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Abstract 

Temporal anticipation is a fundamental process underlying complex neural functions such as 

associative learning, decision-making, and motor-preparation. Here we study event anticipation 

in its simplest form in human participants using magnetoencephalography. We distributed 

events in time according to different probability density functions and presented the stimuli 

separately in two different sensory modalities. We found that the temporal dynamics in right 

parietal cortex correlate with reaction times to anticipated events. Specifically, after an event 

occurred, event probability was represented in right parietal activity, hinting at a functional role 

of event-related potential component P300 in temporal expectancy. The results are consistent 

across both visual and auditory modalities. The right parietal cortex seems to play a central role 

in the processing of event probability density. Overall, this work contributes to the 

understanding of the neural processes involved in the anticipation of events in time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 15, 2022. ; https://doi.org/10.1101/2022.12.15.520557doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.15.520557
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 

2 

Introduction 

The anticipation of future events is an elementary function of neural systems that is crucial to 

the survival of an organism. At the scale of seconds, an animal needs to predict a predator's 

immediate actions in order to evade its attack. In humans, temporal prediction at short time 

scales underlies many different aspects of cognition in a wide variety of tasks, including in 

sports, music making, and everyday choice behavior. Consequently, the identification of neural 

correlates of predictive processes has been a focus of recent work. A considerable part of this 

work in non-human primates1-4 and humans5-10 builds on the hazard rate (HR) as a canonical 

model of anticipatory neural activity11. Initially, the prominent HR was proposed as a model of 

reaction time (RT) behavior12 before it was used as a model of neural anticipation correlates. 

HR represents the probability that a future event is imminent, given that it has not already 

occurred12,13.  Based on this intuitive computational assumption, neural activity in anticipatory 

tasks was described at different levels ranging from single cells to population responses.  

 In non-human primates, single neurons' firing rates were correlated with the HR in 

visual areas V14 and V41, and in lateral parietal area LIP2, suggesting that this model of 

anticipation is implemented in brain activity from early sensory to later stages of information 

processing. In humans, the HR was proposed as a model of population responses in temporal 

anticipation, based on correlations between HR and theta (4–8 Hz)6, beta (13–30 Hz)9,10, and 

gamma (40–70 Hz)9 band neural oscillations, as well as modulation of gamma band coherence 

between motor cortex and spinal cord neurons9. In work using fMRI, where experimental 

designs are tailored to the BOLD response resulting in tasks that cover longer time spans in the 

seconds range7,14, correlates of the HR computation were proposed in primary visual cortex and 

extra-striate areas V2/V35 as well as post-stimulus BOLD modulation according to the 

cumulative HR in supplementary motor area and superior temporal gyrus7. Taken together, 

previous work proposes a variety of neural HR correlates in diverse areas ranging from early to 

later stages in the cortical hierarchy and in both activity preceding and following an event in 

time.  

 Most of the work on the HR employs a psychometric-neurometric mapping approach in 

a wider sense. This strategy builds on models of anticipatory behavior to inform analysis of 

neural data. However, recent work found the HR to be an inadequate model of behavior and 

thereby challenged the HR as a canonical neural computation in event anticipation15,16. This 

work featured simple experimental tasks that are highly similar to those used in work promoting 

the HR as a model of both, RTs and the neural processes that generate them. This work further 
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questions the HR's biological plausibility because of its computational complexity13 and 

numeric instability17, and also because of the HR's immense range: in the commonly used cases 

of uniform and Gaussian event distributions with event certainty (Pevent = 1), the HR increases 

with a very steep slope towards the upper limit of the time span over which it is computed. It is 

unclear whether the brain can compute such steep slopes over short time spans. This 

mathematical property is sometimes addressed by truncation of the HR variable to avoid the 

impractical model prediction of positive infinity. In contrast, an alternative model of 

anticipatory behavior implies that the brain computes the reciprocal event probability density 

function (1/PDF) as its model of events distributed in time15,16. The 1/PDF model is 

computationally parsimoneous as the estimation of PDF can be approximated by the relatively 

simple operations of event counting and time estimation.  

 Apart from HR-based work, the effect of probability on anticipatory neural processes is 

commonly investigated in activity that is time-locked to external events and also in the time-

frequency representation of neural data. There is a vast literature on the effects of probability 

on event related potentials (ERP). Classic examples include the P30018, a component whose 

ERP amplitude is inversely related to target probability19-21. Interestingly, the P300 may also 

be modulated by temporal probability, as suggested by work manipulating the number of items 

of a category over time22. In tasks with a simple temporal structure, the P300 co-varies with 

expectancy, driven by e.g. two different stimulus onset times23. Still the effects of event 

probability density on the component are unclear. The posterior N2 (N2c) is another ERP 

component that is sensitive to target probability24 and is associated with stimulus categorization. 

These two late components often occur after a response was given25 which relates these findings 

less readily to anticipatory processes. Examples of pre-stimulus ERP components include the 

stimulus-preceding negativity (SPN)26, a signal argued to reflect stimulus anticipation, the 

lateralized readiness potential (LRP)27, a preparatory motor signal predictive of response times, 

and the contingent negative variation (CNV)28,29. The CNV is linked to timing processes30 and 

is proposed to reflect temporal expectancy and response preparation and originates in motor-

related areas31-34. The CNV is suggested to co-vary with the HR6.  

 Guided by the neural correlates of event anticipation and based on our recent behavioral 

work that challenges the HR model, we investigate the neural processing of events distributed 

stochastically in time. This paper addresses several aims. 
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First, we test whether human anticipatory RT behavior is adequately described by the HR model 

or by the 1/PDF model. Both models are based on event probability over time. They are not 

mutually exclusive but differ in their computational assumptions16.  

Second, based on the results of the first analysis, we investigate how event probability over 

time affects neural activity that is time-locked to sensory events. We investigate potential 

modulation of pre-stimulus time-locked activity, as well as early and late components of event-

related fields (ERF) as measured with magnetoencephalography (MEG). We aim to localize the 

cortical origin of ERF components of interest.  

All experiments and analyses are performed separately in two sensory modalities to identify 

anticipatory neural activity that is shared by vision and audition and may therefore be 

independent of modality-specific processes.  

 

Results 

Set–go experiment and probabilistic design 

The participants performed a 'set'–'go' task while neural activity was recorded with MEG. The 

task, which consisted of separate auditory and visual experimental blocks, demanded the 

participants to respond as quickly as possible to the 'go' cue with a button press (Fig. 1a). In 

trials without a 'go' cue (catch trials), participants were asked to not press the button. The time 

span between 'set' and 'go' cues was a random variable determined by either an exponential 

('Exp') or a flipped exponential distribution ('Flip'). Each of these distributions was defined over 

timespan t = [0.4, 1.4] s and was fixed per experimental block (Methods). A rapid response to 

the 'go' cue required participants to form predictions about the temporal-probabilistic structure 

embedded in the task, with the assumption that better temporal prediction is reflected in faster 

reaction times. 

 In analysis, we tested the canonical model of event anticipation, the HR-based model of 

RT, and the recently proposed PDF-based model as candidates of the participants' 

representation of event probability density.  
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Fig. 1 Task, reaction time (RT) data and model fits. a) Schema of visual and auditory task. 

Time between 'Set' and 'Go' cues (white noise bursts in audition and checker-boards in vision, 

both 50 ms in duration) was drawn from exponential and flipped exponential probability density 

('PD') functions, both defined over t = [0.4, 1.4] s, in a block-wise design (Methods). 

Participants were asked to respond as fast as possible to the 'go' cue by pressing the button. In 

absence of 'go' cue (catch trial) no button should be pressed. b) Histogram of RT pooled across 

conditions and subjects from all analysed trials (N = 33354). c) Mirrored temporally blurred 

hazard rate (HR) fit to RT from the visual exponential (left) and flipped exponential (right) 

conditions. d) Mirrored temporally blurred HR fit to RT from the auditory exponential (left) 

and flipped exponential (right) conditions. e) Reciprocal probabilistically blurred PDF fit to 

visual RT and f) auditory RT. All shown RTs correspond to the trials that were selected for 

MEG analysis.  

 

Reciprocal event PDF captures reaction time modulation 

24 participants generated a total of 33354 RTs (Fig. 1b). In all four conditions, the shape of RT 

distributions was similar with a steep left flank and a right-skew (Fig. S1), resembling classic 

RT distributions from simple RT tasks12. Average RT was shorter in audition than in vision in 

both exponential (∆RT = - 28.4 ± 5.8 ms, mean ± SEM, P = 0.02, t23 = - 2.42 ) and flipped 
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exponential conditions (∆RT = - 32.5 ± 8.0 ms, mean ± SEM, P = 0.009, t23 = - 2.75 ). In order 

to investigate the influence of event probability density on RT, mean RT was plotted over 'go' 

time (Fig. 1c). The shape of the RT curves suggested an inverse relation to the event PDF: 

where event PDF was large, RT was small and vice versa. Note that near the extremum of the 

'go' time span where event probability is highest, i.e. at 'go' time = 0.4 s for exponential and 1.4 

s for flipped exponential distributions, the RT curves do not monotonically decrease but 

increase instead. This phenomenon is most evident in the exponential case and is more 

pronounced in vision than in audition. Apart from this modality-driven effect, the RT 

modulation was highly similar in vision and audition which indicates that participants extracted 

similar temporal-probabilistic information embedded in the task, independent of input 

modality.  

 In order to investigate these qualitative findings further, we tested how well the RT 

curves can be fit by two models, one based on HR and one based on PDF itself. Specifically, in 

the first model, we fit as explanatory variable the mirrored temporally blurred HR (Methods) 

to the RT curves (Fig. 1c and d). In the exponential case, the HR model did not provide an 

acceptable model fit as it strongly over-estimated RT at short 'go' times. In the flipped 

exponential condition, the HR model was even qualitatively inadequate: the RT curve decreased 

in a concave way, yet the HR model predicted a convex RT curve. These findings are reflected 

by small values of adjusted R2. In the second model of RT, we used as explanatory variable the 

reciprocal probabilistically blurred PDF to RT. In both exponential and flipped exponential 

conditions and in both modalities, the model adequately captured RT modulation (Fig. 1e and 

f). The large values of adjusted R2 and the absence of systematic deviations between data and 

fit line indicate a remarkably good fit given such a simple descriptive model.  

 In sum, the reciprocal probabilistically blurred event PDF captured well the RT 

modulation, while the canonical HR-based model failed to do so. These behavioral results 

replicate our previous work15,16 and provide us with a model of RT that is used in the analysis 

of neural data.  

 

MEG data preprocessing 

All MEG data analysis was performed in MatLab (The MathWorks Inc., Natick, USA) using 

the FieldTrip toolbox for EEG/MEG analysis developed at the Donders Institute for Brain, 

Cognition, and Behavior (Nijmegen, The Netherlands)35. Artifactual data segments that 

contained jumps in the SQUIDs (super-conducting quantum interference devices), eye 
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movements, heart and muscle activity were identified and removed using semi-automated 

FieldTrip routines (Methods).  

 

Event-related field components  

We investigated potential effects of event probability density on neural activity time-locked to 

stimulus events. First some basic sanity checks were performed. At the single-trial level, within-

participant, the MEG data was split into three sets and time-locked relative to the onset of 'set' 

and 'go' cues and to the time point of the button press. The simple 'set' and 'go' stimuli resulted 

in a prominent M100 (P1) wave in both vision (Fig. 2a and b, top row) and audition (Fig. 2d 

and e, top row). The distribution of activity over the sensor array during the time span from 55 

to 85 ms post cue indicates visual (Fig. 2a and b, bottom row) and auditory (Fig. 2d and e, 

bottom row) sensory cortex as the likely source of activity for data locked to 'set' and 'go' cues. 

The location of the ERF related to the button press (Fig. 2c  and f, top row) roughly corresponds 

to left motor cortex (Fig. 2c  and f, bottom row) which is in line with participants pressing the 

button with their right index finger. Note that location of activity on the sensor array does not 

correspond to location on the human brain surface since participants differed in head size and 

in the positions they take relative to the MEG sensor array. At this level of grand averages, the 

time course of early neural activity is quite similar across the Exp and Flip probability 

conditions in all three different data sets (locked on 'set' and 'go' cues and on button) and in both 

vision (Figs. 2a and b, both left vs. right) and audition (Figs. 2d and e, both left vs. right). 

Nonetheless, there are differences in the time course of the ERFs across the 'set' and 'go' cues 

within each of the Exp and Flip conditions. These differences are more pronounced in later ERF 

components which is to be expected since the button press occurs around 200 ms after the 'go' 

cue (but not after the 'set' cue). We investigate the relationship between these components and 

event probability density below. 
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Fig. 2 Event related fields evoked by visual and auditory stimulation and by the button press. 

ERFs were averaged across all channels that comprise the positive part of a dipole selected at 

the single-subject, within-condition level (Methods). 

 

Event-related field components – correlation-based analysis strategy 

The first behavioral analysis has shown that the event PDF is related to RT in a systematic 

way, with short RTs occurring when PDF is large and vice versa. This suggests that the brain 

anticipates the 'go' cue by computing an estimate of the event PDF. We therefore focused on 

the epoch of the 'go' cue in order to investigate potential neural signatures of both the 

anticipatory process, before the ‘go’ cue, and the post-stimulus processes, after the ‘go’ cue. 

We employed a correlation-based approach that related RT to neural activity time-locked to 

the 'go' cue. Specifically, we were interested in pre-'go' cue activity as a potential correlate of 

preparatory activity as well as in early and late ERF components. The analysis comprised of 

three steps (Methods): 

 

1) In each of the four experimental conditions, at the single-participant level, the MEG data was 

aggregated within adjacent pairs of consecutive 'go' times (these pairs are called frames from 
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this point on). The aggregation reduced the number of unique 'go' times from 60 to 30 (= 30 

frames). This mild smoothing was performed to reduce noise in the data before correlation. 

Although the frames differ in the number of trials, this averaging did not introduce a bias in the 

mean within each bin due to the close to Gaussian distribution of the ERF data and thus no bias 

in the correlation (Supplementary Methods).  

 

2) At the single-participant level, for each channel-by-time-point duplet, Spearman's rho was 

computed between the 30 frames of MEG data and the 30 averaged RTs. Note that the resultant 

rho has the same dimensionality as the within-participant grand average of MEG data 

(channels-by-time-points). 

 

3) On all participants' rho, a cluster-based permutation test was run to identify channel-by-time 

clusters in which rho differs from zero, indicating an interpretable relationship between MEG 

data and RT. 

 

Event-related field components – correlation with RT at the sensor level 

First, we aimed to identify significant correlation clusters between the ERF and RT at the  

sensor-level. Across all four conditions, the cluster-based permutation test revealed a clear 

pattern of clusters, i.e. of channel-by-time duplets, where rho differed significantly from zero 

(see Tbl. S1 for all clusters' P values). A positive cluster was identified around 200 ms (Fig. 

3a) after 'go' onset indicating that the differences in (positive) rho from zero was most 

pronounced over left lateral sensors (Fig. 3c, left). As could be expected, given that the 

correlation was performed on dipolar scalp topography, a corresponding negative cluster was 

identified also around 200 ms post 'go' (Fig. 3b) which included mostly right centro-occipital 

sensors (Fig. 3d, left). The interpretation of this positive/negative cluster pair as reflecting 

motor cortex activity is supported by the distribution of RT (Fig. S1): since RTs are distributed 

in time relative to the 'go' cue, the correlation-based analysis should identify a significant 

correlation between RT and neural activity in motor cortex. Although the location of this dipole 

(Fig. S2a, left, and b, left) may suggest left motor cortex as the source of neural activity, care 

must be taken since the sensor-level topography might be a superposition of multiple sources 

with some located in the right hemisphere. 
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Fig. 3 Cluster-based permutation test on Spearman's rho (correlation between 'go' cue ERF and 

RT). a) Positive clusters. b) Negative clusters. c) Topography plots of rho, channels of positive 

cluster highlighted. d) Topography plots of rho, channels of negative cluster highlighted. A 

minimum time span of 20 ms was set for a channel to be included in a cluster. 

 

Second, around 400 ms post 'go' cue, a positive cluster was identified (Fig. 3a), corresponding 

to central sensors (Fig. 3c, right). In two of the four conditions, a corresponding negative cluster 

was found (Fig. 3b), whose topography comprised of left latero-frontal sensors (Fig. 3d, right). 

Note that these late clusters' topography roughly resembles the inverse polarity of the early 

cluster around 200 ms (compare Fig. 3c, left with d, left, and c, right with d, right). Again, a 

definitive source of this signal is not readily apparent due to the broad distribution over the 
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sensor array that obscures whether the dipole (Fig. S2a, right, and b, right) is indeed restricted 

to one hemisphere.  

As a last step in the sensor-level analysis of evoked activity, we investigated the pre-'go' cue 

time span. This correlation-based analysis is identical to the one above, with the exception that 

the MEG data was baseline-corrected relative to a pre-'set' cue period (Methods) in order to 

investigate potential anticipatory activity reflected in the ERF prior to the 'go' cue. For RT as 

regressor, the same clusters were identified as in the analysis above, where a pre-'go' baseline 

was used. Importantly, no cluster was identified during the pre-'go' cue time span indicating 

that time-locked activity preceding the 'go' cue did not significantly correlate with RT (Tbl. S2 

and Figs. S3 and S4). Thus, our analysis did not reveal any neural activity before the onset of 

the 'go' cue that is correlated with RT. This indicates that at the level of activity time-locked to 

the 'go' cue, no preparatory activity could be identified.  

Taken together, this first correlation analysis between sensor-level evoked brain activity and 

RT showed that there are two epochs where they are significantly related, an early one around 

200 ms and a late one around 400 ms after the ‘go cue’. In the first case, the analysis 

identified clusters around 200 ms post 'go' cue, which was expected since participants pressed 

the button around this time point (Fig. 1b). This was also reflected in the distribution of these 

early clusters on the sensor array, suggesting a source in left motor cortex (button pressed by 

right hand index finger). In the second case, the analysis identified late clusters around 400 

ms post-'go' cue, a time span associated with the probability-sensitive P300 wave19-21,31.  

 

Event-related field components – correlation with RT at the source level 

We aimed to identify source-level representations of the correlation results described above at 

the sensor-level to obtain a more precise spatial estimate of the neural activity correlated with 

RT which may be informative about the potential role of these ERF components in the 

processing of event probability density. As was the case at the sensor-level, the single-trial ERF 

data relative to the 'go' cue was aggregated in frames (see above). The per-frame data were then 

projected into source-space and Spearman's rho was computed between source-space ERF and 

RT for each source and time point (Methods). The distribution of rho was centered around zero 

in all four conditions, resembling a Gaussian distribution (Fig. S5). Rho was averaged within 

time windows of interest (Tbl. S3) that were selected based on the clusters identified in sensor-

space analysis. A cluster-based permutation test was run on these aggregated rho data to identify 

clusters of sources in which rho differed significantly from zero.  
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 An important limitation of the cluster-based permutation test, as currently implemented 

in FieldTrip, is that it cannot perform 4-D clustering, i.e. along the 3 spatial dimensions of the 

volumetric source space and time at once. It can only perform 3D spatial clustering in source 

space using a low-level function of SPM (spm_bwlabel.m) inside the function that estimates 

clusters (findcluster.m). Given this limitation, rather than performing such a 3D cluster 

permutation test for each time point and then having to correct for a large number of multiple 

comparisons (number of time points), we used the cluster time spans already identified in 

sensor-level analysis and performed a single test for the time span of each cluster. This test 

identified for the time period of a cluster found in sensor space, the corresponding sources that 

have a significant correlation with RT.  

 The above analysis pipeline identified patterns of positive and negative clusters around 

both 200 and 400 ms which were consistent across all four conditions  and were significant in 

most (but not all) cases (Tbl. S4).  

 

Table 1 Location of source clusters computed on Spearman's rho (correlation between 'go' cue 

ERF and RT). Positive clusters (red), negative clusters (blue). 

      Condition Location of 'early' clusters 

(~ 200 ms post 'go' cue) 

Location of 'late' clusters 

(~ 400 ms post 'go' cue) 

      
Vis exp right parietal left parietal &  

sensorimotor 

cerebellum left parietal &  

sensorimotor 

right parietal 

Vis flip right parietal left parietal &  

sensorimotor 

cerebellum left parietal &  

sensorimotor 

right parietal 

Aud exp right parietal left parietal &  

sensorimotor 

cerebellum left parietal &  

sensorimotor 

no cluster 

Aud flip right parietal left parietal &  

sensorimotor 

cerebellum left parietal &  

sensorimotor 

right parietal 

 

A striking pattern of clusters emerged, in which the early positive clusters were associated with 

activity in right parietal cortex and the early negative clusters with activity in left parietal and 

motor cortex (Tbl. 1). This pattern was reversed for the late clusters: positive clusters were 

located in left parietal and motor and negative ones in right parietal cortex. Notably, in all four 
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conditions a second positive cluster was identified around 200 ms post-'go' cue which was 

comprised of sources localized in the cerebellum.  

Fig. 4 shows the across-condition averages of the sources that comprise early and late clusters. 

The early negative clusters align well with left sensorimotor cortex, as well as with primary 

somatosensory cortex (Fig. 4a, right), likely reflecting activity related to the button press in 

generation of RT. This interpretation of the negative correlation between RT and ERF is 

supported by the fact that in simple RT tasks, RT variance is positively correlated with average 

RT12 which is also seen in the distribution of our RT data (Fig. S1). The right-skewed 

distribution of RT should lead to a larger within-frames-averaged ERF amplitude where RT 

variance is small (short RT) and to a smaller average ERF amplitude where RT variance is large 

(large RT)25. Therefore, the distribution of the early negative clusters over motor-related areas 

can be seen as a sanity check that supports our correlation-based analysis strategy.  

The early positive clusters cover parts of right motor cortex as well as parietal cortex (Fig. 4a, 

left). The location of these clusters is ipsilateral to the hand performing the button press which 

is in line with reports of ipsilateral motor-related activity observed at both the single-cell level36 

and with MEG37,38, that may precede the onset of finger movements39. Our result likely is 

another manifestation of this phenomenon.  

Note that the interpretation of these early clusters as parts of a single dipole, as may be inferred 

based on the sensor level analysis, is inadequate since the activities that underlie the positive 

and negative clusters originate from different hemispheres. Fig. 5 depicts the location of all 

positive and negative early clusters in the four separate conditions. Although there are some 

differences in cluster extent between conditions, e.g. the positive cluster in auditory flipped 

exponential and the negative cluster in the auditory exponential condition both include parts of 

the frontal lobe, the averages across conditions in Fig. 4 give a reasonable estimate of the early 

clusters' location. [N.b. the (minor) extensions of the positive cluster to the left hemisphere in 

the visual exponential condition and of the negative cluster to the right hemisphere in the 

auditory exponential condition should be considered as artifacts due to leakage.] 
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Fig. 4 Clusters of Spearman's rho averaged across conditions. Rho was computed by correlating 

source-level representation of 'go' ERF and RT (Methods). a) Clusters around 200 ms post-'go' 

cue (see Tbl. S3 for time spans). b) Clusters around 400 ms post-'go' cue (see Tbl. S3 for time 

spans). Colorbar to be interpreted as discrete as it depicts the number of conditions in which a 

source is part of a cluster: ± 0.25: one condition, ± 0.5: two conditions, ± 0.75: three conditions, 

± 1: four conditions. 

 

The late clusters around 400 ms post-'go' cue are depicted as across-condition averages in Fig. 

4b. The late positive clusters are located over left primary motor and somatosensory cortex 

(Fig. 4b, left), whereas the late negative clusters are located over lateral posterior parietal cortex 

(Fig. 4b, right). The distribution of sources for both positive and negative late clusters is more 

variable across conditions (Fig. S6) than in the case of the early clusters (Fig. 5). E.g. in the 

auditory exponential condition, the positive cluster comprises of sources in left parietal cortex 

and also right latero-frontal cortex (as well as a small left centro-frontal component) (Fig. S6, 

left). Potential reasons for this variation in location within a single cluster are offered in a 

dedicated section below. Still, the locations of early and late clusters mostly overlap (compare 

Fig. 4a, left with 4b, right; and Fig. 4a, right with 4b, left). The overlap between early negative 

(Fig. 4a, right) and late positive (Fig. 4b, left) clusters supports the interpretation of these 

clusters as motor and somatosensory components of the button ERF.  

The late negative clusters over right parietal cortex (Fig. 4b, right) are in agreement with the 

probability-sensitive ERP component P300. The P300 (P3b) originates from parietal areas25,40 

and is commonly observed in the time span around 400 ms19-21,23,31. In contrast, the N2c 

component, which is also sensitive to probability24, is argued to originate from frontal cortex41 

a
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and peaks earlier than the P300, i.e. around 250 to 350 ms after a simple stimulus42. Work using 

EEG promotes a negative correlation between P300 amplitude and probability19. Here, using 

MEG, the negative correlation between the P300 and RT implies that the component's 

amplitude positively covaries with probability density, i.e. the P300's amplitude is large where 

expectancy is high and vice versa.  

Note that as is the case in both early clusters, the average activity of positive and negative late 

clusters (Fig. 4b) originates (mostly, see Fig. S6) from different hemispheres. 

 

Fig. 5 Clusters of Spearman's rho around 200 ms post-'go' cue. Rho was computed by 

correlating source-level representation of 'go' ERF and RT (Methods). See Tbl. S3 for time 

spans of clusters.  

 

As a sanity check of the above source-level analysis, Spearman's rho was investigated. The 

distribution of mean rho averaged over the time spans of the identified clusters (Tbl. S3) was 

centered around zero (Fig. S7) without excessive skewing towards negative or positive values. 
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Positive clusters Negative clusters
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The values of mean rho that comprised each cluster show a clear shift away from zero (Fig. 

S8), reflecting the sign of the identified clusters. The number of sources varies across clusters 

(compare e.g. positive cluster 1 between visual exponential and visual flipped exponential, Fig. 

S8) which is also reflected in the source projection plots (e.g. Fig. 5 positive cluster visual 

exponential and flipped exponential). Despite these differences in source number, the clusters 

appear around the same cortical locations. 

 

The correlation-based analysis in source-space identified a second positive cluster of rho 

(correlation between RT and ERF) around 200 ms post-'go' cue (Tbls. S3 and S4). This cluster 

comprised of sources in the cerebellum (Fig. 6). The consistency of this finding across all four 

conditions supports the functional role of the cerebellum in both, motor control43 and in the 

estimation of time44.  
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Fig. 6 Cerebellar clusters of Spearman's rho computed between ERF and RT around 200 ms 

post-'go' cue (see Tbl. S3 for time spans and Methods for details on correlation). Coronal: view 

from back, axial: view from top, sagittal: view from right. 

 

In sum, the analysis of time-locked data identified significant correlations between the ERF and 

RT. There were clusters over left sensory-motor cortex and clusters over right parietal cortex.  

The clusters over left sensory-motor cortex, early negative and late positive, and the positive 

cluster located in the cerebellum reflect the sensitivity of RT to 'go' time probability. The 

finding of a late negative cluster in all conditions, irrespective of 'go' time distribution and 

sensory modality, consistently points to an involvement of right parietal cortex in temporal 

anticipation. No correlates between the ERF and RT were found in the time span before the 'go' 

cue, indicating absence of preparatory activity, such as the CNV, in time-locked data. Finally, 

no correlation was observed in early sensory ERF components (<150 ms) in visual or auditory 

areas, indicating that these sensory responses were not modulated by probability density. 
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Correlation between 1/PDF and MEG data 

The analysis of the evoked MEG data demonstrated that ERF components after the onset of the 

‘go cue’ are significantly correlated with RT. As the initial behavioral analysis identified 1/PDF 

as an adequate explanatory variable of RT over 'go' time (Fig. 1e and f), the question naturally 

followed whether this simple linear model would also show similar correlations with the MEG 

data as with the RT.  

The answer is not obvious for the following reason. In the correlation analysis of MEG with 

RT, Spearman's rho was first computed at the single-subject level and then the statistics were 

performed across subjects. In the initial behavioral analysis, the 1/PDF model was fit to the 

group-level data. This means that the average RT curve for each subject was computed, then 

these curves were again averaged on the group-level and a single 1/PDF model was fit to them 

(Methods). This group-level model gave a very accurate fit with high R2 values. However, 

when this 1/PDF model was fit on the single-subject level, although it qualitatively followed 

the individual RT curve, quantitatively it had much smaller R2 values due to the higher levels 

of variability and noise (Fig. S9). So the question can be reformulated into whether this higher 

variability and noise at the single-subject level allows the 1/PDF models to have the quantitative 

accuracy required to capture the correlations with the MEG data that were observed in the RT-

MEG correlation analysis (see Suppl. Methods for further details). 

 

Event-related field components – correlation with 1/PDF at the sensor level 

In this section we employ the same correlation-based approach but using the 1/PDF as a 

regressor instead of RT. First, the single-subject RT curves were fit with the reciprocal 

probabilistically blurred PDF. The 1/PDF models and the MEG data time-locked to the 'go' cue 

(and baselined using a pre-'go' baseline) were aggregated in 30 frames (see above, Methods). 

For each channel-time duplet, Spearman's rho was computed between the aggregated model 

values and the aggregated MEG data followed by a cluster-based permutation test on rho. 

Similar to the RT correlation case, a pattern of early (~ 200 ms) and late (~ 400 ms) positive 

clusters (Fig. S10a) and negative clusters (Fig. S10b) was identified (Tbl. S6) with 

topographies (Fig. S10c and d and Fig. S11a and b) similar to those in the RT case (Figs. 3 and 

S2). These similarities between the two regressors' clusters provides first evidence that the 

1/PDF model is not only a valid model of RT behavior but it also points to the neural processes 

involved in the generation of reaction times. Plots of rho and the ERF over time, both averaged 
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across each clusters' MEG channels, further support this finding (Fig. S12). Rho averaged 

within cluster channels has a similar time course in both RT and 1/PDF regressor cases 

(compare Fig. S12a, left column, with Fig. S12b, left column). Likewise, the ERF averaged 

within cluster channels is similar for both regressors, reflecting that both regressors identified 

mostly the same cluster channels (compare Fig. S12a, right column, with Fig. S12b, right 

column). Taken together, the similarities in RT-based and 1/PDF-based correlation results lend 

support to the interchangeability of the two regressors. 

 

Event-related field components – correlation with 1/PDF at the source level 

Next, the above cluster-based analysis was performed on Spearman's rho computed by 

correlating the fitted 1/PDF model and the source-space representation of the ERF (Fig. S13, 

Methods). The cluster-based permutation test on rho identified a pattern of clusters around 200 

ms (Tbls. S7 and S8) that is highly similar to the one observed in the above analysis of rho 

computed on RT as a regressor (Tbl. 1): the sources that comprise the positive clusters are 

located over right parietal cortex; the sources that comprise the negative clusters align well with 

left parietal cortex including left pre-motor and primary motor cortex (Fig. 7). 

 

Fig. 7 Clusters of Spearman's rho averaged across conditions. Rho was computed by correlating 

source-level representation of ERF and fit 1/PDF (Methods). a) Clusters around 200 ms post-

'go' cue (see Tbl. S7 for time spans). b) Clusters around 200 ms post-'go' cue (see Tbl. S7 for 

time spans). Colorbar to be interpreted as discrete as it depicts the number of conditions in 

which a source is part of a cluster: ± 0.25: one condition, ± 0.5: two conditions, ± 0.75: three 

conditions, ± 1: four conditions. 

 

As was to be expected, given that the 1/PDF regressor is an adequate model of RT, in all four 

conditions the locations of positive and negative clusters in the 1/PDF regressor case (Fig. 8) 

closely resembled those in the RT regressor case (Fig. 5). As a sanity check, histograms of 

Spearman's rho (pooled across sources within each cluster's time span) were investigated (Fig. 
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S14). They depict a close-to-symmetric distribution of rho centered around zero in all cases. 

Histograms of all rho values per cluster (Fig. S15) show a shift in average rho away from zero 

as well as a difference in the number of sources between the clusters. All of these findings 

closely resemble those from the time-locked analysis using RT as a regressor (see above). 

 

 
Fig. 8 Clusters of Spearman's rho around 200 ms post-'go' cue. Rho was computed by 

correlating source-level representation of 'go' ERF and fit 1/PDF (Methods). See Tbl. S7 for 

time spans of clusters.  
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Discussion 

We investigated the neural correlates of temporal anticipation. Reaction times to visual and 

auditory cues followed the reciprocal event probability density. The temporal dynamics in right 

parietal cortex correlated with RT to anticipated events. More specifically, time-locked activity 

in right parietal cortex after the event occurred was correlated with probability density, hinting 

at a functional role of late ERP component P300 in temporal expectancy. This result is 

independent of sensory modality, suggesting a central role of parietal cortex in the estimation 

of probability density. 

 

Reciprocal PDF but not HR captures reaction times 

We replicated our previous result that RT modulation is captured by a model based on the 

1/PDF, whereas the canonical HR-based model failed to fit RT. Although the HR model makes 

intuitive sense, its failure at the behavioral level renders it an inadequate model of event 

anticipation. The 1/PDF model is based on the event PDF itself, a variable that can be built on 

computational primitives such as the counting of events over time. This computation can easily 

be implemented in an elementary neural network45 indicating computational parsimony and 

biological plausibility. We used the 1/PDF model as a regressor on neural data. 

 

No effect of probability density on pre-stimulus time-locked neural activity 

Our analysis did not identify a significant correlation between pre-stimulus event-related 

components, such as the contingent negative variation (CNV) and the lateralized readiness 

potential (LRP), with RT or its 1/PDF model. In the case of the LRP this is not surprising, as 

the LRP is commonly explored using contralateral-ipsilateral response difference waves in both 

EEG27 and MEG46 work to avoid confounding activity introduced by the stimulus. In the present 

experiment, participants responded only with one hand and the subtractive analysis approach 

was not possible. In previous work on the CNV, its sensitivity to event probability was shown 

for between-stimuli time spans larger than 1 s6,47. In fact, when stimuli are separated by several 

seconds, the CNV may consist of two components, an early one that is associated with 

processing of the first stimulus and a second one that precedes the second stimulus and is 

associated with response preparation29. Our task employed the 'go' time span of 0.4 to 1.4 s 

which may be too short for a probability-driven modulation of the CNV wave to build up. In 

addition, our design employed full distributions defined over 60 'go' times (∆t = 1/60 s) whereas 

commonly only a small number of different 'go' times are presented6,47. The modulation of 
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response preparation, e.g. by attribution of attention to only a few time points, may likely differ 

from its (quasi-)continuous counterpart investigated here, resulting in the absence of significant 

CNV modulation by event probability density.  

 

No effect of probability density on early ERF components 

We next investigated whether early post-stimulus ERF components are modulated by event 

probability density. This hypothesis was motivated based on work proposing early cortical 

processing of event probability at the single-cell1,4 and population response5 levels, and 

specifically the sensitivity to attention of e.g. the visual P123,48-50 and the auditory N151 wave. 

We observed no significant correlation between midlatency (10 to 50 ms) or longlatency (50 to 

~150 ms) ERF components and probability density. The common finding of P1 amplitude 

increase is associated with enhanced stimulus processing and is thought to be driven by spatial48 

and spatial-temporal23,50 attention. In the temporal attention case, in Rohenkohl and Nobre's 

work, the event occurred at one of only two different stimulus time points and did not require 

complex probability estimation23, whereas our task required the distribution of attention over 

the time span of one second based on the participant's estimate of event probability. Our stimuli 

are determined by event probability density functions and may therefore be an ecologically 

more realistic approximation to environmental dynamics52. However, the temporal-

probabilistic structure embedded in our task may have been too complex to evoke these ERP 

effects. As Luck et al. put it: "...these early ERP components are small and may be influenced 

by attention only when attention is very highly focused"53. If this is indeed the case, then, given 

the obvious modulation of RT, the absence of early ERP modulation suggests that either a) the 

effect may still be there but our design is not sensitive enough to pick it up, or, b) the effect is 

not there because enhanced stimulus processing at very early cortical levels is not crucial in the 

task. The later interpretation may be more adequate since Rohenkohl and Nobre investigated 

perceptual decision making (discrimination of visual stimuli)23 whereas our simple RT task 

contains no choice component. Thus, it may be that in temporal-probabilistic inference, the 

brain does not benefit from adaptive stimulus-related processing in early cortical areas. A more 

straightforward reason for the absence of effect may be that these early components decrease 

in amplitude as the interval between two stimuli decreases25 which may interfere with putative 

effects of probability density. In sum, the analysis of time-locked data did not produce evidence 

for early cortical stimulus processing that is driven by event probability density. 
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Probability density modulates parietal P300 wave 

Our analysis identified a modulation of the P300 (P3b) ERF component by event probability 

density. The fact that the P300 occurred after the response was given raises the question of the 

component's functional role in temporal anticipation. In more complex tasks from decision-

making involving choice, where the P300 occurs before the choice is instantiated, the 

component is argued to (partly) represent decision processes54. Our simple task only required a 

decision regarding the question: "Shall I press the button now?" which is solely contingent on 

the occurrence of the 'go' cue. We therefore favor other common interpretations such as that the 

P300 may represent processes involved in the updating of working memory55-57 or information 

updating in general. In this regard the concept of context updating58 proposes an attention-

driven comparison between current sensory input and the representation of past sensory events. 

This hypothetical comparison-and-updating process could be conceptualized in our task by a 

trial-by-trial process model that updates probability estimates over time. This process model 

could possibly predict the trial-by-trial P300. Yet it would remain unclear how these 

hypothetical processes link causally to the observed effects on the P300. To better understand 

the functional role of this prominent component in temporal anticipation, a targeted EEG 

experiment could be performed in which the presumed updating processes reflected in the P300 

are perturbed using transcranial magnetic stimulation (TMS). Nonetheless, the finding that the 

P300 modulation by probability density is very similar in vision and audition is in line with this 

late component's known independence from input modality25 which suggests high-level 

processing.  

 We further identified an interesting anatomical relationship between early and late 

clusters. The early positive clusters cover parts of parietal cortex, as well as motor cortex (Fig. 

4a, left). The location of these clusters is ipsilateral to the hand performing the button press. 

The ipsilateral activity prior to a motor action has been proposed to represent suppression of 

contralateral movement59, but its precise functional significance remains unclear. Given the 

observed modulation of the P300 by probability density, an alternative view would be that the 

parietal components of these early positive clusters do not reflect movement suppression but 

are functionally related to the presumed information updating processes reflected in the late 

negative clusters, i.e. the P300. 

In summary, the time-locked analysis revealed that the P300 co-varies with expectancy and that 

it originates from the right parietal lobe associating this cortical area with the later processing 

stages of event probability density. 
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HR and 1/PDF as regressors in psychometric-neurometric mapping 

The HR has been proposed as a model of anticipatory neural activity at the single-cell and 

population response level and at time spans ranging from hundreds of milliseconds to multiple 

seconds. Although comparison of results across different levels of analysis and across different 

time spans requires caution, the obvious difference between work promoting the HR and the 

present work promoting the 1/PDF variable is this choice of regressor. The HR variable and the 

1/PDF variable differ in the 'go' time distributions used here (exponential case: U-shaped vs. 

quasi-monotonically increasing over time, flipped exponential case: convex vs. concave shape,  

Fig. 1). These qualitative differences between HR and 1/PDF exist for several distributions 

commonly used in experiments on temporal anticipation, such as the Gaussian15,16 and 

qualitatively similar distributions1, and also the Weibull2,5 and uniform15 distributions. These 

differences intuitively highlight the dependence of psychometric-neurometric mapping 

approaches on the choice of regressor. Note that we do not imply here that the choice of 

regressor renders the findings of previous work questionable per se. On the contrary, we suggest 

that the neural activity identified by the use of a HR-based regressor may in some cases be 

explained by other, simpler variables. In the case of event certainty, for many distributions (e.g. 

Gaussian and uniform), the HR variable monotonically increases over time. Correlation 

between HR and neural data may therefore identify a ramping activity that may or may not be 

driven by HR. On a related note, work on anticipation is commonly limited to only a single 

sensory modality. Again, this may mislead inference since it is not readily apparent how 

modality-specific contingencies can be separated from activity related to the processing of 

event probability density. Furthermore, the impact of probability on neural activity is 

sometimes investigated in discrete settings6,10,60 where HR is computed over discrete time6,10. 

Given the brain's immense capacity for accurate processing of time-based information61-63, it is 

not obvious why a concept based on continuous time (the HR) should per se be adequate as a 

model of events that are highly discretized in time. In sum, common psychometric-neurometric 

mapping strategies critically depend on the choice of regressor. In our results, the good 

performance of the 1/PDF as both a model of average RT and as a regressor on averaged ERF 

data was contrasted by the less adequate fit of 1/PDF to single-trial RT data. This limitation of 

our descriptive model again illustrates the challenges of regressor choice. The aim of future 

work will be the development of a PDF-based model that gives a per-trial prediction of RT. 
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Taken together, our results are more in line with work suggesting that probability density itself 

is reflected in neural anticipatory activity64,65, but not HR. 

 In conclusion, we report a supra-modal neural representation of event probability 

density in right parietal cortex. This result is supported by the modulation of ERP component 

P300. Overall, this work contributes to the understanding of the cortical processes involved in 

temporal anticipation. 

 

Materials and Methods 

The experiments were approved by the Ethics Committee of the University Hospital Frankfurt. 

Written informed consent was given by all participants prior to the experiment. 

 

Participants. 24 healthy adults (15 female), aged 21-34 years, mean age 27 years,  participated 

in the experiment. All were right-handed and had normal or corrected-to-normal vision, 

reported no hearing impairment and no history of neurological disorder. Participants received 

€ 15 per hour. One subject was excluded from the source-level analysis of MEG data because 

the anatomical MRI data were corrupted. 

 

Experimental task and stimuli. In the MEG booth, participants performed visual and auditory 

blocks of trials of a 'set' - 'go' task. In the task, a 'set' cue was followed by a ‘go‘ cue (Fig. 1a). 

Participants were asked to respond as quickly as possible with a button press (Current Designs 

Inc., Philadelphia, PA, USA) to the 'go' cue using their right index finger. Participants were 

instructed to foveate a central black fixation dot and restrict blinking to the timespan 

immediately following a button press. In 10 % of trials, no 'go' cue was presented. In these catch 

trials, participants were asked to not press a button. This small percentage of catch trials was 

added to avoid possible strong effects of event certainty towards the end of the 'go' time span15. 

A small black circle around the central fixation dot was presented onscreen for 200 ms after a 

button press indicating the end of the trial. In the case of a catch trial, the circle appeared after 

the longest possible 'go' time, i.e. 1.4 s. The intertrial interval (ITI) was defined by the onset of 

the small black circle and the 'set' cue of the following trial. The ITI was drawn randomly from 

a uniform distribution (range 1.4 to 2.4. s, discretized in steps of 200 ms).  

 

Visual stimuli. Two simultaneously presented checker boards served as both 'set' and 'go' cues. 

They were projected (refresh rate 60 Hz) to the back of a gray semi-translucent screen located 
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at a fixed distance of approximately 53 cm from the participants' eyes. Each cue was onscreen 

for 50 ms. The checker boards subtended approximately 6.5 x 6.5° visual angle and comprised 

of 5 x 5 small black and white squares of equal size. The center of the checker boards was 

located to the left and right of a central fixation dot at a horizonal distance of approximately  7° 

visual angle and a vertical distance of 0° visual angle. The black and white pattern of the checker 

boards was inverted between 'set' and 'go' cues.  

 

Auditory stimuli. White noise bursts of 50 ms length served as 'set' and 'go' cues. Each burst 

featured an 8 ms cosine ramp at beginning and end. The bursts were presented at approx. 60 dB 

SPL above hearing threshold as determined by pure tone audiometry (1 kHz, staircase 

procedure). All auditory stimuli were output via a RME Fireface UCX interface to a headphone 

amp (Lake People GT-109) and delivered diotically via a MEG-compatible tube-based system 

(Eartone Gold 3A 3C, Etymotic Research, Elk Grove Village, IL, USA). Visual and auditory 

stimuli were generated using MatLab (The MathWorks, Natick, MA, USA) and the 

Psychophysics Toolbox66 on a Fujitsy Celsius R940 computer running Windows 7 (64 bit). 

 

Temporal probabilities. The time between 'set' and 'go' cues, the 'go' time, was a random 

variable, drawn from either an exponential distribution (Equation 1) with parameter 𝑙	 = 	0.33 

or from its left-right flipped counterpart.  

 

𝑓(𝑡) = !
"
𝑒#$

!
"%                      (1) 

 

Both distributions were delayed by 0.4 s resulting in a range of 'go' times from 0.4 s to 1.4 s. 

Sequential effects were reduced by the constraint that no more than two consecutive trials were 

allowed the same 'go' time. The 'go' time distribution was fixed for a pair of consecutive blocks 

of trials. Per participant the experiment consisted of four visual and four auditory blocks. A 

single block consisted of 200 trials of which 20 did not feature a 'go' cue (catch trials). Per 

sensory modality, in two blocks of trials, the 'go' times were randomly drawn from the 

exponential distribution and in the other two blocks they were randomly drawn from the 

flipped-exponential distribution as described above.  

 

Models of reaction time 
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Hazard-rate-based and PDF-based models of RT were constructed to investigate the effect of 

the 'go' time distribution on event anticipation. The presented exponential and flipped 

exponential 'go' time distributions are characterized by three functions, the probability density 

function (PDF), the cumulative distribution function (CDF), and the hazard rate (HR): 

 

𝑝-𝑡&'.: 𝑃𝐷𝐹	𝑜𝑓	𝑅𝑇	𝑎𝑠	𝑎	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛	𝑜𝑓		′𝑔𝑜′	𝑡𝑖𝑚𝑒	𝑡&'     

  

𝑐-𝑡&'.: 𝐶𝐷𝐹	𝑜𝑓	𝑅𝑇	𝑎𝑠	𝑎	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛	𝑜𝑓		′𝑔𝑜′𝑡𝑖𝑚𝑒	𝑡&' =	∫ 𝑝(𝑢)𝑑𝑢(#$
)     (2) 

 

ℎ-𝑡&'.: 𝐻𝑅	𝑜𝑓	𝑅𝑇	𝑎𝑠	𝑎	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛	𝑜𝑓	′𝑔𝑜′	𝑡𝑖𝑚𝑒	𝑡&' =
*((#$)
!#-((#$)

	     (3) 

 

Mirrored temporally blurred hazard rate  

To arrive at the temporally blurred HR, each 'go' time PDF was blurred by a Gaussian 

uncertainty kernel whose standard deviation linearly increases with elapsed time from a 

reference time point: 𝜎 = 𝜑 ∙ 𝑡. Here, 𝑡 is the elapsed time and 𝜑 is a scale factor by which the 

standard deviation 𝜎 of the Gaussian kernel increases. The equations for the corresponding 

temporally blurred functions are: 

 

𝑝.-𝑡&'. = 	
!

/(#$√12
∫ 𝑝(𝜏) ∙ 𝑒#34#(#$5

% 31/%4%56 𝑑𝜏7
#7        (4) 

 

𝑐.-𝑡&'. = 	∫ 𝑝.(𝑢)𝑑𝑢
(#$
)           (5) 

 

ℎ.-𝑡&'. =
*&((#$)
!#-&((#$)

           (6) 

 

For a given 'go' time 𝑡&' the PDF is convolved with a Gaussian kernel centered at 𝑡&' (Equation 

4). At 𝑡&' 	= 	0.4	𝑠 after 'set' cue onset the kernel has standard deviation 𝜑 ∙ 0.4. Similarly at 

𝑡&' 	= 	1.4	𝑠 the kernel has standard deviation 𝜑 ∙ 1.4. In the computation of the subjective 

PDF, the definition of the PDF was extended to the left and right of the 'go' time range: 
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𝑝*899:9-𝑡&'. = J
0	, (0.4 − 3 ∙ 𝜑 ∙ 0.4) 	≤ 𝑡 < 0.4	

𝑝-𝑡&'.	, 0.4 ≤ 𝑡 ≤ 1.4
0	, 1.4 > 𝑡 ≥ (1.4 + 3 ∙ 𝜑 ∙ 1.4)

     (7) 

 

The extensions were equal to three standard deviations of the Gaussian kernel (encapsulating 

99.7 % of the Gaussian uncertainty function) at the shortest and longest 'go' times. Then the 

integral in Equation (5) was computed between these new extrema [(0.4 − 3 ∙ 𝜑 ∙ 0.4) , (1.4 +

3 ∙ 𝜑 ∙ 1.4)] instead of the impractical interval of minus to plus infinity.  The selection of 𝜑	 =

	0.21 was consistent with previous research2,16,67,68. For 𝜑	 = 	0.21 the temporal range of the 

extended PDF (7) becomes [0.148, 2.28] s which is also the range of integration in the 

computation of the subjective PDF in Equation (4). The PDF of each distribution, 𝑝-𝑡&'. was 

normalized so that its integral from 0.4 s to 1.4 s was 0.9 which reflecte the 10% catch trials 

that did not feature a 'go' cue. The HR was computed based on the PDF and CDF (Equation 6). 

To arrive at the to-be-fit HR variable, the HR was mirrored around its mean (Equation 8).  

 

𝑥;<-𝑡&'. = −-ℎ-𝑡&'. − ℎT. + ℎT = 	−ℎ-𝑡&'. + 2 ∙ ℎT = − *3(#$5
!#-3(#$5

	+ 2 ∙ ℎT	 (8) 

where 

𝑥;< ∶ "𝑚𝑖𝑟𝑟𝑜𝑟"	𝑜𝑓	𝑡ℎ𝑒	ℎ𝑎𝑧𝑎𝑟𝑑	𝑟𝑎𝑡𝑒	𝑜𝑓	𝑡ℎ𝑒	𝑃𝐷𝐹 

ℎT:𝑚𝑒𝑎𝑛	𝐻𝑅	 

 

Reciprocal probabilistically blurred event probability density function 

Probabilistic blurring constitutes an alternative hypothesis to the temporal blurring described 

above. In probabilistic blurring, the uncertainty in elapsed time estimation depends on the 

probability density function of event occurrence: 'go' times with high probability of event 

occurrence are associated with low uncertainty in time estimation and vice versa, irrespective 

of the 'go' time duration16. In probabilistic blurring, the standard deviation of the Gaussian 

kernel scales according to the PDF of event occurrence. In order to use realistic values for the 

standard deviation of the blurring Gaussian kernel, the minimum and maximum values were 

set accordingly to the temporal blurring case as 

 

𝜎;=> = 𝜑 ∙ 𝑡;=> = 𝜑 ∙ 0.4    and     𝜎;8? = 𝜑 ∙ 𝑡;8? = 𝜑 ∙ 1.4.              (9)  
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The value of 𝜑 was likewise set to 0.21. The PDF under investigation was then scaled so that 

its minimum value is 𝜎;=> and its maximum value 𝜎;8?. 

If 𝑝;=> and 𝑝;8? are the minimum and maximum values respectively of the PDF under 

investigation then the function used for computing the standard deviation of the Gaussian kernel 

based on the PDF 𝑝(𝑡)	was defined as: 

 

𝑠(𝑡) = Y1 − (*(()#*'())
(*'*+#*'())

Z ∙(𝜎;8? − 𝜎;=>)+	𝜎;=>.                (10)  

 

The term inside the brackets demonstrates that when the probability 𝑝(𝑡) is low the standard 

deviation of the Gaussian kernel approaches 𝜎;8? while when the probability increases, 𝑠(𝑡) 

approaches  𝜎;=>.  

Based on Equation (10) for determining the standard deviation of the Gaussian kernel the 

probabilistically blurred PDF 𝑝*(𝑡)	was computed as: 

 

𝑝*-𝑡&'. = 	
!

@(()√12
∫ 𝑝(𝜏) ∙ 𝑒#34#(#$5

% 31@(()%56 𝑑𝜏		7
#7 	.               (11)  

 

Finally, in order to implement the Gaussian blurring of Equation (11) at the extrema of ‘go’-

times, the definition of the PDF was extended to the left and right of the actual stimulus 

presentation interval by three standard deviations of the corresponding smoothing Gaussian 

kernels, similar to the temporally blurred case described in Equation (7) as: 

 

𝑝*899:9-𝑡&'. = J
0	, (0.4 − 3 ∙ 𝑠(0.4)) 	≤ 𝑡 < 0.4	

𝑝-𝑡&'.	, 0.4 ≤ 𝑡 ≤ 1.4
0	, 1.4 > 𝑡 ≥ (1.4 + 3 ∙ 𝑠(1.4))

				      (12) 

 

The extensions of the 'go' times range depend on the standard deviation function 𝑠(𝑡), which 

itself depends on the probability density function. To arrive at the to-be-fit PDF variable, the 

reciprocal of the PDF was computed: 1 / PDF (Equation 13). 

 

𝑥'*-𝑡&'. =
!

*3(#$5
	         (13) 

where  

𝑥'* ∶ ′𝑟𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑎𝑙′	𝑃𝐷𝐹 
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Modeling RT with a linear model 

Both variables, the mirrored, temporally blurred HR and the probabilistically blurred 1/PDF 

were fit to RT data (first aggregated within 'go' times within participants, then averaged across 

participants) using a linear model. An Ordinary Least Squares (OLS) regression was employed 

for the computation of the regression coefficients using the MatLab (The MathWorks, Natick 

MA, USA) fit function. Adjusted 𝑅1 was used as a measure of goodness-of-fit for comparing 

the models' relation to RT.   

 

MEG data acquisition. Neuromagnetic activity was recorded with a 275-channel system 

(VSM MedTech Omega, Coquitlam, Canada) equipped with axial gradiometers distributed in 

a helmet across the scalp in a magnetically shielded room at the Brain Imaging Center, 

Frankfurt. MEG data were recorded continuously with a sampling rate of 1,200 Hz. Participants 

were seated in an upright position and were asked to remain still during blocks of trials. Head 

position relative to the MEG sensors was controlled and continually monitored during each 

experimental block using three position indicator coils in the anatomical fiducial locations (left 

and right pre-auricular points and nasion). Head position was corrected if necessary between 

blocks using the fieldtrip toolbox35. Electro-cardiogram and vertical and horizontal electro-

oculogram were also measured at 1,200 Hz to identify eye blinks and movements, and the 

heartbeat in analysis.  

 

MEG data preprocessing. 

Continuous data were down-sampled to 600 Hz. Data were epoched separately with respect to 

'set' and 'go' cues and to the button press (-0.5 to 0.72 s). Artifactual epoches and noisy MEG 

channels were rejected based on visual data inspection using Fieldtrip's visual artifact rejection 

routines. Based on visual inspection, trials and MEG channels that featured periods of high 

variance due to e.g. eyeblinks or excessive movement, during the time span of interest were 

discarded from the analysis. Heartbeat artifacts were removed using independent component 

analysis. Drifts in MEG channels were eliminated by high-pass filtering at 0.2 Hz. Muscle 

activity was eliminated by low-pass filtering at 110 Hz. Finally, only trials with 0.05 s < RT < 

0.75 s were used in the analysis of MEG data and in modeling of RT. The selection process 

resulted in the removal of N = 1204 trials, leaving N = 33354 trials for analysis. 
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Magnetic resonance imaging data acquisition. 

To build participant-specific forward models for MEG source reconstruction, structural 

magnetic resonance imaging (MRI) scans (T1-weighted) were obtained for all 24 participants 

at the Brain Imaging Center, Frankfurt. MRI data were acquired on a Siemens 3T TRIO scanner 

with a voxel resolution of 1 x 1 x 1 mm3 on a 176 × 256 × 256 grid. Vitamin-E capsules were 

used to identify anatomic landmarks (left and right peri-auricular points and nasion). 

 

Event related fields analysis on sensor-space data 

MEG data time-locked to the 'go' cue was aggregated within adjacent pairs of consecutive 'go' 

times (frames). For the first frame, the activity from all trials with 'go' times = [0.4, 0.4167] s 

were averaged over time; the second frame comprised 'go' times = [0.4333, 0.45] s and so forth. 

This procedure was also applied to the single-participant RT and to the single-participant fits 

of the 1/PDF model of RT. The aggregation reduced the number of unique 'go' times from 60 

to 30 (= 30 frames). At the single-participant level, for each channel-by-time-point duplet, 

Spearman's rank correlations were computed between the 30 frames of MEG data and the 30 

averaged RTs (and the 1/PDF fitted to single-subject RT). Note that the resultant rho has the 

same dimensionality as the within-participant grand average of MEG data (channels-by-time-

points). On all participants' rho, statistical significance was tested using a cluster-based 

permutation test was run to identify channel-by-time clusters in which rho differs from zero 

(cluster-forming 𝛼	 = 	0.05, 1000 permutations). Before the averaging of the ERF, the data was 

baselined either to the pre-SET or to the pre-GO period. The pre-SET period (t = [-0.5, 0] s) 

was selected in the analysis of activity preceding the 'go' cue, whereas the pre-GO period (t = 

[-0.5, 0] s) was selected in the analysis of activity following the 'go' cue. 

 

Event related fields analysis on source-space data 

We used minimum variance beamformer LCMV69. The co-variance matrix used for 

computation of the spatial filter was derived from the average across trials. The time period 

used for computation of the covariance matrix was t = [-0.5, 0.9] s relative to the 'go cue. The 

average, baselined ERF for the computation of the covariance matrix was derived by averaging 

all trials from all frames so that the spatial filters are common for all frames. Then the sensor-

level average ERF for each frame was projected to source space through the common spatial 

filters. For each source location, Spearman correlation was computed between the average ERF 

across all frames and the corresponding RTs. This was repeated for each subject. Then the non-
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parametric cluster-based permutation statistics were computed to identify clusters of sources  

in which rho differs from zero (cluster-forming 𝛼	 = 	0.05, 1000 permutations). 
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