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Abstract 
We typically encounter objects in a context, for example, a sofa in a living room or a car in 
the street, and this context influences how we recognize objects. Objects that are congruent 
with a scene context are recognised faster and more accurately than objects that are 
incongruent. Furthermore, objects that are incongruent with a scene elicit a stronger 
negativity of the N300/N400 EEG component compared to objects that are congruent with 
the scene. However, exactly how context modulates access to semantic object information is 
unknown. Here, we used a modelling-based approach with EEG to directly test how context 
influences the processing of semantic object information. Using representational similarity 
analysis, we first asked whether EEG patterns dissociated objects in congruent or 
incongruent scenes, finding that representational differences between the conditions 
emerged towards 300 ms. Next, we tested the relationship between EEG patterns and a 
semantic model based on property norms, revealing that the processing of semantic 
information for both conditions started around 150 ms, while after around 275 ms, semantic 
effects were stronger and lasted longer for objects in incongruent scenes compared to 
objects in congruent scenes. The timing of these effects overlapped with known N300/N400, 
suggesting previous congruency effects might be explained by differences in processing 
semantic object information. This suggests that scene contexts can provide a prior 
expectation about what kind of objects could appear, which might allow for more efficient 
semantic processing if the object is congruent with the scene, and extended semantic effects 
for incongruent objects. 
 
Keywords: EEG; object recognition; context; semantics; RSA 
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Introduction 
 
In our daily lives, we easily recognise the objects around us. Yet, in certain situations we 
expect to see some objects more than others. For example, when walking down a street, we 
might expect to encounter a car but not an elephant. But if we visit a zoo, we would be much 
more likely to encounter an elephant in an enclosure than a car. In both scenarios, we 
recognise the object as a car and an elephant, however, the context in which we see these 
objects influences the way we perceive and respond to them. Objects that are congruent 
with their environment are recognised faster and more accurately than objects that are 
incongruent (Bar, 2004; Biederman et al., 1982; Davenport & Potter, 2004; Greene et al., 
2015; Oliva & Torralba, 2007; Palmer, 1975). This is also reflected in neural processing, in 
that incongruent objects induce a later latency and a stronger negativity of the N300/N400 
EEG components than congruent objects (e.g. Draschkow et al., 2018; Ganis & Kutas, 2003; 
Lauer et al., 2018; Lauer et al., 2020; Mudrik et al., 2010; Mudrik et al., 2014; Võ & Wolfe, 
2013), which has been associated with the processing of semantic information (Kutas & 
Federmeier, 2011).  

Much of what we do know about the semantic processing of visual objects comes from 
research where objects are presented isolated from the background or in a stream of 
unconnected events. This line of research indicates that in the first ~150 ms after the object 
appears, low- and middle-level object features are extracted, mostly in a feedforward fashion 
along the ventral visual stream (Cichy et al., 2016; DiCarlo et al., 2012; Lamme & 
Roelfsema, 2000). More complex visual features and semantic features are processed at 
later latencies, beginning after 150-200 ms, supported by recurrent dynamics within the 
ventral temporal lobes (Bankson et al., 2018; Chan et al., 2011; Clarke, 2019; Clarke et al., 
2011, 2018; Kietzmann et al., 2019; Poch et al., 2015). In agreement with this object 
processing timeline, the effects of object-scene congruency on the N300/N400 EEG 
components occur at a similar time as semantic feature effects, which would allow for 
context to modulate object perception via semantic recurrent dynamics. However, the 
research so far does not answer the question of how semantic object information is 
accessed in these different situations, in terms of the timing of semantic activation. Three 
plausible scenarios are (1) that semantic object information is accessed faster for objects in 
congruent compared to incongruent environments, meaning that later processing of objects 
in incongruent environments leads to a N300/N400 congruency effect, (2) semantic access 
is initiated at the same time in both conditions, but continues for longer in the incongruent 
case, with the additional semantic activation related to congruency effects, or (3) that 
semantic access is initiated at the same time and for the same duration for both congruent 
and incongruent conditions, and differences in the magnitude of semantic access relate to 
congruency effects. 

Here, we re-analysed EEG data by Draschkow and colleagues (2018) to test the 
hypothesis that neural effects of congruency on the N300/N400 components are driven by 
differences in accessing semantic object information, by combining computational models 
with Representational Similarity Analysis (RSA; Kriegeskorte et al., 2008) - a methodology 
that allows testing specific hypotheses about what object features contribute to neural 
signals during object processing (Bankson et al., 2018; Cichy et al., 2016; Clarke et al., 
2018). For example, Clarke and colleagues (2018) demonstrated this approach using a 
model of semantics based on features from a property norming study (e.g. a car has the 
features ‘has wheels’, ‘has a driver’ and ‘made of metal’), which was related to MEG signals. 
They reported the semantic model related to brain activity peaking around 250 ms after 
object onset - a latency similar to the onset of the N300/N400 component. This semantic 
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model, based on semantic features, provides not only the intriguing opportunity to directly 
test if context indeed modulates semantics, but also how it effects the temporal processing 
of objects in congruent and incongruent settings, adjudicating between the three scenarios 
we set out above. First, we used a simple congruency model that distinguishes between 
congruent and incongruent contexts, to establish when representational differences emerge 
that suggests a dissociation of processing between the conditions. Then we modelled the 
EEG data with a semantic model based on property norms that describes objects in terms of 
semantic features, to specifically test how congruency impacts the time course of processing 
semantic object features, and how this is different depending on contextual congruency 
between the object and the scene. 

Methods 
We re-analysed EEG data reported by Draschkow and colleagues (2018). The data is freely 
available (https://github.com/DejanDraschkow/n3n4). Here we provide a short summary of 
the main aspects of the study design covering participants, procedure, EEG recording and 
pre-processing, as well as the specifications of our RSA analyses. 
 

Participants and procedure 
Forty healthy participants viewed 152 scene images that were presented with either a 
semantically congruent or incongruent object (76 trials per condition). Each scene was 
paired with a congruent and an incongruent object, but participants saw each scene only 
once with either the congruent or the incongruent object (the conditions were 
counterbalanced across participants). At the beginning of each trial, a scene was presented 
for 500 ms, then a red dot appeared indicating the position where the object would appear. 
After 500 to 530 ms, the object was presented in the cued location of the scene and 
remained on the screen for 2000 ms (Fig 1, Fig 2A). The task was to report exact repetitions 
of scenes and objects (the repetition trials were excluded from subsequent analysis). 
 
     

 
Figure 1. An example trial showing a scene before a red dot appears to indicate the location 
the object will appear. The object that appeared could either be congruent with the scene, in 
this example a cushion, or incongruent with the scene, in this example a chopping board. 
Each scene is only shown once to a participant, with either a congruent or incongruent 
object.  
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EEG recording and pre-processing 
EEG data was recorded with 64 active Ag/AgCl electrodes (Brain Products, GmhB), with a 
sampling rate of 1000 Hz. Data were down-sampled to 200 Hz, filtered between 0.1 Hz and 
40 Hz, and eye and muscle artifacts were removed with independent component analysis. 
Epochs of 1100ms were created, from -200 ms to 900 ms centred around object onset, then 
baseline correction was applied from -200 ms to 0 ms. We started our analysis with the 
epoched data provided by Draschkow and colleagues (2018), however, we identified noisy 
trials by visual inspection, specifically those trials that contained high frequency noise or 
large amplitude signals beyond the range of normal activity. On average 2.9% of trials were 
removed (range 0-24%). All electrodes were included in the subsequent Representation 
Similarity Analysis (RSA). 
 

Representational Similarity Analysis 
RSA was used to relate model-based congruency and semantic similarity between objects to 
the neural similarity based on EEG data.  
 
Congruency model analysis 
The consistency model contrasted objects presented in congruent and incongruent contexts. 
Subject-specific RDMs were constructed by first creating a vector to which we assigned a 
value of 1 for congruent scene-object trials and a value of 0 for incongruent scene-object 
trials, before calculating the Euclidean distance between each scene-object pair (Fig 2B). 

From the EEG data, we extracted brain responses to each object for the time points from 
-200 ms to 900 ms in intervals of 5 ms, resulting in 221 time-points. Next, we calculated the 
correlation distance between each object pair at each time-point. This resulted in subject-
specific RDMs at each time-point that summarised the neural similarity between the objects. 

In the following step, we related the congruency model RDM with the brain response 
RDMs using Spearman correlation resulting in an RSA time-series per participant (Fig 2C). A 
random effects analysis assessed the model fit of the congruency model RDM and the brain 
RDMs at each time-point using a t-test against zero with an alpha of 0.01. To control for 
multiple comparisons across time we used a cluster-mass permutation test to assign p-
values to clusters of significant tests (Maris & Oostenveld, 2007). For each permutation, the 
sign of RSA correlation time-series between the model and brain RDM was randomly flipped 
for each participant, before t-tests were performed on the permuted data, and the size of the 
largest cluster added to the permutation distribution. Finally, the cluster p-value for clusters 
in the original data were defined as proportion of the 10000 permutations (plus the observed 
cluster mass) that was greater than or equal to the observed cluster mass. 

 
Semantic model analysis 
The semantic model specified the semantic-feature similarity of object concepts based on a 
published set of property norms (Devereaux et al., 2014). The current version of the property 
norms is available from the Centre of Speech, Language, and the Brain 
(https://cslb.psychol.cam.ac.uk/propnorms). The property norms we used summarised how 
826 different concepts related to 3026 different features (e.g. a zebra ‘has stripes’, ‘eats 
grass’ etc), allowing us to represent each concept by a collection of features that together 
define the concept (e.g. a zebra ‘has legs, ‘has stripes’, but does not ‘live in trees’). We 
matched the objects used by Draschkow and colleagues (2018) with concepts in the 
property norms. A matching concept was found for 118 out of 152 objects that were 
presented in a congruent context, and for 116 out of 152 objects that were presented in an 
incongruent context. Trials containing objects for which no match could be found were 
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excluded from further analysis. For the other trials, a semantic similarity space was defined 
by calculating the cosine distance between all possible pairs of objects, separately for 
objects that were presented in a congruent context and objects that were presented in an 
incongruent context, resulting in two semantic feature RDMs (Fig 2B).  

The EEG data of each subject was separated for congruent and incongruent scene-object 
trials, before RDMs per time-point were calculated in the same way as for the congruency 
model, except that now two analyses were performed, one relating the semantic feature 
RDM to the brain RDMs for congruent trials, and one analysis relating the semantic feature 
RDM to the brain RDMs for the incongruent trials (Fig 2C). Significant differences between 
the RSA model fit for congruent and incongruent context conditions was additionally 
assessed with a cluster-based permutation test using paired sample t-tests.   
 

Figure 2. A schematic overview of the Representation Similarity Analysis (RSA) relating 
brain responses to the objects. (A) For each object an activation pattern was extracted 
(white represents congruent, and black represents incongruent trials). (B) Model RDMs. For 
the congruency model analysis all congruent object trials were assigned a value of 1 and all 
incongruent object trials a value of 0. Then the Euclidean distance between all object-pairs 
was calculated. The resulting RDM directly contrasts congruent and incongruent objects. For 
the semantic model analysis the congruent and incongruent object trials were analysed 
separately. Each object was assigned a corresponding concept feature vector. Then the 
cosine distance was calculated for all object-pairs, separately for consistent and inconsistent 
trials, resulting in RDMs that describe the similarity of objects based on semantics. (C) 
Relating models to brain signals. For each object the EEG response was extracted, and at 
each time-point the similarity between object pairs was calculated using correlation distance. 
Model RDMs were then related to EEG RDMs using Spearman correlation.  
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Results 
We combined computational modelling with RSA to test if congruency effects in N300/N400 
EEG components were driven by semantic object information. First, we constructed a model 
of consistency to uncover when the processing of congruent and incongruent objects 
diverged. Then, using a model based on semantic features, we investigated the time-course 
of semantic processing of objects that were presented in either congruent or incongruent 
contexts.    

  

Congruency model analysis 
We first assessed whether neural patterns distinguished between objects presented in 
congruent and incongruent environments. RSA analysis of the EEG signals revealed that the 
congruency model distinguished between congruent and incongruent scene-object context 
trials, where we saw a significant relationship between the congruency model and EEG 
patterns from approximately 290 to 450 ms (cluster p = 0.022; Fig 3A, Table 1). The timing 
of this effect is in line with previous N300/N400 effects of congruency. 
 

 
Figure 3. RSA results. (A) The consistency model fit shows the similarity based on 
Spearman correlation between the model RDM and the EEG RDMs at each time-point. 
Shaded area shows +- 1 standard error of the mean. The horizontal bar shows a statistically 
significant cluster. (B) The semantic model fit is shown separately for congruent (grey line) 
and incongruent (black line) conditions. The horizontal bars show statistically significant 
clusters for incongruent objects (black solid line) and the difference of semantic model fit 
between congruent and incongruent objects (black dotted line). (C) Correlational analysis 
relating the congruency model to the difference of semantic model fit between congruent and 
incongruent objects.  

 
Table 1. EEG RSA effects 

Model RDM time-window cluster-mass cluster p-value 

Congruency model 286-450 ms 74.26 p = .022 

Semantic model: consistent 141-235 ms 46.11 p = .064 

Semantic model: inconsistent 141-360 ms 132.25 p = .005 

Semantic model: inconsistent 616-765 ms 80.78 p = .021 

Semantic model: incon > con 276-395 ms 50.25 p = .049 

Semantic model: incon > con 596-870 ms 169.26 p = .002 
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Semantic model analysis 
While the congruency effect shows that object processing and scene information interact, it 
does not tell us about how semantic knowledge may be accessed differentially depending on 
the scene context. To address this, we constructed a semantic model based on semantic 
features that collectively describe each of the concepts. Two separate RDMs were created, 
one for objects that were presented in a congruent context and one for objects that were 
presented in an incongruent context. The model RDMs were then correlated with the 
corresponding brain RDMs, i.e. the congruent model RDM was related to brain activation 
RDMs to congruent objects and the incongruent model RDM to brain activation RDMs to 
incongruent objects.  

For congruent objects, although the semantic model showed no statistically significant 
relationship to brain activity, it numerically performed well from around 140 ms to 235 ms 
(cluster p = 0.06). For incongruent objects, the semantic model fitted the brain responses 
significantly during two clusters, the first cluster including time-points around 140 ms to 360 
ms (cluster p = 0.005) and a second cluster with time-points between around 620 to 765 ms 
(cluster p = 0.021; Fig 3B, Table 1). This might suggest that while semantic effects in both 
conditions seem to begin at similar times, approximately 150 ms after object onset, semantic 
effects for incongruent objects continue for a longer period of time. In order to test this, we 
compared the two conditions directly. The difference in model-fit between the two conditions 
was significant at two clusters, an early cluster including the time-points around 280 ms to 
395 ms (cluster p = 0.049) and a second cluster including the time-points from approximately 
600 ms to 870 ms (cluster p = 0.002; Fig 3B, Table 1). While cluster-based permutation 
testing does not allow precise estimation of effect on- and off-sets (Sassanhagen & 
Draschkow, 2019), qualitatively the time-windows of these clusters overlap with both our 
effects of the congruency model RDM, and known congruency effects in the N300/N400 
(e.g. Draschkow et al., 2018; Ganis & Kutas, 2003; Lauer et al., 2018; Lauer et al., 2020; 
Mudrik et al., 2010; Mudrik et al., 2014; Võ & Wolfe, 2013), in addition to a regularly reported 
later effect coinciding with the P600 (e.g. Ganis & Kutas, 2003; Mudrik et al., 2010; Sauvé et 
al., 2017; Võ & Wolfe, 2013). 
 
Correlation analysis 
The model-based analysis revealed overlap between the congruency and the semantic 
model RDMs in the time-window from approximately 290 to 395 ms. Within this time-window, 
the congruency model successfully distinguished if an object was presented in congruent or 
incongruent context, and the semantic model displayed significantly better model fit with 
objects that were presented in an incongruent context compared to objects that were 
presented in a congruent context. In order to test if these two effects were related, we 
correlated the time courses of the congruency model fit with the time-course of the difference 
between the semantic model fit for the congruent and incongruent conditions. The results 
confirm a significant correlation (r = 0.44, p < 0.001; Fig 3C), demonstrating that the two 
analyses could be capturing the same temporal effect of congruency, which might suggest 
that effects of congruency are explained by differences in the processing of semantic object 
features. 
 

Discussion 
In the current study, we directly tested if scene context influenced object recognition 

through the modulation of processing semantic object information. We related the similarity 
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based on EEG activity in response to visual objects with both a model of congruency and a 
semantic model that was based on semantic object property norms. Both the congruency 
model and semantic model captured an effect of scene context on object processing in the 
time-window for which N300/N400 effects were previously reported (e.g. Draschkow et al., 
2018; Ganis & Kutas, 2003; Lauer et al., 2018; Lauer et al., 2020; Mudrik et al., 2010; Mudrik 
et al., 2014; Võ & Wolfe, 2013). Additionally, the semantic model revealed a difference in 
processing of congruent and incongruent objects in a later time-window beyond ~ 600 ms, 
which has been reported in some previous studies (e.g. Ganis & Kutas, 2003; Mudrik et al., 
2010; Sauvé et al., 2017. Võ & Wolfe, 2013). In these two time-windows, the semantic model 
displayed stronger fit for incongruent than for congruent objects, suggesting that the 
previously observed congruency effects were driven by the additional need for semantic 
processing of objects that were incongruent with their environment. This contrasts with 
alternative possibilities that semantic object information could have been accessed faster for 
objects in congruent compared to incongruent environments, or that semantic access was 
initiated at the same time and for the same duration for both congruent and incongruent 
conditions. 

Our research is the first to employ a modelling-based approach to directly test the 
hypothesis that scene context influences object recognition by modulating the processing of 
semantic object information. The stronger model fit for incongruent objects beyond about 
275 ms suggests that while both congruent and incongruent objects involve semantic 
processing beyond ~150 ms, semantic processes are extended in the incongruent condition. 
It may well be that this extended semantic processing for incongruent objects is what 
underpins the congruency effect, which seems to begin at a similar time to the divergence of 
semantic model fits across the two conditions. 

Overall, our findings are in agreement with the framework that context generates 
expectations about objects we might encounter, and thereby affects the way objects are 
processed (Clarke, 2019). Our results, together with previous findings of congruency effects 
on N300/N400 EEG components, show stronger effects for objects that were unexpected 
compared to objects that were expected. This phenomenon is consistent with the predictive 
coding account (Friston, 2005) which states that the brain constructs prior expectations 
about upcoming sensory events based on experience, and generates an error response if 
the event does not match the expectation. In terms of scene-object congruency, exposure to 
a scene context could create a prediction about what objects are likely to appear in that 
scene. This is even more so here, as a fixation dot appeared prior to the object indicating the 
location the item would appear, thus limiting the range of likely object candidates. If the 
object is not congruent with the scene, and hence does not fit the prediction, it triggers a 
prediction error response causing delayed or enhancement of brain activity that is related to 
object processing, like we see for the N300/N400 EEG components (e.g. Draschkow et al., 
2018; Ganis & Kutas, 2003; Lauer et al., 2018; Lauer et al., 2020; Mudrik et al., 2010; Mudrik 
et al., 2014; Võ & Wolfe, 2013). Similar effects of context on object recognition have been 
reported not only for scenes but also for other types of prior information like the presence of 
other objects (Auckland et al., 2007; Kovalenko et al., 2012; McPherson & Holcomb, 1999), 
and has been demonstrated in semantic priming studies (Renoult et al, 2012). This indicates 
that the semantic effects we see here reflect a more general mechanism that is not restricted 
to scenes. Taken together, having a prior expectation about object semantics might allow for 
more efficient semantic processing, with the effect that we see rapid and short semantic 
effects for congruent objects, and extended semantic effects for incongruent objects. 

In their original work, Draschkow and colleagues (2018) demonstrated how congruency 
effects influencing the N300 and N400 components constitute highly related processes 
which allow the decoding of congruency across the two time-windows, finding significant 
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cross-decoding of congruency from about 200 ms after object onset. The consistency model 
analysis that we employed, likewise tested to distinguish between objects that were 
presented either in congruent or incongruent context. Our results highlight a similar time-
window like the decoding analysis, thus confirming that a model-based approach is suitable 
to capture congruency effects in EEG data. 

In addition to the congruency effects in the N300/N400 time-window, the semantic model 
analysis revealed a difference in processing of congruent and incongruent objects in a later 
time-window beyond ~600 ms. Effects in this time window were previously reported in similar 
studies, in which objects were embedded into scenes (e.g. Ganis & Kutas, 2003; Mudrik et 
al., 2010; Sauvé et al., 2017; Võ & Wolfe, 2013). However, the exact nature of these later 
effects remains unclear as they vary depending on task-demands (Ganis & Kutas, 2003; Võ 
& Wolfe, 2013; Sauvé et al., 2017). Võ and Wolfe (2013) reported a P600 component 
specifically in the context of mild syntactic violations of an object's position in scenes (object 
misplaced), but not for extreme syntactic violations (object in impossible position, for 
example in the air). One possible explanation for finding these effects in the current data is 
that objects were embedded in scenes, and this has likely induced a combination of 
semantic and mild syntactic violations in incongruent scene-object trials. For example, if a 
ball is embedded in a photo of a kitchen and is placed inside a microwave, then in addition to 
the semantic incongruency, a mild syntactic violation is also created. This combination of 
semantic and syntactic violations might explain RSA effects of semantic object processing in 
incongruent scenes during a similar time window to the previously reported P600 
congruency effects. 

In conclusion, our results revealed that while semantic processing begins around 150 ms 
after the object appears, the modulatory effect of the prior scene context starts around the 
onset of the N300 components, resulting in longer processing of objects that are incongruent 
with a scene compared to objects that are congruent. Additionally, we replicated effects in 
previously reported time-windows of the N300/N400 and P600 EEG components using a 
computational modelling approach. Importantly, our study highlights how object recognition 
processes are flexibly adapted based on prior information, in this case showing the 
dynamics associated with accessing semantic knowledge are modulated by the prior 
context. 
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