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Abstract

The knowledge that brain functional connectomes are both unique and reliable has enabled

behaviourally relevant inferences at a subject level. However, it is unknown whether such “fingerprints”

persist under altered states of consciousness. Ayahuasca is a potent serotonergic psychedelic which

elicits a widespread dysregulation of functional connectivity. Used communally in religious ceremonies,

its shared use may highlight relevant novel interactions between mental state and FC inherency. Using 7T

fMRI, we assessed resting-state static and dynamic FCs for 21 Santo Daime members after collective

ayahuasca intake in an acute, within-subject study. Here, connectome fingerprinting revealed a shared

functional space, accompanied by a spatiotemporal reallocation of keypoint edges. Importantly, we show

that interindividual differences in higher-order FCs motifs are relevant to experiential phenotypes, given

that they can predict perceptual drug effects. Collectively, our findings offer an example as to how

individualised connectivity markers can be used to trace a subject’s functional connectome across

altered states of consciousness.
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Introduction

The uniqueness of one’s brain connectivity profile is being increasingly recognised as a ubiquitous

principle of connectomics. Akin to the ridges and furrows that comprise our fingerprints, functional

connectivity patterns derived from functional resonance magnetic imaging (fMRI) data, also known as

functional connectomes (FC)1, have been found to be stable across a lifetime 2 and hold explanatory

power for robust inferences at a single-subject level 3. Evidence has shown complex behavioural

phenotypes such as cognition 4, demographics 5, traits such as fluid intelligence 6 or personality 7, and

even clinical outcomes 8 can be reliably predicted from FCs alone. This observation has led to calls to

move away from group-level inferences and towards interindividual differences prior to drawing

conclusions on the generalisability of brain activity 9,10.

In recent years, efforts have been underway to develop the field of “brain fingerprinting” 11. First

exemplified by Finn et al., individual subjects were shown to be readily distinguishable from a set of FCs

based on their correspondence 12. Since then, work has demonstrated that an individual's connectome

fingerprint across sessions can be separated into signalling motifs reflecting both trait intra-subject and

state-dependent inter-subject variance 13,14, reproducible across modalities 15,16, acquisition methods 17-19

and durations 11,20,21 . These findings have contributed to the notion that, across mental states, there

exists an “intrinsic'' functional network architecture which is inherent to brain function and exhibits

subtle variations among individuals 22-24. That said, it is important to consider that these fingerprints of

brain organisation might not just be limited to the spatial organisation and independence of FC traits, but

likely also to their temporal quality 25. Spatiotemporal dynamics have been suggested to provide a

'common currency' for mental and neuronal states 26, with neural processing being organised across

timescales and increasing along the cortical hierarchy of information processing 27. According to this view,

shorter timescales in sensory areas facilitate the rapid detection and encoding of dynamic stimuli, which

are subsequently integrated by the slower dynamics of associative areas over longer time frames 28,29.

Much work has been concerned with understanding how such inherent connectivity might be

differentially altered according to a particular individual or mental state 15,24,30. However, there is little

evidence bridging these lines of research, particularly quantifying the variance associated with a subject

versus the brain state under which it is examined 31. Altered states of consciousness (ASCs) induced by

serotonergic psychedelics may provide a new means by which to probe the interdependency of unique

spontaneous brain activity and the functional brain organisation during a transient disruption.

Compelling evidence reveals agonism of the 5-HT2A receptor by hallucinogens holds a central role in

shaping drug-induced phenomena 32 and potentially the immanence of FC . Whole-brain modelling has

implicated 5-HT2A receptor distribution in shaping brain dynamics 33 whereas its stimulation enhances the

temporal diversity of brain activity 34.
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From this stem shifts in functional coupling between large-scale networks, ultimately diminishing

integrative processing across major brain networks 35. Within a hierarchical predictive processing

framework, these outcomes are hypothesised to be linked to the subjective experience via the

decreased confidence in priors encoded by functional hierarchies 36. Accordingly, it may therefore be the

case that stimulation of 5-HT2A receptors could perturb behaviourally relevant brain fingerprints

otherwise residing within high-order functional networks 37. Indeed, classical psychedelics have been

speculated to be potential therapeutic interventions by improving symptomatology through rebalancing

aberrant brain states 36,38,39.

A relevant practice that is purported to achieve a communal ASC is the religious use of the psychedelic

brew ayahuasca. Devised from a combination of two different plant sources, the vine Banisteriopsis

caapi and Psychotria viridis, ayahuasca produces a profound change to subjective experience, comprising

a diffuse state of cognition alongside complex changes to self-referential awareness, perception,

cognition, and mood 40. Whereas Psychotria viridis is a rich source of the potent 5-HT2A agonist

N,N‐dimethyltryptamine (DMT), Banisteriopsis caapi contains monoamine oxidase inhibitor (MAOi)

β‐carbolines such as harmine, harmaline, and tetrahydroharmine, serving to promote the bioavailability

of DMT 41 Historically, ayahuasca is used by syncretic religions such as Santo Daime to achieve personal

insight, intimacy and spiritual development 42 Members of the congregation drink ayahuasca (termed

Daime) communally in a ceremony referred to as the “works” (trabalhos). These are collective

endeavours performed by members of the congregation consisting of alternating periods of song, dance,

and attentive silence. Providing a formalised type of set and setting, members follow a prescribed

mental state with which to engage their symbolic and religious framework (doctrina) 43. This religious use

of ayahuasca might therefore provide a useful means by which to investigate the orthogonality between

trait and state FC under conditions in which an individual transitions from a normal, waking state of

consciousness to a shared altered state.

Here, we sought to understand how the inherency of a subject’s FC might alter under the altered state of

consciousness induced by the religious consumption of ayahuasca brew. Replicating the brain fingerprint

framework in Santo Daime members, we characterised changes to both static and dynamical

connectome identifiability at peak drug effects. Furthermore, we explored how changes to an

individual’s underlying functional connectivity might subsequently help explain aspects of their

subjective experience.
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Results

Experienced members of Santo Daime were enrolled in a fixed-order, within-subject, observational

study. Baseline resting-state fMRI was followed 1 day later with a second fMRI scan 90 minutes after

communal intake (i.e., peak effects). The study also entailed pharmacokinetic sampling, questionnaires

pertaining to retrospective drug effects and aspects of “work” during resting-state (see Methods). Of the

24 patients recruited, 3 were excluded due to excessive fMRI head motion. Demographic information

pertaining to the imaging sample can be found in Table S1.

Acute effects of Ayahuasca
Ayahuasca intake was associated with increased ratings on all (sub)dimensions of the 5D-ASC (M = 45.29

– 3.09, t(20) = 7.29 – 3.90, p < 0.001, d = 1.59–0.85), and for the EDI (M = 35.80, p < 0.0001, t(20) = 7.15,

d = 1.56). Tandem pharmacokinetic analyses also demonstrated serum concentrations of DMT (the

principal psychoactive constituent of ayahuasca) were significantly greater than zero at both 60 (M =

18.36 ng/ml, t(17) = 4.82, p < .0001, d = 1.14) and 160 minutes (M =7.30 ng/ml,, t(18) = 5.16 p < .0001, d

= 1.18)  after intake.

During resting-state acquisition, participants reported significantly more internal singing under

ayahuasca (W= 58, Z= 2.25, p= 0.0261, d = 0.63). Session recollection nor engagement in meditation

significantly differed between conditions (p > 0.05). A full characterisation of all inventories and serum

alkaloids can be found in the supplementary materials.

Quantifying whole-brain fingerprints

Connectome fingerprinting provides a window into the “uniqueness” of one’s functional connectivity
11,25,44. This approach stems from the simple assumption that a FC should hold greater similarity between

test-retest scans of the same subject than between different subjects 12. By computing an “Identifiability

matrix” we can extrapolate for a subject both inherent elements of functional connectomes (Iself) and

other more shared qualities (Iothers) which are otherwise state-dependent (see Methods, Fig.1). These

measures can be summarised as a differential identifiability score (Idiff) or, the difference between each

subject’s FC self-similarity against the other subjects’ FCs. As a first pass, we explored changes to

whole-brain fingerprints and their dynamical counterparts. We derived measures of identifiability for

static FCs (Fig.2) and their dynamic equivalents (Fig.3) by replicating our analyses across increasing

window lengths (70, 140, 210, 280 288, and 576s, with a fixed sliding window step of 7.2s). In each case

we also provide success rate (SR)12,13 as a supplementary assessment of identifiability.
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Figure 1. Connectome fingerprinting workflow. First, each subject fMRI timeseries is split into test vs retest halves.

For all subjects and sessions, dFC frames are computed for increasing temporal windows until tmax is reached.

Connectome fingerprints can next be calculated as the similarity in functional connectivity for all combinations of

FC test vs retest (within condition and between), yielding an identifiability matrix19 per timescale (left). Each colour

matched block reflects identifiability within a condition whereas colour mismatched (“hybrid”) blocks represent the

distance of each subject’s identifiability between conditions. This object allows us to compute for each subject: Iself

(represented by each diagonal element) denoting their similarity to oneself and Iothers (represented by each off

diagonal) representing their similarity to others, for both within and between conditions. In parallel, we can assess

the fingerprinting value of specific edges per condition and timescale by calculating their intraclass correlation

coefficient (ICC, right). We can next rank edges according to their ICC and iteratively calculate a compound measure

of Iself and Iothers (Idiff). This allows us to examine how edges "driving" one's fingerprint evolve under Ayahuasca.

Lastly, we can assess their experiential relevance by fitting an iterative multi-linear model comprising PCA-derived
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principal components (PCs) of their functional connectivity as predictors of interest. Decomposing their signal into

components ranked according to explained variance (PC1-3), the relevance of cohort-level (high-variance – PC1)

and individual-level functional connectivity information (low-variance – PC3) is simultaneously assessed, while

accounting for motion and “working”. At each step, model performance and generalisability are measured using

k-fold (K5) cross validation, yielding an optimal edge cut-off.

Static identifiability. As depicted in Fig.2B, sign-rank testing revealed the differential identifiability (Idiff)

of each participant was significantly diminished under ayahuasca (W = 53, Z = -2.17, p = 0.0298, d =

0.35). If we examine its constituents, this effect was driven by a significantly increased Iothers score (t(20) =

2.72, p = 0.0131, d = 0.59). In other words, participant connectomes significantly mirrored one another’s

under ayahuasca, depicted by the saturation of off-diagonal elements under Ayahuasca (Fig.2A).

Remarkably, subjects continued to retain high Iself (p > 0.05) and SR scores, reflecting a preserved

idiosyncrasy under Ayahuasca. It should be noted that each condition’s Idiff and SR scores were also

significantly greater than their null equivalents following permutation testing (p = 0.001, see Fig.S1).

Figure 2. Whole-brain measures of static identifiability. (A) shows the identifiability matrix (far left) at Tmax with

corresponding “standard” identification matrices for each condition expanded on the right. From hybrid off-block

elements one can also define the Iclinical for a participant as the average similarity of the individual connectome of a

subject with respect to the baseline. For all, differential identifiability (Idiff) values and success rates (SRs, where
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applicable) on top also provide complementary scores of the fingerprint level (see Methods). (B) Violin plots

highlighting the difference of each identifiability metric (Idiff, Iself, Iothers) between conditions. Hybrid counterparts are

also presented in respect to baseline. The boxplot extends from the lower to upper quartile values with a line at

the median; the whiskers extend from the upper/lower quartiles up to 1.5 times the interquartile range. Subjects

are represented with single points. Two-tail significance is denoted as follows: p < 0.05*, p < 0.01**, p < 0.001***.

We then examined how dissimilar might the constituents of a subject’s fingerprint be under ayahuasca.

Hybrid equivalents of our identifiability matrices (see Fig.1, Methods) enabled us to derive the “distance”

of each subject’s score from baseline. Doing so, we identified a greater dissimilarity between a subject’s

functional connectome under Ayahuasca and baseline, with both IselfHybrid (t(20) = -8.67, p < 0.0001, d =

1.89 and IdiffHybrid ( t(20) = -7.94, p <0.0001, d = 1.74) significantly reduced. In other words, while a

subject's similarity remains the same, their fingerprint makeup is reconstituted. This can be visualised as

the faded diagonals in the off block “Hybrid” elements of Fig. 2A.

Dynamic identifiability. Might specific timescales of neural processing account for these global

differences? Repeating this previous analysis across increasing window size, reveals an equivalent

pattern. As per prior work 25 , dynamic (Idiff) increased steadily with longer window lengths (Fig.3A) as a

by-product of the increasing number of timepoints for dFC computation with early dynamical

fingerprints (designated by clear diagonal elements) arising at shorter temporal intervals.
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Figure 3. Whole-brain measures of dynamic identifiability. (A) Dynamic identifiability matrices at five different

window lengths (70, 140,210,280 and 349s) for each condition. The dynamic differential identifiability (Idiff) values

and success rates (SRs) on top of each matrix provide two complementary scores of the fingerprint level of the

dataset across temporal scales (see Methods). (B) Violin plots highlighting differences in each identifiability metric

(Idiff, Iself, Iothers) per timescale. Each boxplot extends from the lower to upper quartile values with a line at the

median; the whiskers extend from the upper/lower quartiles up to 1.5 times the interquartile range. Subjects are

represented with single points. Two-tail significance is denoted as follows: p < 0.05*, p < 0.01**, p < 0.001***.

Replicating our analyses across each temporal scale, we observed the equivalent patterns of change. As

shown in Fig.3B, Idiff was significantly reduced under Ayahuasca in a temporally selective manner (across

140s-349s; max.220s: W = 51, z =-2.31, p = 0.0250, d = 0.41). This effect was partly accounted for by

Iothers increasing across select frames (210-349s max.349s: t (20) = 2.72, p = 0.0131, d = 0.59). Once

more, Iself was found to remain stable at all timescales (p > 0.05). For all windows, IselfHybrid was significantly

reduced under ayahuasca (max.210s: t(20) = 9.39 p < 0.0001, d = 1.74), as well as IdiffHybrid (max.140s:

t(20) = 9.81 p < 0.0001,d = 2.16).
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Select edges mediate reductions in connectome identifiability

Identifying global changes to each subject’s connectome fingerprint under ayahuasca, we then sought to

understand their spatiotemporal profiles. To do so, we applied an edgewise ICC to investigate the

fingerprinting value of edges (see Methods, Fig.1) pertaining to canonical resting-state networks (RSNs).

Static connectomes. We observed global reductions in ICC scores (W = 92864811, z = -7.5797, p <0.0001,

d = 0.05) under Ayahuasca. While this suggests a connectome-wide drop of temporal stability, individual

RSNs have varying levels of importance for fingerprints and may be differentially affected. For example,

note the poor identifiability of the limbic (L) network (Fig.4A). Focusing on network properties (Fig.4B),

within-network analyses revealed significant reductions in stability for the ventral attentional (VA. W =

8414, z = -4.05, p = 0.0014, d = 0.27) and converse increases for the dorsal attentional network (DA. W =

30021, z = 3.29, p = 0.0283, d = 0.20) under ayahuasca. In contrast, inspection of between-network pairs

reveals reductions in stability were primarily attributable to the visual (VIS) and VA functional subsystems

(W = 36803, Z = -11.54, p <0.0001, d = 0.49). Within these, certain edge pairs such as SM-L (W = 25535, Z

= 5.37, p <0.0001, d = 0.26) and VIS-DA connectivity (W =122508, Z = 4.18, p = 0.0008, d = 0.14) exhibited

greater stability under ayahuasca.
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Figure 4. Spatial specificity of connectome fingerprints. (A) Edgewise intraclass correlation (ICC) matrices per

condition. The ICC matrices are shown thresholded at 0.4. All 7 functional networks as defined by Yeo et al (see

Methods) are highlighted by black boxes: VIS = visual network; SM = somatomotor network; DA = dorsal attentional

network; VA = ventral attentional network; L = limbic network; FPN = fronto-parietal network; DMN = default-mode

network. (B) Differences in network ICC values between conditions. For each condition, ICC edgewise scores are

averaged across Yeo functional networks and compared using two-tail sign-rank testing. Approximated z-scores are

then extrapolated and plotted for ease of visualisation. (C) Identification of top fingerprinting edges. Idiff scores

were obtained by iteratively calculating identifiability matrices for each condition, ranked according to those

contributing the most to baseline identifiability (as per ICC values). Lines represent means, with shading reflecting

the standard deviation of Idiff across subjects at each step. (D). Nodal strength (sum across unthresholded ICC

matrix rows) across subsets of top fingerprinting edges per condition. For each render percentiles are shown (from

20th to 80th percentile). For all plots, two-tail significance is denoted as follows: p < 0.05*, p < 0.01**, p <

0.001***.

Given that subsets of highly synchronous edges are important contributors to normative connectome

fingerprints 11,13,25,44, we investigated how they might shift in importance under Ayahuasca. Ranking

baseline edges from most to least stable, we recalculated each subject’s identifiability 50 edges at a

time. Figure 4C shows that, while baseline, or “normative” identifiability can be maximised within 250
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edges, the contribution of these edges to fingerprinting drops markedly under ayahuasca (Idiff. t(249) =

-10.12 , p <0.0001, d = 2.38). Therefore, edges otherwise normally “driving” a subject’s identifiability are

no longer significant contributors when under the influence. Rather, a reconstitution of edge importance

becomes apparent when examining their nodal equivalents (Fig.4D). One can notice connections

implicated in hubs pertinent to DA, VA and SM networks are instead primarily replaced by those

pertinent to the DMN.

Dynamic connectomes. We then examined differences in spatial ICC patterns as a function of time by

repeating our analysis across each timescale. As window length increases, one can note different

networks appearing at different rates, such as the VIS network at shorter intervals or the DMN at slower

scales (Fig.5A). This gradient highlights the varying temporal prerequisites of RSN fingerprints 25Our ICC

analyses revealed global reductions in dFC stability across all measured timescales (max.70s : W =

79109036 z = -24.55, p <0.0001 d = 0.18) under ayahuasca.

As shown in Figure 5B, network-based analyses revealed diffuse changes to the stability of dynamic

functional connectivity under ayahuasca (for a full characterisation see tables S5.1-5). Novel reductions

in within-network edge stability were identified across increasing windows of time for: the DMN

(max.210s: W = 171684, z = -5.89, p <0.0001, d = 0.18); VA (max.280s: W = 6549, z = -5.31, p <0.0001 d =

0.37) and DA networks (max.70s: W = 8250, z = -4.39, p = 0.0003, d = 0.245). Contrarily, VIS network

edges exhibited greater stability at 280s (W = 48931, z = 3.52, p = 0.0122, d = 0.13). In parallel,

reductions in between-network edge stability populated all scales. This attenuation could be primarily

ascribed to edges involved in between-network SM and VIS connectivity (max.VIS-SM (70s): W = 82429, z

= -13.634, p <0.0001, d = 0.47). Furthermore, previously identified static increases in SM-L connectivity

stability were found to be time-dependent (280s. W = 18936, z = 3.62 p <0.0001 d = 0.16). We also

examined whether changes to dynamic connectivity of different RSNs (see supplementary materials)

might also help explain changes to the topography of edge stability. In this regard, while

between-network reductions in functional connectivity variability was observed, no clear association

could be ascertained (see Fig.S4).
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Figure 5. Temporal specificity of connectome fingerprints. (A) Edgewise intraclass correlation (ICC) matrices per

condition at each timescale. The ICC matrices are shown thresholded at 0.4, the cut-off for a reliable ICC score 72.

All 7 functional networks as defined by Yeo et al (see Methods) are highlighted by the black boxes: VIS = visual

network; SM = somatomotor network; DA = dorsal-attention network; VA = ventral-attention network; L = limbic

network; FPN = fronto-parietal network; DMN = default-mode network. (B) Differences in network ICC values

across timescales. For each condition and per window, ICC edgewise scores are averaged across Yeo functional

networks and compared using two-tail sign-rank testing. Approximated z-scores are then extrapolated and plotted

for ease of visualisation. Lighter hues reflect increases in ICC values under ayahuasca whereas darker ones reflect

diminishments under ayahuasca. (C) Temporal peaks of nodal stability. Maximum values across temporal profiles at

each brain node are overlaid onto a brain render to map the time scales of human brain fingerprints. The maximum

value for each brain node was derived from ICC nodal strength values (sum across ICC matrix rows) at each window

per condition. For all plots, two-tail significance is denoted as follows: p < 0.05*, p < 0.01**, p < 0.001***.

We next asked whether altered fingerprint dynamics under ayahuasca could also be reflected at a

regional level of brain organisation. Identifying each region’s ICC maximum, we summarised their
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temporal optimums as a brain render (Fig.5C). Typically, transmodal regions comprising association

cortices, “peak” at longer temporal windows whereas unimodal regions such as primary sensory areas,

arise early on 25. While this was the case at baseline, this temporal gradient shows an inversion effect

following intake, best demonstrated by regions such as the prefrontal cortex peaking early on or vice

versa for unimodal areas such as the visual cortex.

Connectome fingerprints are predictive of perceptual drug effects.
We lastly performed an exploratory analysis investigating the behavioural relevance of connectome

fingerprints. We hypothesised that highly identifying edges under ayahuasca could also predict

meaningful aspects of a subject’s subjective experience. To retain subject-level differences in edge

connectivity, we built an iterative multilinear model approach comprising PCA components of subsets of

edges as predictors of interest for our subjective effect measures. A K-fold cross validation revealed that

peak predictive performance for the 5D-ASC dimensions Visual Restructuralisation (VR) and Auditory

Alterations (AA) was achieved using the top 3000 most stable edges (see Figure S5.), with predictive

performance for all other outcome measures being no better than the null model.
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Figure 6. Peak predictive multi-linear model of subjective effects. Following an ICC derived feature selection

comprising k-fold validation and null-modelling (see Methods), 3000 edges were found to yield explanatory power.

(A) Visual restructuralisation (VR) peak performance model. Left: The additive linear model consists of two

nuisance variables (nScrub, Singing), and three PCA predictors (PC1-3); Right: Scatter plot of the Observed VR
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scores versus predicted model VR scores. (B) Auditory alteration (AA) peak performance model. As before, left:

incorporated predictors in an additive linear model, Right: observed vs predicted AA scores. (C) Nodal strength

(sum across rows) render of top predictive edges. Percentiles are shown (from 20th to 80th percentile). For all

panels, significant predictors are denoted as follows: p<0.05*, p<0.01** with β- indicating that its beta coefficient

is negative.

Other than three edge-based PCA components, each model also comprised two other predictors:

scrubbing and internal singing. We found that of all PCA components, only PCA3 significantly increased

the predictive power of the model for VR (F(4,20) = 1.98; R2 = 0.45; p = 0.0396; β = -5.59 ) and AA

(F(4,20) = 4.8; R2 = 0.70; p = 0.0016; β = -2.17. Together, this finding might reflect the fact that subsets of

edges are predictive of each dimension only when considering individual differences in functional

connectivity. Edges most implicated (top 80th percentile) were primarily found in FPN, DMN and DA hubs

as well as the regions pertaining to the VIS (Fig. 6C). This distribution is consistent with previous

literature indicating that sensorimotor networks exhibit lower inter-subject functional connectivity

variability than associative networks 45. As a precaution we also examined whether the motion (nScrub)

or shared behaviour (Singing) were relevant predictors, finding no significant contribution to model

performance.

Additional control analyses

For completeness, we performed a series of quality controls on our primary identifiability analysis. More

specifically, we (i) repeated our main analyses using censored fMRI timeseries, (ii) assessed differences in

motion metrics between conditions, (iii) examined split-half differences in primary motion outcomes per

scan, (iv) evaluated their association with all sFC and dFC identifiability outcomes. Our findings appear

robust to motion and replicable across different denoising strategies (Figure.S2).

Discussion

Here, we leveraged the understanding that an individual's functional brain connectivity profile is both

unique and reliable, to document how the inherent features of a subject’s functional connectome might

transition into a collective altered state of consciousness. Using the concept of connectome

fingerprinting outlined by Amico et al.11, in a cohort of 21 Santo Daime members taking part in the

religious use of ayahuasca, we were able to detect for each subject a significantly greater proportion of

shared functional connectivity traits across different timescales of neural processing. Furthermore, we

show that this shared variance is accompanied by the reconfiguration of keypoint edges pertinent to

higher-order functional subsystems, otherwise driving normative brain “fingerprints”. Equally, we show

that the instability of edges is likely relevant to experiential differences given that they can be used to
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predict aspects of an individual's subjective experience. Together, these findings may reflect the

presence of a common functional space among churchgoers, in which the general blueprint of a subject’s

inherent resting-state functional connectivity shifts to overlap with fellow members (see Fig.7 for an

analogy). Ultimately, subject-level approaches such as those presented herein highlight the potential to

discover personalised fMRI-based connectivity markers that may eventually be used to trace a subject’s

functional connectome across states of consciousness.

Figure 7. Outfit swap analogy of changes to subject variability under ayahuasca. In everyday life people rarely

dress one and the same. Ordinarily, an individual might choose their attire based on personal preference, such as a

colourful shirt. The colour palette that we might choose would represent our distinctiveness, in turn differentiating

us from others (Iothers). Throughout our day, Iothers might vary, given others with distinct preferences might come and

go. Now say in a different scenario, such as a Santo Daime ceremony, we were to abide by the dress-code of a

white uniform. Even if others might come and go, our similarity to others (Iothers) at the ceremony would be high

since the colour white is mandated throughout the event for all participants. However, if the uniform were to be

contrasted to daily life (IothersHybrid) we might find it to be just as dissimilar as any other coloured shirt that we might

come across on an average day. In parallel the constituents of our self-identity (Iself) may equally be denoted as a

unique pattern. Whereas their total variability is unlikely to change regardless of circumstance, an acute

perturbation by a pharmacological agent such as ayahuasca may lead to its reconstitution (IselfHybrid).

The collective use of ayahuasca yields shared functional traits

Whereas we found the Idiff of everyone’s connectome was diminished under ayahuasca, this reduction

could be ascribed to the increased contribution of Iothers. In other words, a subject's brain fingerprint

holds a larger number of shared functional traits under ayahuasca, diminishing its overall
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differentiability. When factoring in the practices of Santo Daime, this could echo the collective “works”

carried out by church members. While ayahuasca experiences are highly subjective, followers engage in

a set of stereotyped behaviours such as singing when under the influence. Evidence from classical

psychedelics suggests an ‘unconstrained’ state of cognition of few deliberate or automatic constraints,

featuring a large amount of hyper-associative thinking and diminished reality-testing 46. However,

contextual components may inherently tether these internal states and with that, their underlying FC

profile. Using cognitive strategies such as attentional deployment in order to attend to a religiously

meaningful world, members of Santo Daime might instead partake in a constrained state of cognition.

For example, prior imaging work with church-goers has previously drawn parallels with the induction of a

task-active state, exemplified by suppressions in DMN activity 47 normally associated with external

goal-directed attention such as task engagement or focused attention meditation 48,49. The overlaps

between serotonergic psychedelics and meditation are often a recurrent theme 50 and when studied in

tandem, have been shown to modulate subacute functional coupling of the DMN 51.

An interpretation could be that an internal labour bound by a religious framework is disseminated across

individual connectivity matrices akin to a common functional space. Tellingly, evidence from studies with

normative samples, show that the inter-subject variability of a sample is diminished when engaging in a

task battery, proportionally to cognitive load 14,31. Given increases in dIothers (and accordingly, reductions in

dIdiff) across temporal scales solely manifest beyond 210 seconds, shared functional traits could be

interpreted as indeed residing in previously identified timeframes at which complex cognition emerges
25. However, without future work disentangling the many spontaneous cognitive processes arising during

resting-state from specific patterns or windows of dynamic FC, the significance of this interpretation is

uncertain. More so than tasks, “ground truth” approaches for pharmaco-imaging such as films 52 or other

integrated designs 53 paired with subject-level dynamical analysis approaches 54 may hold promise in

tagging the behavioural relevance of dFCs for attention-impairing drugs such as these.

Constituents of connectome self-identity are mutable under ayahuasca

Studies have repeatedly demonstrated the remarkable consistency of inherent functional connectivity

patterns across participants and mental states 24,55. The majority of a subject’s uniqueness or

inter-session variance (between 63 and 87%) can be explained by commonalities in functional

connectivity architecture between states 14. Here, we show that contrary to a phenomenological loss of

self-identity, self-identifying connectivity is also preserved under ayahuasca. Psychedelics are described

to produce a wide-scale discoordination of brain activity 56,57 denoted by a structural-functional

uncoupling 58 . To take the view that fingerprinting comprises fixed anatomical loci which assimilate

several information sources to plan coherent behavioural responses 59 then their impaired integration as

observed under psychedelics should also lead to a diminished Iself. However, connectome fingerprinting

of clinical populations exhibiting structural-functional uncoupling show no differences in Iself against

healthy controls 60.  Instead, it is now known the total blueprint of functional connectivity does not

constitute discrete networks but is rather best described by more mutable local and global gradients 61

18

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.10.07.511268doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.07.511268
http://creativecommons.org/licenses/by-nc-nd/4.0/


which are likely susceptible to pharmacological perturbation. Indeed, our finding of diminished Iselfhybrid

may instead reflect a general functional reconfiguration of inherent signalling traits, synonymous with

the apparition of a novel functional connectivity architecture.

Local shifts in functional connectivity stability drive altered connectome fingerprints

At a fundamental level, we also looked at the edgewise contributors to identification which might explain

the observed reconfiguration of identifiability. Previous work has closely implicated temporal stability of

regional functional connectivity as driving connectome fingerprints 25. Using ICC, we observed global

reductions in edge stability at all measured timescales under ayahuasca, striking proxy of the patterns of

functional change under psychedelics. 5-HT2A agonists have been found to produce brainwide increases

in signal complexity 62,63. which may consequently limit the temporal concordance of edge pairs. Before

continuing, it should be noted that functional connectivity and ICC are not interchangeable but rather

complementary methods 64 and future work should continue to examine the mediating relationship

between the differing measures of complexity available, ICC and connectome identifiability 65.

Given that certain edges drive a subject's normative fingerprint, we examined how regional

contributions to identifiability evolve under ayahuasca. While a subset of 250 edges could maximally

define a subject’s fingerprint, their importance markedly dropped under ayahuasca. Disseminated across

higher-order association cortices these regions are shown to encode the majority of inter-individual

variance 12,37. Importantly, it has been previously hypothesised that the appearance of a desegregated

functional architecture under psychedelics stems from the impairment of these same functional

subsystems 35. However, frontotemporal DMN nodes central to the effects of hallucinogens 66 emerged as

the focal point for a subject’s identifiability under the influence, expressing greater stability. The DMN

has been implicated in different aspects of conscious experience, such as ongoing cognition 67,

spontaneous thought 68, rumination 69, and self-referential processing 70 and it’s select prevalence may

further highlight a diminished variability of subjective experience 71 .

These shifts in stability were also pronounced at a network level. While functional networks do not

equally contribute to an individual fingerprint, each functional subsystem is thought to have temporal

“peaks'' in stability 25,37. Here, links overall pertaining to VIS and SM between-network connectivity

exhibited greater desynchrony under ayahuasca, varying across all examined temporal windows. These

findings appear in line with patterns of hyper-connectivity in sensory networks that have been observed

under psychedelics 72,73, thought to reflect a de-differentiation of hierarchical organisation 74.

Furthermore, clustering-based dFC approaches with LSD and psilocybin have shown an increased

fractional occurrence and dwell time of alternating states of hyperconnectivity 33,75,76 which may account

for the stochasticity of edge stability at each temporal window. It could be therefore suggested that the

outcome of a dedifferentiation of functional hierarchies under psychedelics may also extend to their
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temporal organisation. Suggesting this, both ends of the continuum of hierarchical organisation became

temporally more similar to one another under ayahuasca; with unimodal regions (ie: parietal operculum,

visual cortex) associated with rapid multisensory processing now peaking in stability at longer timescales

and transmodal regions (ie: prefrontal cortex, posterior cingulate cortex) otherwise exhibiting longer,

integrative firing patterns maximal at shorter timescales. Applying approaches to examine the temporal

propagation and latency of brain activity 77,78 under psychedelics may highlight new explanations for their

effects on network architecture.

Connectome fingerprints are relevant to the subjective ayahuasca experience

Assuming ayahuasca experiences are highly individual, might subject-level shifts in functional

connectivity also help predict overlaying subjective experiences? To explore this hypothesis, we devised

a data driven PCA approach to assess the behavioural relevance of highly identifiable edges. Our results

suggest that subsets of highly stable edges not only drive a subject’s identifiability under the influence

but also hold explanatory power for the AUD and VIS dimensions of the 5D-ASC. In practice, by

decomposing the total variance of a FC signal to a reduced number of orthogonal components, PCA

offers the opportunity to separate the contribution of subject-level and group-level functional

connectivity information carried in low and high-variance components. If group-differences were highly

explanatory of experiential scores, then a single, highly explanatory factor (PC1) might have emerged as

a principal model contributor. Instead, our results were contingent on the inclusion of PC3 as a predictor

of interest, suggesting higher-order PC deviations capturing individual variation in FC were most relevant

to the visual and auditory effects of ayahuasca. Furthermore, predictive edges were found to span

primarily both higher order systems (DMN, FPN) and primary systems (VIS, SM), with the former

contributing more (in number) to behavioural prediction as per prior work 12,21,37. Given their

developmentally late maturation 79, susceptibility to individual environmental effects 80 and, dense

5-HT2A expression 81 and coordination of multisensory integration in comparison to primary systems 61 ,

higher-order regions may more easily account for divergent phenomena, more so than primary systems,

themselves partially influenced by the temporary states  of each individual during scanning 82.

Limitations

The present work comes with several limitations. Importantly, members of Santo Daime are not

reflective of the general population. Drinking ayahuasca several times a month, members likely exhibit a

level of habituation to the drug’s effect. Furthermore, 5-HT2A agonists are potent psychoplastogens 83

likely inducing structural alterations after prolonged use. For example, cortical thickness analyses of

Santo Daime members have demonstrated an association between significant thinning in midline

structures and self-transcendent personality traits 84. There is an abundance of studies showing how

between-subject differences in white matter integrity are intimately related to interindividual variability

in functional dynamics 85,86 and likely identifiability 87. As with observational studies, these findings are
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subject to confounding effects regarding dosage, blinding, sample inclusion criteria and expectancy.

Adequate blinding in studies comprising experienced users continues to be an unresolved factor in the

field, due to a subject's immediate recognition of a drug’s effect (or non-effect). This is further

accentuated here, given the ritual elements. Future studies with a larger diverse sample of ceremonial

users may benefit from not only counterbalancing and adequately blinding the agent in question, but

also surrounding practices mediating experiential outcomes. With regard to the methodology, it is

well-known that head motion due to its potential for skewing functional connectivity estimates 88,89 is

likely a confounder in the study of inter-individual differences 12. If treated as a “state” characteristic for

subjects, joint differences among members of a group might account for a proportion of

between-subject variability. Whereas numerous steps were taken to exclude its influence, it is unknown

to what degree factors such as motion, respiratory fluctuations or arousal level may prevail in shorter

dFC windows. Future studies should aim to replicate this workflow using framewise approaches such as

dynamic conditional correlations 90 or phase coherence estimation 91. Per prior work 25, preprocessing

was performed with a pipeline comprising Global Signal regression (GSR). GS is hypothesised to contain a

complex mixture of non-neuronal artefacts (e.g., physiological, movement, scanner-related) and its

removal, while effective, is widely debated In light of differing results for psychedelic effects on

resting-state measures 47,56,73 following its use, a consensus on the suitability of GSR alongside other

preprocessing steps for pharmacological neuroimaging should be reached 92.

Conclusion

In summary, the ritualistic use of ayahuasca produces a shared functional space, marked by a

spatiotemporal reconfiguration of brain connectivity traits. Members of Santo Daime pertain to a culture

which emphasises the interaction of a psychoactive sacrament with the interpersonal dynamics of

ritualism. Ultimately, it is likely the synergy of the two that produces the blurred connectome fingerprint

presented herein. An important next step is to replicate the presented approach to double-blind imaging

data with other classical psychedelics. It may very well be the case that for normative samples, the

opposite holds true, with interindividual differences being accentuated as a result of a diversified

content of thought. Going ahead, by celebrating individual differences in the study of subjective

experiences we may be a step closer to producing personalised neural markers of psychedelic effects.
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Methods

Participants

Twenty-four volunteers were enrolled in a within-subject, fixed-order observational study. Data from

three volunteers were excluded from analyses due to excessive head motion leaving a final sample of 21

subjects (10 females) of ages 29 to 64 (M: 54.48, SD: 10.55). The cohort consisted of experienced

members of the Dutch chapter of the church of Santo Daime. Individuals were selected based on an

exclusion criterion comprising absence of ferromagnetic devices/implants (MRI contraindications),

pregnancy and use of (medicinal) substances in the past 24 h. Detailed demographic information

pertaining to the final sample can be found in Table S1.

All participants were fully informed of all procedures, possible adverse reactions, legal rights and

responsibilities, expected benefits, and their right to voluntary termination without consequences.The

study was conducted according to the Declaration of Helsinki (1964) and amended in Fortaleza (Brazil,

October 2013) and in accordance with the Medical Research Involving Human Subjects Act (WMO) and

was approved by the Academic Hospital and University’s Medical Ethics committee

(NL70901.068.19/METC19.050).

Study procedures

Participants underwent two consecutive test days; one baseline (sober) followed by one under the

influence of ayahuasca.

Participants self-administered a volume of ayahuasca equivalent to their usual dose (mean 24ml, SD:

8.16), prepared from a single batch by the Church of Santo Daime and analysed according to prior

referencing standards (see Supplementary). As to facilitate the communal use of ayahuasca, participants

drank ayahuasca brew while initiating the works in company of fellow members. Participant dosing

schedules were stratified across each lab visit with testing performed within 4 pairs of visits (6 subjects

per cycle) with each subject being tested at the same window of time as to minimise diurnal variation.

The brew used contained 0.14 mg/ml of DMT, 4.50 mg/ml of harmine, 0.51 mg/ml of harmaline, and

2.10 mg/ml of tetrahydroharmine. Each ceremony was organised and supervised by the Santo Daime

church. The research team was not involved in the organisation of the ceremonies nor the production,

dosing, or administration of ayahuasca.
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On each day upon arrival to the lab, absence of drug and alcohol use was assessed via a urine drug

screen and a breath alcohol test. An additional pregnancy test was given if participants were female.

Each visit consisted of a 30-minute wait period, followed by a 1h MRI scanning session occurring 1h after

intake. On day 2, venous blood samples were collected approximately 60 and 160 minutes after

ayahuasca intake to assess serum concentrations of alkaloids according to laboratory protocols

(Supplementary). The retrospective 5-Dimensions of Altered States of Consciousness (5D-ASC) scale 93

and the Ego Dissolution Inventory 94 were administered 360 minutes after drug ingestion to assess the

subjective experience after drug intake (for details, see Supplementary). Each visit to the lab lasted 6

hours.

Following study completion, each subject was contacted for an online follow-up. In order to gauge the

prevalence of mental processes pertaining to the ceremonial use of Daime during resting-state

participants were asked to answer visual analogue scales (0-100) pertaining to their recollection of each

resting-state acquisition, whether they were internally singing during, or employing meditation in the

scanner. For more information regarding all procedures, inventories, and corresponding subscales,

please see the Supplementary.

Image acquisition

Images were acquired on a MAGNETOM 7T MR scanner. On each visit, participants underwent a

structural MRI (60 min post treatment), single-voxel proton MRS in the PCC (70 min post) and visual

cortex (80 min post), and fMRI (90 min post), during peak subjective effects. Findings and methods

pertaining to MRS are to be reported elsewhere.

T1-weighted anatomical images were acquired using a magnetisation-prepared 2 rapid acquisition

gradient-echo (MP2RAGE) sequence (TR = 4500 ms, TE = 2.39 ms, TI1 = 0.90 s, TI2 = 2.75 s, flip angle 1 =

5°, flip angle 2 = 3°, voxel size = 0.9 mm isotropic, matrix size = 256 × 256 × 192, phase partial Fourier =

6/8, GRAPPA = 3 with 24 reference lines, bandwidth = 250 Hz/pixel). 500 whole brain echo planar

imaging (EPI) volumes were acquired at rest (TR = 1400 ms; TE = 21 ms; field of view=198 mm; flip

angle = 60°; oblique acquisition orientation; interleaved slice acquisition; 72 slices; slice

thickness = 1.5 mm; voxel size = 1.5 × 1.5 × 1.5 mm) followed by 5 phase encoding volumes acquired for

EPI unwarping. During EPI acquisition, participants were shown a black fixation cross on a white

background.
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Functional preprocessing
All preprocessing steps were performed according to an in-house pipeline 95,96 based on FSL (FMRIB

software library, FSL 6.0; www.fmrib.ox.ac.uk/fsl) and implemented in MATLAB (R2019b). The individual

functional connectomes (FCs) were modelled in the native BOLD fMRI space of each subject.

MP2RAGE images were first denoised to improve signal-to-noise ratio 97, bias-field corrected (FSL FAST),

skullstripped (HD-BET)98, and then segmented (FSL FAST) to extract white matter, grey matter and

cerebrospinal fluid (CSF) tissue masks. These masks were warped in each individual subject's functional

space by means of subsequent linear and non-linear registrations (FSL flirt 6dof, FSL flirt 12dof and FSL

fnirt). BOLD fMRI volumes were preprocessed in line with Power at al.88,89. Subsequent steps included:

deletion of 2 initial volumes (FSL utils), slice timing correction (FSL slicetimer), BOLD volume unwarping

(FSL topup), realignment (FSL mcflirt), normalization to mode 1000, demeaning and linear detrending

(Matlab detrend), regression (Matlab regress) of 18 signals: 3 translations, 3 rotations, and 3

tissue-based regressors (mean signal of wholebrain, white matter (WM) and cerebrospinal fluid (CSF)), as

well as 9 corresponding derivatives (backwards difference; Matlab). A bandpass first-order Butterworth

filter [0.009 Hz, 0.08 Hz] was applied to all BOLD timeseries at the voxel level (Matlab butter and filtfilt).

As a final denoising step, the first three principal components of the BOLD signal in the WM and CSF

tissue were regressed out of the gray matter (GM) signal (Matlab, pca and regress) at the voxel level. No

smoothing was performed. We also kept track of the fMRI volumes that were highly influenced by head

motion, by using three different metrics as a scrubbing index: 1) Frame Displacement (FD, in mm); 2)

DVARS (D referring to temporal derivative of BOLD time courses, VARS referring to root mean square

variance over voxels)88;3) SD (standard deviation of the BOLD signal within brain voxels at every

time-point). The FD and DVARS vectors (obtained with fsl_motion outliers) were used to detect outlier

BOLD volumes with FD > 0.3 mm and standardized DVARS > 1.7. The SD vector calculated using Matlab

was used to detect outlier BOLD volumes higher than 75 percentile + 1.5 of the interquartile range per

FSL recommendation99. It should be noted no volume censoring was performed using this index. Rather,

this information was used as a confound in our multilinear regression analyses and quality control

assessments (see Fig.5 and Fig. S2). Functional connectomes obtained with and without scrubbing were

highly similar (average Pearson’s r = 0.99) with no significant differences in motion being identified

between or within conditions (see Fig. S2).

A 2mm cortical Schaefer parcellation100 based on 200 brain regions (publicly available at:

https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018,

was projected into each subject's T1 space (FSL flirt 6dof and FSL flirt 12dof) and subsequently their

native EPI space. FSL boundary-based-registration was also applied to improve the registration of the

structural masks and parcellation to the functional volumes. Regions of interest (ROIs) were ordered

according to seven cortical RSNs as proposed by Yeo et al.157. These included the visual (VIS),

somatomotor (SM), dorsal attention (DA), ventral attention (VA), limbic (L), frontoparietal (FP) and the

default mode network (DMN).
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Assessment of functional connectivity
In order to assess connectome fingerprints (described in our next section) across static and dynamic

temporal scales, we devised two separate workflows for functional connectivity. Static functional

connectivity between each pair of ROIs was calculated with a Pearson correlation coefficient (MATLAB

corr) between each pair of mean signal time courses (across a single run). For each subject, this results in

an N × N FC matrix, where N is the number of ROIs, and with each element in the FC representing the

connectivity strength between a pair of ROIs. Secondly, we assessed the dynamic functional

connectomes (dFC) by performing a sliding window analysis to produce sets of connectivity matrices

reflecting the temporal development of whole-brain functional connectivity (across our 249

timepoints)25. We captured relevant FC patterns by balancing the number of time points for a stable dFC

computation, exploring sets of dFCs across 5 different window lengths of: 70s, 140s, 210s, 280s and

349s. Each window step was fixed to 14s, the equivalent of 10 fMRI data points.

Whole-brain connectome identifiability
Changes to the identifiability of each subject’s functional connectome were quantified by replicating the

methodology originally proposed by Amico et al., devised for both static and dynamic functional

connectivity 11,25.

The approach devises an identifiability matrix for each condition, consisting of a matrix of correlations

(Pearson, square, non-symmetric) between a subject’s test and retest functional scans. We firstly split

each scan into two corresponding halves (249 volumes each, or 6 min) to generate test-retest sets for

each condition. Prior work has shown fMRI scan lengths of 3 minutes are sufficient to produce reliable

fingerprints 11,20. Since connectivity matrices are symmetric, we can then extract unique elements of

each test-retest FC by taking the upper triangle of each matrix; resulting in a 1×19900 vector of edge

values for each subject per condition which can then be compared using Pearson correlation, either

between different subjects in the same condition or within the same subject across conditions. This

yields the “identifiability matrix” as outlined in Figure 1.

In the case of static FCs, let A be the “identifiability matrix”, between the subjects’ FCs test and retest.

The dimension of A is N2, where N is the number of subjects in the study. Let Iself = <aii> represent the

average of the main diagonal elements of A, which consist of the Pearson correlation values between

test-retest sets of same subjects, otherwise defined as self-identifiability or Iself. Similarly, let Iothers = <aij>

define the average of the off-diagonal elements of matrix A, i.e. the correlation between test-retest sets

of different subjects. Lastly, let the differential identifiability (Idiff ) of the population be the difference

between both terms, otherwise denoted as:
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j𝐼𝑑𝑖𝑓𝑓 =  (𝐼𝑠𝑒𝑙𝑓 −  𝐼𝑜𝑡ℎ𝑒𝑟𝑠) * 100,  𝑖 ≠

Which provides an indication of the difference between the average within-subject FCs similarity and the

average between-subjects FCs similarity. The greater the Idiff , the higher the differential identifiability

overall along the population. As an additional step, we also sought to derive distance of each participant

fingerprint under Ayahuasca (ie. Iself, Iothers Idiff) from their respective normative state from their baseline.

Using the approach outlined by Sorrentino et al for static connectomes44 we calculated the identifiability

matrices across combinations of different conditions (the Pearson correlation of test-sober,

retest-ayahuasca) . When concatenated with our within-group identifiability matrices this produces a

hybrid identifiability matrix (see figures 1 and 2), where the between blocks (groups) elements and

scores reflect the similarity (or distance) between the test-retest connectomes of subjects across

different conditions. By averaging, this also allows us to derive a final overall cohort Iclinical score which

provides a percentage (average) score of how similar their connectome with respect to baseline is.

Finally, we also measured the Success-rate (SR) of the identification procedure as percentage of cases

with higher Iself vs Iothers
12,101. For completeness, we calculated per condition the significance of both

observed Idiff and SR scores in respect to their null equivalents using permutation testing (see

Supplementary).

We can next extend this principle to dynamic functional connectomes (dFC) by calculating each measure

across each dynamic frame of connectivity (see figure 1 for an overview). For a fixed window length w,

the resulting dynamic identifiability matrix is then a block diagonal matrix, where each block represents

the self-similarity within the dFC frames of a specific subject. The off-diagonal blocks, in this

representation, encode instead the between-dFC frames similarity across different subjects (dynamic

Iothers). Let = {dFC1, dFC2, …, dFCN} be the set of dFC frames in the test session for a specific subject M.𝑆
𝑀

𝑇

Similarly, let represent the set of dFC frames in the retest session for the same subject M. We can𝑆
𝑀

𝑅𝑇

then define the dynamic Iself (dIself) for subject M as:

𝑑𝐼𝑠𝑒𝑙𝑓(𝑀) =
∑

𝑖∈𝑆
𝑀𝑇  

 
∑

𝑗∈𝑆
𝑀𝑅𝑇  
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𝑗
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∣ 𝑆
𝑀
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∑
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𝑀𝑅𝑇  

 
𝑑𝐼
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∣ 𝑆
𝑀

𝑇

∣ × ∣ 𝑆
𝑀

𝑅𝑇

∣  

Whereby , define the cardinalities of the sets. Similarly, let , define the sets for a∣𝑆
𝑀

𝑇

∣ ∣𝑆
𝑀

𝑅𝑇

∣ ∣𝑆
𝐹

𝑇

∣ ∣𝑆
𝐹

𝑅𝑇

∣

different subject F. We can define dynamic Iothers (dIothers) as:
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𝑑𝐼𝑜𝑡ℎ𝑒𝑟𝑠(𝑀, 𝐹) = 1
2

∑
𝑖∈𝑆

𝑀𝑇  
 
∑

𝑗∈𝑆
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∣ +
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𝑑𝐼

𝑖𝑗

∣ 𝑆
𝐹
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∣( ) 

and hence:

𝑑𝐼𝑜𝑡ℎ𝑒𝑟𝑠(𝑀) =   𝐹 =1

𝑆

∑ 𝑑𝐼𝑜𝑡ℎ𝑒𝑟𝑠(𝑀,𝐹)

𝑆 − 1 , 𝐹≠𝑀

where the summation is over the total number of subjects S other than M. Last, dIdiff for a subject M can

be described as:

𝑑𝐼𝑑𝑖𝑓𝑓(𝑀) = (𝑑𝐼𝑠𝑒𝑙𝑓(𝑀) −  𝑑𝐼𝑜𝑡ℎ𝑒𝑟𝑠(𝑀) ) * 100 

Edgewise connectome identifiability
In order to understand which edges were key contributors to changes in connectome identifiability, we

quantified the edgewise reliability of individual connectomes using intraclass correlation analysis as

per11. Coefficients derived from ICC are widely used as a reliability index in test-retest analyses, reflecting

the percentage agreement between two units of measurement within the same group102. The greater

the ICC value, the greater the consistency these two units hold. For reference, ICC values below 0.40 are

suggested to be poor/unreliable whereas those beyond 0.90: excellent/congruent103.

We employed this approach under the assumption that subsets of highly synchronous, or stable edges

across test-retest sets edges are major drivers of each state’s connectome fingerprint. For a FC, this

generates a square symmetrical ICC matrix of size N2, where N is the number of brain regions (see figures

2 and 4) for a specific timeframe. From this, we can also extrapolate network identifiability by averaging

ICC values of within and between network edges, producing 7 × 7 ICC fingerprint matrices corresponding

to our Yeo parcellation. Note that edges were thresholded according to lower bounds of ICC (0.40).

In the case of dynamics, there might be FC frames where identification is higher than others.

Consequently, this might not reflect the average behaviour depicted by dIdiff thereby skewing ICC

estimates. To cover the necessity of that, for each subject session, we sorted the dFC frames in

test-retest according to their similarity, from highest to lowest, based on their dIselfj value (see dIself
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equation above). We then recalculated dIself, dIothers, and dIdiff when iteratively adding dFC frames one at

the time, starting from the best matching ones and then proceeding based on their similarity values in

order to end with a “top” frame for each timescale on which our ICC analyses could be performed. As a

supplementary analysis we also examined the relationship between FC variability and stability by

calculating the standard deviation of functional connectivity for each frame (see figure S4.).

With the expectation that subsets of static edges might primarily contribute to each condition’s

identifiability, we sorted these according to their thresholded ICC values computed on the sober

condition (baseline). Edges were added in a descending fashion, with Idiff being recalculated at each

iteration of 50 edges. We selected the sober condition as an index in order to visualise the evolution of

normative drivers maximally contributing to Idiff.

Edgewise prediction of subjective experience
In light of the individual nature of subjective experience and connectome fingerprints we opted for an

iterative multilinear modelling approach (MLR) similar to connectome predictive modelling3, which

instead of summarising predictive edges, uses a principal component analysis (PCA)104 of highly

identifiable edges.

PCA is an unsupervised exploratory approach which is typically used for dimensionality reduction and

pattern recognition. By geometrically projecting FCs onto a two-dimensional space, the total variability in

individual participant functional connectivity can be placed systematically along one or more of the

principal axes as an emergent set of principal components (PCs) ranked according to variance. If a group

is relatively homogenous then PCA only generates one PC along which all participants can be mapped.

However, if there are systematic differences within the cohort, then one or more statistically

independent factors accounting for subject-level information emerges. This decomposition was applied

in an iterative fashion for model selection. Firstly, all edges pertaining to the Ayahuasca condition were

sorted in descending order according to their ICC value. At each iteration of 50 edges, we performed a

PCA decomposition of their functional connectivity values across subjects, retaining three PCA

components ranked according to explained variance. Then, a MLR was built for each subjective effect

measure, comprising these PCA components as predictors of interest alongside two covariates: singing

(self-reported internal singing during the resting-state) and scrubbing (number of valid volumes).

Absence of multicollinearity was assessed using variance inflation factor (VIF)105. At each iteration, we

strengthened the reliability of our model using the k-fold cross-validation106 with k= 5. Specifically, k

iterations were performed and at each iteration the kth subgroup was used as a test set. For each

iteration, the Spearman’s correlation coefficient between predicted and actual inventory values was

calculated and considered as a performance score. We assessed the reliability of this performance score

against surrogate models, computed using a set of randomly permuted edges at each step. For each

variable of interest this process was repeated 100 times. In order to further reduce the risk of overfitting,

modelling was only performed on static edges.
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Statistics

Statistical analyses were carried out in MATLAB 2019b. Shapiro-Wilks was firstly used to assess the

normality of all measures. Control variables (subjective effects, PK) were assessed by means of

one-tailed t-tests against zero. All outcome measures were analysed in a two-tailed fashion according to

their normality; either by Wilcoxon sign-rank (W) or Student t-tests (t). Observed static identifiability

scores (true) values were examined against corresponding null-distributions following a permutation

testing framework (see supplementary). Regarding network-based statistics, we retrieved a

Bonferroni-corrected p-value according to the number of unique elements in each matrix. The alpha

criterion of significance for all inferences was set at p<0.05.
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