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Abstract
Biomedical research frequently uses murine models to study disease mechanisms.

However, the translation of these findings to human disease remains a significant challenge.

In order to improve the comparability of mouse and human data, we present a cross-species

integration pipeline for single-cell transcriptomic assays.

The pipeline merges expression matrices and assigns clear orthologous relationships.

Starting from Ensembl ortholog assignments, we allocated 82% of mouse genes to unique

orthologs by using additional publicly available resources such as Uniprot, and NCBI

databases. For genes with multiple matches, we employed the Needleman-Wunsch global

alignment based on either amino acid or nucleotide sequence to identify the ortholog with

the highest degree of similarity.

The workflow was tested for its functionality and efficiency by integrating scRNA-seq

datasets from heart failure patients with the corresponding mouse model. We were able to

assign unique human orthologs to up to 80% of the mouse genes, utilizing the known 17,492

orthologous pairs. Curiously, the integration process enabled the identification of both

common and unique regulatory pathways between species in heart failure.

In conclusion, our pipeline streamlines the integration process, enhances gene

nomenclature alignment and simplifies the translation of mouse models to human disease.

We have made the OrthoIntegrate R-package accessible on GitHub

(https://github.com/MarianoRuzJurado/OrthoIntegrate), which includes the assignment of

ortholog definitions for human and mouse, as well as the pipeline for integrating single cells.
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Keypoints
● Novel integration workflow for scRNA-seq data from different species in an easy to

use R-package (“OrthoIntegrate”).

● Improved one-to-one ortholog assignment via sequence similarity scores and string

similarity calculations.

● Validation of  “OrthoIntegrate” results with a case study of snRNA-seq from human

heart failure with reduced ejection fraction and its corresponding mouse model

Introduction
In recent years, single cell transcriptomics (scRNA-seq) has become a transformative

approach for cellular and molecular biology research. This technique allows for the

simultaneous quantification of genes and related pathways in thousands of individual cells,

enabling a greater understanding of cellular heterogeneity and gene regulation. By applying

clustering algorithms, scRNA-seq enables the definition of cell types with high resolution and

accuracy [1,2] . In general, these methods are used to gain insights into altered biological

states and thus to identify differences between healthy and diseased phenotypes at a single

cell level.

In order to analyze these scRNA-seq data bioinformatically, integration pipelines were

developed with the aim of normalizing and scaling data and combining the respective

individual cells into clusters with regard to their expression pattern [2,3]. Many methods are

available [4] and several scRNA-seq pipelines were developed to integrate different datasets

from the same species [2,5,6]. Other methods have been implemented to integrate single

cell atlases from different species, e.g by aligning protein sequences via blast [7]. But there

is to this date no standardized and easy way to integrate scRNA-seq data collected from

different species, which also uniquely assigns orthologs between the species, especially for

the highly used combination of a mouse model and respective human patient data. In the

past, for each type of experimental design, methods were developed that were suitable to

determine orthologs. Graph-based models were developed to compare microarray data

between species and detect gene activity, but other methods specializing in meta-analyses
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of gene expression patterns were also common [8][9]. These methods may provide an

excellent solution for microarray data, but are not suitable for embedding cross-species

single cell data into one dimensional space as they only integrate on mutual expression of

common orthologs. To generate shared embeddings for single cell datasets of different

species, one to one relationships are required. Additionally, they don't provide uniquely

assigned orthologous lists for further analysis in other data. Over time, deep learning

algorithms, which predict mRNA expression levels from whole-genome DNA sequencing

data, related to trustworthy and robust orthologous lists have also grown in importance.

These models are able to predict a gene’s On/Off state as well as which of two compared

orthologs is more highly expressed [10]. However, for direct comparisons of available

scRNA-SEQ datasets from different species, these methods are not applicable. The routine

utilization of publicly accessible orthologous catalogs sourced from established databases,

such as Ensembl [11], Orthologous Matrix (OMA) [12], and InParanoid [13], has become a

ubiquitous undertaking for cross-species studies. While providing numerous lists, these

databases do not focus on providing one-to-one gene assignments, which are necessary for

transcription comparisons between species.

These limitations and the highly increasing demand for comparison of single cell data of

various organisms prompted us to develop a R package called “OrthoIntegrate”. It features a

pipeline for data integration and ortholog assignment, allowing for simple integration of data

from mouse models and human patients. For the ortholog assignment process, we

implemented an algorithm in the workflow that adjusts the different nomenclature between

species before the integration takes place. For this purpose, we use the databases of

Ensembl, NCBI, and Uniprot. [11,14,15]. The Ensembl database provides an excellent

provisional assignment of orthologs, but there are, as previously mentioned, usually multiple

assignments that cannot be used in the integration. To circumvent this problem, we

additionally perform a nucleotide sequence alignment and a protein sequence alignment,

using the Needleman-Wunsch global alignment algorithm [16] on sequences from the NCBI

and Uniprot database.

Overall, we propose a bioinformatic pipeline to integrate single cell and nuclei sequencing

data from mouse and humans to bioinformatically assess easily the full set of scRNA-seq

tasks, like quality control (QC) steps, dimensionality reduction, clustering, cell-marker

detection, differential gene expression and gene ontology analysis. We hope to simplify the

analysis and the comparison of human patient data and mouse model data with this

user-friendly pipeline and our ortholog finding algorithm.

To test the functionality and to illustrate the benefits of our pipeline, we integrated data sets

from human heart failure patients with preserved ejection fraction (HFrEF) and the
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corresponding mouse model with a permanent ligation of the left anterior descending artery

(LAD).

Methods
Single cell pre-processing
Single-cell RNA-seq results were processed by CellRanger (10x Genomics) version 6.1.1

software. The first step consisted of demultiplexing and processing raw base count files by

the implemented mkfastq tool. The human raw reads were mapped to the reference genome

hg38 (GRCh38-2020) using Cellranger count, whereas the mouse raw reads were mapped

to the reference genome mm10 (GRCm38-2020). The secondary data analysis was initiated

by using the Seurat 4.1.0 package in R. The data sets were first combined into a Seurat

object and then subjected to a filtering process. Barcodes with too low (< 300) or too high

number of genes (> 6000) were sorted out and not considered further in the data analysis. In

addition, barcodes with too low (< 500) and too high read counts (> 15000) were also sorted

out. To further ensure that no apoptotic cells or doublets were analyzed, we discarded

barcodes with a high percentage of mitochondrial content (> 5%). The filtered gene counts

were then logarithmized and normalized according to the tutorial for data analysis with

Seurat. Baseline characteristics for the samples can be found in Supplement Table 1.

Ortholog assignment and sample integration
In order to ensure the integration of the individual single cell datasets, a function was written

to assign mouse orthologs to the human nomenclature using gene transfer format (GTF)

files provided by 10x Genomics (GRCh38 for human, GRCm38 for mouse). We wanted to

detect only well annotated genes between species, therefore we filtered predicted genes out

of our GTFs. The function consists of a total of five approaches, which resulted in a clear

assignment. First, orthologs were determined using the R package biomaRt. This package

enables the retrieval of Gene ID symbols for mouse and human genes stored in the Ensembl

database. This assigned the majority of genes in our human GTF file to at least one

ortholog. If there were several entries of possible orthologs in the Ensembl database, a

protein sequence comparison was initiated, which obtained protein sequences from the

Uniprot database for the human gene and the possible mouse orthologs. These sequences

were then aligned using the R package Biostrings 2.60.2. The alignment score was

calculated based on the Needleman-Wunsch global alignment algorithm and substitution

matrices for nucleotide sequences or protein sequences to determine the correct ortholog in

terms of amino acid sequence or nucleotide sequence identity. However, there were still

Gene ID symbols which could not be uniquely assigned even using the Uniprot database. In
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order to be able to assign these as well, a further comparison with usage of the nucleotide

sequence is initiated. For this purpose, the sequences for the human gene and for the

possible mouse orthologs were obtained from the NCBI database and aligned analogously

to the previous step and assigned to an ortholog depending on the highest alignment score.

If these alignment steps are not successful, a score was calculated by comparing the human

ID symbol and the mouse ID symbols of possible orthologs. For this the Levenshtein

distance measurement algorithm was used. All orthologs found are compared with the gene

ID symbols in the GTF files used for the mapping of human reads and mouse reads. These

GTF files are also used for the last step regarding the ortholog assignment. It was assumed

here that gene ID symbols for mouse genes are often annotated in the same way as for

human genes, with the only difference being that there is only one capital letter at the

beginning of the name. If the gene name determined in this way now occurs in the mouse

GTF, it was set as an ortholog. With this globally applicable list of orthologs between

species, the datasets were now filtered by these and then merged into one object using

Seurat's canonical correlation analysis (CCA) integration.

Clustering, silhouette coefficient and annotation
To classify cells into clusters based on their expressed genes, we used the FindNeighbors

and FindClusters (resolution parameter = 0.3) function implemented in Seurat. These

clusters are determined by applying the shared nearest neighbors (SNN) clustering

algorithm. Using the Uniform Manifold Approximation and Projection (UMAP) dimension

reduction, we were able to visualize our calculated cell clusters and the species overlap

between our samples.

Calculations of the silhouette coefficient are based on computing a distance matrix based on

the cell embeddings matrix for principal component analysis (PCA) performed by Seurat.

This distance matrix includes the information of cell-cell distance, which is necessary for

calculating the silhouette coefficient with our calculated clusters in the function silhouette of

the cluster package (version 2.1.4). Additionally, the coefficients of the samples were

averaged for each object. The orthologous lists for OMA, Biomart and InParanoid were

created by following their introductions on their tool descriptions and by using the same GTF

files as before (GRCh38, GRCm38).

For the assignment of cell clusters to cell types, we used a reference object that we had

previously manually annotated with marker genes from Tombor et al. 2021 [17]. Here, the R

package SingleR can be used to adopt marker genes that were used for the previous

annotation of clusters of the reference object. These are then transferred and compared to
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marker genes of the cell clusters of our object to be annotated. Thus, a reproducible

annotation can be guaranteed with the help of an exactly annotated data set.

Differential gene expression analysis and gene ontology analysis
Detection of differentially regulated genes (DEG) for the cell type specific clusters was

performed by the hurdle model of the MAST package (version 1.20.0). Results were filtered

by their Bonferroni-adjusted p-value (p.adj < 0.05). The totality of DEGs were represented by

Sankey plots created with the R package networkD3 (version 0.4). DEGs were divided

according to their species and cell type assignment and then visualized for DEGs with a

positive Log2FC and separately in another plot, for DEGs with a negative Log2FC. Here,

DEGs occurring in both human and mouse for the respective cell type have been pooled.

Visualization was done in the form of a Circos plot (R package circlize 0.4.14).

Gene Set Enrichment Analysis (GSEA) was performed using the R package clusterProfiler

(version 4.2.2). GSEA terms were calculated separately for each cell type. The terms were

sorted according to the Benjamini-Hochberg adjusted p.value and evaluated according to

their “enrichment distribution”, which gives information about the regulation of the genes in

the described pathway. The GSEA results were plotted in ridge plots. Additionally, for genes

described in the pathway, the standard error of the mean (SEM) bar plot was created (for

their averaged UMIs) by using the R package ggplot2.

Results
Generation of unique one to one ortholog assignments
In order to determine the appropriate ortholog, we utilized the Needleman-Wunsch algorithm

to perform a pairwise global alignment. This calculation determines alignment scores based

on differences in the amino acid or nucleotide sequences. In case no orthologs were found,

or neither a protein- or nucleotide sequence is available for a certain gene, a lowercase

matching of the human gene is searched in the mouse gene database (Fig. 1A). The

Ensembl database assigned a total of 21,428 mouse orthologs to our human gene ID

symbols. While the biomaRt package could assign 77% (16,573) of them uniquely, our

algorithm increased the number of assignments to 82% (17,504). In our analysis, we

assigned 714 genes through protein sequence alignment and 89 through nucleotide

sequence comparison. Furthermore, we identified 42 orthologous pairs using the

Levenshtein distance and an additional 86 using our lowercase matching approach. We then

proceeded by filtering our human and mice data by these orthologs in our pipeline and

replaced the mice nomenclature by the human nomenclature for the corresponding samples
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(Fig. 1B). At the end, we assigned ~80% of the mice genes to human orthologs (Supplement

Table 2). The replacement of mouse gene names with the human ortholog allowed us to

integrate the human patient data with the mouse model data into one Seurat object.

Fig.1: Integration process of human/mouse snRNA-SEQ data.
(A) UML-Activity-Flowchart showing ortholog assignment pipeline for human to mouse gene symbols. First, the
Gene transfer format file (GTF) for humans (GRCh38) is used to get all annotated gene nomenclatures. Then all
genes are filtered out which are only predicted and not clearly detected. This list is now searched for orthologs
using the Ensembl database; all 1:1 assignments can be included in our orthologous list. In the case of multiple
assignments, all possible replacements are examined according to their protein sequence and an alignment
score is calculated according to the global sequence alignment. If there is no protein sequence in the Uniprot
database, the alignment score is calculated based on the nucleotide sequence using the NCBI database. Now
the gene with the best result is set as an ortholog. All unassigned genes are additionally compared with the GTF
file of GRCm38 using a lowercase matching and if there is a match, they will be added to the ortholog list. If all
these approaches for a gene do not result in an ortholog, a Levenshtein distance score is calculated based on
their gene names. (B) Single cell integration pipeline showing steps performed to integrate human and mouse
scRNA-SEQ data in a joined UMAP projection. The scRNA-SEQ data from our human and mouse samples are
first converted into Seurat objects and normalized. After that, clustering takes place and cell types can be
determined. Using the orthologous list from our ortholog assignment algorithm, the objects can be subsetted
according to the genes found and their nomenclature unified. This is followed by an integration into a single
object and a clustering step.

Comparison to other integration methods

We carefully inspected our data to determine species specific distribution by creating UMAP

plots of all cells in our integrated object. Figure 2A shows that cells of mouse and human

origin commingled in all clusters demonstrating the integration of the data sets. To find out

how well our pipeline performs in integrating and clustering data based on our orthologous

list, we compared our data object to other databases and tools and their orthologous pairs.

For this purpose, we created Seurat objects using the same procedure as before with lists

for orthologs from the bioinformatic tools: OMA, Biomart and InParanoid and visualized the
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species specific distribution of the cells in UMAP plots (Supplement Fig. 2). In order to

assess the quality of the clustering, we calculated and visualized the mean value of the

silhouette coefficient in a box plot (Fig. 2B, Supplement Table 3). The silhouette coefficient is

particularly suitable because it gives a measure of quality of the clustering independent of

the number of clusters. We can observe that our pipeline (OrthoIntegrate) has created the

best integration achieving the highest silhouette coefficient and thus significantly improving

the clustering compared to the other methods. Additionally, it is noteworthy that our pipeline

achieved by far the most 1:1 protein coding and lncRNA coding orthologous pairs in

comparison to the other described methods (Fig. 2C).

Fig.2: Integrated human and mouse scRNA-SEQ data of healthy and heart failure samples.
(A) UMAP with defined clusters according to Seurat's clustering, divided by species. Cells of mouse and human
origin commingled in all clusters. There are no clusters formed that originated from only one of the two species.
The cells were identified as cardiomyocytes (red), fibroblasts (yellow), endothelial cells (green), pericytes
(turquoise), immune cells (blue), smooth muscle cells (purple) and neuronal cells (pink). (B) Box plot showing the
average silhouette coefficient for clusterings based on different databases and tools. The dark blue box stands
for the silhouette coefficient of the clustering made with an orthologous list using the tool OMA (Orthologous
matrix). It is followed by the results for biomaRt (light blue), InParanoid (green) and our pipeline OrthoIntegrate
(yellow). On the y-axis you can see the value of the Silhouette Coefficient. Additionally, each Silhouette
Coefficient was calculated for each sample and depicted as a circle in their species specific color. (C) Bar plot
with number of orthologs found which codes for a protein (left) and bar plot with number of orthologs found which
codes for lncRNA. On the x-axis the used tool is depicted. (D) Bar plot showing cell composition of cell types in
human (red) and mice (blue) samples. Samples were grouped based on their origin into human controls from the
left ventricle (Human-CTRLlv), human HFrEF (Human-HFrEF), mouse controls (Mice-CTRL), and mouse HFrEF
model (Mice-HFrEF). Cell types were then analyzed for their composition from the previously mentioned groups
and plotted. The percent composition of the cell types are then shown as bar plots.
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Integration of patient data with mouse model data
In the integrated object no human or mouse specific clusters were identified, which indicates

the common clustering of the different cell types. All clusters could be annotated by using

specific marker genes and the R package SingleR into cardiomyocytes (CMs), pericytes

(PCs), smooth muscle cells (SMCs), fibroblasts (FBs), endothelial cells (ECs), immune cells

(ICs) as well as neuronal cells (NCs) (Fig. 2A). Of note, characteristic marker expression

was similar for mice (Supplement Fig. 1A) and human cells (Supplement Fig. 1B). In

addition, we analyzed how the distribution of cell types was affected by the biological state of

the samples. We found that the number of human CMs decreases when we compare the

control samples with the HFrEF samples (45% -> 25%). However, in mice, there is no

difference in the number of CMs between model and healthy individuals (~25%) (Fig. 2D).

Furthermore, we see a marked difference in the distribution of ECs in our human patients

compared with our mouse models. Here, we observed a significant increase in the EC

population between healthy hearts from human patients (~8%) and those with HFrEF

(~30%). In contrast, we noticed a decrease in ECs in mice upon HFrEF (from 25% in

controls to 18% in HFrEF). In addition, minor changes are also observed in the numbers of

other cell types.

Differential gene expression between mice and man in up-regulated genes
Next, we compared the regulation of gene expression by HFrEF in mice and humans. The

results of the differentially expressed gene (DEG) analysis, showed that there were clear

similarities and differences regarding the expression of genes in general and in the

respective cell types between species. In the human samples 4,141 genes were differentially

expressed between HFrEF and the control condition. From these, 2,995 were up-regulated

and 1,146 down-regulated. In the mouse data, 4,654 genes were significantly different, of

which 3,699 were up-regulated and 955 down-regulated (Supplement Table 4).

A cell type- and species-specific DEG analysis allowed us to identify cell type-specific

expression patterns between human patients and mouse models (Fig. 3). First, we analyzed

the extent to which the up-regulated DEGs are specific to each species or which DEGs are

found in both species and the distribution in each cell type (Figs. 3A, 3B). When analyzing

the cardiomyocyte (CM) subpopulation, we found 2,906 DEGs are up-regulated in human

CMs, of which 62% (1,806) were also significantly up-regulated in mice CMs. The other 38%

(1,100) of the DEGs were uniquely upregulated in the human HFrEF versus human control

samples. In the HFrEF mouse model, we found 3,908 DEGs which were not up-regulated in

the human patient samples. Observation of the downregulated CM genes showed that 1,083

genes are significantly down-regulated upon HFrEF. From these 82% (888) were exclusively
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regulated in humans. The remaining 195 genes (18%) were also significantly downregulated

in the mouse models. In addition, we observed that 593 DEGs are specific for the HFrEF

mouse model.

In ECs, we observed 2,339 up-regulated genes in our human HFrEF, of which 42% (971) of

the genes were specific for our cardiac patients. In the mouse model 4,399 DEGs were

detected. From these 3,031 (69%) DEGs were exclusively regulated in the mice samples.

With respect to the down-regulated DEGs, we observed that 749 genes are downregulated

in our human HFrEF, of which 44% (485) of the DEGs are only found in human patient data.

The remaining 264 genes were also present in the mice DEGs. Additionally, we found 880

genes which were only regulated in mouse HFrEF models.

Notably we found far less DEGs in the mouse SMCs in contrast to the human samples.

However, this could be related to the total number of SMCs in mice, which is far less

compared to the human samples (Figs. 3A, 3C). Looking at the distribution of DEGs in all

cell types, we can see that the percentage of commonly regulated genes is smaller when

comparing the down-regulated DEGs to the upregulated DEGs (Figs. 3B, 3E).

Fig.3: DEG analysis shows similar and different expressed DEGs.
(A) Sankey plot illustrating the distribution of up-regulated differentially regulated genes (DEG) in the
corresponding cell types. The width of the paths illustrates the number of DEGs that are either human specific
(yellow) are detected in both species (light green) or are mouse-specific (dark green). DEG analysis was
performed for each cell type individually. It should be noted that neuronal cells were omitted from all further
analyses due to their insufficient number of cells in the mouse data. (B) Bar plot showing the percentage
distribution of up-regulated genes in the respective cell types. The y-axis represents the cell type, while the
x-axis displays the percentage distribution (1.00 = 100%). The bars are stacked on top of each other and color
coded for easy interpretation (yellow = human specific, light green = both species, dark green = mouse specific).
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(C) Circos plot showing the ten most up-regulated genes for the comparison between human HFrEF and the
corresponding control, seperated for all cell types. The outer ring of the plot shows the values for the changes in
gene expression (Log2FC) for the human (red line) in comparison to the regulation in mouse HFrEF samples
(blue line). In the middle ring, the corresponding gene name is listed. In the inner ring, the cell types are shown.
(D) Sankey plot similar to (A) representing down-regulated DEGs. (E) Stacked bar plot similar to (B) showing the
percentage distribution of down-regulated genes in the respective cell types. (F) Circos plot similar to (C)
illustrating the ten most down-regulated genes in mice HFrEF samples in comparison to the regulation of these
genes in humans.

Figure 3C and Figure 3F show the highest upregulated genes per cell type in humans and

mice along with the regulation of that gene in the other species. Hereby, we can observe

how the genes with the largest changes in human heart failure patients behave in the

respective mouse model.

We observed that the expression of the most regulated genes in human cell types is mostly

much less affected in the mouse models. For example, we see a gene of the LIM-Domain

family, LDB2, in human CMs as the gene with the most change in expression (Log2FC =

2.15). These genes are well known as adapter molecules which allow assembly of

transcriptional regulatory complexes in CM. In contrast, only minimal up-regulation of the

gene is noticeable in mouse HFrEF models (Log2FC = 0.38). Other genes such as the

VEGF receptor FLT1, which is well detected in cardiomyocytes in human cardiac tissue,

show a negative log2FC (expression values decreased in comparison to the corresponding

control) in mice CMs but increased expression in human CM, so these genes are regulated

in a different direction than in human patients. However, there are also genes that share

similar regulation in their respective cell types. Thus, we can observe that

Phosphodiesterase 4D (PDE4D) and ADP Ribosylation Factor Like GTPase 15 (ARL15)

show a similar change in ECs with respect to their expression as in human ECs. In the ten

most upregulated genes in the mouse model data, we can observe three genes that also

show a significant increase in their expression in humans (RBPJ, SLC9A9, RUNX1). The

other genes, however, show little to no change. If we now observe the expression changes

in ECs, there are DEGs showing an opposite direction in their expression change (RBPJ,

PID1, SLC9A9). These different and similar gene expressions in the cell types are first

indicators of differences and similarities between human patients and mouse models.

Pathway enrichment results
Since we found an unexpectedly high number of differentially regulated genes, we

investigated if this might indicate overall changes in pathways and pathological processes or

whether the difference relates more to the alternative use of genes with similar functions in

mice and humans. Therefore, we investigated how the enriched signaling pathways differ in

cardiomyocytes. We observed that signaling pathways mainly dealing with energy

metabolism are similarly and significantly down-regulated in patients with heart disease as
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well as in mouse models (Fig. 4A). The genes included in these pathways, such as “ATP

metabolic process”, “mitochondrial respiratory chain complex I assembly”, “electron transport

chain” and “cellular respiration”, show significant down-regulation compared to their

corresponding control (Fig. 4B). These data suggest a conservation of disturbed

mitochondrial metabolism in both mice and humans in heart failure. In contrast, larger

differences are observed for the up-regulated gene sets. Among the most regulated

pathways specifically detected in the human data set, we noted the terms "angiogenesis"

and "regulation of small GTPase mediated signal transduction" (Fig. 4C). These gene sets

are not found among the regulated pathways in mice (Supplement Table 5). Examples for

angiogenesis-related genes, which are specifically induced in human heart failure but not in

mice models, include receptors such as the VEGF-receptor FLT1, or transcription factors like

the mesenchyme homeobox protein 2 (MEOX2) (Figure 4D). In addition, many GTPase

regulatory genes were found specifically increased in humans, including MCF2L and

RASGRF2, which are known to regulate RAC1, and SPATA13, which enables

guanyl-nucleotide exchange factor activity.

On the other hand, our analysis revealed that pathways such as "Wnt signaling pathway"

and "actin-myosin filament sliding" are up-regulated specifically in the mouse HFrEF model

(Fig. 4C). Genes associated with Wnt signaling include LRP6, a known inhibitor of

cardiomyocyte proliferation, and the serine/threonine-protein kinase MARK2, which

regulates the stability of microtubules through phosphorylation and inactivation of several

microtubule-associated proteins [18].

Fig.4: GSEA analysis shows regulated pathways upon heart failure in human and mouse
cardiomyocytes.
(A) Ridge plot visualizing five of the same down-regulated pathways found in human (top plot) and mouse
(underneath plot) cardiomyocytes, while HFrEF is present. The y-axis displays the description of the identified
term, while the x-axis shows the enrichment distribution, which indicates the pathway's overall regulation
(enrichment distribution > 0 implies up-regulation, and < 0 indicates down-regulation). The ridges are also
color-coded indicating significance of the found term (B) Bar plot with mean values for the amount of unique
molecular identifiers (UMIs) in the cells for the depicted genes. The genes are found to be down-regulated in
mice and humans in the pathways shown in (A). On the x-axis, the samples are grouped for their biological
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condition (CTRLlv = Control left ventricle) and species. The values for the individual samples are depicted as
circles. Additionally, t-test values are shown over the bars for the tested group. (C) Ridge plot visualizing similar
to (A) three of the different up-regulated pathways found for human cardiomyocytes and cice cardiomyocytes. On
the y-axis there is the description of the found term and on the x-axis is the enrichment distribution depicted. (D)
Bar plot similar to (A) with mean values for UMIs in the cells for the depicted genes found in terms of (C).

Discussion
The ever growing number of published single cell experiments enables scientists to deepen

our knowledge about transcriptional changes of individual cell types as well as species

specific regulatory changes, upon disease conditions. Particular combination of single cell

datasets from different species in the same UMAP projection allows the detection of well

conserved or species specific regulatory networks [19–21]. However, to integrate datasets

from different species a well curated list of orthologous and related genes has significant

advantages.

Here we propose the R-package OrthoIntegrate that enables scientists to integrate single

cell datasets from different species into a shared dimensional space. To generate high

quality and uniquely mapped orthologous lists between different species, we implemented

an improved orthologous assignment pipeline which results in up to 10% more uniquely

assigned orthologs between human and mouse in contrast to the Ensembl orthologous list

(Biomart). Furthermore, the package contains functions which use our advanced orthologous

assignments and easily combines Seurat objects from humans and mice. Moreover, it is

highly adaptable and can be easily customized to support other species as well.

We demonstrated the usability of combining cross-species single cell datasets on a heart

failure dataset with reduced ejection fraction of humans and mice. Hereby, we could show

that there are major differences in the cell type expression patterns, which are differentially

regulated in humans or mice upon HFrEF. Yet there are also commonly regulated pathways

that reflect an evolutionary conserved transcriptomic answer to severe damages in heart

cells. These include the down-regulation of important mitochondrial metabolic pathways,

which provide ATP for the heart, which are down-regulated in mice and human heart failure.

The adult heart is the most energy consuming organ, and a critical role of mitochondrial

function in maintaining a healthy heart is well known [22].

However, there were also interesting differences between human and mice heart failure

samples. Surprisingly, in humans, but not in mice, many genes associated with

“angiogenesis” were induced in cardiomyocytes. For example, the VEGF receptor FLT1 was

significantly induced in the human samples. FLT1 is well known to primarily mediate VEGF

signaling in endothelial cells, but its role in cardiomyocytes is less clear [23]. FLT1 protein is

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 15, 2023. ; https://doi.org/10.1101/2023.03.15.532742doi: bioRxiv preprint 

https://paperpile.com/c/1f890c/BNKC+SZ6o+XBOK
https://paperpile.com/c/1f890c/7kkY
https://paperpile.com/c/1f890c/71Cr
https://doi.org/10.1101/2023.03.15.532742
http://creativecommons.org/licenses/by-nc-nd/4.0/


well detected in cardiomyocytes in human cardiac tissue [24]. Functionally, FLT1 was shown

to partially mediate VEGF-induced cardiomyocyte differentiation of embryonic stem cells [25]

and mediates VEGF induced cardiomyocyte calcium signaling and contractility in the

embryonic zebrafish heart [26]. Cardiomyocyte specific deletion of Flt-1 was shown to

worsen cardiac remodeling and hypertrophy induced by pressure overload [27], suggesting

that the up-regulation of its expression in humans may represent a compensatory

cardioprotective mechanism. A second example is MEOX2, also known as GAX, which was

assigned the GO term Angiogenesis because of its role in endothelial fatty acid transport

[28]. MEOX2 plays a critical role in development of all muscle lineages [29]. In

cardiomyocytes, MEOX2 overexpression blocks proliferation during heart morphogenesis

causing proliferating cardiomyocytes to withdraw from the cell cycle [30]. In addition, various

guanine nucleotide exchange factors and regulators of Rho/Rac signaling pathways were

shown to be specifically induced in human cardiomyocytes. While G protein-coupled

signaling is well known to control cardiomyocytes [31], the function of the highly induced

regulatory genes identified here (e.g. MCF2L, RASGRF2, and SPAT13) have not been

studied in cardiomyocytes.

In mice, a predominant expression of genes associated with Wnt signaling were detected.

Although the majority of the identified genes has not been directly linked to

cardiomyocyte-specific functions, Wnt signaling is critically regulating cardiac hypertrophy,

remodeling and regeneration [32]. Therefore, these findings as well as the other identified

species-specific pathways deserve a closer in depth validation and investigation.

Limitations
The main limitation of our ortholog assignment and sample integration pipeline, however, is

the dependence on reliable databases for orthologous lists. Another problem with this

approach is that it fails to take biological functions of the possible orthologs into account and

decide based on the most suitable function which ortholog may fit the best and not only on

sequence similarity.
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Supplementary Figures

Supplement Fig. 1

Supplement Fig. 1: Known cell type marker genes are found for human and mice data.
(A) Dot plot depicting the average expression levels and expression proportions in human samples of the top ten
feature genes for the found cell types. The size of the dot represents the proportion of cells expressing the
indicated gene within a cell type, and the color indicates the average expression level of cells. (B) Dot plot
depicting the average expression levels and expression proportions in mice samples of the top ten feature genes
for the found cell types. Similar to (A) the size of the dot represents the proportion of cells expressing the
indicated gene within a cell type, and the color indicates the average expression level of cells.
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Supplement Fig. 2

Supplement Fig. 2: Overlapping of human and mice cells after Seurat integration with tool specific
orthologous list. UMAPs showing human cells (red) and mice cells (blue) in a common UMAP projection for
each tool used for integrating the data. First UMAP was performed on an object made with an orthologous list of
OMA, followed by Biomart and InParanoid. The last UMAP shows the projection for the OrthoIntegrate pipeline.
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