptation index AI was calculated in the following manner: AI = 618

1− ISI1
ISIend

, where ISI1 is the first and ISIend the last ISI. 619

The spiking features for any given parameter combination in the model were then 620

compared with the same experimentally derived spiking features (Mongiat et al., 621

2009) and expressed in units of standard deviation. This approach allowed us to 622

take into account the intrinsic variability of each feature separately. The overall 623

fitness Fi of spike feature i was defined as: 624

Fi =
|SFi − SF i,exp|

SDi,exp

(1)

where SF i,exp refers to the average value of the spike feature i and SDi,exp to the 625

standard deviation of the spike feature i across all recorded GCs. The value of the 626

spike feature of the corresponding model for a given parameter combination was 627

SFi. For a parameter combination to be accepted as a valid combination, it was 628

required to fulfil the following condition: 629
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P = max

(
|SFi − SF i,exp|

SDi,exp

)
< 2, for i = 1, 2, ..., 9 (2)

The value of the Pareto efficiency P corresponded to the fitness Fi of the spiking 630

feature SFi that deviated most from the experimental average. 631

The search algorithm 632

To search for parameter sets that match our criteria for valid GC activity we 633

combined random sampling with a gradient descent algorithm. In order to search 634

for local minima we used a conjugate gradient descent technique (Press et al., 635

2007). Conjugate gradient descent techniques involve successive calculations of 636

local gradients followed by the exploration of the parameter space along a vector 637

derived from that gradient. Starting from a random or given point in the parameter 638

space, we calculated the gradients for each dimension with two sample points to 639

smooth the slopes. The algorithm evaluates the calculated gradients of the fitness 640

function in each dimension and moves in the direction of the steepest descent with 641

respect to the cost function. The sample points where calculated in steps of ±5% of 642

the corresponding parameter value. This procedure was then repeated until the 643

method converged to a local minimum of the corresponding Pareto efficiency P 644

(Equation 2). The successive line minimisation was done in conjugated directions, 645

so that the successive minimisations were as independent as possible. Theoretically, 646

this ensured that the parameter search found a local minimum of the target function 647

P . For some initial parameter combinations, large areas of the parameter space 648

were completely flat (i.e. the gradient was zero). This was especially the case 649

when the initial models showed no spiking activity (Figure S2B). In this case, 650

we increased the size of the iteration steps consecutively by ±5%. If still (after 651

increasing the step size to ±50%) no gradients other than zero were found or the 652

local minima did not fulfil the criteria of functional GC excitability, we randomised 653

the parameters in the next step in an iteratively increasing range (from ±10% of 654
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the corresponding parameter values in steps of ±10% up to ±50%). The gradient 655

descent algorithm was used to find the parameter settings of the reduced models. 656

Starting from the full model (Figure 1C, Table S1, S2 and S3), we gradually 657

reduced the number of ion channels, starting with the channels that influenced the 658

cost function the least. 659

Diversity expansion 660

In order to generate models with controllable amounts of ion channels we used the 661

reduced 5−channel model as a basis. We then produced multiple instances each 662

of the remaining potassium (BK) and calcium (Cav22) channels. Each artificial 663

channel form obtained in such a way was associated with a randomised time 664

constant between 0× and 2× the value in the original GC model to obtain altered 665

dynamics. Furthermore, we randomised the conductances and applied the search 666

algorithm to reproduce characteristic GC activity to derive all base models with 667

different complexities in Figure 4. 668

Toy model 669

We created a toy model to test whether the law of large numbers is a plausible 670

explanation for the phenomena we observed in the GC model. In order to mimic 671

the distribution of functional overlapping ion channel expressions in a population 672

of GC models around a genetically targeted functional set point we used randomly 673

uniformly sampled variables between zero and two (Figure 3D). A valid toy model 674

is defined as having a smaller average deviation from the mean (targeted value) 675

than 0.015. By decreasing the sample range around the mean in steps of 0.1 down 676

to a sample range between 0.9 and 1.1 we change the intensity of fluctuations 677

around the target point (Figure 3D). 678

To expand the toy model to account for possible intrinsic correlations in the expres-
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sion of ion channels (Figure S6), we used a Gaussian copula to impose a correlation

structure on the random variables with uniform marginals and specified pairwise

correlations. For a desired positive pairwise correlation ρ in a system of n variables

we generated an n × n correlation matrix R with elements Ri,j = ρ if i ̸= j and

Ri,i = 1. If a random variable u = (u1, u2, ..., un) and each ui is independently

uniformly distributed in the range [0, 1], then the correlated random variable v

with uniform marginals on [0, 1] is given by

v = ΦR

(
Φ−1(u1),Φ

−1(u2), ...,Φ
−1(un)

)
(3)

where ΦR is the cumulative distribution function of a multivariate Gaussian distri- 679

bution in n-dimensions with mean 0 and covariance matrix R and Φ−1 is the inverse 680

cumulative distribution function of a standard univariate Gaussian. Multiplying v 681

by 2 maps it back to the same space as the uncorrelated toy model. 682

Hyperplanes 683

To learn more about the relationship of the set of valid models, we created linear 684

combinations of our best solutions. This method was adopted from Achard and 685

De Schutter (2006) and allowed us to better estimate whether the solutions lie 686

on a common low-dimensional manifold within the high-dimensional parameter 687

space of the GC model variants (Figure S7 – S9). As a first step, we created 688

linear combinations out of weighted sums of a pair of solutions. We weighted the 689

parameters of the respective model between 0.1 and 0.9 with a step size of 0.1. The 690

weighting of the second solution was chosen such that the sum of the weights was 691

equal to 1. As soon as the Pareto efficiency of all evaluated linear combinations 692

fulfilled the criteria for characteristic GC spiking, we assumed that the respective 693

models were connected. In the next step, we created linear combinations of three 694

different valid solutions to visualise the hyperplanes in two dimensions. We 695

used several triplets of valid parameter sets and weighted two of them with 696

values between −1.5 and 2.5 using a step size of 0.04. The corresponding grid of 697
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combinations was visualised in a two-dimensional plot. The weighting of the third 698

selected parameter set was chosen in a way that the sum of all weights was equal 699

to 1. The hyperplanes consisted of several thousand points, whereby the parameter 700

sets with negative values were removed. As a result, each hyperplane had different 701

boundaries and thus a different size. Finally, for each of these points we ran 702

simulations and calculated their Pareto efficiency. The Pareto efficiency of the 703

models without spiking behaviour was set to 6, which explains the abrupt change 704

of colour on the right side of Figure S7. The colour selection of the plots allowed a 705

clear distinction between the valid (green) and the nonvalid (blue) models. 706
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Figure S1. Electrophysiological properties of mouse GCs.
Experimental data from (Mongiat et al., 2009). A, Voltage traces of eight different GCs during 200ms
current clamp injection of 90pA. B, Frequency of action potentials elicited by 200ms lasting current
injections (mean and standard deviation from raw traces, experimental standard deviation is shown as
grey patches). C, Current-voltage (I–V) relationships (mean and standard deviation from raw traces,
experimental standard deviation is shown as grey patches). D, Phase plots of the first action potential
during 90pA current clamp. Modified from Figure 2 in Beining et al. (2017).
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Figure S2. Gradient descent using multi-objective optimisation.
A, Temporal evolution of Pareto optimality (top, see Eq. 2) using the gradient descent method.
Solutions are considered valid once their Pareto optimality drops below 2 (dashed line). Initial
parameter combinations are random non-valid parameter combinations within a range between 0×
and 2× the value in the reference parameter set. (bottom) Voltage traces of the model with initial
parameter combinations (grey) and optimised parameters (green). B, Same as in A, but all initial
parameter combinations were in a similar order of magnitude of Pareto optimality with corresponding
models that did not even produce spikes.
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Figure S3. Comparison of the different GC models in Figure 1C.
A–D, Similar panels as in Figure S1 for the different models and respective parameter combinations
as in Figure 2A.
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Figure S4. Valid parameter combinations in models that compensate for the knock-out of the BK
(Left) and Cav22 (Right) channel.
Valid parameter combinations in the fully complex model are well spread and more stable as compared
to reduced models. Activity traces of 4 randomly picked valid parameter combinations in models
successfully compensating the corresponding knock-out (Top). Coloured dots illustrate conductance
densities of the four valid parameter combinations shown in top traces (Bottom). Violin plots show the
probability distribution of valid parameter combinations. Conductances are weighted by the surface
area of the corresponding membrane regions.
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Figure S5. Correlations between pairs of channel conductances in the different populations.
Significant correlations are highlighted by red boxes (p-value < 0.01). Pairwise correlations in
population of A, 15−channel models, B, 9−channel models, C, 5−channel models.
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Figure S6. Correlations in the toy model.
A, Effects of pairwise correlations on the proportion of valid models for different numbers of variables.
The 1 variable model is not plotted as it is not affected by correlations. All models converge to the
same point as their elements become perfectly correlated and the effective number of dimensions is
reduced to 1. B, Observed output correlations in valid models as a function of the pairwise correlation
used to generate the population from which valid models are drawn. For almost all input correlations
the observed correlation depends only on the number of variables.
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Figure S7. 2D illustrations of hyperplanes in the parameter space.
Hyperplane analysis inspired by Achard and De Schutter (2006) for the 15−channel model. A, The
hyperplane of B is shown in red as projection onto gNa8st,AIS vs. gSK2,AIS plane. 25 randomly chosen
valid parameter combinations are represented by dots. The blue hyperplane is parallel to the red
and is defined by the addition of 10% of the SD of all solutions (in every dimension). B, Hyperplane
defined by the three individuals on the red line in A. The Fitness of all points is colour scaled. The
three original individuals are highlighted as red dots. C, The red dots mark the places parallel to the 3
originally selected individuals.
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Figure S8. 2D illustrations of hyperplanes in the parameter space.
Hyperplane analysis inspired by Achard and De Schutter (2006) for the 9−channel model. A, The
hyperplane of B is shown in red as projection onto gKv34,AIS vs. gCav22,AIS plane. 25 randomly chosen
valid parameter combinations are represented by dots. The blue hyperplane is parallel to the red
and is defined by the addition of 10% of the SD of all solutions (in every dimension). B, Hyperplane
defined by the three individuals on the red line in A. The Fitness of all points is colour scaled. The
three original individuals are highlighted as red dots. C, The red dots mark the places parallel to the 3
originally selected individuals.
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Figure S9. 2D illustrations of hyperplanes in the parameter space.
Hyperplane analysis inspired by Achard and De Schutter (2006) for the 5−channel model. A, The
hyperplane of B is shown in red as projection onto gna8st,AIS vs. gCav22,AIS plane. 25 randomly chosen
valid parameter combinations are represented by dots. The blue hyperplane is parallel to the red
and is defined by the addition of 10% of the SD of all solutions (in every dimension). B, Hyperplane
defined by the three individuals on the red line in A. The Fitness of all points is colour scaled. The
three original individuals are highlighted as red dots. C, The red dots mark the places parallel to the 3
originally selected individuals.
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Name AIS Soma Dendrite

pas 6.593× 10−6 1.385× 10−5 1.385× 10−5

Kir 2.1 6.741× 10−5 1.415× 10−4 1.415× 10−4

Na8st 0.614 0.1478

Kv 1.1 2.76× 10−4

Kv 1.4 1.77× 10−2

Kv 2.1 0.0022

Kv 3.4 0.6987

Kv 4.2 0.0039

Kv 7.2/3 0.0031

Cav 1.2 3.1× 10−4 7.1× 10−5 2× 10−5

Cav 1.3 5.48× 10−6 2.5× 10−5 3.7× 10−6

Cav 2.2 3.19× 10−7 7.4× 10−5 5.8× 10−6

Cav 3.2 1.22× 10−5 1.6× 10−5 3.8× 10−5

BK

α 0.0018 9.3× 10−4

β 0.51 0.0148

SK2 1.1× 10−5 3.7× 10−8 8.5× 10−7

Table S1. Summary of ion channel densities and models implemented in the
15−channel model.
Ion channels and their expression profiles in the corresponding morphological compart-
ments. Conductance densities are given in units of mS/cm2.

50/52

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 21, 2022. ; https://doi.org/10.1101/2021.05.04.442120doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.04.442120
http://creativecommons.org/licenses/by-nc-nd/4.0/


Biophysical complexity supports robust function Schneider et al.

Name AIS Soma Dendrite

pas 6.593× 10−6 1.385× 10−5 1.385× 10−5

Kir 2.1 6.741× 10−5 1.415× 10−4 1.415× 10−4

Na8st 0.4925 0.0881

Kv 2.1 0.0071

Kv 3.4 0.0339

Kv 7.2/3 0.0074

Kv 4.2 0.0022

Cav 2.2 4.77× 10−11 4.5× 10−4 3.56× 10−5

BK

α 1.25× 10−7 0.0043

β 0.0148 0.0156

Table S2. Summary of ion channel densities and models implemented in the 9−channel
model.
Ion channels and their expression profiles in the corresponding morphological compart-
ments. Conductance densities are given in units of mS/cm2.
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Name AIS Soma Dendrite

pas 6.593× 10−6 1.385× 10−5 1.385× 10−5

Kir 2.1 6.741× 10−5 1.415× 10−4 1.415× 10−4

Na8st 0.306 0.119

Cav 2.2 5.82× 10−15 8.64× 10−4 1.22× 10−4

BK

α 1.16× 10−7 0.0132

β 1.321 0.0185

Table S3. Summary of ion channel densities and models implemented in the 5−channel
model.
Ion channels and their expression profiles in the corresponding morphological compart-
ments. Conductance densities are given in units of mS/cm2.
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