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Abstract  
Human functional brain connectivity can be temporally decomposed into states of high and low 
cofluctuation, defined as coactivation of brain regions over time. Despite their low frequency of 
occurrence, states of particularly high cofluctuation have been shown to reflect fundamentals of intrinsic 
functional network architecture (derived from resting-state fMRI) and to be highly subject-specific. 
However, it is currently unclear whether such network-defining states of high cofluctuation also 
contribute to individual variations in cognitive abilities – which strongly rely on the interactions among 
distributed brain regions. By introducing CMEP, an eigenvector-based prediction framework, we show 
that functional connectivity estimates from as few as 20 temporally separated time frames (< 3% of a 
10 min resting-state fMRI scan) are significantly predictive of individual differences in intelligence (N = 
281, p < .001). In contrast and against previous expectations, individual’s network-defining time frames 
of particularly high cofluctuation do not achieve significant prediction of intelligence. Multiple functional 
brain networks contribute to the prediction, and all results replicate in an independent sample (N = 831). 
Our results suggest that although fundamentals of person-specific functional connectomes can be 
derived from few time frames of highest brain connectivity, temporally distributed information is 
necessary to extract information about cognitive abilities from functional connectivity time series. This 
information, however, is not restricted to specific connectivity states, like network-defining high-
cofluctuation states, but rather reflected across the entire length of the brain connectivity time series.  
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Significance Statement  
Neuroimaging has significantly contributed to our understanding about human cognition. Individual 
differences in cognitive ability can be assessed with intelligence tests and resulting scores predict 
important life outcomes. Previous research revealed that few states of high brain-wide connectivity 
determine individuals functional connectomes. We show that these states do not predict intelligence but 
identify alternative states which contain intelligence-predictive information. These states comprise a 
minimum of 20 time frames (< 3% of 10 min resting-state fMRI), include a distributed network of brain 
regions, and their temporal independence is a critical prerequisite. Means to find these states are 
relevant for future neuroimaging research on complex human traits and the here introduced prediction 
framework has potential for broad applications across scientific disciplines.
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Main Text 
Introduction  
Humans differ in cognitive ability as assessed by measures of intelligence. Individual differences in 
intelligence, in turn, are associated with important life outcomes like academic achievement (1), socio-
economic status (2), or health (e.g., 3). While intact brain functions are a necessary pre-condition for 
intelligent behavior and thought, as evidenced by neuropsychological data from lesion studies (e.g., 4), 
the neurobiological mechanisms underlying individual differences in intelligence are not yet fully 
understood (e.g., 5, 6). One currently emerging hypothesis is that individual differences in intelligence 
(or general cognitive ability) are related not only to the structure or function of distinct brain regions, but 
to their interactions and the information flow between them (e.g., 7, 8; see also 9) – a proposal that is at 
least partly consistent with psychological theories postulating that general intelligence is the result of 
the coordination between several fundamental cognitive processes (including, e.g., working memory 
capacity and mental processing speed; e.g., 10, 11, for review see 12, 13).  
 
In the past few years, abundant functional MRI (fMRI) research has established that the human brain is 
organized into functionally dissociable large-scale networks (14 - 17), consisting of anatomically 
distributed brain regions whose activity covaries across time, even in the absence of specific cognitive 
task demands (task-free or resting-state fMRI). Multiple studies have demonstrated that individual 
differences in intelligence can be predicted from resting-state functional MRI connectivity (e.g., 18 - 21), 
so that a link between functional brain network organization and individual differences in general 
cognitive ability (intelligence) is widely accepted (see also 22, for an overview of network neuroscience 
studies on intelligence). The exact nature of this relationship, however, remains to be fully understood.  
 
Human network neuroscience studies have commonly relied on the analysis of ‘static’ intrinsic functional 
connectivity, which is derived from correlations between the entire BOLD time series of different brain 
regions (typically assessed with task-free resting-state fMRI measurements of 5 to 10 minutes in length, 
e.g., 23). Newer methodological advances made it possible to explore functional connectivity as a 
‘dynamic’ property of the human brain (see 24, for an overview) and suggest that individual differences 
in behavior and cognition may be related to variations of functional connectivity over time (e.g., 8, 25, 
26). Most recently, time-resolved analyses of intrinsic functional connectivity have demonstrated that a 
small fraction of the fMRI BOLD time series is characterized by particularly strong functional interactions 
between brain regions (27 - 29) and sufficient to account for several fundamental properties of the static 
network architecture, including the overall (time-averaged) configuration of connectivity patterns and 
their hierarchical modular structure (30). These ‘network-defining’ states of high brain-wide cofluctuation 
(top 5% of the entire timeseries, i.e., 55 out of 1,100 time frames) were suggested to be temporally 
stable and highly individual-specific (31-33), as subjects can be identified (in the sense of ‘network 
fingerprinting’; cf. 20) significantly better on the basis of these high-connectivity states, compared to the 
same number of low cofluctuation time frames (30). Following up on these findings, we here explore 
whether individual differences in general cognitive ability (intelligence) can be predicted from specific 
states of intrinsic functional brain connectivity, thereby defining ‘states’ as selections of fMRI time frames 
characterized by a particular selection criterion (such as strongest vs. weakest brain-wide cofluctuation).  
 
To this end, we investigated the association between general intelligence and different states of intrinsic 
functional connectivity in a sample of 281 adults for which intelligence test data (Full-Scale Intelligence 
Quotient, FSIQ, from the Wechsler Abbreviated Scale of Intelligence; WASI; 34) and temporally highly 
resolved resting-state fMRI data are available (NKI Enhanced Rockland Sample; 35). To increase the 
robustness of prediction results we developed a cross-validated machine learning-based prediction 
framework that circumvents the necessity of selecting arbitrary statistical threshold parameters. First, 
we replicated earlier reports that static (time-averaged) functional connectivity can significantly predict 
intelligence. We then identified high cofluctuation time frames as described by (30) and replicate their 
finding that the general structure of static functional connectivity is strongly determined by a small 
number of such high cofluctuation states. However, intelligence could not be predicted from these 
‘network-defining’ states, nor from an equal number of time frames reflecting particularly low brain-wide 
cofluctuations. Systematic analyses showed that more independent (i.e., temporally separated) time 
frames are required to predict intelligence than to recover major characteristics of general functional 
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network structure. However, given temporal independence, this number can be as low as 20 time frames 
and appears largely independent of the ability to predict global network features. Finally, multiple 
functional networks were involved in the prediction, suggesting intelligence as whole-brain 
phenomenon. All results have been replicated in an independent sample (N = 812, 36).  
 
Results 
General cognitive ability was assessed with an established measure of intelligence (FSIQ from the 
WASI; 34), and descriptive statistics show that the intelligence quotient is normally distributed in our 
sample of 18 to 84 year old adults (183 females; 98 males; Supplementary Figure S1). Time-resolved 
functional connectivity between brain regions (network nodes) was extracted from fast-sampling resting-
state fMRI data (primary sample: 114 regions, TR = 654ms; replication sample: 100 regions, TR = 
720ms; see Methods and Fig. 1a,b). A covariance maximizing eigenvector-based predictive modelling 
framework (CMEP, see Fig. 2 and Methods for details) was developed and used for all prediction 
analyses. This machine learning-based prediction framework involves eigenvector-based generation of 
features from functional brain connections that highly covary with the variable of interest (Fig. 2 a-e), as 
well as ElasticNet regression and leave-one-out (LOO) cross validation for prediction (Fig. 2f).  
 
Static functional connectivity predicts intelligence. We first used the CMEP prediction framework 
to replicate previous findings (e.g., 19, 20) that time-averaged (‘static’) functional connectivity derived 
from the full fMRI time series (Fig. 1d) significantly predicts intelligence (correlation between predicted 
and observed intelligence scores: r = .34; prediction error: MAE = 9.84; all p < .001; see Tab. 1). To 
establish the validity of CMEP, we compared its prediction results with those derived from the most 
frequently used prediction frameworks (connectome-based predictive modelling, CPM; cf. 20, 37). 
Prediction performance of CMEP was robustly superior across different cross-validation splits (Fig. 3a) 
and when substantially reducing the sample size of the training set to only 10% (Fig 3b), while most 
models produced similar results when trained on one sample and tested on a new sample (Fig. 3c). See 
Supplementary Fig. S2 for similar robustness results in the replication sample.   
 
Network-defining states of highest and lowest cofluctuation are not sufficient to predict 
intelligence. To test whether intelligence could be predicted from ‘network-defining’ states of highest 
cofluctuation, we followed the approach introduced by (30) of analyzing only 5% of the dynamic (time-
resolved) functional connectivity time series. First, we operationalized the instantaneous strength of 
brain-wide (global) connectivity as the root-sum-square (RSS) over the cofluctuation between all pairs 
of nodes (brain regions), independently for each time frame; see Fig. 1b-e). We then selected the 44 
time frames corresponding to the 5% highest global cofluctuation frames (HiCo; Fig. 1e red), as well as 
in an independent analysis the 5% time frames with lowest global cofluctuation (LoCo; Fig. 1e blue). 
Pearson correlation between the static connectivity matrix (average across all time frames) and the 
connectivity matrices constructed from only these selections of time frames (Fig. 1f) demonstrated high 
reconstruction similarity, with on average r = .78 (p < .001) and r = .41 (p < .001), respectively, for high 
and low cofluctuation states (Tab. 1, Fig. 4a). This replicates the previous finding that an individual’s 
static functional connectome can be well approximated based on just a few time frames of highest 
cofluctuation (30), thus providing an important precondition for all subsequent analyses. 
 
Next, we tested whether these states of highest cofluctuation are predictive of individual differences in 
intelligence. However, this was not the case (r = .13, MAE = 10.63, all p > .05). Further, the prediction 
performance was not significantly different from states of lowest cofluctuation (r = .11, MAE = 10.40, all 
p > .05; see Tab. 1; Fig. 4b, red and blue). Comparably low prediction performance was also evident 
when using an alternative prediction model (CPM; Fig. S3). These results suggest that reconstruction 
similarity (see previous paragraph) is not a faithful indicator for the ability to extract information about 
individual differences in cognitive ability from brain connectivity states, and that the ability to predict 
intelligence depends on a richer set of features than that required for approximating global properties of 
network structure (Fig. 4a,b).   
 
Notably, these network-defining states of highest and lowest cofluctuation contain a comparably large 
number of temporally adjacent time frames, which are highly correlated in their activity patterns. To test 
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whether the low prediction performance of highest and lowest cofluctuation states is due to the small 
number of temporally independent data points contained in these selections, we next selected only the 
individual-specific maxima/minima from the previously examined states of highest/lowest cofluctuation, 
respectively (Fig. 1e; maxima: MxCo pink; minima: MnCo light blue). This strongly reduces the amount 
of time frames (MxCo; 7-14 TFs, mean: 8.25; MnCo; 6-17 TFs, mean: 10.72), but ensures their temporal 
separation. Notably, neither reconstruction similarity nor prediction performance decreased markedly 
(MxCo: reconstruction similarity r = .77, p < .001; intelligence prediction r = .09, MAE = 10.65, all p > 
.05; MnCo: reconstruction similarity r = .32, p < 001; intelligence prediction r = .04, MAE = 10.57, all p > 
.05; Tab. 1; Fig. 4a,b). The same results were observed when using alternative prediction models, but 
CMEP provides the highest robustness of results (Fig. S3). Together, these analyses suggest that the 
low predictive power of connectivity states of highest/lowest cofluctuation for intelligence is most likely 
due to the small amount of independent information included in these selections of temporally adjacent 
time frames.   
 
A small selection of temporally separated time frames predicts intelligence. Notably, when 
selecting the same number of time frames as included previously in the selection of highest/lowest 
cofluctuation states (HiCo, LoCo), but ensuring their temporal separation – by selecting the 44 highest 
maxima (Mx) and lowest minima (Mn) across the entire cofluctuation time series – the prediction 
performance for intelligence increased markedly compared to the previous analyses. Specifically, the 
44 highest maxima allowed us to reconstruct static functional connectivity on average with r = .93 (p < 
.001; Fig. 4a orange) and to significantly predict individual intelligence scores (r = .32, MAE = 9.75, all 
p < .001; Tab. 1, Fig. 4b orange dot). The same analyses based on a selection of the 44 lowest minima 
resulted in a reconstruction similarity of r =.66 (p < .001; Fig. 4a green) and also in significant prediction 
of intelligence, albeit with a lower prediction performance (r = .26, MAE = 10.09, all p < .01; Tab. 1, Fig. 
4b green dot). Again, these results were similar for alternative prediction models, with CMEP showing 
robustly the best prediction results (Fig. S3).  
 
To reveal the minimal amount of data necessary to predict individual differences in intelligence, we 
systematically varied the number of highest maxima and lowest minima time frames, respectively, and 
investigated how reconstruction similarity and prediction performances depend on this number. The 
ability to predict intelligence reached statistical significance at 20 time frames for the highest maxima 
(Fig. 4d) and at 27 time frames for the lowest minima (Fig. 4d). This result shows that individual 
intelligence scores can be predicted from as few as 20 time frames, equal to < 2.26% of a 10 min resting-
state fMRI session (TR = 654ms, 884 TFs), as long as temporal independence of the selected time 
frames is ensured. These are considerably more time frames than necessary to reconstruct the static 
functional connectome (e.g., MxCo contained less than 14 frames), indicating that more independent 
data points are required to predict a complex human trait like general intelligence.  
 
Randomly selected time frames predict intelligence as good as time frames of maximal 
cofluctuation. As states of highest maxima (Mx) are not significantly superior to states of lowest minima 
(Mn) in predicting intelligence (Fig. 4b), we next asked whether comparable prediction performances 
could be obtained when using an equal number of time frames randomly sampled from a uniform 
distribution over all time frames. Similar to the original HiCo and LoCo selections, also highest maxima 
(Mx) outperformed the randomly selected set of time frames in reconstructing the static connectivity 
matrix, whereas the lowest minima (Mn) performed significantly worse (orange and green line in 
comparison to the gray area in Fig. 4c). In contrast, when predicting intelligence, the random sets of 
time frames performed just as good as sets with an equal number of highest maxima (Fig. 4d). This 
suggests that while reconstruction similarity to the static FC primarily depends on the strength of 
cofluctuation, the prediction of intelligence is mainly determined by the number time frames. 
 
Intelligence prediction involves multiple functional brain networks. The analyses reported so far 
used information from all possible functional brain connections for predicting intelligence. However, the 
brain can be decomposed into multiple non-overlapping networks (or modules) associated with different 
cognitive functions (e.g., 14). To assess their relative contributions to the prediction of intelligence, we 
repeated our analyses for a) static connectivity (all time frames) and b) the 44 highest maxima, 
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considering seven established functional brain networks (38). Specifically, we analyzed, in a first step, 
the prediction performance of only the connections within a network and of those between a specific 
pair of networks. As illustrated in Fig. 5a, static connections linking the default-mode network to the 
dorsal attention network and to the fronto-parietal network for cognitive control significantly predicted 
intelligence (p < .05, Bonferroni corrected for 28 comparisons, i.e., 21 between-network analyses and 7 
within-network analyses). When using the set of 44 highest maxima, only within-network connections 
(Fig. 5b) of the fronto-parietal network could significantly predict intelligence (p < .05, Bonferroni 
corrected for 28 comparisons). Secondly, we further explored the relevance of the seven functional 
networks for prediction of intelligence by analyzing the change in overall prediction performance when 
removing all connections, a specific network was involved in. For static connectivity removing one 
network only had a significant negative impact for the ventral attention network (Fig. 5c), whereas no 
significant changes in prediction performances were observed when analyzing the selection of 44 
highest maxima (Fig. 5d; p < .05; both analyses Bonferroni corrected for seven repeated analyses, i.e., 
one per network). In sum, these results suggest that multiple functional brain systems – the attention 
networks, the fronto-parietal network, and the default mode network – contribute to the prediction of 
intelligence.   
 
Robustness control analyses. Multiple control analyses were performed to further evaluate the 
robustness of our findings. As the choice of the cross-validation strategy can potentially influence the 
results of predictive modelling approaches (39), we first repeated our analyses for static functional 
connectivity and the 44 highest maxima using stratified 10-fold instead of LOO cross validation and 
obtained highly similar results (Tab. S1). Given that both the cognitive ability measure used in this study 
(FSIQ) and functional brain connectivity may vary with age (e.g., 40, 41) we secondly repeated our 
analyses using age-adjusted intelligence scores. As illustrated in Tab. S1, these analyses resulted in 
only a slight decrease in prediction performance but in overall comparable findings for static connectivity. 
In contrast, for the 44 highest maxima we observed a decrease in prediction performance suggesting 
that such states may vary stronger with age than the entire static connectivity matrix. Third, as functional 
connectivity estimates can be critically influenced by motion (e.g., 42, 43), we investigated whether there 
exists a temporal correspondence between the 44 highest maxima and high-motion time frames. This 
was not the case (Fig. S5a). Fourth, we tested whether the temporal distribution of the 44 highest 
maxima itself might be associated with variations in intelligence and observed that this also was not the 
case (r = .05, p = .39; Fig. S5b). In sum, the control analyses support the robustness of our findings. 
 
External replication. Even though all of the results outlined above were thoroughly cross validated and 
tested for different confounding effects, potential remaining influences of sample-specific characteristics 
can only be ruled out by external replication (44). We therefore repeated our analyses using the four 
resting-state fMRI scans from the Human Connectome Project (HCP; N = 831, age range: 22 – 36 years; 
100 nodes, 45; see Methods for details) each cropped to the same length as the time series of the 
primary sample (884 TFs). Given that the HCP data do not provide a full-scale IQ measure, general 
cognitive ability was operationalized as latent g-factor (46) computed from 12 cognitive performance 
scores (following 19; Fig. S1). This second dataset corroborated our prediction results (Tab. S2; Fig. 
S6): Static functional connectivity derived from all time frames could significantly predict intelligence 
(averaged across the four scans: r = .27, p < .001), while highest and lowest cofluctuation states could 
not (HiCo: r = .08, p > .05; LoCo: r = .03, p > .05). As in the primary dataset, restricting the selection to 
the maxima/minima during these highest/lowest cofluctuation states (< 17 TFs) resulted in only a slight 
decrease in reconstruction similarity (Tab. S2 in comparison to Tab. 1) and prediction performance 
(MxCo: r = .07, p > .05; MnCo: r = .02, p > .05). Finally, also in the replication sample, the 44 highest 
maxima and 44 lowest minima allowed for significant prediction of intelligence (Mx: r = .23, p < .002; 
Mn: r = .14, p < .05). Note that the reconstruction similarity to static connectivity was again highest in 
the latter cases (Mx: r = .97, Mn: r = .75). Finally, comparisons with randomly selected time frames and 
across increasing numbers of time frames resulted in similar findings as reported above for the original 
analyses (Fig. S6c,d). 
 
Network-specific analyses in the replication sample yielded qualitatively similar findings, i.e., strong 
predictive power of connections linking the default mode, the fronto-parietal, and the attention networks 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 23, 2022. ; https://doi.org/10.1101/2022.12.23.521743doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.23.521743
http://creativecommons.org/licenses/by-nc/4.0/


 8 

(Fig. S7a,b). However, neither for static connectivity nor for the highest maxima state, those network-
specific predictions reached statistical significance in the replication sample. Also, in no case prediction 
performance (MAE) decreased significantly when removing one network (all p > .05; Fig. S7c,d). While 
lacking the specificity observed in the primary sample, this supports the conclusion that multiple 
networks contribute to the prediction of intelligence. Lastly, an additional control analysis applying the 
114-nodes Yeo-atlas used in the analyses of the primary data set to the replication sample yielded 
similar results and, thus, demonstrated the robustness of findings also against variations in different 
node parcellation schemes (Tab. S3). Overall, the results of the external replication support the 
generalizability of our findings to different samples, different scanning and preprocessing parameters, 
different age cohorts, and to different measures of general cognitive ability.    
 
Discussion  
Recent work has shown that brief states of particularly high functional connectivity reflect fundamental 
properties of individuals’ functional connectomes measured across several minutes of resting-state fMRI 
(30, 31). Here, we explored whether these network-defining and person-specific states of high brain-
wide cofluctuation – as well as other network states – carry information about individual differences in 
general cognitive ability (intelligence). We first replicated the basic phenomenon that the fundamental 
structure of static functional connectivity is driven by a small number of such high cofluctuation states 
(30). Further a machine learning-based prediction framework (CMEP) was developed to predict 
intelligence from functional connectivity created from only such states. However, neither the high 
cofluctuation states nor the states of particularly low cofluctuation were predictive for intelligence. This 
low prediction performance of high cofluctuation states as defined by (30) and (31) potentially results 
from the high number of temporally adjacent and thus correlated frames that carry little independent 
information. Secondly, we reveal that intelligence can be predicted from equally small selections of fMRI 
time frames – when such time frames are temporally independent. This holds true for selections of 
maxima and minima within the cofluctuation time series, as well as for random selections of time frames. 
Lastly, we show that intelligence can be predicted from selections of as few as 20 time frames, and that 
intelligence prediction relies on multiple functional brain networks, including the attention, fronto-parietal 
control, and the default mode systems. The replication of all results in an independent sample suggests 
generalizability of our findings to different populations, processing pipelines, and to various measures 
of cognitive ability.   
 
How much brain data is required to predict human cognition? A large number of recent studies 
demonstrated that cognitive abilities can be predicted from functional brain connectivity measured with 
fMRI (20, 47). The recent advent of time-resolved brain connectivity analyses (30, 48) and of time-
varying connectivity approaches in general (for review see 24) has made it possible to investigate the 
relationship between specific states of functional connectivity and cognition in more detail. Previous 
work has strongly focused on time frames of particularly high cofluctuation and demonstrated their ability 
to capture idiosyncratic information (31-33). In fact, our results suggest that the ability to predict 
intelligence is rather independent from the strength of cofluctuation but critically depends on the 
availability of sufficient independent data.  
 
Further, our finding that prediction performance of intelligence increases with the number of time frames 
and that sufficient temporal independence is required, contradicts earlier studies proposing that scans 
as short as three to four minutes are sufficient to characterize individual subjects comprehensively (49, 
50) and that even less than two minutes of resting-state fMRI can be used to build robust individual 
connectotypes (i.e., idiosyncratic connectivity properties; 51). In such short scanning durations, it might 
not be possible to detect a sufficient number of frames that contain enough independent trait-relevant 
information. On the one hand, our findings support the benefit of analyzing human brain connectivity 
with temporally fine-grained methods that prevent the temporal averaging step. On the other hand, we 
argue towards the relevance of longer scanning durations for neuroimaging research on individual 
differences in complex human traits to ensure capturing sufficient trait-relevant connectivity states.  
 
Which brain states reflect individual differences in intelligence? While at the surface, our study 
asks for the smallest number of data points necessary to predict cognitive ability, the present research 
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is primarily motivated by the aim of clarifying whether or not individual differences in intelligence depend 
upon specific brain states - as recently proposed by the Network Neuroscience Theory of Intelligence 
(NNT; 9). Identifying such connectivity states would not only open pathways for understanding the 
neurobiology underlying human cognition, but also reveal foci for treatment of cognitive diseases. We 
therefore defined a brain connectivity state as a selection of time frames from the fMRI connectivity time 
series that are all characterized by specific connectivity properties, and we probed such selections for 
their ability to predict individual intelligence scores.  
 
The successful recovery of individual-specific connectomes from a limited number of high connectivity 
brain states (30) made these states a plausible first target. Ladwig and colleagues (52) suggested that 
focusing on time frames of higher cofluctuation increases the signal to noise ratio and thus increases 
the probability of detecting trait-relevant information. In contrast, in our study time frame selections with 
higher cofluctuation did not differ significantly from selections with lower cofluctuation regarding their 
predictive ability. This result is supported by (53), who find that lower and intermediate cofluctuation 
time frames provide higher subject specificity as well as highest phenotype predictions. Ladwig and 
colleagues (52) further demonstrated that high cofluctuation states are not necessarily special: removing 
these states from the connectivity time series did not impair the ability to derive individual connectomes, 
and random selections were equally capable of reconstructing static connectivity matrices. Relatedly, 
our result that even randomly selected time frames can predict intelligence as good as highest 
cofluctuation maxima suggests that intelligence-relevant information is not reflected in a specific brain-
network organizational state (such as the high cofluctuation states) but is rather present in many fMRI 
time frames distributed across the entire scan. To summarize, intelligence does not seem to be 
characterized by a specific brain state, but rather by the ability of the human brain to explore different 
brain states over time. 
 
Implications for understanding the brain bases of intelligence. The involvement of multiple 
functional brain networks in the prediction of intelligence from functional connectivity, observed here, is 
well in line with established neurocognitive theories of human intelligence (Parieto-Frontal Integration 
Theory, P-FIT, 54; Multiple Demand System, MD, 55) and more recent meta-analytic findings (5) 
suggesting that a widely distributed system of brain regions is implicated in individual differences in 
intelligence. Further support for the relevance of whole-brain analyses comes from a more theoretical 
perspective claiming that cognitively highly demanding activities – like complex problem solving – 
require the integration of information that is distributed widely across the brain (10). We observed 
particular relevance of the default-mode, the fronto-parietal, and the attention networks in the prediction 
of intelligence as well as the strongest reduction in prediction performance when removing the ventral 
attention network, corroborating previous results that these networks are especially relevant for 
individual differences in intelligence (e.g., 19, 20, 47; for review see 22). However, best predictions were 
achieved with whole-brain connectivity, highlighting the positive effect of information from all networks 
on predicting intelligence.  
 
Introducing CMEP – a data-driven prediction framework for neuroscience. Finally, the here-
introduced prediction framework - covariance maximizing eigenvector-based predictive modelling 
(CMEP) - has some notable advantages in comparison to previously used prediction methods for 
functional neuroimaging data. First, we demonstrated in multiple control analyses superior robustness 
of prediction results derived from CMEP in comparison to those derived from the to date most frequently 
used approach in network neuroscience (CPM; 20, 37). Second, CMEP is a completely data-driven 
framework, thereby making it unnecessary to (arbitrarily) select a threshold parameter (e.g., to identify 
most relevant brain connections). This reduces the researchers’ degrees of freedom and thereby 
facilitates the reproducibility of results (56, 57). We therefore propose that CMEP is better suited to 
extract trait-like connectivity characteristics. However, compared to CPM, CMEP comes with slightly 
higher computational costs (1.14 x longer training time in comparison to CPM) and although the 
generated eigenvectors allow for more detailed functional interpretations (Fig. 2c), they produce more 
complex features than the two network averages used in CPM (i.e., a positive network and a negative 
network; cf. 20, 37). Despite these limitations, our results suggest CMEP as a promising candidate for 
broad applications in neuroscientific studies testing for brain-behavior relationships. 
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Limitations and Future Directions. Our results are in line with the recent proposal in (9) that different 
brain states underly human cognition, however, we did not probe for the dynamic reconfiguration 
between such states. We have, however, recently demonstrated that persons with higher IQ scores 
show higher stability of network modularity over time – an effect that was in part driven by the same 
functional systems as identified here (8). These former results together with our current observation that 
even random selections of time frames allow for significant prediction of intelligence contradicts the 
NNT’s proposal that the brain’s ability to flexibly access a specific set of network states is essential for 
higher levels of intelligence (9). Whether higher network stability, higher network flexibility or neither of 
the two facilitates human cognition requires clarification in future work. However, our former study (8), 
the NNT (9), and our current findings all imply that individual differences in intelligence relate to the 
dynamic reconfigurations of functional connectivity over time, again highlighting the need for time-
varying connectivity analyses and sufficient long scan durations. 
 
The prediction performances in our study were in a comparable range to previous large-scale studies 
predicting intelligence or other complex human traits from static brain connectivity including all time 
frames (58; for review see 59) or even from brain structure (6; mean absolute error ~10 IQ points). 
However, it has recently been proposed that the investigation of brain-behavior relations requires large 
sample sizes (60-62) and that replication studies observe small effect sizes (Marek and colleagues 
found the largest 1% of replicable univariate effects to be between |r| = .06 and .16). Despite limited 
sample sizes in the range of hundreds our study demonstrates (via external validation) that the 
combination of cross-validation and sophisticated analyses approaches like CMEP allows to reliably 
identify brain-behavior associations - a promising direction for future research.  
 
Conclusion. We introduced an eigenvector-based prediction framework to show that functional 
connectivity estimated from as few as 20 temporally separated time frames allow to significantly predict 
individual differences in general cognitive ability (N = 281). In contrast and against previous 
expectations, we revealed that network-defining time frames of particularly high or low cofluctuation are 
not predictive of intelligence, such that much more frames would be required to achieve a predictive 
performance comparable to the complete time series. Further we showed that multiple functional brain 
networks contribute to the prediction of cognitive ability from small selections of the fMRI time series, 
and all results replicate in an independent sample (N = 831). Overall, our results reveal that whereas 
relatively few time frames of brain connectivity are sufficient to derive fundamentals of person-specific 
functional connectomes, temporally distributed information and hence ultimately more data is necessary 
to extract information about cognitive abilities from functional connectivity time series. Importantly and 
in contrast to recent proposals, intelligence-predictive information is not restricted to specific brain 
connectivity states, but rather reflected within many different brain states that are temporally widely 
distributed over the whole brain connectivity time series. To detect such states requires sufficient 
amounts of neuroimaging data, making longer scanning durations essential for reliable prediction of 
complex human traits.  
 
Materials and Methods  
Participants  
Primary sample  
Data from the Enhanced NKI Rockland sample (NKI-RS Enhanced Sample; acquired by the Nathan S. 
Kline Institute for Psychiatric Research, Release 1-5; 35; RRID:SCR_010461) were used in all analyses. 
The NKI dataset was selected as primary sample, because a) participants were characterized by a well-
established and reliable measure of intelligence (the Full Scale Intelligence Quotient/FSIQ; 34), which 
served as estimate of general cognitive ability, b) the sample is characterized by a broad variation in 
age and intelligence (in contrast to, e.g., to the Human Connectome Project; see Replication Sample), 
as it was explicitly recruited to be representative of the population, and c) because in addition to standard 
fMRI scanning protocols, fast-sampling resting-state fMRI data were also acquired, the temporal 
resolution of which is critical for the present study (see below for details). We restricted our analyses to 
subjects for whom complete fast-sampling fMRI data and IQ scores were available and which passed 
the Connectome Computational System (CCS) quality check (implying exact motion thresholds; see 
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below). This resulted in a final sample of N = 281 participants (98 males, 246 right-handed, mean age: 
47.19, 18 – 83 years; FSIQ: mean 101.44, range 69 – 141).  
 
Replication sample 
The generalizability of our findings to an independent sample is assessed with data from the Human 
Connectome Project (HCP; 1200 release; 36). After removing subjects with incomplete MRI data, 
missing phenotypic measures, or more than 10% motion spikes in the fMRI data (defined as framewise 
displacement, FD > .25 mm; see 63), the replication sample comprised N = 831 subjects (390 males, 
756 right-handed, mean age: 28.55, 22 - 36 years). In contrast to the primary sample, the HCP dataset 
did not contain an intelligence test, but the Penn Matrix Test (PMAT) as a fast-to-administer 
approximation of fluid intelligence (64). PMAT scores represent the number of correct responses out of 
24 items (mean 17.32, range 5 - 24 in our sample), but were not normally distributed in our sample 
(Shapiro-Wilk-Test: W = .92, p < .001). To construct a more comprehensive measure of general 
cognitive ability, we used 12 cognitive performance scores (65) to calculate a latent factor with bifactor 
analysis (19). Based on one of the most influential theories of intelligence (46), such a ‘g-factor’ 
constitutes a valid representation of general cognitive ability. The standardized estimate of the g-factor 
(mean 0; range -3 – 2.32) was used as variable of interest for replication analyses.  
 
All study procedures were approved by the NKI Institutional Review Board (#239708; primary sample), 
the Washington University Institutional Review Board (replication sample, for details see 36), and 
informed consent in accordance with the declaration of Helsinki was obtained from all participants.  
 
Data acquisition and preprocessing 
Primary sample 
Fast sampling resting-state fMRI data (9:46 min; eyes open; TR = 654 ms, 884 time frames, voxel size 
= 3 mm isotropic, 40 slices, TE = 30 ms, flip angle = 60°, FOV = 222 x 222 mm2) was obtained with a 
32-channel head coil on a 3T Siemens Tim Trio scanner. A structural scan (T1-weighted, voxel 
size = 1 mm isotropic, 176 slices, TR = 1,900 ms, TE = 2.52 ms, flip angle = 9°, FOV = 250 × 250 mm2) 
was acquired for coregistration. Data preprocessing was performed with the CCS pipeline (66; 
RRID:SCR_017342) and included discarding the first 16 volumes, removing outlier volumes (head 
motion, hardware instability), interpolation, slice time correction, motion correction, and global mean 
intensity normalization. Functional and structural scans were coregistered, nuisance variables (global, 
white matter, CSF mean signals and 24 motion parameters, i.e., six motion parameters of the current 
and the preceding scan, plus each of them squared; 67) were regressed out, data were temporally band-
pass filtered (.01-.1 Hz), linear and quadratic trends were removed, and the resulting time-series were 
projected to MNI152 space. The CCS quality check was performed to identify anatomical images of low 
quality as well as subjects with a) mean FD > .2 mm, b) maximum translation > 3 mm, c) maximum 
rotation > 3°, or d) minimum cost of boundary-based registration > .6 (68). This led to the exclusion of 
19 subjects from the initial sample of N = 300. Note that our method of using the CCS quality check for 
outlier removal (implemented via the 3dDespike AFNI function; 69, 70; https://afni.nimh.nih.gov/pub 
/dist/doc/program_help/3dDespike.htm; RRID:SCR_005927) is essentially equivalent to strict censoring 
(71, 72) or motion scrubbing (43), but replaces outlier time points via interpolation (72) instead of 
removing them. This ensures the same number of time points for all participants, which is especially 
important for analyses of functional connectivity dynamics (73, 74).  
 
To construct functional connectivity matrices, brain volumes were parcellated into 114 regions of the 
Yeo atlas (38), which allow for the assignment of brain regions to seven functional networks: VIS, visual 
network; SMN, somatomotor network; DAN, dorsal attention network; VAN, ventral attention network; 
LIM, limbic network; CON, control network; DMN, default mode network. For each participant separately, 
functional connections were defined as weighted undirected edges and modelled using Fisher z-
transformed Pearson correlation coefficients between the BOLD time series of each pair of brain regions 
(Fig. 1a). These edges represent brain connectivity as averaged across the whole duration of the 
resting-state scan and provide the basis for the construction of each participant’s static connectivity 
matrix. In addition to the motion correction during preprocessing, we controlled for potential remaining 
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influences of head motion by regressing out mean FD from each connectivity value with linear regression 
(http://scikitlearn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html).  
 
Replication sample 
Data of the replication sample consisted of the four resting-state runs from the HCP (15 min, 1,200 time 
points each; for details of data acquisition see 36). The scanning parameters were: voxel size = 2 mm 
isotropic, 72 slices, TR = 720 ms, TE = 33 ms, flip angle = 52°, FOV = 208 x 180 mm2 (for details 75). 
We obtained the minimally preprocessed data from the HCP (76), involving an initial correction for head 
motion and B0 distortion, co-registration to T1-weighted structural images, and normalization to MNI152 
space. For further preprocessing, we followed strategy number six described in (63) 
(24HMP+8Phys+4GSR) which has been shown to perform well on the HCP resting-state data and 
maintains the same temporal degrees of freedom for all subjects. This strategy comprises regressing 
out a) 24 motion parameters including the raw scores as well as the squares of both the original and the 
derivate time series (77), b) eight physical parameters including white matter (WM) and cerebrospinal 
fluid (CSF) signals along with their temporal derivatives, squares, and squares of derivatives, and c) the 
global signal with its temporal derivative, square term, and the square of the derivatives. Also, a temporal 
band-pass filter of .008-.08 Hz was applied (63). Note that for comparability with the primary sample, 
i.e., to ensure same number of time frames, only 884 time frames in the center of the time series were 
used for further analyses. Brain volumes were parcellated into 100 regions of the Schaefer atlas (45), 
which allow direct alignment to the seven Yeo networks also used in the primary sample (38). Again, for 
each individual static (time-averaged) connectivity matrix, weighted edges were modelled on the basis 
of Fisher z-transformed Pearson correlation coefficients and remaining influences of head motion were 
controlled via regressing out mean FD and the number of spikes.  

 
Time-resolved brain connectivity analyses.  Following (30), we resolved connectivity in time to 
capture the strength of brain-wide cofluctuation for each time frame of the BOLD time series. Consider 
the Pearson correlation coefficient		𝑟!" that reflects the time-averaged strength of interaction (functional 
connectivity) between two given nodes i and j:   
 

𝑟!" =
1

𝑇 − 1(𝑧!(𝑡)𝑧"(𝑡)
#

$%&

 (1) 

 
where T is the number of fMRI time frames and 𝑧!(𝑡) and 𝑧"(𝑡) are the z-scored BOLD activity values at 
time t of nodes i and j, respectively.  For example, for node i, the z-scored BOLD activity is defined as 
 

𝑧!(𝑡) =
𝑥!(𝑡) − 𝜇!

𝜎!
 (2) 

 
where 𝑥!(𝑡) represents the BOLD activity at time t, 𝜇! is the mean of node 𝑖’s time series, and 𝜎! is the 
respective standard deviation. The instantaneous cofluctuation between node 𝑖  and node 𝑗  at time 
frame t (representing time-resolved functional connectivity; Fig. 1b) is thus given by:  
 

𝑐!"(𝑡) = 𝑧!(𝑡)𝑧"(𝑡) (3) 
 
On the basis of 𝑐!" , we computed a three-dimensional time-resolved connectivity matrix for each 
participant (see Fig. 1c for a schematic illustration) with the shape n x n x T, where n is the number of 
nodes in the respective fMRI dataset (NKI: n = 114, HCP: n = 100) and T is the number of time frames 
(T = 884). The strength of brain-wide cofluctuation per time frame was then quantified by the root-sum-
square (RSS; Fig 1e) of the cofluctuation values of all node pairs 𝑐!"(𝑡)	at a given time frame 𝑡: 
 

𝑅𝑆𝑆(𝑡) = 5((𝑐!"(𝑡)'
(
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(
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First, and in line with (30), we defined high cofluctuation states (also referred to as ‘events’) as those 
time frames with the 5% highest RSS values and low cofluctuation states as time frames with the 5% 
lowest RSS values, respectively (in our samples 44 time frames; Fig 1e, HiCo/LoCo, red and blue parts 
of the RSS curve). Second, as the temporally adjacent time frames included in these high and low 
cofluctuation states events are highly correlated with each other (for discussion see 52), we replaced 
each event of temporally grouped highest/lowest cofluctuation frames by the single frame with 
maximal/minimal cofluctuation within this event, thereby reducing the total number of frames 
considerably (Fig 1e, MxCo/MnCo, pink and light blue dots).  Third, we selected from all maxima/minima 
within the entire RSS time series the 44 time frames with the overall highest/lowest cofluctuation values 
(again, 5% of data; Fig 1e, Mx/Mn, orange and green dots). Note that in the second and third case, but 
not in the first, the selected time frames were temporally separated from each other. For further 
analyses, and additionally to the previously computed static functional connectivity based on all time 
points (see above; Fig 1d), a functional connectivity matrix (Fisher z-transformed Pearson correlation, 
Fig. 1f) was computed from each of these six selected subsets of time frames (HiCo/LoCo, MxCo/MnCo, 
Mx/Mn), as well as for comparable random uniformly drawn subsets of time points. The resulting 
individual-specific functional connectivity matrices (seven per subject) were used as input to prediction 
analyses (Fig. 2).   
 
Covariance maximizing eigenvector-based predictive modelling (CMEP). We developed a two-
staged machine learning-based predictive modelling framework, which we refer to as covariance 
maximizing eigenvector-based predictive modelling (CMEP, see Fig. 2 for a schematic illustration). The 
basic idea of CMEP is to first create candidate features (based on eigenvectors) within a training set 
that share a strong linear relationship (covariance) with the target variable of interest, and then, in a 
second step, to assess the predictive power of these features by training and testing a prediction model 
(ElasticNet regression) based on these features. Notably, the ElasticNet regression circumvents the 
need to select features based on arbitrary threshold parameters (as is the case in many other prediction 
frameworks used for brain imaging data).  
 
Feature construction 
The key characteristic that differentiates CMEP from previous predictive modelling approaches is its 
feature construction method which amplifies features whose expression covary with a target variable 
(here intelligence). To this aim, functional connectivity matrices are projected into a scalar space chosen 
such that the covariation between individual intelligence scores and this scalar projection is maximal.  
 
More specifically, within the training set, we find a projection (𝑢7⃗ 	∈ 	ℝ()&) that maximizes the covariance 
between intelligence scores (𝑞 ∈ 	ℝ*)&) and functional connectivity (𝑺	 ∈ 	ℝ*)()():  
 

					argmax
+,,⃗

	
1
𝑁(𝑞C.𝑢7⃗ /𝑺𝒑𝑢7⃗

*

.%&

 (5) 

 
where 𝑞C.	represents the mean adjusted intelligence score, i.e., individual IQ (𝑞.) minus group-average 
IQ (𝑞D) of a participant 𝑝. As the projection 𝑢7⃗   is independent of 𝑝, Eq. 5 can be reformulated as follows 
 

argmax
+,,⃗

	𝑢7⃗ / F
1
𝑁(𝑞C.𝑺𝒑

*

.%&

G𝑢7⃗  (6) 

 

=	argmax
+,,⃗

	𝑢7⃗ /𝑴𝑢7⃗  
(7) 
 
 

The matrix 𝑴 (Fig. 2a,b) emphasizes intelligence-related differences in functional connectivity within the 
training set. Note that the leading eigenvector of	𝑴 corresponds to the feature that maximally covaries 
with intelligence. However, it turned out that the prediction of general intelligence was more robust when 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 23, 2022. ; https://doi.org/10.1101/2022.12.23.521743doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.23.521743
http://creativecommons.org/licenses/by-nc/4.0/


 14 

including also other eigenvectors. Therefore, we next calculated the eigendecomposition of the general 
intelligence-weighted matrix 𝑴: 
 

𝑴 = 𝑼𝚲𝑼/	 (8) 
 
where 𝑼  is the matrix of eigenvectors (𝑼 = [𝑢&7777⃗ , 𝑢'7777⃗ , … , 𝑢(7777⃗ ] ) and 𝚲  is the diagonal matrix of the 
corresponding eigenvalues in decreasing order (Fig. 2c). We assumed that 𝑴 is full rank and since it is 
real and symmetric, all eigenvalues are also real and the eigenvectors orthogonal. Note that the entries 
within a given eigenvector are interpretable as the weights of the corresponding nodes for that particular 
vector (Fig. 2c).  
 
Then, subject-specific features are derived by projecting each participant’s connectivity matrix 𝑺𝒑 onto 
the previously computed eigenvectors 𝑢1777⃗ 	: 
 

							𝑢2777⃗
#𝑺𝒑𝑢2777⃗ 	= 	 𝑣.!	 (9) 

 
This step results in an individual feature vector 𝑣.7777⃗ = (𝑣.&, … , 𝑣.() ∈ 	ℝ()& for each participant p (Fig. 2d 
and f). The number of features is defined by the number of eigenvectors 𝑢2777⃗  and is thus equal to the 
number of nodes (𝑛), i.e., 114 in the primary sample and 100 in the replication sample. Finally, an 
ElasticNet regression model is trained and optimized to predict intelligence scores from the generated 
feature vectors of an independent test set (Fig. 2e,f). 
 
Prediction framework 
The feature construction step of CMEP is embedded within a cross-validated prediction framework in 
which, within each cross-validation fold, a new set of eigenvector-based features are created to ensure 
strict independence between training and test set. Specifically, the prediction framework consists of two 
nested cross-validation loops. In the outer loop (primary sample: leave-one-subject-out cross validation; 
replication sample: leave-one-family-out due to family relations between participants) first, the 
eigenvectors 𝑼 are computed from the training set. Second, the feature vectors 𝑣.7777⃗  are constructed for 
each individual subject and third, an ElasticNet regression model is trained to predict the intelligence 
scores (𝑞.) from the subject-specific feature vectors (𝑣.7777⃗ 	)  within the training set. The hyperparameters 
of the ElasticNet model are optimized within the inner loop (5-fold cross-validation of the training set). 
ElasticNet regularizes a linear regression model via the L1 (Lasso; favoring feature sparsity) and L2 
(Ridge; encouraging coefficient shrinkage) norm to avoid overfitting (78). Therefore, ElasticNet 
regression allows to utilize all created features as candidates for the prediction without manually setting 
an a-priori selection threshold. The model is formalized as: 
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where 𝛽 is the vector of regression weights and 𝑞. and 𝑣. are the cognitive ability score and the feature 
vector, respectively, of this specific participant. The hyperparameters 𝜆&	 (L1-penalty) and 𝜆'  (L2- 
penalty) are optimized to minimize the mean squared error (MSE) between observed and predicted 
intelligence scores. The sklearn ElasticNetCV implementation in Python was used with parameter 
choices for  𝛼 = 𝜆& + 𝜆'	Î	{0.01, 0.02, 0.05, 0.1, 0.5, 1}, and L1-ratio = 4!

5
	Î	{0.01, 0.05, 0.1,	&

6
, 0.5, 0.7, 0.9, 

0.95} to reduce computational costs. The obtained regression weights are then applied to the feature 
vector of the held-out subject (test set) to predict their intelligence score.  
 
Prediction performance in terms of the difference between predicted and observed intelligence scores 
is evaluated using Pearson correlation coefficient (r), mean squared error (MSE), root mean squared 
error (RMSE), and mean absolute error (MAE). While MSE and RMSE capture differences in bias and 
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precision, correlation coefficients and MAE can be more meaningfully interpreted and allow for direct 
comparability with previous reports (8). 
 
Prediction robustness analyses 
Three different control analyses were conducted with static (time-averaged) connectivity matrices to 
assess the validity of CMEP. Specifically, the robustness of prediction derived from CMEP were 
compared with those derived from the most frequently used neuroscientific prediction framework, i.e., 
connectome-based predictive modeling (CPM; 20). First, we assessed the robustness across different 
data set splits by randomly (100 times) dividing the data into 10 cross validation splits (Fig 3a). Second, 
to test the robustness across different samples sizes, the training sample was randomly (100 times) 
reduced to 10% of the original data size within each iteration of a stratified 10-fold cross-validation (Fig. 
3b). Finally, the transferability of each model was assessed by training it on one sample (e.g., the 
primary sample, NKI) and testing it on an independent sample (e.g., the replication sample, HCP; Fig. 
3c). To this end, both samples were parcellated into the 114 nodes partition and all intelligence scores 
were standardized. 100 different models were fitted, each with a randomly bootstrapped composition of 
the training set. All analyses described above were conducted four times, i.e., based on CMEP, the 
positive CPM network, the negative CPM network, and the combination of both, Specifically, in CPM 
prediction features are calculated as the sum over all functional connections that are significantly 
correlated with intelligence above a given threshold (here: p < .001; for details see 20, 37). Positively 
correlated connections were used to predict from a positive network, negatively correlated connections 
to predict from a negative network, and the positive and negative networks to predict from the whole 
brain.   
 
Significance tests 
Non-parametric permutation tests were used to assess the statistical significance of above-chance 
predictive model performance. Specifically, we took all N (primary sample: 281; replication sample: 831) 
target values (cognitive ability scores) and permuted them, which resulted in a random assignment 
between subjects and target values, and then assessed prediction performance (r, MSE, RMSE, MAE). 
This step was repeated 1,000 times. The significance of a model (p-value) was calculated as the fraction 
of times in which the permuted targets achieved a better model performance than the true targets. In 
cases where the prediction performance of two models was compared (see e.g., Fig. 5), a similar non-
parametric procedure was adopted by comparing the difference in prediction performance between both 
models trained with the true targets and the difference in performance with permuted targets. Statistical 
significance was accepted for p values < .05.  
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Figures and Tables 

  
Figure 1. Schematic illustration of analysis steps to derive different types of state-restricted 
functional connectivity. (a) Resting-state fMRI data were parcellated into 114 functional brain 
regions (nodes; 38) and node-specific BOLD activation time courses were extracted. (b) For a 
given node pair, the strength of their cofluctuations is given by the product of their z-scored 
neural activation time series. Time-resolved whole-brain connectivity matrices (c) were then 
computed on the basis of all node-pairs instantaneous cofluctuation. Averaging this time-
resolved connectivity matrices across all time frames (TFs) yields the full (‘static’) functional 
connectivity matrix (d). (e) The strength of instantaneous brain-wide (global) cofluctuation is 
computed as the root-sum-square (RSS) of all node-pair cofluctuations (30). Based on this 
global cofluctuation time series, six different brain connectivity states were defined (see 
Methods for details). The selections comprise i) the 44 time frames with the highest/lowest 
values of global cofluctuation (HiCo/LoCo), ii) only the maxima/minima within each of these 
short episodes of highest/lowest cofluctuation states (MxCo/MnCo, < 17 TFs) and iii) a larger 
set of, again, 44 time frames, but separated in time and representing the highest 
maxima/lowest minima within the complete RSS time series (maxima/minima, Mx/Mn). Apart 
from these specific selections of time frames, we also varied the number of frames and studied 
selections based on randomly drawn time-points. (f) On the basis of these different selections, 
functional connectivity matrices were computed as Fisher-z transformed Pearson correlation 
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representing the six subject-specific brain connectivity states. rsfMRI, resting-state functional 
magnetic resonance imaging. 
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Figure 2: Schematic illustration of the Covariance Maximizing Eigenvector-Based Predictive 
Modelling (CMEP) framework. (a) For leave-one-out cross validation the functional 
connectivity (𝑺) was computed for every subject i and these data were split into a training and 
a test set. (b) Calculation of an IQ-weighted group connectivity matrix (𝑴 ) to enhance 
differences in intelligence-related features in the training sample. (c) Eigendecomposition of 
𝑴 generates the eigenvectors (𝑢!…𝑢"). The entries of the eigenvectors were highlighted in 
different colors according to the seven functional brain networks they correspond to (38; within 
each hemisphere; networks from left to right: visual, somatomotor, dorsal attention, ventral 
attention, limbic, control, and default mode). Projecting subject-specific functional connectivity 
onto these eigenvectors generates brain connectivity features for the training (d) and the left-
out test sample (e). (f) All training set features were used to fit an ElasticNet regression and 
tested for generalization with the withheld test set features. Model performance was assessed 
by comparing the predicted with the observed intelligence scores. See Methods for further 
details.    
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Figure 3. Superior prediction robustness of our method CMEP relative to connectome-based 
predictive modelling (CPM). Prediction performances (mean squared error, MAE, between 
observed and predicted intelligence scores) compared between CMEP and CPM based on 
static connectivity (using the entire time series) and three validity analyses (20, 37). All 
analyses were conducted for CMEP (black, all brain connections), and three CPM prediction 
pipelines based on positive connections (light red), negative connections (light blue), and a 
combination of both (light gray, all connections). (a) Robustness across different data set splits. 
Data were randomly (100 times) split into 10 folds for cross validation. (b) Robustness across 
different sample sizes. Within stratified 10-fold cross-validation, the training sample was 
randomly (100 times) reduced to 10% of the original sample size. (c) Transferability of the 
models to a new data set. Models were trained on the primary sample (NKI) and tested on the 
replication sample (HCP). Both samples were parcellated into the 114 nodes schemata (38) 
and all intelligence scores were standardized before prediction (but shown on original scale 
here for better comparability). The training data were randomly bootstrapped (100 times) to 
account for different compositions of the training data set.  
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Figure 4. The performance to predict intelligence depends on the number of temporally 
separated time frames rather than on functional connectivity reconstruction similarity. (a) 
Reconstruction similarity of six different connectivity states operationalized as Pearson 
correlation between static functional connectivity (constructed from all time frames; TFs) and 
connectivity matrices reconstructed from six different selections of TFs (see Fig. 1). Boxplots 
depict the mean and quartiles of the subject-specific reconstruction similarity for all different 
connectivity states. The whiskers show the 1.5 x interquartile ranges. Outliers are represented 
by diamonds. (b) Prediction of intelligence (FSIQ; WASI, 34) for the six different connectivity 
states from using the CMEP prediction framework (see Fig. 2). (c) Reconstruction similarity 
and (d) performance to predict intelligence as a function of the number of time frames 
comprising cofluctuation maxima or cofluctuation minima (orange or green dots in Fig. 1e). 
Gray lines represent reconstruction similarity (c) and prediction performance (d) from randomly 
selected time frames (see Methods). Note that in (c) and (d) only the two cases are illustrated 
that allow for significant prediction of intelligence, i.e., 44 highest maxima, Mx; 44 lowest 
minima, Mn. The upper bounds (gray dashed lines) represent reconstruction similarity (a, c) 
or prediction performance (b, d) using all TFs. The lower grey dashed line reflects the 5% 
significance level of the within-subject similarity of static functional connectivity (a, c) or 
intelligence prediction performance (b, d) (see Methods). HiCo, highest cofluctuations; LoCo, 
lowest cofluctuations; MxCo, maxima during HiCo; MnCo, minima during LoCo; Mx, 44 highest 
maxima; Mn, 44 lowest minima (see also Fig. 1e). 
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Figure 5. Multiple functional brain networks contribute to the prediction of intelligence. 
Intelligence (FSIQ; WASI, 34) was predicted with CMEP from (a, b) static functional 
connectivity (all time frames; TFs) and (c, d) from the 44 highest maxima of the global 
cofluctuation (Fig. 1e). In (a, c) prediction performance (mean absolute error; MAE) of 
connectivity within or between seven functional brain networks (38) was analyzed by selecting 
only the specific within or between network connections, while (b, d) illustrates the change in 
predictive performance (MAE) after removing all connections a respective network was 
involved in. Significance was determined by a non-parametric permutation test with 1,000 
iterations. * if p < .05 uncorrected for multiple comparisons and ** if p < .05 Bonferroni corrected 
for multiple comparisons (28 comparisons, p < .0018 in a and c and seven comparisons, p < 
.007 in b and d). VIS, visual network; SMN, somatomotor network; DAN, dorsal attention 
network, VAN, ventral attention network; LIM, limbic network; CON, control network; DMN, 
default mode network.   
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Table 1.  Prediction of intelligence from functional brain connectivity. 

Note. Covariance maximizing eigenvector-based predictive modeling (CMEP; see Methods) 
was used in combination with a nested cross-validation scheme (see Methods, Fig. 1 and Fig. 
2) to predict individual intelligence scores (Full Scale Intelligence Quotient, FSIQ; WASI, 34) 
from static connectivity (all fMRI time frames; TFs), highest and lowest cofluctuations 
(HiCo/LoCo; 44 TFs), maxima/minima during highest/lowes cofluctuation (MxCo/MnCo; < 17 
TFs), and the 44 highest maxima and lowest minima across the whole RSS time series (Mx, 
Mn; see Methods and Fig. 1). Reconstruction similarity values represent Pearson correlations 
between the static connectivity matrix (row 1) and the reconstructed connectivity matrix from 
the respective selection of time frames. Model performance metrics reflect the error between 
predicted and observed intelligence scores: Pearson correlation coefficient (r), mean squared 
error (MSE), root mean squared error (RMSE), and mean absolute error (MAE). Significance 
was determined by a non-parametric permutation test with 1,000 iterations and indicated as ** 
if p < .001. 
 

 
  TFs Reconstruction 

similarity r MSE RMSE MAE 

Static functional connectivity  884 n/a .34** 155.97** 12.49** 9.84** 

Highest cofluctuations (HiCo)  44 .78 .13 184.52 13.58 10.63 

Lowest cofluctuations (LoCo)  44 .41 .11 179.13 13.38 10.40 

Maxima during HiCo (MxCo) 7-14 .77 .09 183.21 13.54 10.65 

Minima during LoCo (MnCo) 6-17 .32 .04 185.52 13.62 10.57 

Highest maxima (Mx) 44 .93 .32** 158.73** 12.60** 9.75** 

Lowest minima (Mn) 44 .66 .26** 165.57** 12.87** 10.09** 












