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Innovation, endogenous overinvestment,
and incentive pay

Roman Inderst∗
and

Manuel Klein∗∗

We analyze how two key managerial tasks interact: that of growing the business through creating
new investment opportunities and that of providing accurate information about these opportunities
in the corporate budgeting process. We show how this interaction endogenously biases managers
toward overinvesting in their own projects. This bias is exacerbated if managers compete for
limited resources in an internal capital market, which provides us with a novel theory of the
boundaries of the firm. Finally, managers of more risky and less profitable divisions should
obtain steeper incentives to facilitate efficient investment decisions.

1. Introduction

� That managers are excessively “hungry for capital” is a common notion found among both
practitioners and scholars working on the capital budgeting process. (See, for instance, “Curing
Capital Addiction,” The McKinsey Quarterly, 1993 Number 4.) We show how managers who
are expected to generate new growth opportunities will become endogenously biased toward
overinvesting in their own projects. The source of this distortion is that managers are expected to
both generate new projects and to, subsequently, feed information into the corporate budgeting
process.

The tension between the two tasks creates a dilemma for corporations. The more managers
are incentivized to grow their business, the more they become biased toward overspending.
Reducing this bias by dampening incentives may be too costly for businesses that crucially
depend on innovation and growth.1 As illustrated in Jensen (2003), the inefficiencies caused by
“lying” in the capital budgeting process may, however, also be substantial. Our analysis shows

∗ University of Frankfurt; inderst@finance.uni-frankfurt.de.
∗∗INSEAD; manuel.klein@insead.edu.

∗We thank the editor, Joseph Harrington, and two referees, whose detailed comments helped us to considerably extend the
scope of the original article.

1 A recent study by Accenture, the consulting firm, reports that nearly 60% of firm value in the aggregate U.S. stock
market can be attributed to shareholders’ expectations of sustained growth (cf. “Future Value: The $7 Trillion Challenge,”
Accenture Outlook 2004, Number 1.).
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that the use of high-powered incentives may be key to mitigating this tension—in particular in
corporations where multiple divisions must compete for limited resources.

In our model, the role of high-powered incentives is not to tease out incrementally more effort.
Instead, their purpose is to reduce corporate overspending. The argument unfolds as follows. The
division manager will only work hard at generating new investment opportunities if this increases
his expected compensation. Once a new opportunity has been created, however, the “reward”
that he was promised for growing the business makes the manager want to undertake even some
unprofitable investments. The optimal compensation scheme seeks to minimize this bias. By
tying the manager’s compensation more closely to the division’s profits, the manager has less to
gain from convincing headquarters to invest in a relatively unpromising opportunity. As steep
incentives also allow the manager to receive a larger share of the profits from a very promising
investment, the total reward that he can expect from working on new investment opportunities
remains unchanged. Hence, while preserving the manager’s incentives to grow the business, steep
incentive schemes reduce the potential for (over)investing in negative net present value (NPV)
projects.

Some of our predictions link the steepness of managers’ compensation to firm characteristics
and investment decisions. We find that incentives should be steeper in divisions that require more
capital injection, in divisions that look less promising to headquarters, and also in divisions that
are more risky.2

If managers compete for scarce resources, this increases the tension between providing
incentives to generate new investment opportunities and providing incentives to reveal accurate
information about their profitability. If this is still feasible, the optimal response is then to
further tighten the link between managers’ pay and divisions’ performance. The insight that
competition in an internal capital market can lead to more biased information is shared with
Ozbas (2005). This complements the analysis of Stein (2002), Brusco and Panunzi (2005), and
Inderst and Laux (2005), who show how competition can adversely affect the incentives to
generate information, cash flow, or investment opportunities. We also analyze the decision of
when to create competition in an internal capital market, including through the integration of
previously stand-alone businesses. Here, one of our results is that on average more investment is
made in an internal capital market, although some of it may prove to be less profitable than the
investment made in comparable stand-alone businesses.

The analysis of competition is also a key difference to a related paper by Levitt and Snyder
(1997), which we discuss in more detail below. There, an agent can both increase a project’s
likelihood of success and provide information that may allow to prematurely cancel unprofitable
projects.3

The way we endogenize managers’ bias toward overinvesting in their own projects may
also prove useful in different strands of the literature. That managers derive benefits from
building larger empires is a central notion of numerous theories of corporate control and financial
contracting that build on Jensen’s (1986) free cash flow problem. Here, our approach provides an
alternative to the use of nonpecuniary benefits.

The rest of this article is organized as follows. Section 2 introduces the model. Section 3
analyzes the case where divisions do not compete for scarce resources, and Sections 4 and 5
introduce competition. Section 6 concludes.

2 These are also businesses that, according to our theory, should show more overinvestment. Below we compare
these predictions to those arising from other models of capital budgeting along the lines of seminal papers by Harris,
Kriebel, and Raviv (1982) or Harris and Raviv (1996), where capital allocations next to incentive schemes serve as
screening devices.

3 Theirs and our articles, as well as Friebel and Raith (2006), which directly builds on Levitt and Snyder (1997), are
also related to the literature on “expert advice.” In this strand of the literature, Gromb and Martimort (2004) is possibly
the closest paper. There, an expert must be incentivated both to produce information and to subsequently advise the
principal on which action to take. They focus on optimal organizational responses such as the use of one or two experts.
In addition, Bernardo, Cai, and Luo (2006) build on the double-task problem of Levitt and Snyder (1997) to analyze how
a manager’s total incentive compensation is optimally balanced across different (low- and high-quality) projects.
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2. The model

� The firm and its investment opportunities. We consider a firm that is run by headquarters
in the interest of its risk-neutral owners. The firm must employ (specialized) division managers to
run its individual businesses. There are three time periods: t = 0, 1, and 2. In t = 0, headquarters
hires division managers. Once hired, managers can exert effort to generate new investment
opportunities. Although the decision whether to undertake a new project lies with headquarters,
when generating the project the respective division manager becomes better informed about
its prospects. Hence, a division manager will have to perform the twin tasks of creating new
investment opportunities in t = 0 and of subsequently guiding headquarters’ investment decision
in t = 1. In the final period, t = 2, payoffs are realized. We first analyze the case where divisions
do not compete with each other. Section 4 considers the opposite case where only one project can
be undertaken at a given time, which may follow as (organizational or financial) resources are
scarce or as projects are close substitutes.

Division managers’ effort in t = 0 involves private disutility c > 0. If headquarters wants
to realize the generated new investment opportunity, it must invest capital k > 0.4 We normalize
the return from alternative investments to zero. If undertaken, the new project realizes positive
cash flows of x > k with probability 0 < p ≤ 1 if it is of the “good type” θ = g, which a
priori is the case with probability 0 < q < 1. In this case, the expected cash flow equals μ :=
xp > k. If the project has a “bad type” θ = b, it realizes zero cash flows. After generating the
project, in t = 1 only the respective manager can observe a noisy signal about the project’s type.
The signal s ∈ S = [s

¯
, s̄] is generated from the distribution functions F θ (s), which has no atoms

and an everywhere continuous and strictly positive density f θ (s). Because f g(s)/f b(s) is strictly
increasing and satisfies the monotone likelihood ratio property, the posterior belief that the project
is of the good type,

q(s) := q fg(s)

q fg(s) + (1 − q) fb(s)
,

is strictly increasing in s. We denote the conditional success probability by p(s) := q(s)p and the
conditional expected cash flow by μ(s) := xp(s). We assume that μ(s

¯
) < k < μ(s̄), implying that

there exists a unique cutoff sFB ∈ (s
¯
, s̄) that satisfies μ(s FB) = k.5 Hence, it is first-best efficient

to undertake the investment only if s ≥ sFB. Finally, it will prove convenient to work with the ex
ante distribution over signals, G(s), which is defined by its density g(s) := qf g(s) + (1 − q)f b(s).

� Contracting. The manager’s alternative to working for the firm has value R > 0. It turns
out that without affecting results, we can suppose that a division’s value with a new investment is
also equal to R.6

Besides satisfying the participation constraint, the contract must incentivize managers to
both create new investment opportunities and to assist headquarters in making a more informed
investment decision. As we stipulate that the generation of a new project is itself not verifiable,
these two tasks cannot be perfectly disentangled.7 If a division’s new project is undertaken and
funds k are invested, the manager’s pay can, however, be made contingent on the project’s success.
Precisely, in this case the manager receives a base wage α and, in case of success, a bonus β.
We require that α ≥ α

¯
, to which we simply refer as the “base-wage constraint.” For α

¯
= 0, the

4 The analysis can be extended to the case where a new opportunity arises only with some probability.
5 For instance, this holds if the signal is perfectly informative at the boundaries of S, that is, if fg(s

¯
) = fb(s̄) = 0

and thus μ(s
¯
) = 0 and μ(s̄) = px .

6 If profits were below R, the manager would optimally be fired, in which case he also realizes his reservation value
R. If profits were above R, say equal to P, the manager would still be employed. The only difference this would make
in the following equations is that without a new project, the firm would then realize P − R instead of zero. This has,
however, no qualitative impact on any of our results.

7 This assumption is also made, for instance, in Rotemberg and Saloner (1994). Arguably, outsiders would find it
hard to separate realistic new ideas from either old projects or fake proposals.
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latter represents a standard limited-liability constraint. Finally, if no new investment was made,
the manager only receives a wage equal to R.

� Discussion of contracts. In the rest of this section, we bring out and discuss two restrictions
on the set of feasible contracts.8

Assumption 1. In case no new investment opportunity is realized in a given division, the respective
manager’s wage is equal to R.

Assumption 1 has two parts. The first part stipulates that the manager must not receive less
than R in case no new investment opportunity is realized. As we show below, this will also imply
that the manager’s expected compensation is never below R if a new investment is made. This
part of Assumption 1 is quite standard and follows if the manager cannot be forced to continue
working for the firm (“non-slavery” condition). In our analysis this part of Assumption 1 will,
however, not be restrictive.

The second part of Assumption 1 stipulates that the manager must not receive more than his
reservation value R if no new investment is made. Also, this assumption is, in different variations,
frequently invoked in the financial contracting literature. If a manager was paid more than R, then
even those managers who know that they are not even capable of growing the business could
earn strictly more than their reservation value. As argued in the financial contracting literature,
the firm would then risk being flooded by applications from such “imposters” (or, “fly-by-night”
operators).9 However, we show below that our key insights still hold even if such contracts are
feasible.

Assumption 2. Mechanisms where the contract (α, β) is made contingent on some message sent
by managers in t = 1 are not feasible.

Although Assumption 2 will not be restrictive if divisions do not compete, we show that
with competition, such contingent contracts may become optimal. However, they force the firm
to trade off between different types of inefficiencies. As we show below, some of our insights
will thus be robust to relaxing Assumption 2. Furthermore, Assumption 2 follows some of the
recent literature on organization, where communication between managers and their superiors is
supposed to be too “soft” to make contracts contingent upon it.

3. The case without competition

� The optimal compensation scheme. In the absence of competition, the manager’s expected
wage if a project is implemented is w(s) := α + βp(s). Although it is straightforward to rule out
β < 0, note that with β = 0 the manager would either have no incentives to generate a project
or, otherwise, he would always want his new project to be undertaken. To ensure both that a
project is generated and that the manager does not always want to undertake his project, it is thus
necessary that β > 0. This implies that the conditional expected wage w(s) is strictly increasing
in s. If, following the recommendation of the manager, the project is sometimes but not always
undertaken, we thus have a cutoff s∗ ∈ (s

¯
, s̄) satisfying

w(s∗) = R, (1)

such that the project will only be undertaken if s ≥ s∗.
As shirking only yields R, which coincides with the manager’s payoff if a new investment

opportunity was generated but not undertaken, the manager will only exert effort in case

8 Note that we also consider only deterministic mechanisms. As already argued in Levitt and Snyder (1997),
stochastic mechanisms, as well as the possibility to arbitrarily scale down projects in our case, would allow to implement
the first best without leaving managers with rents.

9 Formally, if the pool of applicants that is attracted by some rent z > 0 has a fraction γ of such “imposters,” then
holding all else constant, z = 0 is uniquely optimal if γ is sufficiently large.

C© RAND 2007.
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∫ s̄

s∗
[w(s) − R]g(s) ds ≥ c. (2)

In order to satisfy the incentive constraint (2), there must be a sufficiently large wedge
between the manager’s expected compensation if a project is undertaken and his reservation value
R. If the manager received a fixed reward B > R for an implemented project, then the manager
would always recommend that his project be undertaken. By paying him a bonus only if the project
succeeds, his incentives become better aligned with those of the firm. Formally, by increasing β

and reducing α, the manager’s conditional expected compensation w(s) becomes steeper, which
reduces his bias toward investment at lower signals.

Headquarters’ problem is then to maximize its ex ante payoff∫ s̄

s∗
[R + μ(s) − k − w(s)]g(s) ds

subject to incentive constraint (2), the constraint that s∗ solves (1), and that α ≥ α
¯
.10 By standard

arguments, the incentive constraint will be binding such that, after substitution, headquarters’
objective function becomes ∫ s̄

s∗
[μ(s) − k]g(s) ds − c.

Headquarters as the residual claimant thus has the objective to choose a contract (α, β)
that makes subsequent investments as efficient as possible. To solve formally for the optimal
compensation, note first that from w(s∗) = R and as (2) binds from optimality, we have that

β = c∫ s̄

s∗ [p(s) − p(s∗)]g(s) ds
,

α = R − β p(s∗).

(3)

If it is possible to achieve the first best, then substituting s∗ = s FB into (3) and using that the
project’s ex ante surplus equals

πFB :=
∫ s̄

sFB

[xp(s) − k]g(s) ds,

we have that
β

x
= c

πFB

,

α = R − k
c

πFB

.

(4)

The characterization in (4) is intuitive. Recall first that the manager does not generate a
positive rent. To achieve the first-best decision, the manager’s own tradeoff between undertaking
the project and not must then exactly mirror the respective tradeoff of the firm. This is the case if
the ratio of his bonus β to the project’s payoff in case of success x is equal to the ratio of his own
expected payoff c (over and above his reservation value R) to the project’s expected payoff π FB.
(Note that at this point the manager’s costs of effort are already sunk.)

If α as determined in (4) is not feasible as it would imply that α < α
¯
, then it is optimal to

set α as low as possible with α = α
¯
. From the binding incentive constraint (2), we then have that

the equilibrium cutoff s∗ < sFB now solves∫ s̄

s∗

[
p(s)

p(s∗)
− 1

]
g(s) ds = c

R − α
¯

. (5)

10 Recall that the division’s expected payoff equals R + μ(s) with and just R without a new project.

C© RAND 2007.
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As long as c/(R − α
¯
) is not too large,11 (5) has a unique interior solution. (Note that the

left-hand side is strictly decreasing and continuous in s∗.) In this case, where the project is
implemented too often, the bonus β is then simply obtained from substituting the respective
equilibrium cutoff s∗ back into (3). We next summarize our results.

Proposition 1. There is a unique optimal compensation contract, which prescribes a bonus β >

0 and a base wage α < R. If the first best is achieved, which from (4) holds if

c ≤ (R − α
¯
)
πFB

k
, (6)

then the unique optimal contract is characterized by (4). Otherwise, we have s∗ < sFB, while the
base wage is reduced to α = α

¯
.

One of the key insights from Proposition 1 is that overinvestment, which occurs if s∗ < sFB,
can arise endogenously if the manager must also be compensated for generating new investment
opportunities in the first place. If this is feasible at all, then the efficient investment rule can only
be implemented if the manager is put on a sufficiently steep incentive scheme in exchange for
receiving capital k.

� Comparative analysis. In this section, we use Proposition 1 to derive implications for the
optimal incentive contract and the efficiency of the capital allocation process.

Investment opportunities requiring more or less capital. As an increase in k reduces the value
of the investment opportunity, the first-best cutoff sFB decreases. Unless the firm adjusts the
compensation, however, the manager’s privately optimal decision rule remains unchanged. To
ensure that the manager “internalizes” that the project has become more costly for the firm,
headquarters must put him on steeper incentives.

Proposition 2. If a division’s investment opportunity requires more funding, the manager is put
on a steeper incentive scheme by increasing β and reducing α. If this is not possible as already
α = α

¯
, then the decision becomes increasingly distorted as sFB − s∗ > 0 increases.

Proof . If the first best is feasible before and after the shift, we have from (4) that dβ/dk =
xc[1 − G(s FB)]/(π FB)2 and dα/dk = −c[π FB + k[1 − G(s FB)]]/(π FB)2. In case the first best is
not feasible before and after the shift, we have from (5) that s∗ is not affected, implying from (3)
that the same holds for α and β. In the final case, where s∗ = s FB holds before and s∗ < sFB after
the increase in k, we have from the previous arguments that α decreases until α = α

¯
and that β

increases according to (3). Q.E.D.

Some models in the capital budgeting literature use incremental adjustments of the budget to
screen managers with ex ante private information. There, however, managers typically derive some
exogenously assumed private benefits from receiving more capital. Similar to Proposition 2, these
papers also predict that steeper incentives should go together with more funding (cf Bernardo,
Cai, and Luo, 2001). Although there larger investments also have a higher internal rate of return,
this is not the case in Proposition 2, where we only consider a variation in k while leaving the
project’s cash flows unchanged. Finally, Proposition 2 implies that even if managers have no
exogenous preference for more capital, overinvestment is more likely the higher the required
capital.

Investment opportunities that have higher or lower cash flows. Investment opportunities may
have higher expected cash flows as they are either more likely to succeed or as their cash flow in
case of success is higher. It turns out that comparing investment opportunities along these two
dimensions generates similar implications, albeit the underlying logic is somewhat different.

In analogy to an increase in k, a decrease in the cash flow x raises the first-best cutoff sFB.
Headquarters should then optimally shift more of the manager’s compensation from the base
wage into the bonus and thereby ensure that s∗ increases as well.

11 Formally, we need that α
¯

< R − c∫ s̄
s
¯

[ p(s)
p(s
¯

)
−1]g(s) ds

.
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In contrast to an exogenous change in k or x, a reduction in the success probability p directly
affects the manager’s payoff, as he is less likely to earn a bonus. Although raising either α or β

would restore incentive compatibility, doing so without further pushing down s∗ requires once
more to make the compensation steeper.12 The same result holds if prior beliefs about the project’s
possible type, as represented by q, deteriorate.

Proposition 3. Suppose that a division’s investment prospects are less promising as the cash
flow in case of success, x, is lower. Then the optimal incentive scheme becomes steeper if α can
still be adjusted downward, whereas otherwise the investment decision becomes more distorted.
Likewise, if it is less likely that the project will succeed as either p or q decreases, then optimally
β increases and α decreases as long as this is still feasible.

Proof . See the Appendix.

Under the optimal contract that is set up in t = 0, in t = 1 headquarters will only grant
capital to divisions that were ex ante less promising if the respective manager accepts a steeper
incentive scheme. In contrast, in models where capital allocation is used as a sorting device,
managers with projects having a higher marginal return receive steeper incentives, although there
the comparative analysis is with respect to information that is only privately observed by the
manager.13

Investment opportunities that are more or less risky. We next compare divisions that have more
or less risky investment prospects. We model the difference in riskiness by considering a mean-
preserving spread such that, while the cash flow x in case of success increases, the probability of
success p decreases. Suppose first that the first best is feasible. As the first-best surplus π FB is
unaffected, we have directly from (4) that α remains constant while β strictly increases. Likewise,
if the first best is not feasible, we have α = α

¯
while β is chosen just sufficiently large so as to

ensure that the incentive constraint still holds.14 We thus have the following result.

Proposition 4. If a division’s investment opportunity is more risky, then the manager is optimally
put on a steeper incentive scheme.

Prendergast (2002) surveys a range of studies that show that there is at best a “tenuous”
tradeoff between risk and incentives.15 According to our theory, the purpose of incentive pay is to
induce more efficient decision making by better aligning the preferences of the division manager
with that of the firm. Intuitively, to ensure such an alignment, managers must accept a higher risk
in their own pay as their projects become more risky.16

Tendency to overinvest. If the first best cannot be achieved, then there is a strictly positive
probability that an investment will be made even though its NPV, conditional on all available
information, is negative.17 As noted in the Introduction, that managers have a propensity
to overinvest is a common assumption in the corporate finance literature. In our model,

12 The difference in the arguments for variations in k or x and variations in p also shows up in the fact that if the
first best cannot be obtained, then β only increases strictly if the deterioration is with respect to p.

13 We are not aware of evidence that relates division managers’ incentives to divisions’ profitability and growth.
To our knowledge, empirical studies along these lines have only been conducted for firms’ top management. As Core,
Guay, and Larcker (2003) conclude, even at the CEO level there seems, however, to be no consensus on the relationship
between incentives and performance.

14 Incidentally, also in this case s∗ does not change, which can be seen formally as all ratios p(s)/p(s∗) remain
constant in (5).

15 According to Prendergast (2002), incentive pay should increase in more volatile environments where direct
control of the agent’s actions is more difficult. The importance of control is also emphasized in Wulf (2005). Zabojnik
(1996) and Marino and Zabojnik (2004) provide alternative explanations.

16 This observation comes, however, with the caveat that in our model, managers are risk neutral. We would expect
that introducing risk aversion should exert a countervailing force to Proposition 4.

17 A similar implication was derived by Boot, Milbourn, and Thakor (2005) in a model where managers distort
information because of career concerns.

C© RAND 2007.
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overinvestment arises endogenously from compensation schemes that induce managers to grow
their business. This finding is also notably different from models where capital allocation, next
to incentive contracts, is used as a sorting device. In these models, there will be underinvestment
for all but the most profitable projects, in order to reduce informational rents. However, as we
show in Section 4, both under- and overinvestment can arise in our model if there is competition
between divisions.

� Relaxing the contractual assumptions. By Assumption 1, managers do not earn more than
their reservation value R in case no project is either generated or implemented. To analyze how
results change if we relax this assumption, recall first that contracts cannot distinguish between
whether no project was generated at all or whether a newly generated project was ultimately
not funded. Consequently, if in this case the manager realizes a payoff of R + z, his incentive
constraint becomes ∫ s̄

s∗
[w(s) − R − z]g(s) ds ≥ c. (7)

As z > 0 represents a rent that is left to the manager, the firm will optimally set z = 0
whenever the resulting inefficiency s∗ < sFB is not too large. Otherwise, by choosing z > 0,
the firm can implement a more efficient decision rule. This holds true despite the fact that the
manager’s compensation must increase so as to still satisfy the incentive constraint with z > 0.
Intuitively, as only the bonus increases, the difference w(s) − (R + z) increases for high s but
decreases for relatively low s, thereby pushing down s∗.

Notwithstanding, we can show that even for z > 0, our key insights continue to hold. If
the project requires more capital and if already z > 0, then the firm will optimally react to the
increase in sFB − s∗ by choosing a still higher z, which necessitates an increase in β so as to
satisfy the incentive constraint. The same argument holds for a reduction in the expected payoff
of a good project px, as in Proposition 3, and an increase in risk, as in Proposition 4. Finally, the
proof of Proposition 5 also shows that paying less than R, even if this were possible, would not
be optimal.

Proposition 5. Choosing z > 0 is only optimal if, otherwise, the distortion sFB − s∗ > 0 is
sufficiently large. The optimal contract then still specifies a strictly higher β (next to α = α

¯
) if the

investment opportunity requires more funding, if it becomes less profitable as p or x decreases,
or if it becomes more risky.

Proof . See the Appendix.

The logic for why paying z > 0 can be optimal follows the analysis in Levitt and Snyder
(1997). There, an agent can both increase a project’s likelihood of success and provide information
that may allow to prematurely cancel unprofitable projects. Given that, in the language of our
model, the manager’s market wage R is equal to α

¯
in their model, without setting z > 0 it is not

possible to elicit information.
If it is feasible and also optimal to choose z > 0, then following some exogenous change,

say in the required funding k, both parts of the contract change, namely the compensation if
a new project is implemented, (α, β), and the compensation if no new project is implemented,
z. As we know that α = α

¯
remains unchanged in case we have z > 0, the comparison is then

restricted to variations in β and z. Proposition 5 extends our previous analysis by looking only
at changes in the bonus β. However, as now R + z provides the manager with another floor for
his compensation, one could argue that the steepness of the compensation scheme is measured
by the difference between β and R + z. We can show that our results also hold if we apply this
measure.

Corollary 1. Under the conditions of Proposition 5, as β increases so does the difference between
β and R + z.

C© RAND 2007.
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Proof . See the Appendix.

We finally consider Assumption 2, which turns out not to be restrictive if divisions do not
compete. Any finer partition of information than that where headquarters only knows whether
s ≥ s∗ or s < s∗ is of no additional value to headquarters. On the other hand, we can show that
eliciting such additional information by way of offering separating contracts to “types” s ≥ s∗ is
costly, as it tends to exacerbate the overinvestment problem (cf also Section 4).

Proposition 6. In the current case, where we can treat each division in isolation as divisions are
not in competition with each other, Assumption 2 is not restrictive.

Proof . See the Appendix.

4. The case with competition

� Analysis. We now suppose that in case each of the two divisions generates a new investment
opportunity, the firm will only realize one of them. This could be the case as the firm may have
only limited organizational or financial resources or as the marginal benefits from undertaking a
second project may be too small. We will endogenize this aspect of our model in Section 5.

Optimal compensation schemes for competing divisions. As in the case without competition, it
is privately optimal for the manager of division i to propose his project if the observed signal
si satisfies w i(si) ≥ R. As we show in the proof of Proposition 8, the optimal contracts will be
symmetric, which implies also that the respective cutoffs will be symmetric. To avoid confusion,
we denote the cutoff with competition by s∗

C, whereas from now on we refer to the cutoff under no
competition as s∗

N . If both managers want to pursue their investment opportunity because s ≥ s∗
C,

we stipulate that the firm randomizes with equal probability. Taking this into account, we show
in the proof of Proposition 8 that the incentive compatibility constraint becomes

1

2

[
1 + G

(
s∗

C

)] ∫ s̄

s∗
C

[w(s) − R]g(s) ds ≥ c. (8)

Because competition reduces the likelihood with which an investment opportunity will be
realized, which in (8) shows up as 1

2
[1 + G(s∗

C )] < 1, each manager’s expected reward must
increase, which further biases him toward a lower cutoff. If the firm still wanted to implement
the efficient cutoff sFB, then the manager’s compensation would have to become steeper under
competition. Moreover, this tendency toward steeper incentives under competition is now further
exacerbated as the firm’s optimal cutoff exceeds sFB.

To see why this is the case, we first write out the firm’s objective function, which after
substituting the two managers’ binding incentive constraints (8), becomes

[
1 + G

(
s∗

C

)] ∫ s̄

s∗
C

[μ(s) − k]g(s) ds − 2c. (9)

Ignoring the first term 1 + G(s∗
C), we are back to the case without competition, where the

ex ante optimal choice was s∗
N = sFB such that μ(s∗

N ) − k = 0. With competition, however, a
marginal increase of s∗

C at s∗
C = s FB now has two effects.

First, some projects that have positive conditional expected value are no longer undertaken,
although at s∗

C = sFB the marginal effect from this is not of first-order importance. Second, as
headquarters does not know whether a manager who proposes a new investment has observed
some intermediate signal or a truly high signal, choosing one project over the other always runs
the risk of actually choosing the less profitable one. Raising s∗

C above sFB reduces this second
type of inefficiency. Differentiating (9), the ex ante optimal cutoff under competition, which we
denote by s∗∗

C , solves
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μ
(
s∗∗

C

) − k =
∫ s̄

s∗∗
C

[μ(s) − k]g(s) ds

1 + G
(
s∗∗

C

) . (10)

To avoid confusion, in what follows we also refer to the optimal cutoff with no competition by
s∗∗

N = sFB.
Proposition 7 summarizes our results on the optimal compensation scheme. We relegate a

full characterization to the proof in the Appendix.

Proposition 7. With competition, the unique optimal incentive scheme is strictly steeper compared
to the case without competition.

Proof . See the Appendix.

Proposition 7 suggests that competition for scarce resources and the provision of potentially
steep monetary incentives may be complementary. This result crucially hinges on the role of
incentive pay in our model, which is to ensure more efficient decision making. Recent research
on internal capital markets suggests that competition and monetary incentives can, however,
become substitutes if headquarters is perfectly informed (cf Inderst and Laux, 2005). Intuitively,
if managers have (exogenously given) preferences for receiving capital and if headquarters is
perfectly informed, then “winner-picking” may already provide high incentives for managers,
which in turn may allow to economize on (costly) monetary incentives. It seems an interesting—
and ultimately empirical—challenge to determine whether competition and monetary incentives
interact more like substitutes or like complements.

Investment policy with competing divisions. By the previous arguments, we know that if the
base-wage constraint does not bind under competition, then from s∗∗

C > s∗∗
N the optimal investment

threshold is higher. Otherwise, there may be even more overinvestment with s∗
C < s∗

N < s∗∗
N .

Corollary 2. The sets of projects that will be implemented with and without competition, that is,
the respective ranges s ∈ [s∗

C , s̄] and s ∈ [s∗
N , s̄], compare as follows.

(i) If, without competition, there is overinvestment, then the overinvestment problem is even
more severe under competition as s∗

C < s∗
N .

(ii) However, if the base-wage constraint is sufficiently slack such that the firm can implement
its optimal cutoff under competition, then the opposite result holds with s∗

C > s∗
N .

Proof . See the Appendix.

In case (i) of Corollary 2, competition between divisions exacerbates an overinvestment
problem, making it harder for headquarters to ensure that funds flow only to projects generating
a positive NPV. Corollary 2, although describing the two possible cases, is silent about when,
depending on the model’s primitives, either one or the other is more likely to arise. Intuitively, we
are more likely to be in case (i), where competition exacerbates an overinvestment problem, if the
optimal contract requires to make incentives still steeper. To formalize this intuition, we consider
a change in c.

Corollary 3. All else equal, investment policies with and without competition compare as follows
as the cost of effort c changes. There is a threshold c > 0 such that for all c < c the cutoff is strictly
higher under competition, whereas for all c > c the cutoff is strictly lower under competition.

Proof . See the Appendix.

� Message-contingent incentive pay (Assumption 2). It is useful to recall first that under
competition there are two types of (additional) inefficiencies. First, if the flexibility to provide
steeper incentives is exhausted, there will be more overinvestment as s∗

C < s∗
N ≤ sFB. Second,

as a manager’s recommendation to undertake his project only reveals that s ≥ s∗
C, headquarters

may end up choosing the less profitable project. By choosing message-contingent contracts and
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thereby obtaining a finer partition of the information, headquarters may be able to mitigate or
even overcome the second type of inefficiency. We explore this issue in the rest of this section.

Our first insight is that unless α can be further reduced, eliciting more information is costly
as it increases the first type of inefficiency by further pushing down the cutoff s∗

C. The intuition
for this result is the following. To ensure that also intermediate “types” s ≥ s∗

C provide a truthful
message, the message-contingent contracts (α s, β s) must become less attractive at higher s. This
shifts some of the expected compensation away from higher s, which is just the opposite of what
is required to push down s∗

C while still eliciting effort. As a consequence, pooling through the use
of noncontingent pay may still be optimal.

To formalize these arguments, we deviate from our more general model with a continuum of
signals, allowing, for the time being, for only three possible signals s ∈ S = {s 1, s 2, s 3}.18 We can
now explicitly characterize and compare all feasible contracts, inducing more or less information
revelation. We stipulate that μ(s1) < k < μ(s2) < μ(s3), implying that s FB = s 2.

Lemma 1. There exists an intermediate range of values c where it is possible to implement s∗
C =

s 2 under a single pooling contract but not with two separating contracts for s2 and s3.

Proof . See the Appendix.

For the comparison in Lemma 1, we have assumed that after the mechanism reveals s
to headquarters, then headquarters indeed follows the division’s advice and undertakes the
investment. A common assumption in the theory of capital budgeting is that headquarters can,
however, not commit to doing so, in which case we have the following result.19

Lemma 2. If the surplus from investing at s2, μ(s2) − k > 0, is sufficiently small, then
implementing a cutoff s∗

C = s 2 while achieving separation between s2 and s3 may not be possible if
headquarters cannot commit to invest for signal s2. Formally, in this case, the range of intermediate
values c for which s∗

C = s 2 is possible under a pooling contract but not under separating contracts
increases (compared to Lemma 1).

Proof . See the Appendix.

One of our insights in Section 4 was that in order to reduce the risk of choosing the less
profitable project, headquarters wanted to raise s∗

C strictly above the first-best cutoff, provided that
this was still feasible. Formally, this argument relied on the fact that the first-order “loss” from
a marginal increase in s∗

C at s∗
C = s FB was zero given that μ(s FB) − k = 0. Without a continuum

of types, to still obtain overinvestment as an equilibrium outcome we thus clearly need that the
surplus μ(s2) − k > 0 is not too large. The following is the key result of this section.20

Proposition 8. Suppose that the surplus from investing at s2, μ(s2) − k > 0, is sufficiently small.
Then as we increase c, either one of the following two cases applies.

(i) Here, for very low c up to some cutoff c1 > 0, the first-best investment policy is feasible.
Then, for c1 < c ≤ c2 we have underinvestment as the optimal contract implements s∗

C = s 3.
Next, for c2 < c ≤ c3 we have s∗

C = s 2 under a single pooling contract, whereas finally we
have for all c > c3 overinvestment as s∗

C = s 1.
(ii) Here, in contrast to case (i), we have for all c1 < c ≤ c2 underinvestment with s∗

C = s 3,
whereas for all c > c2 we have overinvestment with s∗

C = s 1.
18 As we now restrict consideration to symmetric mechanisms and thus no longer index observed signals by the

division’s number i, this (ab)use of our previous notation should not give rise to confusion. With a continuum of signals,
the resulting (nonstandard) optimal control problem did not allow us to obtain an explicit characterization of the optimal
contracts or an identification of the ranges over which there is pooling or separation of types.

19 Although the separating mechanism prescribes different contracts if the investment is undertaken, the manager
cannot force headquarters to undertake an investment by announcing a signal s ≥ s2.

20 Cases (i) and (ii) in Proposition 8 differ only in one aspect, namely whether for an intermediate range of values
c we have that s∗

C = s 2 when moving from under- to overinvestment. It should be noted also that with a continuum of
signals s both cases can arise given that, in contrast to s∗

N , s∗
C need not be continuous in c.
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Proof . See the Appendix.

� Above-market wages (Assumption 1). Suppose now that we relax Assumption 1. We now
impose symmetry on contracts such that each manager then receives the compensation R + z
if his division does not receive new funds.21 Again, z is then equal to a manager’s ex ante rent,
implying that z = 0 is still uniquely optimal either if s∗

C = s∗∗
C or if the inefficiency is not too large.

What is, however, less obvious is that once we allow for z > 0 both with and without competition,
then incentives are still steeper in the former case.

Proposition 9. If we relax Assumption 1 such that the firm can pay a manager whose division
obtains no new financing a wage R + z, then Proposition 8 continues to hold. That is, also in this
case incentives are still steeper with competing divisions.

Proof . See the Appendix.

As we show in the proof of Proposition 9, if we denote the optimal values by βC and zC

and by βN and zN , respectively, then it also holds that βC − zC > βN − zN . Hence, in analogy
to Corollary 1, the compensation also becomes steeper if we look alternatively at the difference
between the bonus and the compensation without a realized investment.

It should be noted that provided the other division receives funding, in our model there are no
benefits from linking the compensation of the first manager, that is, z, to the cash flow of the other
division. Clearly, this could be different if managers’ signals were correlated or if their efforts to
generate projects were complementary. However, Proposition 9 still ignores one additional degree
of flexibility, namely to make z contingent on whether the other division obtained financing or
not.22 Imposing symmetry again, we could then stipulate that a manager who does not receive
funding is compensated with R + za if the other division does not receive funding either, and with
R + zb if the other division receives funding. We analyze this possibility in the rest of this section.

In this case, if a manager does not request funding, his expected payoff equals

R + G
(
s∗

C

)
za + [

1 − G
(
s∗

C

)]
zb, (11)

where now s∗
C is the (symmetric) cutoff that is applied by the other manager. At s = s∗

C , after
having generated a project, a manager’s expected payoff when requesting funding equals

w
(
s∗

C

)1 + G
(
s∗

C

)
2

+ (R + zb)
1 − G

(
s∗

C

)
2

, (12)

where we used that the project is only funded with probability one half if both projects request
funding. Equating (11) and (12), the new cutoff s∗

C is now determined by

w
(
s∗

C

) = R + 2G
(
s∗

C

)
1 + G

(
s∗

C

) za + 1 − G
(
s∗

C

)
1 + G

(
s∗

C

) zb. (13)

It follows immediately from our previous arguments that the higher za or zb, the higher the
cutoff s∗

C that can be implemented.23 The drawback of setting za > 0 or zb > 0 is again that
this leaves each manager with a positive rent equal to expression (11). Consequently, the firm’s
objective function becomes

[
1 + G

(
s∗

C

)] ∫ s̄

s∗
C

[μ(s) − k]g(s) ds − 2c − 2
[
G

(
s∗

C

)
za + [

1 − G
(
s∗

C

)]
zb

]
. (14)

21 As before, it is intuitive that paying less than R would not be optimal even if this were feasible (cf the proof of
Proposition 8).

22 We thank one of the referees for drawing our attention to this possibility.
23 To avoid confusion, we should note, however, that for this conclusion it is not necessary that the right-hand side

of (13) is monotonic in s∗
C . See also the proof of Proposition 9.
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As we show in the proof of Proposition 10, when comparing the marginal costs of an increase
in either za and zb as derived from (14) with the marginal benefits, namely to push up s∗

C according
to (13), we find that it is uniquely optimal to set za > 0 but zb = 0. The intuition for this is
straightforward. In order to push up s∗

C, the firm wants to reward the manager for not requesting
funds. In contrast, zb > 0 would also be paid to a manager who requested funds but did not obtain
them as they were invested instead in the other division.

Importantly, Proposition 9 (and thereby Proposition 7) still holds once we allow for the more
flexible choice of za > 0 and zb = 0. In fact, as this makes it effectively cheaper to push up s∗

C,
we find that the difference between s∗

C and s∗
N and thus also between βC and βN becomes still

larger.24

Proposition 10. If we relax Assumption 1 and allow the firm, in addition, to make the payment of
z contingent on whether the other division receives financing or not, then the payment is optimally
made only if neither of the divisions receives funding. Furthermore, Proposition 8 continues to
hold. That is, also in this case, incentives are still steeper with competing divisions.

Proof . See the Appendix.

5. When is competition optimal?

� Competition among mutually exclusive projects. The firm may choose to let more than
one manager or division work on a similar business problem, thereby increasing the overall
chance of success, albeit at higher costs (namely, to incur c twice). As a benchmark, if effort and
the signal were both verifiable, then putting two managers on the same problem would only be
profitable if25

B1 :=
∫ s̄

sFB

[μ(s) − k][2G(s)g(s)]ds −
∫ s̄

sFB

[μ(s) − k]g(s) ds ≥ c, (15)

where we use that in this case always the most profitable project is undertaken by optimality.
Without verifiability, however, creating competition is only profitable if

B2 := [
1 + G

(
s∗

C

)] ∫ s̄

s∗
C

[μ(s) − k]g(s) ds −
∫ s̄

s∗
N

[μ(s) − k]g(s) ds ≥ c, (16)

where we now use the respective cutoffs s∗
N and s∗

C. The benefits from competition are now lower
for two reasons. First, as headquarters only knows whether the respective signal was above or
below the implemented cutoff, if two projects are proposed, it may end up choosing the less
profitable one. Second, as we have seen in the previous section, competition may increase an
existing overinvestment problem.

In fact, the second problem may now weigh in so strongly that, even when ignoring the
additional costs c, creating competition may be inferior. This holds, in particular, in the extreme
case where the overinvestment problem is so severe that s∗

C is no longer interior. What makes
this more likely under competition is the following “vicious cycle.” We know that to implement
a cutoff s∗

C, managers need to receive a higher (expected) reward than without competition.
Unless headquarters can provide steeper incentives, this leads to more overinvestment. However,
if the cutoff drops for one manager, then this reduces the likelihood that the other division’s
project will be chosen, which requires a further increase in the other manager’s reward and so
on. If, as a consequence of this, it is no longer possible to achieve s∗

C > s
¯
, then headquarters

24 Setting za > 0 and zb = 0 may, however, generate new problems. As is shown in the proof of Proposition 10, if
a manager observably deviates and shirks, then the other manager will optimally raise his cutoff, which in turn makes it
now more likely that the first manager will receive za > 0. Consequently, in this case one manager would want to shirk.
Sometimes, even without observability, the Pareto-dominant equilibrium may also be that where at least one manager
shirks.

25 We use that Pr[max(s1, s2) ≤ s] = G2(s).
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must choose between two projects that, from its perspective, have the same expected value of∫ s̄

s
¯

[μ(s) − k]p(s) ds − c. In case of s
¯

= s∗
C < s∗

N we thus have that B2 < 0.
We conclude this section with the following intuitive result.26

Proposition 11. If in our model it is (weakly) optimal to create competition, then this holds
strictly in case both effort and the signal are verifiable. Formally, B2 ≥ c implies B1 > c.

Proof . See the Appendix.

� Integrating two capital-constrained divisions. If a firm’s ability to undertake multiple
projects is limited by its financial resources, a slightly different but equally natural question is
whether to integrate two previously stand-alone businesses, which also allows pooling of scarce
resources.27 The obvious upside of integration is that if one division fails to have a sufficiently
attractive project, then potentially more funds, namely up to 2k, could now be invested in the
other project.28 To accommodate this possibility in our model, we suppose that with probability
ψ a project can be expanded to twice its size, requiring the investment of 2k, without changing
its rate of return.

If headquarters could commit to equally distribute funds over the two divisions in case both
managers request funds, then integration would leave the probability with which each project
is implemented unaffected. Intuitively, in this case, integration would then have no drawback.
However, if headquarters can indeed realize the same expected cash flow by investing 2k into only
one project instead of only k into each of two projects, then it will strictly prefer the former option
as it must then pay only one manager more than his reservation value.29 Because this reduces
the likelihood with which a given project will be implemented, this can make the overinvestment
problem more severe, unless there is still scope for steeper incentives.

For a formalization of these arguments, we consider how the optimality of integration
depends on a change in c. In what follows, we suppose that

(1 − ψ)
∫ s̄

s
¯

[μ(s) − k]p(s) ds ≥ c.

This restriction has two implications. First, it ensures that for all considered choices of
c it is still optimal to incentivize the manager in the nonintegrated firm, that is, even if the
overinvestment problem is so extreme that s∗

N = s
¯
. Second, as we show in the proof of Proposition

12, under this condition it is unprofitable to pool both divisions’ resources but to only incentivize
one manager. If R − α

¯
> 0 is not too large, we have the following result.30

Proposition 12. Integration is strictly optimal if the incentive problem is not too severe as c is
sufficiently low, whereas it is strictly suboptimal if the incentive problem is sufficiently severe as
c is relatively high. Moreover, in the first case, the advantage of integration is larger the higher
ψ , that is, the more likely it is that a project can profitably absorb all resources 2k, whereas in the
second case a higher ψ aggravates the adverse effects of integration.

Proof . See the Appendix.

26 Proposition 11 is not fully obvious because, without verifiability, not all feasible surplus may be realized both
with and without competition.

27 We thank a referee for proposing this application of our model.
28 As standard in the theory of internal capital markets, we suppose that this transfer of resources is not to the same

extent possible via external finance. Essentially, this requires an additional layer of agency problems between insiders,
including headquarters, and the providers of outside finance. For instance, in Inderst and Muller (2003), the agency
problem originates from the limited ability to pledge future cash flows.

29 Clearly, this opportunism problem would still persist if the second unit of capital, k, had a somewhat lower,
though not too low, marginal return.

30 It should be noted that Proposition 11 does not assert monotonicity over the whole range of values c, for which
we would have to make functional specifications, pinning down, in particular, p(s) and g(s).

C© RAND 2007.



INDERST AND KLEIN / 895

Integration has both positive and negative implications for investment efficiency: it may
allow allocating more funds to the single (sufficiently profitable) investment opportunity, but it
may also lead to more overinvestment as division managers become more biased toward claiming
funds for their own projects. This implies that integrated firms should be bigger spenders, but
that some of these funds will be less efficiently invested than in comparable stand-alone firms.
Whether integration is beneficial or not depends on how severe the underlying agency problem
is, as measured in Proposition 12 in terms of the costs of effort c.

Proposition 12 presents, however, at best a preliminary analysis, illustrating how our model
could potentially be applied to questions beyond that of the interplay between incentives and
investment decisions, which is our primary focus. Whereas Proposition 12 keeps the available
funds fixed, for example, as financial frictions make additional external financing always too
costly, more generally the availability and costs of external finance should depend on whether
businesses are integrated or not (cf Stein, 1997, or Inderst and Muller, 2003).31

6. Conclusion

� This article shows how division managers who are supposed to grow the firm’s business
become endogenously biased toward overinvesting in their own projects. The reward that is
promised for the creation of new investment opportunities biases managers toward communicating
overly optimistic information to headquarters. This bias is larger under internal competition, as
well as in divisions with riskier and less profitable investment opportunities. The bias can, however,
be mitigated if managers are put on steep incentive schemes. Among other results, our theory then
implies that managers of less profitable and more risky divisions must accept steeper incentives
in return for receiving (fresh) capital from headquarters.

The novel aspect of our model is that we capture both the creation and the realization of
new investment opportunities. As noted above, this allows to endogenize managers’ tendency to
overinvest in their own divisions. Moreover, the fact that the investment opportunity was created
by the manager makes it also more plausible that he has better information about its profitability
than headquarters. As we argued, much of the extant literature on capital budgeting has focused
on managers’ responsibility to work on existing projects and on further (incremental) allocation
of resources instead. Developing a model that incorporates a broader range of responsibilities,
including generating, implementing, and managing new investment opportunities, could possibly
provide new insights into budgeting decisions and incentive compensation.

Appendix

� Proofs of Propositions 3, 5–11, Corollaries 1–2, and Lemmas 1–2 follow.

Proof of Proposition 3. If the first best is feasible, we have from (4) that dβ/dx = −ck[1 − G(s FB)]/(π FB)2. Likewise,
we have that dα/dx = ck

∫ s̄

sFB
p(s) ds/(πFB)2. If the first best is not feasible, s∗ is not affected by a change in x, implying

from (3) that the same holds for α and β. From this the assertion holds as well for the remaining case, where the first best
is only feasible for the higher value of x.

We turn next to the comparative statics in p. If the first best is feasible, we have from (4) that dβ/dp < 0
as dπFB/dp = x

∫ s̄

sFB
q(s)g(s) ds > 0. For s∗ < sFB note first that as p(s)/p(s∗) = q(s)/q(s∗), s∗ as defined in (5) is

independent of p such that, from β = (R − α
¯
)/p(s∗), we have again that β must strictly increase as p decreases. The

argument again extends to the case where the first best is only feasible for the higher value of p.
Finally, we consider a decrease in q. As this leads to a strictly lower (maximum) ex ante surplus π FB, the assertions

follow immediately from (4) if the first best is feasible. Because q also affects the probability distribution over signals G(s),
the case where s∗ < sFB is slightly more involved. Here, it turns out to be more convenient to take the posterior success
probability p̃ = p(s) as the random variable. Denoting pl := pq(s

¯
) and ph := pq(s̄), p̃ has the support p̃ ∈ [pl , ph]

and the distribution function H ( p̃) := Pr(q(s)p ≤ p̃), which has a continuous and strictly positive density h( p̃). The

31 Moreover, whereas for Proposition 12, headquarters can flexibly redeploy resources, for example, via overhead
allocation or transfer pricing, if this were verifiable then making compensation contingent on whether a division received
2k or only k could provide some additional commitment power, albeit potentially at the costs of sometimes exacerbating
the overinvestment problem.
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project will be implemented if p̃ ≥ p̃∗, where p̃∗ = q(s∗)p. As β = (R − α
¯
)/p(s∗) and thus with our new notation also

β = (R − α
¯
)/ p̃∗, we have that β strictly increases if, following a reduction in q, p̃∗ decreases. To show this, we use that,

in analogy to (5), ∫ ph

p̃∗

[
p̃

p̃∗ − 1

]
h( p̃)d p̃ = c

R − α
¯

. (A1)

Note that a decrease in q only affects (A1) through the distribution (including a shift in ph). As we show below that
a change in q “reduces” H ( p̃) in the sense of first-order stochastic dominance (FOSD) and as p̃

p̃∗ − 1 is strictly increasing
in p̃, if we hold p̃∗ constant this implies that the left-hand side of (A1) strictly decreases. To restore equality, p̃∗ must
thus indeed decrease. To complete the proof, note that we can substitute from q(s) = q f g(s)/[q f g(s) + (1 − q) f b(s)]
into q(s)p ≤ p̃ to obtain

H ( p̃) = Pr

(
fg(s)

fb(s)
≤ p̃

p − p̃

1 − q

q

)
,

which by monotone likelihood ratio property (MLRP) of F θ (s) indeed strictly decreases in q, confirming FOSD. Q.E.D.

Proof of Proposition 5. The firm now maximizes∫ s̄

s∗
[R + μ(s) − k − w(s)]g(s) ds − G(s∗)z,

where s∗ solves w(s∗) = R + z. By the argument in the main text, we can focus on the case where s∗ < sFB for z = 0.
Moreover, from the argument in Proposition 1, it is immediate that in this case α = α

¯
must hold. The binding incentive

constraint (7) then becomes ∫ s̄

s∗

[
p(s)

p(s∗)
− 1

]
g(s) ds = c

R + z − α
¯

, (A2)

which again pins down a unique value of s∗ for given z. Implicit differentiation yields

ds∗

dz
= c

(R + z − α
¯
)2

[p(s∗)]2

p′(s∗)
∫ s̄

s∗ p(s)g(s) ds
> 0. (A3)

Using (A3), the firm’s first-order condition w.r.t. z becomes then

[k − μ(s∗)]g(s∗)
ds∗

dz
− 1 = 0. (A4)

Inspection of (A4) establishes that s∗ < sFB holds at the optimal z and that z = 0 is uniquely optimal if in this
case sFB − s∗ remains sufficiently small. (This also uses strict quasiconcavity and that ds∗/dz remains bounded away from
zero.) Moreover, we have that z < 0 can indeed never be optimal, implying that this part of Assumption 1 always remains
slack.

We show next that, provided z > 0 is optimal, an increase in k implies a higher optimal z and thus, to still satisfy
incentive compatibility, also a higher β. Using strict quasiconcavity of the program, this holds if, holding the previously
optimal value of z fixed, the left-hand side of (A4) is strictly positive at a higher k. This follows immediately from the
observation that, for given z, both s∗ and ds∗/dz do not change. The argument for a reduction in x is analogous.

We turn next to a reduction in p. Note first that for given z, s∗ as defined in (A2) is independent of p as p(s)/p(s∗) =
q(s)/q(s∗), implying also that ds∗/dz is independent of p for given s∗. As μ(s∗) is, however, strictly increasing in p, using
strict quasiconcavity we have from inspection of (A4) that if implementing some s∗ was previously optimal, then after a
reduction in p it is optimal to implement a strictly higher cutoff. Substituting R + z − α

¯
from (A2) into β = (R + z − α)/

p(s∗), we have that

β = c

p

1∫ s̄

s∗ [q(s) − q(s∗)]g(s) ds
. (A5)

Hence, β indeed increases, as a reduction of p has by (A5) both a direct (positive) effect and, via the increase in s∗, an
additional (positive) effect.

Consider finally a mean-preserving spread. As in this case the ratio p(s)/p(s∗) stays constant, we have again from
(A2) and (A3) that for given z both s∗ and ds∗/dz are unaffected. From (A4) we thus have that the optimal z does not change,
such that β = (R + z − α

¯
)/p(s∗) increases, given that p(s∗) decreases following a mean-preserving spread. Q.E.D.

Proof of Corollary 1. Denote for a given comparative analysis as conducted in Proposition 5 the respective contractual
values by (β, z) and (β̂, ẑ), where ẑ > z is associated with a respective cutoff ŝ∗ > s∗. We want to show that

β̂ − β > ẑ − z. (A6)

Consider first changes in k and x. We proceed in several steps. Note first that from the incentive compatibility
constraint (7) a lower boundary for β̂ is obtained if instead of raising s∗ to ŝ∗ we leave the cutoff unchanged. If we denote
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this lower boundary by β̂ ′ < β̂, we then have, together with the incentive compatibility constraint for the original case,
the requirement that

β̂ ′ − β = (ẑ − z)
1 − G(s∗)∫ s̄

s∗ p(s)g(s) ds
> ẑ − z, (A7)

from which (A6) follows.
Finally, for the case where p changes, the argument needs to be slightly adjusted. Note first from the proof of

Proposition 5 that ŝ∗ > s∗ together with ẑ − z holds in case the underlying change is to some p̂ < p. Recall also that this
implies p̂(s) < p(s) for all s. We now obtain again a first lower boundary β̂ ′ < β̂ by substituting s∗ instead of ŝ∗ into the
binding incentive compatibility constraint (7). Using next that p̂(s) < p(s) holds for all s, we obtain yet another lower
boundary β̂ ′′ < β̂ ′ by now substituting p(s) instead of p̂(s) into the (already modified) incentive compatibility constraint.
After these two changes, we then again use (A7) to obtain β̂ ′′ − β > ẑ − z such that (A6) holds. Q.E.D.

Proof of Proposition 6. We now consider the possibility that, depending on the message ŝ ∈ S sent by the manager, he
receives a contract (α(ŝ), β(ŝ)) in case the project is undertaken. Again, we can safely restrict consideration to strictly
positive values β (s) > 0 such that there is again a unique cutoff s∗. If the mechanism is nondegenerate, then it follows
immediately from the manager’s truth-telling requirement and the fact that p(s) is strictly increasing that α(s∗) > α

¯
.

Suppose now that the mechanism is replaced by a simple contract (α
¯
, β ′), where from setting β ′ = β(s∗) + α(s∗ )−α

¯p(s∗ )
the

cutoff remains unchanged. As we show below, it holds for this choice of β ′ that∫ s̄

s∗
[p(s)β ′ + α

¯
]g(s) ds >

∫ s̄

s∗
[p(s)β(s) + α(s)]g(s) ds, (A8)

implying that the newly constructed simple contract relaxes the incentive constraint to induce effort. As this allows to
further reduce β ′ until the incentive constraint becomes binding again (which pushes up s∗), and as s∗ < sFB holds by
assumption, the original mechanism was not optimal.

It thus remains to verify that (A8) indeed holds, which is in turn the case if

α
¯

+ p(s)β ′ ≥ α(s) + p(s)β(s) (A9)

holds for all s ≥ s∗ and strictly for a subset with positive mass. As by the manager’s truth-telling requirement the original
mechanism must satisfy α (s∗) + p(s∗)β (s∗) ≥ α (s) + p(s∗)β (s) for all s ≥ s∗, we obtain after substituting for β ′ that (A9)
is always satisfied and holds even strictly whenever α(s) > α

¯
. Unless the mechanism was degenerate and implemented

the same contract for almost all s ≥ s∗, there must finally be a positive mass of s satisfying α(s) > α
¯
. Q.E.D.

Proof of Proposition 7. With competition between two symmetric divisions, the probability that manager i′s project is
implemented is given by Pr(si ≥ s∗

i , s j < s∗
j ) + 1

2
Pr(si ≥ s∗

i , s j ≥ s∗
j ), which becomes 1

2
(1 − G(s∗

i ))(1 + G(s∗
j )). After

substitution, we then obtain for manager i′s incentive constraint

1

2

[
1 + G

(
s∗

j

)] ∫ s̄

s∗
i

[wi (s) − R]g(s) ds ≥ c. (A10)

As the incentive constraints are binding by optimality, the firm’s objective function is now

∑
i=1,2

1

2

[
1 + G

(
s∗

j

)] ∫ s̄

s∗
i

[μ(s) − k]g(s) ds − 2c. (A11)

Suppose first that headquarters could choose s∗
1 and s∗

2 . The optimal thresholds are obtained by differentiating
(A11), which yields the respective first-order conditions

μ(s∗
i ) − k =

∫ s̄

s∗
j
[μ(s) − k]g(s) ds

1 + G
(
s∗

j

) . (A12)

Using that a solution to (A12) must satisfy s∗
i > sFB for i = 1, 2 and that, given symmetry in (A12), a solution must be

symmetric, s∗
1 = s∗

2 = s∗∗
C must satisfy (10). Note next that from s∗∗

C > s∗∗
N the left-hand side of (10) is strictly increasing

in s∗∗
C , whereas the right-hand side is strictly decreasing. As both sides are also continuous and as the left-hand side is

strictly larger for s∗∗
C = s̄, we have a unique interior solution s∗∗

C ∈ (s∗∗
N , s̄), where s∗∗

N = s FB.
We now denote the optimal contract with competition by (αC , βC) and refer to the optimal contract with no

competition by (αN , βN ). Recall also that we denoted the respective cutoffs by s∗
N and s∗

C . If we can implement s∗
C = s∗∗

C ,
then from (A10) and w(s∗∗

C ) = R we have that

βC = c
1
2

[
1 + G (s∗∗

C )
] ∫ s̄

s∗∗
C

[
p(s) − p (s∗∗

C )
]

g(s) ds
,

αC = R − βC p
(
s∗∗

C

)
.

(A13)
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From (4) and (17), using s∗∗
C > s∗∗

N and 1
2
[1 + G(s∗∗

C )] < 1, we thus have that if the base-wage constraint does not
bind in either regime, then αC < αN and βC > βN . If the constraint binds with competition, we have in analogy to (3),
(4), and (5) that

βC = c
1
2

[
1 + G (s∗

C )
] ∫ s̄

s∗
C

[
p(s) − p (s∗

C )
]

g(s) ds
,

αC = R − βC p
(
s∗

C

)
,

(A14)

and that s∗
C must satisfy ∫ s̄

s∗
C

[
p(s)

p (s∗
C )

− 1

]
g(s) ds = 2

1 + G (s∗
C )

c

R − α
¯

. (A15)

Note that (A15) does not already pin down a unique value of s∗
C and thus, together with (17), a unique optimal

contract. As by construction any solution to (A15) satisfies s∗
C < s∗∗

C , however, the unique optimal contract is given by
substituting the highest solution to (A15) into (17).32

To compare contracts when the base-wage constraint binds in either case, note first that from (3) and (17), αC ≥ α
¯implies αN > α

¯
. Suppose first that the base-wage constraint also binds without competition. In this case, we have from (5)

with (A15) and 1 + G(s∗
C) < 2 that s∗

C < s∗
N . As αC = αN = α

¯
, we then have from α

¯
= R − βN p(s∗

N ) and α
¯

= R − βC p(s∗
C )

that βC > βN . If the base-wage constraint only binds with competition and if s∗
C ≥ s∗∗

N , then direct comparison of (3)
with (17) shows that βC > βN . If instead s∗

C < s∗∗
N , we can use that αN > αC = α

¯
such that βC > βN follows again by

comparing α N = R − β N p(s∗
N ) and αC = R − βC p(s∗

C ). Q.E.D.

Proof of Corollary 2. In case (i), where s∗
N < s∗∗

N , we have already shown that s∗
C < s∗

N . In case (ii), where s∗
C = s∗∗

C , the
result follows from s∗∗

C > s∗∗
N . Q.E.D.

Proof of Corollary 3. From (17), we have that s∗
C = s∗∗

C and thus s∗
C > s∗

N whenever

c ≤ c′ := [R − α
¯
]

[
1

2

[
1 + G

(
s∗∗

C

)] ∫ s̄

s∗∗
C

[
p(s)

p (s∗∗
C )

− 1

]]
.

Recall now from the proof of Proposition 8 that s∗
N < s∗∗

N implies that also s∗
C < s∗

N , which from (6) thus holds surely if

c > c′′ := [R − α
¯
]

[∫ s̄

s∗∗
N

[
p(s)

p(s∗∗
N )

− 1

]
g(s) ds

]
.

That c′ < c′ ′ is easily confirmed by noting that s∗∗
C > s∗∗

N and thus also p(s∗∗
C ) > p(s∗∗

N ). As s∗
N = s∗∗

N stays constant
over c ≤ c′ ′, it only remains to show that s∗

C is for c > c′ strictly decreasing, which follows by optimality using (A15).
Q.E.D.

Proof of Lemma 1. With discrete signals, g(s) > 0 now denotes the respective probability with which some signal s will
be observed. Take first the case with a pooling contract, where we want to find an upper boundary on c up to which s∗

C =
s 2 is feasible. As the argument proceeds in analogy to the case with a continuum of signals, we can be brief. Setting
α = α

¯
, we have that incentive compatibility can still be satisfied as long as c ≤ cP, where

cP := 1

2
[1 + g(s1)]

∑
s=s2 ,s3

g(s) [α
¯

+ β p(s) − R]

and where we can substitute for β from α
¯

+ β p(s1) = R, that is, from the condition that the manager is just indifferent
at s1. Suppose next that two contracts (α2, β 2) and (α3, β 3) that induce truth telling are offered. Again, we will find a
threshold cT such that s∗

C = s 2 is feasible if and only if c ≤ cT . To construct this threshold, note first that to ensure s∗
C =

s 2 for as high values of c as possible, it must hold again that α2 = α
¯
. Note next that the incentive constraint so as to elicit

effort becomes

g(s2)
1

2
[1 + g(s1) − g(s3)] [α

¯
+ β2 p(s2) − R]

+ g(s3)
1

2
[1 + g(s1) + g(s2)] [α3 + β3 p(s3) − R] ≥ c, (A16)

whereas truth telling with signal s2 requires that

1

2
[1 + g(s1) − g(s3)] [α

¯
+ β2 p(s2)] ≥ 1

2
[1 + g(s1) + g(s2)] [α

¯
+ β3 p(s2)] . (A17)

It turns out that if (A17) binds, then we can ignore the truth-telling constraint for the higher signal s3, while also
the contract for s2 is more attractive to type s1 than that for s3. Consequently, to construct cT we have to use β 2 from
α
¯

+ β2 p(s1) = R, while both (17) and (A17) must be satisfied with equality. Next, suppose that we adjust α3 by dα3 < 0

32 A sufficient condition for the existence of a nonempty set of solutions s∗
C > s

¯
to (A15) is given by

α
¯

< R − 2c/(1 + G(s
¯
))

∫ s̄

s
¯

[ p(s)
p(s

¯
)
− 1]g(s) ds.
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and β 3 by dβ 3 = −1/p(s 2) such that (A17) is still satisfied with equality. As this increases the left-hand side of (17) by
dα3[1 − p(s3)

p(s2)
] > 0, we thus have obtained that α3 = α

¯
must hold for the construction of cT .

We are now in a position to compare cT with cP. Here, we can use that β 2 = β as both contracts make s1 just
indifferent. As all terms R − α

¯
cancel out when comparing cT with cP, we have, after collecting terms for β, that cT <

cP holds if

β3 p(s3)[1 + g(s1) + g(s2)] < β [p(s3)[1 + g(s1)] + g(s2)p(s2)] . (A18)

As we have from the binding constraint (A17) that

β3 = 1 + g(s1) − g(s3)

1 + g(s1) + g(s2)
β − g(s2) + g(s3)

1 + g(s1) + g(s2)

α
¯

p(s2)
, (A19)

we know that (A18) surely holds if it still holds after we substitute for β 3 the (for α
¯

> 0 strictly) larger expression
1 + g(s1) − g(s3)
1 + g(s1) + g(s2)

β. Condition (A18) then finally transforms to g(s3)p(s3) + g(s2)p(s2) > 0. Q.E.D.

Proof of Lemma 2. To induce headquarters to undertake the investment also when s2 is truthfully revealed, it must hold
that

[α2 + β2 p(s2)] − R ≤ μ(s2) − k. (A20)

We now derive in analogy to the proof of Lemma 1 the new threshold on c, which we denote by cNC . The only
difference is that β 2, which was previously determined by the requirement that α

¯
+ β2 p(s1) = R, must now also satisfy

(A20). Note next that once we substitute for β 3 from (A19), the left-hand side of (17) is strictly increasing in β 2.
Consequently, we have cNC < cT if the additional constraint on β 2 from (A20) becomes binding, which is the case
if μ(s2) − k < (R − α

¯
)[p(s2) − p(s1)]/p(s1) and if μ(s2) − k is sufficiently small. (Note here that from μ(s1) − k <

0, p(s2) − p(s1) stays bounded away from zero.) Q.E.D.

Proof of Proposition 8. Recall first that from Lemmata 1 and 2 we have for all sufficiently low values of μ(s2) − k > 0
that 0 < cNC < cP. We deal next with the underinvestment case where s∗

C = s 3. Comparing the firm’s payoff to that with
s∗

C = s 2 under a pooling contract, the underinvestment solution is strictly more profitable if

[1 + g(s1) + g(s2)] g(s3) [μ(s3) − k] > [1 + g(s1)]
∑

s=s2 ,s3

g(s)[μ(s) − k],

which becomes g(s3)[μ(s3) − k] > [1 + g(s1)] [μ(s2) − k] and thus holds surely for all sufficiently low values of μ(s2) −
k > 0. Implementing s∗

C = s3 is next also feasible if c ≤ cU , where by applying the arguments from Lemmata 1 and 2 we
have

cU := 1

2
[1 + g(s1) + g(s2)]g(s3) [α

¯
+ β p(s3) − R] ,

with β now solving α
¯

+ β p(s2) = R. We show that for low values μ(s2) − k > 0 it holds that cU > cNC . Instead of
writing out this condition in generality, we proceed differently and show first that cU > cNC holds surely if μ(s 2) − k =
0, in which case the respective terms become much simpler. The assertion follows then also for low values of μ(s2) −
k > 0 from continuity, namely as cU is clearly continuous in p(s2) and unaffected by x and k, while the constraint (A20)
that determines β in case s∗

C = s 3 is also continuous in the surplus μ(s2) − k. Setting thus μ(s 2) − k = 0, we can then
use that β 2 for s∗

C = s 2 and β for s∗
C = s 3 coincide. The requirement that cU > cNC then simply becomes β 2 > β 3, which

holds from (A19). Finally, the two cases in Proposition 9 arise if either cP > cU or cP ≤ cU .33 Q.E.D.

Proof of Proposition 9. With competition and z ≥ 0, the incentive constraint becomes

1

2

[
1 + G

(
s∗

C

)] ∫ s̄

s∗
C

[w(s) − R − z]g(s) ds ≥ c. (A21)

As the latter binds from optimality, the objective function is then

[
1 + G

(
s∗

C

)] ∫ s̄

s∗
C

[μ(s) − k]g(s) ds − 2(c + z).

Finally, in analogy to (A15) s∗
C is, for a given z, the highest value solving∫ s̄

s∗
C

[
p(s)

p (s∗
C )

− 1

]
g(s) ds − 2

1 + G (s∗
C )

c

R + z − α
¯

= 0. (A22)

Note next that as the left-hand side of (A22) is strictly smaller than zero at all sufficiently high values of s∗
C , we have

that at the highest value of s∗
C for which (A22) holds, the derivative with respect to s∗

C must be strictly negative. Moreover,

33 Proposition 8 makes no claims on how the outcome for c > max {cP, cU}, where s∗
C = s 1, is characterized.

However, if μ(s2) − k > 0 is sufficiently small, then in this case, where it holds by construction that w(s1) > R, it follows
already from headquarters’ commitment problem that only a pooling contract for all three signals is feasible.
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as s∗
C is monotonic in z, the derivative ds∗

C /dz exists almost everywhere. To calculate it at points of differentiability, it is
helpful to introduce some additional notation. We denote

A(s∗) :=
∫ s̄

s∗

[
p(s)

p(s∗)
− 1

]
g(s) ds,

B(z) := c

R + z − α
¯

.

Hence, we then have at points of differentiability that

ds∗
C

dz
= 2

1 + G (s∗
C )

B ′(z)

A′ (s∗
C ) + B(z)

2g(s∗
C )

[1+G(s∗
C )]2

,

where from our previous remarks and B′ (z) < 0 it must hold that

A′ (s∗
C

) + B(z)
2g

(
s∗

C

)
[
1 + G (s∗

C )
]2 < 0. (A23)

To prove Proposition 9, note now that if z = 0 is optimal without competition, then we have already from Proposition
7 that βC > βN . Precisely, from Proposition 7 this holds if also z = 0 is optimal with competition, whereas from (A21)
this holds even more so if z > 0 is optimal with competition. It thus remains to analyze the case where z > 0 is optimal
without competition. Define next the surplus (gross of effort costs) with competition by

πC := [
1 + G

(
s∗

C

)] ∫ s̄

s∗
C

[μ(s) − k]g(s) ds

and likewise

πN :=
∫ s̄

s∗
N

[μ(s) − k]g(s) ds.

Claim 1. If z = z N > 0 is optimal without competition, thereby implementing some s∗
N , then with competition it is

optimal to implement some s∗
C > s∗

N .

Proof of Claim 1. Note first that

dπN

ds∗
N

= −g
(
s∗

N

) [
μ

(
s∗

N

) − k
]

(A24)

and

dπC

ds∗
C

= −g
(
s∗

C

) [
1 + G

(
s∗

C

)] [
μ

(
s∗

C

) − k
] + g

(
s∗

C

) ∫ s̄

s∗
C

[μ(s) − k]g(s) ds. (A25)

Using the previously introduced expressions, from which we have that ds∗
N /dz = B ′(z)/A′(s∗

N ), at points of
differentiability we obtain

dπN

dz
= dπN

ds∗
N

ds∗
N

dz
= −g

(
s∗

N

)
[μ

(
s∗

N

) − k]
B ′(z)

A′ (s∗
N )

and

dπC

dz
= dπC

ds∗
C

ds∗
C

dz
=

[
−g

(
s∗

C

) [
1 + G

(
s∗

C

)] [
μ

(
s∗

C

) − k
] + g

(
s∗

C

) ∫ s̄

s∗
C

[μ(s) − k]g(s) ds

]

×

⎡
⎢⎣ 2

1 + G (s∗
C )

B ′(z)

A′ (s∗
C ) + B(z)

2g(s∗
C )

[1+G(s∗
C )]2

⎤
⎥⎦ . (A26)

To obtain a lower boundary for dπC

dz
, for the first term in rectangular brackets in (17) we use that g(s∗

C )
∫ s̄

s∗
C

[μ(s) −
k]g(s) ds > 0 together with μ(s∗

C) − k < 0 and for the second term B′ (z) < 0 together with (A23). We thus have that

dπC

dz
>

[−g
(
s∗

C

) [
1 + G

(
s∗

C

)]
[μ

(
s∗

C

) − k]
] [

2

1 + G (s∗
C )

B ′(z)

A′ (s∗
C )

]

> 2
dπN

dz
,

(A27)

where we evaluated both derivatives at the same cutoff s∗ = s∗
N = s∗

C . Note next that the marginal impact of a higher z on the
firm’s objective function equals dπN

dz
− 1 without competition and dπC

dz
− 2 with competition (at points of differentiability).
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At zN we thus have that dπN

dz
= 1. If we want to implement the same cutoff under competition, then from (17) we have that

dπC

dz
− 2 > 0 holds at the respective value of z. Using once more strict quasiconcavity of the objective function, now for

the case with competition, this implies that the optimally implemented cutoff must be strictly higher such that ultimately
s∗

C > s∗
N . Q.E.D. (Claim 1)
We now use Claim 1 to show that βC > βN . For this we use for both cases the respective binding incentive

compatibility constraint as well as the definitions for the two cutoffs s∗
N and s∗

C to obtain

βN = c∫ s̄

s∗
N

[
p(s) − p (s∗

N )
]

g(s) ds

and

βC = c
1
2

[
1 + G (s∗

C )
] ∫ s̄

s∗
C

[
p(s) − p (s∗

C )
]

g(s) ds
. (A28)

With these expressions at hand, it thus remains to show that

1

2

[
1 + G

(
s∗

C

)] ∫ s̄

s∗
C

[
p(s) − p

(
s∗

C

)]
g(s) ds <

∫ s̄

s∗
N

[p(s) − p
(
s∗

N

)
]g(s) ds

which follows immediately from s∗
C > s∗

N .
To conclude the proof, we show that, as asserted in the main text after Proposition 9, it also holds that

βC − βN > zC − zN . (A29)

To see this, note first that a lower boundary β ′
C < βC is obtained by replacing the expression 1

2
[1 + G(s∗

C )] in the
binding incentive compatibility constraint (A21) by one. Next, another lower boundary β ′ ′

C < β ′
C is obtained by replacing,

in the already modified binding constraint, the cutoff s∗
C by s∗

N < s∗
C . Using now β ′ ′

C together with the modified constraint,
subtraction from the binding constraint for the case without competition finally yields

β ′′
C − βN = (zC − zN )

1 − G(s∗
N )∫ s̄

s∗
N

p(s)g(s) ds
. (A30)

For zC − zN > 0 the assertion (A29) follows then immediately from β ′ ′
C < βC and (A30). Q.E.D.

Proof of Proposition 10. The incentive compatibility constraint becomes

1

2

[
1 + G

(
s∗

C

)] ∫ s̄

s∗
C

[
w(s) − za

2G
(
s∗

C

)
1 + G (s∗

C )
− zb

1 − G
(
s∗

C

)
1 + G (s∗

C )

]
g(s) ds ≥ c. (A31)

Transforming the binding incentive constraint (A31) together with the definition of s∗
C in (13), we have in analogy

to Proposition 9 that s∗
C is the highest value satisfying∫ s̄

s∗
C

[
p(s)

p (s∗
C )

− 1

]
g(s) ds = 2

1 + G (s∗
C )

c

R − α
¯

+ za
2G(s∗

C )
1+G(s∗

C ) + zb
1−G(s∗

C )
1+G(s∗

C )

. (A32)

It proves now, in a slight deviation from the proof of Proposition 9, more helpful to rearrange (A32) and to introduce
some additional notation such that

R − α
¯

+ za

2G
(
s∗

C

)
1 + G (s∗

C )
+ zb

1 − G
(
s∗

C

)
1 + G (s∗

C )
− y

(
s∗

C

) = 0 (A33)

with

y
(
s∗

C

) = 2c[
1 + G (s∗

C )
] ∫ s̄

s∗
C

[
p(s)

p(s∗
C ) − 1

]
g(s) ds

.

By an argument as in the proof of Proposition 9, we have that s∗
C is strictly increasing in both za and zb. At points

of differentiability, we have from (A33) that

ds∗
C

dza

= 2G
(
s∗

C

)
1 + G (s∗

C )
Z1,

ds∗
C

dzb

= 1 − G
(
s∗

C

)
1 + G (s∗

C )
Z1,

where

Z1 = d

ds∗
C

[
za

2G
(
s∗

C

)
1 + G (s∗

C )
+ zb

1 − G
(
s∗

C

)
1 + G (s∗

C )
− y

(
s∗

C

)]
> 0.
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For the sake of brevity, we now suppose in the remainder of the proof that s∗
C is everywhere continuously differentiable

over the considered range of values za and zb. Denoting now the firm’s payoff (14) by �, we have that

d�

dza

= 2G
(
s∗

C

) [
Z1

1 + G (s∗
C )

dπC

ds∗
C

− 1

]
(A34)

and

d�

dzb

= [
1 − G

(
s∗

C

)] [
Z1

1 + G (s∗
C )

dπC

ds∗
C

− 2

]
, (A35)

where dπ C /ds∗
C is given by (A25).

We now argue to a contradiction and suppose first that both za > 0 and zb > 0 are jointly optimal, in which case
both (A34) and (A35) would have to be equal to zero, which is not possible. Next, if za = 0 but zb > 0, then as (A35)
must be equal to zero, it follows that (A35) is strictly positive, contradicting optimality of za = 0.

Next, from the binding incentive constraint (A31) together with the definition of s∗
C in (13), we obtain again

βC = c
1
2

[
1 + G (s∗

C )
] ∫ s̄

s∗
C

[
p(s) − p (s∗

C )
]

g(s) ds
,

which is identical to expression (A28) in the proof of Proposition 10. To show that incentives are still steeper under
competition, it is thus sufficient to show that s∗

C is optimally still higher with contingent payments. Using our previously
introduced notation, we have that s∗

C changes in z and in za, respectively, according to

ds∗
C

dz
= 1

y ′(s∗)
,

ds∗
C

dza

= 2G
(
s∗

C

)
[1 + G

(
s∗

C

)
]

y ′(s∗)
[
1 + G (s∗

C )
]2 − 2g (s∗

C ) za

.

(A36)

To avoid confusion, we now denote the respective firm profits by �z and �a such that

d�a

dza

= dπC

ds∗
C

ds∗
C

dz
− 2G

(
s∗

C

)
(A37)

and

d�z

dz
= dπC

ds∗
C

ds∗
C

dz
− 2. (A38)

Consider now the cutoff s∗
C at which �z is maximized such that (A38) is equal to zero.34 The assertion follows if,

when evaluated at this value of s∗
C , expression (A37) is strictly positive. After substitution from (A38) this holds in turn

if ds∗
C

dza
>

ds∗
C

dz
G(s∗

C ). Substituting from (17), this transforms to 2g(s∗
C)za > − y′ (s∗)[1 − G(s∗

C)]2, which is true.
We finally analyze when, under the optimal contract, the nonshirking equilibrium is unique. For this we now

allow for different cutoffs, which we denote by s∗
1C and s∗

2C . Using this to rewrite (13), we then have for manager i’s
“best-response” function in t = 1

ds∗
iC

ds∗
jC

= 2g(s∗
jC )[

1 + G(s∗
jC )

]2

za − zb

βC p′(s∗
iC )

. (A39)

From the perspective of manager i the case with s∗
jC = s̄ is equivalent to the one where manager j shirks. From

(A39) this induces manager i to raise his cutoff. Denote now the respective optimal cutoff of manager i by s∗
Cno > s∗

C .
Consequently, under the optimal contract an equilibrium where both managers shirk in t = 0 can be ruled out if and only
if35

∫ s̄

s∗
Cno

[w(s) − R − za] g(s) ds >
1

2

[
1 + G

(
s∗

C

)] ∫ s̄

s∗
C

[
w(s) − R − za

2G
(
s∗

C

)
1 + G (s∗

C )

]
g(s) ds. Q.E.D

34 Again, for brevity we invoke strict quasiconcavity of the firm’s objective function as well as differentiability at
the optimal choice of s∗

C .
35 Note that provided the choices at t = 0 are not observable, which is what we assume here, it follows immediately

from s∗
Cno > s∗

C that there will not be an asymmetric equilibrium. Formally, if manager j is expected to choose the cutoff
s∗

Cno, then manager i, provided that he deviates and thus does not shirk, will choose a cutoff s∗
CDno < s∗

C . Together with
s∗

Cno > s∗
C , the incentive compatibility constraint for manager i is then indeed surely slack.
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Proof of Proposition 11. The proof of Proposition 11 is not obvious, as we have that, at least for high enough c, both π N

and π C are decreasing in c. (Recall the definitions from the proof of Proposition 10.) We now argue to a contradiction,
implying that there exists some ĉ where B1 ≤ B2. As at c = 0 we have that B1 > B2 and as B1 does not change in c, this
requires that36

∫ ĉ

0

dπC

dc
dc >

∫ ĉ

0

dπN

dc
dc. (A40)

Recall next that from the proof of Corollary 3 we have dπ N /dc = 0 for all c ≤ c′ ′, where s∗
N = s∗∗

N , which implies
that ĉ > c′′. From this and Corollary 2, we also know that at c = ĉ we have ŝ∗

C < ŝ∗
N < s∗∗

N . Note now that each c induces
a respective cutoff s∗

N and s∗
C . At c = 0, these are given by s∗

N = s∗∗
N < s∗

C = s∗∗
C . For (A40) to hold, it must thus be true

that, after a change of variables, we have ∫ s∗∗
N

ŝ∗
N

dπN

ds∗ ds∗ >

∫ s∗∗
C

ŝ∗
C

dπC

ds∗ ds∗. (A41)

As s∗∗
N < s∗∗

C and ŝ∗
C < ŝ∗

N , (A41) can only hold if
∫ s∗∗

N

ŝ∗
N

( dπN

ds∗ − dπC

ds∗ )ds∗ > 0. We finally obtain a contradiction as it

holds for all s∗
C = s∗

N = s∗ satisfying ŝ∗
N ≤ s∗ ≤ s∗∗

N that dπN

ds∗ < dπC

ds∗ . Using (A24) and (A25), this is immediate as μ(s∗) −
k ≤ 0 for s∗ ≤ s∗∗

N = s FB. Q.E.D.

Proof of Proposition 12. Without integration, the total gross payoff from both businesses is 2π N , where π N was defined
in Proposition 9. Note next that the case with integration does not fully coincide with that where two divisions compete
with mutually exclusive projects. The probability with which a given project is implemented depends now on whether
any of the two projects can be scaled up to allow the investment of 2k. For either project, this is in turn the case with
probability ψ . Taking this into account and using that the conditional expected compensation under a realized project is
[
∫ s̄

s∗
I
w(s)g(s) ds]/[1 − G

(
s∗

I

)
], the incentive constraint becomes37

2 − ψ(2 − ψ)[1 − G
(
s∗

I

)
]

2

∫ s̄

s∗
I

[w(s) − R]g(s) ds ≥ c.

From the firm’s perspective, it will now be able to invest 2k with probability [1 − G(s∗
I )]2 + 2G(s∗

I )[1 − G(s∗
I )] ψ ,

whereas with probability 2G(s∗
I )[1 − G(s∗

I )] (1 − ψ) only k will be invested. Denoting the expected gross payoff by π I ,
we have that

πI := 2[1 + ψG
(
s∗

I

)
]
∫ s̄

s∗
I

[μ(s) − k]g(s) ds.

Consequently, integration is optimal if and only if38

πI ≥ 2πN .

Before deriving conditions for when this holds, note first that a third alternative is to integrate but to only incentivize
a single manager. As in the latter case the cutoff is s∗

N , while we save c, it is immediate that the firm’s profits are now
(1 + ψ)π N − c. Given our assumption that (1 − ψ)

∫ s̄

s
¯

[μ(s) − k]p(s) ds ≥ c, this is strictly lower than the firm’s profits
without integration (i.e., 2(π N − c)).

Note next that in analogy to (10), the optimal cutoff under integration, s∗∗
I , is defined by

μ(s∗∗
I ) − k = ψ

[∫ s̄

s∗
I
[μ(s) − k]g(s) ds

]
1 + ψG (s∗

I )
.

The following argument is now analogous to that in Corollary 4. First, note that for s∗
I = s∗∗

I it is immediate that
π I > 2π N . Next, this case applies whenever c is sufficiently small. Precisely proceeding as in Corollary 4, we obtain from
the requirement that α ≥ α

¯
the threshold

c ≤ (R − α
¯
)

(
2 − ψ(2 − ψ)

[
1 − G(s∗∗

I )
]

2

)∫ s̄

s∗∗
I

[
p(s)

p(s∗∗
I )

− 1

]
g(s) ds.

Finally, by construction of s∗∗
I it also follows immediately from the envelope theorem that

36 We use here that π N is continuous in c and that π C is nondecreasing, while both are also almost everywhere
differentiable. Hence, if π C is not everywhere continuous over 0, ĉ], then (A40) is still necessary.

37 Intuitively, for ψ = 0 the incentive constraint coincides with that under nonintegration, whereas for ψ = 1 the
incentive constraint coincides with that under competition.

38 We use here that in both cases the respective incentive constraint binds such that the firm’s profits are 2(π N − c)
without integration and π I − 2c with integration.
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dπI

dψ
= 2G

(
s∗

I

) ∫ s̄

s∗
I

[μ(s) − k]g(s) ds > 0,

implying that over this range of values c an increase in ψ also increases the difference 2π N − π I .
Take now the case for high c, where we have in analogy to (A22) that s∗

I is the highest value satisfying∫ s̄

s∗
I

[
p(s)

p (s∗
I )

− 1

]
g(s) ds = 2

2 − ψ(2 − ψ) [1 − G (s∗
I )]

c

R − α
¯

.

Also, in analogy to the comparison between s∗
N and s∗

C , we have a threshold c̃ such that s∗
I > s

¯
if and only if c < c̃′

and a threshold c̃′ > c̃ such that s∗
N > s

¯
if and only if c < c̃′′. Consequently, πI = ∫ s̄

s
¯

[μ(s) − k]g(s) ds < πN holds for all
c ∈ (c̃, c̃′).

Finally, we show that for all c sufficiently close to c̃′ it holds that dπ I /dψ < 0. This follows as, again at points of
differentiability, we can write dπI

dψ
= dπI

ds∗
I

ds∗
I

dψ
+ ∂πI

∂ψ
, where it is straightforward to show that dπI

ds∗
I

ds∗
I

dψ
< 0 remains bounded

away from zero while ∂πI
∂ψ

= 2G
(
s∗

I

) ∫ s̄

s∗
I
[μ(s) − k]g(s) ds converges to zero as s∗

I → s
¯
. Q.E.D.
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