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1. Introduction

Already in the 18th century, Newton [85] and Maclaurin [75] drew essential connec-
tions between roots of polynomials, their coefficients and combinatorics based on the
so-called Newton-inequalities. Expressed in a modern notion, we call a sequence of real
numbers A = a0, . . . , an log-concave if a2i ≥ ai−1ai+1 for all i ∈ [n−1] := {1, . . . , n−1}.
The most popular log-concave sequence is the n-th row of Pascal’s triangle

(
n
0

)
, . . . ,

(
n
n

)
.

Its log-concavity may be seen by

(
n
i

)2
(

n
i−1

)
·
(

n
i+1

) =
(i+ 1)(n− i+ 1)

i(n− i)
=

i+ 1

i

n− i+ 1

n− i
> 1 ∀i ∈ [n− 1].

Now, given a polynomial f =
∑n

i=0 aix
i ∈ R[x] with nonnegative coefficients, its coeffi-

cients a0, . . . , an form a log-concave sequence if f is real-rooted. This result goes back
to Newton [85] and may be considered as the oldest pillar of the connection between
a polynomial’s real-rootedness and combinatorics. The key idea of a modern proof
of this result [26, Lemma 1.1] is as follows: Instead of showing the log-concavity of
a0, . . . , an directly, the log-concavity of b0, . . . , bn with aj =

(
n
j

)
bj is shown by applying

the Gauß-Lucas Theorem. Afterwards the claim follows for a0, . . . , an as well since the
term-wise product of a positive log-concave sequence and another log-concave sequence
is a log-concave sequence.

Nowadays real-rootedness of polynomials plays a crucial role in combinatorics since
generating polynomials in this area are often real-rooted. The generating polynomial
of a finite sequence A = a0, . . . , an is given by pA(x) = a0 + a1x+ . . .+ anx

n. Further-
more, a sequence (ak)

∞
k=0 is called a Pólya frequency sequence if all the minors of the

infinite matrix with ai−j in position (i, j) are nonnegative. In 1952, it was shown by
Aissen, Endrei, Schoenberg and Whitney [2, 37] that a finite sequence A of nonnegative
numbers is a Pólya frequency sequence if and only if the generating polynomial pA is
real-rooted. Thus, finite Pólya frequency sequences are a special case of log-concave
sequences. Due to the connection between a polynomial’s roots and those sequences,
various important results in combinatorics were derived or expressed in terms of the
roots of a polynomial [22, 23, 100, 99].

For a random variable X with values in {0, . . . , n}, let aj := P(X = j) and pX(t) =
a0 + a1t + . . . + ant

n be the partition function of X. Bender showed in [9] that the
asymptotic normality of the coefficients of pX may be deduced from the real-rootedness
of pX . This result was used to prove the asymptotic normality of various discrete
sequences [9, 10, 29].

Further connections to combinatorics are given by polynomials associated to graphs.
For a graph G, let χ(G, k) be the chromatic number of G, i.e. the number of proper
vertex colorings of G using k colors. There is a unique polynomial pG(k), called the
chromatic polynomial ofG, which coincides with χ(G, k) when evaluated for any integer
k ≥ 0. Although pG does not only have real roots in general, its real roots are quite
well-researched. Every integer k ≥ 0 which is smaller than the chromatic number gives
a real root for pG. Due to a recent breakthrough of Huh and Katz [54, 55], it is known
that the coefficients of the chromatic polynomial also form a log-concave sequence.
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Furthermore, the matching generating polynomial is real-rooted [50] and the real roots
of the independence polynomial are negative and dense in (−∞, 0] [24].

Additional interest into real-rooted polynomials is generated by characteristic poly-
nomials since det(xIn − A) is real-rooted if A is a symmetric or Hermitian matrix.
Through this, real-rootedness of a polynomial forms further connections to almost ev-
ery mathematical discipline, including graphs, systems of first-order differential equa-
tions [102], multivariate analysis [58], dynamical systems [97], statistics and machine
learning [11].

Due to the great importance of real-rooted polynomials in various fields, there have
been recent approaches to find, or at least approximate, real roots of a polynomial
using neural networks [4, 34, 40, 48]. There has also been an approach to study the
dynamics of the roots of a polynomial under differentiation using nonlinear and nonlocal
parabolic equations [3].

However, while real-rootedness of a polynomial f with nonnegative coefficients im-
plies that the coefficients of f form a log-concave sequence, we can not conclude that
a polynomial is real-rooted if it has nonnegative coefficients that form a log-concave
sequence as the example f(x) = 1 + x + x2 shows. Therefore several attempts were
made to generalize real-rootedness such that every polynomial whose coefficients form
a log-concave sequence falls into this more general class of polynomials. Of course,
the connection to log-concave sequences is not the only one that naturally asks for a
generalization of real-rootedness, and thus, the amount of generalizations of real-rooted
polynomials has become quite vast. A brief overview of some generalization concepts
is given in Section 2.

Among those concepts, the focus of this thesis is set to conically stable polynomials.
A polynomial f ∈ C[z] is called conically stable if the imaginary parts of the roots of
f do not lie in the relative interior of some real cone. In this thesis and the related
articles [32, 36, 42], we derive the following results for conically stable polynomials and
related concepts:

1. We generalize operators that preserve the stability of polynomials to the case of
conic stability. This includes the preservation under taking directional deriva-
tives (see 4.1), a conic version of the Lieb-Sokal Lemma (see Theorem 4.3),
the preservation under passing over to the initial form (see Theorem 4.12 and
Theorem 4.13) and a collection of operators that preserve psd-stability (see
Lemma 4.6 and Theorem 4.8).

2. Combinatorial criteria for psd-stable binomials (see Theorem 4.15) and psd-
stable polynomials of determinants (see Theorem 4.19) as well as general struc-
tural results on psd-stable polynomials (see Theorem 4.14) are developed by
us and lead to our combinatorial conjecture for general psd-stable polynomials
(see Conjecute 4.21).

3. Our classification of the imaginary projection of complex conics (see Theo-
rem 5.1 and Theorem 5.2) generalizes a previously known classification for the
case of real conics.

4. We investigate the imaginary projection of complex quadratic polynomials in
n variables with hyperbolic initial form (see Theorem 3.16 and Corollary 5.5)
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and families of bivariate polynomials of arbitrary degree whose imaginary pro-
jection is the full space (see Theorem 5.6). Furthermore, for any k > 0, we
derive an explicit construction for complex polynomials whose imaginary pro-
jection’s complement consists of exactly k bounded strictly convex components
(see Theorem 5.7).

5. We derive explicit spectrahedral descriptions for hyperbolicity cones for the
cases of determinantal and quadratic polynomials (see Theorem 6.1 and Theo-
rem 6.4).

6. Our sufficient criterion certifies the K-stability of determinantal and quadratic
polynomials based on the feasibility of a semi-definite program (see Theorem 6.8
and Theorem 6.9). Furthermore, our methods may be applied to scaled versions
of either the cone or the polynomial (see Theorem 6.11).

This thesis is based on [32, 36, 42, see also Appendix A-C] and structured as fol-
lows: Firstly, a brief overview of several concepts which generalize real-rootedness is
given in Section 2. This section also introduces necessary definitions and notations. In
Section 3, the notion of conic stability is introduced together with a brief discussion
of the up-to-date study of conic stability and the connection to other generalizations
of real-rootedness. Additionally, we introduce the notion of the imaginary projection
in this section and clarify its relevance for conic stability. Section 4 focuses on estab-
lishing preservation operators for conically stable polynomials as well as formulating
combinatorial criteria for conic stability. In Section 5, new results for the imaginary
projection of complex polynomials of high degree are presented. This section also in-
cludes a full classification of quadratic complex polynomials based on the roots of their
initial forms. Section 6 treats determinantal representations of polynomials as well
as quadratic polynomials in order to establish a sufficient criterion for conic stability.
Each of the sections from Section 4 to Section 6 concludes with a brief summary and
a short outlook regarding possible further research directions based on the results of
the corresponding articles. In Section 7 the contribution of the author to the related
articles is stated. Finally, this thesis concludes with a German summary in Section 8.

2. Preliminaries

In this section we give a brief overview of some of the generalizations of real-
rootedness of polynomials. A main focus is on stable polynomials and generalizations
thereof. This includes hyperbolic polynomials as they may be seen as a generalization
of homogeneous stable polynomials. Furthermore, we briefly discuss determinantal
representations and their connections to stable polynomials.

First of all, let us fix the following notation. R and C denote the sets of real and
complex numbers. For a field K (usually the real or complex numbers), Kn denotes the
n-dimensional vector space over K given by Kn = K× . . .×K. Pn and Pn

R denote the
projective spaces over the complex or real numbers of dimension n. R>0 (R<0) is the
subset of positive (negative) real numbers and R≥0 = R>0 ∪ {0} (R≤0 = R<0 ∪ {0}).
For a complex number a ∈ C, let Re(a) and Im(a) denote the real and the imaginary
part of a. Thus, we may write a = Re(a) + iIm(a). For a subset A ⊆ Rn, A denotes
the topological closure of A with respect to (w.r.t.) the euclidean topology and Ac =
{x ∈ Rn : x /∈ A} denotes the complement of A. The algebraic degree of A is given
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by the degree of its closure with respect to the Zariski topology. Let N denote the
natural numbers, Z the set of integer numbers and Z≥0 = N∪ {0}. For vectors we will
use bold letters while matrices are denoted by capital letters. For v,w ∈ Rn, v ≥ w
denotes an entry-wise inequality, i.e. vj ≥ wj, and for matrices V ≻ 0 (V ⪰ 0) denotes
that V is positive (semi-)definite. A complex matrix A ∈ Cn×n is called Hermitian
if A equals its conjugate transpose. We denote the set of all Hermitian matrices of
size n × n by Hermn. K[z] denotes the set of univariate polynomials with coefficients
in K. K[z] denotes the set of multivariate polynomials with coefficients in K with
the variables z1, . . . , zn. For a polynomial f =

∑
α cαz

α ∈ K[z], the degree of f is
given by deg(f) = max{|α| : cα ̸= 0}. The degree of variable zj in f is analogously
given by degj(f) = max{|αj| : cα ̸= 0}. A polynomial is called homogeneous if
all monomials of f have the same degree. For a polynomial f ∈ C[z] of degree d,

let fh(z0, z) = zd0 · f
(

z1
z0
, . . . , zn

z0

)
∈ C[z0, z] be the homogenization of f and for a

homogeneous polynomial f ∈ C[z0, z], let f(1, z) be the de-homogenization of f . By
in(f) we denote the initial form given by in(f) = fh(0, z). Thus, in(f) consists of the
monomials of f with maximal degree only. Furthermore, for a polynomial f ∈ C[z],
V(f) = {z ∈ Cn : f(z) = 0} denotes the variety of f which is given by the roots of f .
We call f real-rooted if V(f) ⊆ Rn. Let ∂jf denote the j-th partial derivative of f and
∂vf the directional derivative of f in direction v ∈ Rn.
Stability is the first generalization of real-rootedness we consider, since some of the

other generalizations build upon the notion of stable polynomials instead of generalizing
real-rootedness directly.

2.1. Stable polynomials. Let H = {z ∈ C : Im(z) > 0} be the open upper halfplane
of C. We call a univariate polynomial f ∈ C[z] stable if f(z) ̸= 0, whenever z ∈ H,
i.e. f is not allowed to have roots which are contained in the open upper half-plane
of the complex plane. Obviously, the concept of stability generalizes the concept of
real-rootedness as the real line is not contained in the open upper half-plane H. In the
multivariate cases we define stability analogously as follows.

Definition 2.1. f ∈ C[z] is called stable if f(z) ̸= 0 whenever z ∈ Hn. Furthermore,
f is called real stable if the coefficients of f are real.

Equivalently, f ∈ C[z] is stable if for every root z of f , there is an index j ∈ [n]
with Im(zj) ≤ 0. Since stable polynomials generalize real-rootedness, they also enjoy
many connections to similar branches of mathematics, including optimization [101],
differential equations [17], probability theory [18], matroid theory [20, 31], applied
algebraic geometry [103], theoretical computer science [76, 77] and statistical physics
[16]. See also the surveys of Pemantle [92] and Wagner [104].

When studying stable polynomials, one of the starting points is the preservation of
stability, i.e. operators which return a stable polynomial when applied onto a stable
polynomial. Formally, let T : V ⊆ C[z] → C[z] be a operator. Then T is called
a stability preserver if either T (f) is stable or T (f) ≡ 0 for any stable polynomial
f ∈ C[z]. Although some of the stability preservers may not look promising on their
own at first glance, there were many stunning results derived by combining them. The
first set of stability preservers is given by the following collection:
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Proposition 2.2. [104, Lemma 2.4] Let f ∈ C[z] be stable.
a) Permutation: f(zσ(1), . . . , zσ(n)) is stable for every permutation σ : [n] → [n].
b) Scaling: c · f(a1z1, . . . , anzn) is stable or zero for every c ∈ C and a ∈ Rn

>0.
c) Diagonalization: f(z)

zj=zi
∈ C[z1, . . . , zj−1, zj+1, . . . , zn] is stable or zero for every

i, j ∈ [n], i ̸= j.
d) Specialization: f(b, z2, . . . , zn) ∈ C[z2, . . . , zn] is stable or zero for every b ∈ C with
Im(b) ≥ 0.

e) Inversion: z
deg1(f)
1 · f(−z−1

1 , z2, . . . , zn) is stable.
f) Differentiation: ∂jf(z) is stable or zero for every j ∈ [n].

The statements of Proposition 2.2 a)-d) are rather obvious. e) follows due to the
identity Im

(
1
z

)
= Im

(
z
z·z
)
, which implies that the imaginary parts of z and z−1 have

different signs. f) follows by the Gauß-Lucas Theorem 2.3.

Theorem 2.3. [78, Theorem 6.1] Let f ∈ C[z] and let z1, . . . , zk denote the roots of f .
Then all roots of f ′ lie in conv{z1, . . . , zk}, the convex hull of the roots of f .

The Gauß-Lucas-Theorem 2.3 may be considered as a generalization of Rolle’s The-
orem which implies that for a polynomial f of degree d with d distinct real roots
x1 < . . . < xd, each root x of f ′ lies in one of the intervals given by [xj, xj+1] for some
j ∈ [d] and thus, x ∈ [x1, xd] = conv{x1, . . . , xd}.
By combining the stability preservers of Proposition 2.2 in a suitable way, Brändén

derived a stunning connection to matroid theory and jump systems, a generalization
of matroids, [20] as follows:

A matroid on a finite groundset E is given by M = (E, I), where I is a collection
of subsets of E such that

(1) ∅ ∈ I,
(2) if A ⊆ B, B ∈ I, then also A ∈ I,
(3) the set B of inclusion-maximal elements of I respects the exchange axiom: If

A,B ∈ B, x ∈ A \B, then there is y ∈ B \ A such that A \ {x} ∪ {y} ∈ B.
B is called the set of bases of the matroid M. For further reading into matroid theory,
we refer to [44, 88, 105]. The concept of matroids was further generalized to jump
systems [19] as follows:

For α, β ∈ Zn, the steps from α to β are given by the set

St(α, β) = {σ ∈ Zn : |σ| = 1, |α + σ − β| = |α− β| − 1} ,
where |σ| = ∑n

j=1 |σj|. Thus, the steps from α to β are exactly those integer vectors
which have one non-zero entry with absolute value 1 and taking the step decreases the
distance to β by exactly one. Now, a collection F ⊆ Zn is called a jump system if for
every α, β ∈ F and σ ∈ St(α, β) we either have α+ σ ∈ F or there is τ ∈ St(α+ σ, β)
such that α+σ+ τ ∈ F . In other words, taking a step σ from α to β we either remain
in F or get back into F after taking another step towards β. This property is also
known as the Two-Steps Axiom. Further, the support of a polynomial f =

∑
α cαz

α

is given by supp(f) = {α : cα ̸= 0}. Brändén’s Theorem now establishes a connection
between a polynomial’s support and jump systems.

Theorem 2.4. [20, Theorem 3.2] Let f ∈ C[z] be stable. Then supp(f) is a jump
system.
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In the indirect proof of this Theorem, a suitable sequence of the preservers given by
Proposition 2.2 e) and f) is applied to cut the polynomial down to one which is stable
and of a specific structure. Then by applying Proposition 2.2 b) and c), a sequence of
univariate polynomials is constructed whose limit is of the form zd + c with d ≥ 3 and
thus, this limit has a root in H.

If one assumes further structure, the support may even form the set of bases of a
matroid. We say that a polynomial f ∈ C[z] is multi-affine if the degree of any variable
is at most 1.

Corollary 2.5. [20, Corollary 3.3] Let f ∈ C[z] be stable, multi-affine and homoge-
neous. Then supp(f) is the set of bases of some matroid.

Although this is stated as a corollary of Brändén’s result here, it has been proven
by Choe et. al. [31] before. In [20], Brändén showed that the backward direction of
Corollary 2.5 is not true by proving that there is no multi-affine and homogeneous stable
polynomial whose support gives the set of bases of the Fano Matroid F7. Recently, the
result of Brändén was extended by Rincón, Vinzant and Yu [96] for the case of stable
binomials.

Theorem 2.6. [96, Proposition 4.3] Let f = cαz
α + cβz

β ∈ C[z] with cα, cβ and
α, β ∈ Zn

≥0 be stable and let zα and zβ not have a common factor. Then one of the
following holds,

a) {α, β} = {0, ei} for some i ∈ [n],
b) {α, β} = {ei, ej} for some i, j ∈ [n] and cα

cβ
∈ R≥0 or

c) {α, β} = {0, ei + ej} for some i, j ∈ [n] and cα
cβ

∈ R<0.

Another famous preserver of stable polynomials is given by the so-called Lieb-Sokal
Lemma [73].

Lemma 2.7. [73, Lemma 2.3] Let g(z)+yf(z) ∈ C[z, y] be stable and assume degj(f) ≤
1. Then g(z)− ∂jf(z) ∈ C[z] is stable or identically zero.

The key ingredient for the proof of the Lieb-Sokal Lemma is given by the Hurwitz-
Theorem. It states that if a sequence of polynomials is non-vanishing on some open set
in Rn, then this either is true for the limit polynomial as well or the limit is identically
zero. The Hurwitz-Theorem is applied on a regular basis in the research areas related
to roots of polynomials. Thus, the appearance of the phrase ’or (identically) zero’ in
the statements of this thesis usually refers to the usage of the Hurwitz-Theorem for
some boundary cases within its proof.

Theorem 2.8. [66, Par. 5.3.4] Let {fk} be a sequence of polynomials non-vanishing in
a connected open set U ⊆ Rn, and assume it converges to a function f uniformly on
compact subsets of U. Then f is either non-vanishing on U or it is identically zero.

Although the Lieb-Sokal Lemma initially was just one out of a sequence of Lemmas
showing some properties related to ferromagnetism, it then became popular in the
study of stable polynomials - especially after it was used as a cornerstone to prove the
following full characterization of all linear operators that preserve stability shown by
Borcea and Brändén [16, 104]. For κ ∈ Zn

≥0, let Cκ[z] denote all polynomials f ∈ C[z]
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such that αj ≤ κj for all α with cα ̸= 0, i.e. the set Cκ[z] consists of such complex
polynomials whose degree is bounded by κ only.

Theorem 2.9. [16, Theorem 1.1] Let κ ∈ Zn
≥0 and T : Cκ[z] → C[z] be a linear

operator. Then T preserves stability if and only if either

(1) T has range of dimension at most one and is of the form

T (f) = α(f)P,

where α is a linear functional on Cκ[z] and P is a stable polynomial, or
(2) GT (z,w) ∈ C[z,w] is stable.

Here, GT (z,w) is the algebraic symbol of T defined as follows: For T : Cκ[z] → Cγ[z],
let GT (z,w) ∈ Cκ

⊕
γ[z,w] be the polynomial defined by

GT (z,w) = T [(z+w)κ] =
∑

α≤κ

(
κ

α

)
T (zα)wκ−α

with
(
κ
α

)
=
(
κ1

α1

)
· · · · ·

(
κn

αn

)
. The following example shall clarify the application of

Theorem 2.9.

Example 2.10. Let T := ∂zj . Note that in this special case, we write ∂zj instead of
∂j to emphasize that the operator is applied to z only, and does not directly affect w.
Then the algebraic symbol of T is given by

GT (z,w) = G∂zj
(z,w) =

∑

α≤κ

(
κ

α

)
∂zj(z

α)wκ−α = ∂zj
∑

α≤κ

(
κ

α

)
zαwκ−α

= ∂zj (z+w)κ = (z+w)κ
′

with κ′
i = κi if i ̸= j and κ′

j = κj − 1. We have (z + w)κ
′ ̸= 0 if all coordinates of z

and w have positive imaginary part. Thus, T preserves stability.

Another preserver with a combinatorial aspect was established by Rincón, Vinzant
and Yu in 2020 [96]. The initial form of a polynomial f with respect to a linear
functional w in the dual space (Rn)∗ is defined as

inw(f) =
∑

α∈Sw

cαz
α, where Sw = {α ∈ supp(f) : ⟨w, α⟩ = max

β∈supp(f)
⟨w, β⟩}.

In the special case of w = (1, . . . , 1), we recover the initial form defined before by
in(f) = fh(0, z). Thus, we dismiss the w in this case and speak of the initial form of
f denoted by in(f).

Rincón, Vinzant and Yu showed that for a stable polynomial f with real coefficients,
the initial form w.r.t. w, inw(f), is stable as well. For the combinatorial aspect,
consider the Newton-Polytope New(f) of f which is given by the convex hull of the
support of f . Then there is some face F of New(f) such that the restriction of the
support onto supp(f)∩F gives the support of inw(f) (see also Figure 2). For a stable
polynomial f ∈ C[z], passing over to the initial form preserves stability as follows:

Theorem 2.11. [96, Proposition 2.2 and Proposition 4.1] Let f ∈ C[z] be stable and
either homogeneous or real stable and w ∈ (Rn)∗ \ {0}. Then inw(f) is also stable.
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The proof of this theorem is based on the notion of positive hyperbolicity which
we consider in subsection 2.4.3 and makes use of a machinery involving methods of
tropical geometry.

2.2. Hyperbolic polynomials. Hyperbolic polynomials represent another class which
is closely related to real-rootedness and stable polynomials.

Definition 2.12. A homogeneous polynomial f ∈ R[z] is called hyperbolic in direction
e ∈ Rn if f(e) ̸= 0 and for every x ∈ Rn, the univariate polynomial t 7→ f(x+ te) has
only real roots.

The k-th elementary symmetric polynomial in R[z] is given by the sum of all multi-
affine monomials induced by the subsets of [n] of size k, i.e. σk(z) =

∑
S⊆[n], |S|=k z

S.
The elementary symmetric polynomials pose a popular class of hyperbolic polynomials.

There are several connections to stable polynomials. First of all, hyperbolicity can
be seen as a generalization of stability for homogeneous polynomials since a homoge-
neous polynomial f ∈ R[z] is stable if and only if it is hyperbolic w.r.t. all e ∈ Rn

≥0

[60, Theorem 3.5]. Note that hyperbolic polynomials have closures similar to stable
polynomials as they are closed under taking derivatives [8, 45] which can be shown by
applying Rolle’s Theorem.

Furthermore, hyperbolicity follows a conical structure. If a polynomial f is hyper-
bolic w.r.t. e ∈ Rn, the same is true for λe for all λ ∈ R \ {0}. This can be easily seen
since the roots of t 7→ f(x+ tλe) are scaled versions of the roots of t 7→ f(x+ te) with
scaling factor 1

λ
. This leads to the definition of hyperbolicity cones:

Definition 2.13. Let f ∈ R[z] be hyperbolic w.r.t. e ∈ Rn. Then C(e) = {x ∈ Rn :
f(x+ te) = 0 ⇒ t < 0} is the hyperbolicity cone of f w.r.t. e.

It is well known that C(e) forms an open convex cone, and further, for any e′ ∈ C(e),
f is also hyperbolic w.r.t. e′ and C(e) = C(e′) [45].
Originally, the interest in hyperbolic polynomials was motivated by partial differen-

tial equations [5, 57, 71] since hyperbolic polynomials appear as characteristic poly-
nomials in hyperbolic partial differential equations. Recent further studies were mo-
tivated by hyperbolic programming [46, 79, 95] which is an efficiently solvable convex
optimization problem which is also rich in theoretical structure. A hyperbolic program
is a convex optimization problem where a linear function is minimized constrained by
equations which are either linear or define a hyperbolicity cone of some hyperbolic
polynomial f ∈ C[z]. Thus, hyperbolic programming is an actual generalization of lin-
ear programming. Semi-definite programming is another convex optimization problem
which generalizes linear programming. In semi-definite programming a linear function
is minimized with respect to semi-definite constraints. Whether hyperbolic program-
ming is an actual generalization of semi-definite programming as well is still an open
question also known as the generalized Lax-Conjecture [6, 7, 53, 67, 82, see also Con-
jecture 2.15].

2.3. Determinantal representations. Determinantal representations have various
connections to the previously mentioned areas. First of all they are closely connected
to the Lax conjecture as the feasibility regions of semi-definite programms are given
by sets which are defined through inequalities based on determinantal representations
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[53]. Furthermore, determinantal representations imply real stability of the underlying
polynomial [15].

Definition 2.14. A polynomial f ∈ C[z] is a determinantal polynomial if there are
matrices A0, A1, . . . , An with

f(z) = det

(
A0 +

n∑

j=1

zjAj

)
.

We say det
(
A0 +

∑n
j=1 zjAj

)
is the determinantal representation of f .

The matrices A0, . . . , An are often assumed to be real symmetric or Hermitian. If
the constant coefficient matrix A0 is positive definite or the identity, then the de-
terminantal polynomial is called a definite or monic determinantal polynomial, re-
spectively. Helton, McCullough and Vinnikov as well as Quarez showed that every
polynomial f ∈ R[z] with f(0) ̸= 0 has a determinantal representation of the form

f(z) = det
(
A0 +

∑n
j=1 zjAj

)
with real symmetric matrices A0, . . . , An [52, 93]. Both

results come with large matrix sizes which exceed the degree or the number of variables
of the polynomial. We call a polynomial f ∈ R[z] real zero if the univariate polynomial
t 7→ f(t · z) has only real roots for any z ∈ Rn. In [53] and [83] connections to real
zero polynomials were exploited to show that several classes of polynomials have monic
determinantal representations.

Let S ⊆ Rn, we say S is a spectrahedron if S =
{
x ∈ Rn : A0 +

∑n
j=1 xjAj ⪰ 0

}

for some symmetric A0, . . . , An. Thus, spectrahedra are given by the positive semi-
definite regions of determinantal polynomials. Further we call S ⊆ Rn spectrahedral if
S has a representation as a spectrahedron. Since spectrahedra pose the feasibility sets
of positive semi-definite programs, we may express the generalized Lax-Conjecture as
follows.

Conjecture 2.15. [6, Conjecture 1.5] Every hyperbolicity cone is spectrahedral.

The opposed statement, that every spectrahedral cone is also a hyperbolicity cone
has been proven in 2005 by Lewis, Parrilo and Ramana [72, Proposition 2]. If special
requirements are met, determinantal representations result in real stable polynomials
as shown by Borcea and Brändén [15].

Theorem 2.16. [15, Proposition 2.4] Let A1, . . . , An be positive semi-definite d × d
matrices and A0 a Hermitian d× d matrix. Then

f(z) = det

(
A0 +

n∑

j=1

zjAj

)

is real stable or identically zero.

The Hurwitz-Theorem 2.8 was used to reduce the proof of Theorem 2.16 onto the case
of positive definite matrices A1, . . . , An. Using properties of positive definite matrices,
we end up with the characteristic polynomial of a symmetric matrix, which of course,
is real-rooted.
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2.4. Generalizations of stable polynomials.

2.4.1. Half-plane property. Similar to stability which is avoiding roots in the upper half-
plane, we can also consider polynomials that don’t have roots in an arbitrary half-plane.
Thus, letH ⊆ C be an open half-plane such that the boundary ofH contains the origin.
We say a polynomial f ∈ C[z] has the half-plane property, or equivalently is H-stable if
none of the roots of f are contained inHn [20]. Obviously, this generalizes stability with
stability as the special case when H = H. Polynomials with the half-plane property
have been studied even more thoroughly than stable polynomials [1, 30, 20, 31, 47, 63,
106]. The reason for this is not only due to stable polynomials being a part of them, but
also due to another prominent special case for H = {z ∈ C : Re(z) > 0}: The so called
Hurwitz-stability, which has further applications in the numerical analysis as well as the
design of control systems [12, 49, 59]. Two of the most prominent results here are the
Routh-Hurwitz-Criterion [56] which is a criterion in control system theory that certifies
or neglects stability of a dynamical system, and Stodola’s Criterion, which states that
the coefficients of a univariate Hurwitz-stable polynomial f ∈ R[z] need to have the
same sign [41]. Further, several of the preservation operators for stable polynomials
preserve polynomials with the half-plane property as well. This includes preservation
under taking partial derivatives as well as the jump system result of Brändén. The
reason for this being, that it is merely a rotation from one open half plane whose
boundary contains the origin to another one. Let f ∈ C[z] be H-stable for some half-
plane H = {z ∈ C : eiθz : Im(z) > 0} for some real θ. Then f(e−iθz1, . . . , e

−iθzn) is
stable and has the same support as f . Scaling and inversion (Proposition 2.2) on the
other hand, do not generalize to preservers of general H-stable polynomials. While
z 7→ z−1 does not change the sign of the real part and thus, gives rise to a preserver of
Hurwitz-stability similar to Proposition 2.2 e), the same is not true for the half-plane
given by H = {z ∈ C : Im(z) > Re(z)}.

2.4.2. Lorentzian polynomials. Lorentzian polynomials are a recent generalization of
homogeneous stable polynomials introduced by Brändén and Huh [21]. Let Hd

n be the
space of homogeneous polynomials of degree d in n variables with real coefficients.

Further let L2
n

◦
be the open subset of H2

n of homogeneous quadratic polynomials with
positive coefficients which have the Lorentzian signature. Here, a quadratic form f
is said to have the Lorentzian signature if f can be expressed as f(z) = zTAz such
that the quadratic matrix A has exactly one positive eigenvalue and n − 1 negative

eigenvalues. For degrees larger than 2, the open subset Ld
n

◦
of Hd

n is defined by setting

Ld
n

◦
= {f ∈ Hd

n : ∂jf ∈ Ld−1
n

◦
∀j ∈ [n]}, i.e. the set containment is defined in a recursive

way such that f belongs to Ld
n

◦
if all partial derivatives of f belonged to Ld−1

n

◦
. The

polynomials in Ld
n

◦
are called strictly Lorentzian and the limits of strictly Lorentzian

polynomials are called Lorentzian. We call S ∈ Nn M-convex if for any index i and
α, β ∈ S with αi > βi, there is an index j with αj < βj and α− ei+ ej, β+ ei− ej ∈ S.
Let Md

n be the subset of Hd
n such that the support of every polynomial in Md

n forms a
M -convex set. Based on this, we now define the closures L2

n and Ld
n as follows: Let L2

n

be the set of all quadratic forms with nonnegative coefficients and at most 1 positive
eigenvalue and let Ld

n be defined recursively by Ld
n = {f ∈ Md

n : ∂jf ∈ Ld−1
n ∀j ∈ [n]}.
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Brändén and Huh [21, Theorem 2.25] have shown that Ld
n indeed, is the set of

Lorentzian polynomials of degree d in n variables and that the set of homogeneous
stable polynomials is a subset of them. The class of Lorentzian polynomials turned out
to be rather rich in structure since, by definition, these polynomials are preserved under
taking partial derivatives as well as under other operators stated by Brändén and Huh.
Furthermore, they showed that the classes of Lorentzian polynomials and homogeneous
polynomials with nonnegative coefficients whose coefficients form a strongly log-concave
sequence coincide [21, Theorem 2.30].

Recently, due to the rich structure of Lorentzian polynomials, several new connec-
tions were established [27, 38, 81]. Furthermore, Brändén and Leake introduced an
even further generalization by studying conically Lorentzian polynomials [28].

2.4.3. Positively hyperbolic varieties. Another recent generalization of stable polyno-
mials is given by positively hyperbolic varieties [96]. To state the definition, we need
the positive Grassmannian. The positive Grassmannian Gr+(c, n) consists of all c-
dimensional linear subspaces of Rn such that they can be represented as the row space
of a matrix in Rc×n, all of whose maximal minors are positive. Furthermore, a variety
is called equidimensional if all of its irreducible parts have the same dimension. An
equidimensional variety X ⊆ Cn of co-dimension c ≤ n − 1 is then called positively
hyperbolic if for every linear subspace L in the positive Grassmannian Gr+(c, n) and
every x ∈ X, we have Im(x) /∈ L \ {0}. The connection to stable polynomials has been
investigated by Rincón, Vinzant and Yu and led to the following Proposition.

Proposition 2.17. [96, Proposition 2.2] Let V(f) be the hypersurface defined by f = 0.
If V(f) is positively hyperbolic, then f is stable. Furthermore, if f is either real or
homogeneous, then the stability of f is equivalent to the positive hyperbolicity of V(f).

They further showed that reducing V(f) to V (inw(f)) preserves positive hyper-
bolicity and therefore due to Proposition 2.17 derived Theorem 2.11 for the cases of
homogeneous polynomials as well as polynomials with real coefficients.

3. Conically stable polynomials

In this subsection we finally define conically stable polynomials. They represent the
generalization of stable polynomials which we focus on in this thesis. The notion of
conic stability has been introduced by Jörgens and Theobald [60]. Let K ⊆ Rn be a
closed and convex cone. Then, f ∈ C[z] is K-stable if the imaginary part of any root of
f does not lie in the relative interior of K. Here, for a convex set S ⊆ Rn, the relative
interior is given by relint(S) = {x ∈ S : ∀y ∈ S exists λ > 0 such that λx+(1−λ)y ∈
S}.
Definition 3.1. Let K ⊆ Rn be a closed convex cone. A polynomial f ∈ C[z] is called
K-stable if f(z) ̸= 0 whenever Im(z) ∈ relintK.

First of all, note that the assumptions for K to be convex and closed are natural.
If a polynomial is K-stable w.r.t. an arbitrary cone K, then its also conv(K)-stable
[60, Corollary 3.6], where conv(·) denotes the convex hull. For the special case of the
positive orthant K = (R≥0)

n, we recover the notion of stable polynomials. Stable
polynomials do not only appear as a special case of conic stable polynomials. Every
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conic stable polynomial has a fundamental connection to a univariate stable polynomial
as follows:

Lemma 3.2. [60, Lemma 3.4] A polynomial f ∈ C[z] is K-stable if and only if the
univariate polynomial t 7→ f(x+ ty) is stable for all x,y ∈ Rn with y ∈ relintK.

Note that the proof in [60, Lemma 3.4] also works without the assumption of
full-dimensionality made there. This connection has been exploited by Jörgens and
Theobald who used the interlacing theory connected to stable polynomials to prove
a generalized version of the Hermite-Kakeya-Obreschkoff Theorem [60, Theorem 4.3].
Since we do not dive further into this aspect, we refer to [60, 94] for further reading on
the interlacing theory of polynomials.

Although K-stability seems to be a natural generalization of stable polynomials, not
much is known about possible preservers for K-stable polynomials or combinatorial
conditions for polynomials in order to be K-stable. The only results known so far are
the generalizations of the differentiation and specialization results of Proposition 2.2.

Theorem 3.3. [6, Lemma 1.1] Let f ∈ C[z] be homogeneous and K-stable. Then
∂vf(z) is either K-stable or identically zero.

Lemma 3.4. [60, Fact 3.8] Let K = K1 × K2 ⊆ Rn × Rm be a cone. If f(z1, z2) is
K-stable, then f(a+ ib, z2) is K2-stable for every a ∈ Rn, b ∈ relintK1.

3.1. Psd-stability. In this subsection we introduce psd-stability as a special case of
K-stability where K is set to be the cone of real positive semi-definite matrices. The
importance of this class comes in naturally as the cone of positive semi-definite ma-
trices generalizes the positive orthant [13] and thus, psd-stability may be considered
as a generalization of the notion of stable polynomials in its own way. For a formal
definition, we need to fix the following notation (see also[32] or Appendix C):

Let SC
n denote the vector space of complex matrices of size n× n and Sn the space

of the real ones. Further, denote the cones of real positive semi-definite and positive
definite matrices of size n×n by S+

n and S++
n . Let C[Z] be the ring of polynomials on

the symmetric matrix variables Z = (zij). To be more precise, we consider C[Z] to be
the vector space that is generated by monomials of the form Zα =

∏
1≤i,j≤n z

αij

ij with
some nonnegative symmetric matrix α of size n×n whose diagonal entries are integers
and whose off-diagonal entries are half-integers. By identifying zij and zji, polynomials
in C[Z] can also be interpreted as polynomials in the ring C[{zij : 1 ≤ i ≤ j ≤ n}].
For example consider the monomial

Z


0

1
2

1
2

0



= z

1
2
12z

1
2
21 = z12,

which may be interpreted as a polynomial in the polynomial ring C[Z] over the vector
space SC

2 as well as a polynomial in the polynomial ring C[z11, z12, z22] over C3. Now
psd-stability may be defined as a special case of K-stability as follows.

Definition 3.5. Let f ∈ C[Z]. We say f is psd-stable (stable w.r.t. to the cone of
positive semi-definite matrices) if f(M) ̸= 0, whenever Im(M) ∈ S++

n .

Note that a polynomial f ∈ C[Z] is psd-stable if and only if f does not have a
root in the Siegel upper half-space HS = {A ∈ SC

n : Im(A) ∈ S++
n }. The Siegel upper
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half-space plays an essential role in algebraic geometry as well as number theory as it
appears as the domain of modular forms [25, 86, 98].

Furthermore, since psd-stability is defined for polynomials over the space of complex
symmetric matrices, we need to generalize the notion of the support. For a polynomial
f =

∑
α cαZ

α ∈ C[Z], supp(f) is the collection of symmetric exponent matrices such
that the corresponding coefficient is non-zero, i.e. supp(f) = {α ∈ Sn : cα ̸= 0}. The
variables zjj are called diagonal variables and the variables zij with i ̸= j are called
off-diagonal variables. Based on this, we call a monomial a diagonal monomial if the
corresponding exponent matrix α is diagonal, that is αij = 0 if i ̸= j or an off-diagonal
monomial if αjj = 0 for all j ∈ [n]. By convention, we consider the constant monomial
to be a diagonal one. To clarify this notation, we consider the following example:

Example 3.6. [32, Example 2.12] Let

f(Z) = det(Z) = Z


1 0
0 1



− Z


0 1
1 0



= z11z22 − z212 ∈ C[Z]

be a polynomial over SC
2 . The monomial z11z22 is diagonal as its exponent matrix

is diagonal while −z212 is an off-diagonal monomial since the diagonal of its exponent
matrix is zero.

A prime example of psd-stable polynomials is given by the determinants of n × n
symmetric matrix variables.

Lemma 3.7. [32, Lemma 2.13] f(Z) = det(Z) is psd-stable.

The proof is quite similar to the proof of Theorem 2.16. We use the same technique
for an indirect proof to construct a characteristic polynomial of a symmetric matrix
with an imaginary root which then leads to a contradiction. Note that for n ≥ 3, the
polynomial f(Z) = det(Z) does not only involve diagonal and off-diagonal monomials
but also such monomials that mix diagonal and off-diagonal variables.

3.2. Imaginary projections. Another notion introduced by Jörgens, Theobald and
de Wolff in [62] which helps to develop a new geometric perspective onto K-stable
polynomials is the so-called imaginary projection. This is done by shifting from a
complex setting into a real setting by focusing on the imaginary part of every point
in the variety. The two different perspectives become quite clear in the case of psd-
stability. In the complex setting, we do not want f to have roots in the siegel upper
half-space HS and in the real setting, we do not want the imaginary projection of f to
have an actual intersection with the relative interior of the psd-cone S+

n .

Definition 3.8. Let f ∈ C[z] be a complex polynomial. Then the imaginary projection
I(f) is the projection of the variety V(f) onto its imaginary part

I(f) = {y ∈ Rn : ∃x ∈ Rn s.t. x+ iy ∈ V(f)}.
Note that the imaginary projection is neither open nor closed in general. We define

the boundary ∂I(f) of the imaginary projection of f as the intersection of the closure

of the imaginary projection with the closure of its complement, i.e. ∂I(f) = I(f) ∩
I(f)c. Jörgens and Theobald revealed the connection between conic stable polynomials,
hyperbolic polynomials and the imaginary projection in the following Theorem:
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Theorem 3.9. [60, Theorem 3.5] Let f ∈ C[z] be homogeneous. Then the following
are equivalent

(1) f is K-stable.
(2) I(f) ∩ relintK = ∅.
(3) f is hyperbolic with respect to every point in relintK.

Due to Theorem 3.9, we get a new point of view onto conically stable polynomials
as we may express conic stability in terms of the imaginary projection. Further, we
may consider conic stability as a generalization of hyperbolicity as for every hyperbolic
polynomial f there is a cone K such that f is K-stable. The converse is true for
homogeneous polynomials only. Furthermore, a hyperbolic polynomial f is K-stable
with K being any of its hyperbolicity cones. This connection goes even further as
expressed in terms of the imaginary projection in the following Theorem by Jörgens
and Theobald.

Theorem 3.10. [61, Theorem 1.1] Let f ∈ R[z] be homogeneous. Then the hyperbol-
icity cones of f coincide with the components of I(f)c.
Based on this result, Jörgens and Theobald derived upper bounds on the amount of

components in the complement of the imaginary projection.

The research interest in imaginary projections is not only based on connections to
K-stable or hyperbolic polynomials but also motivated by the goal to study general
convexity phenomena in algebraic geometry [13]. In the broader context of convexity
phenomena in algebraic geometry, imaginary projections align with amoeba and co-
amoeba. All of them are of mapping images of the variety V(f) of a complex polynomial
f ∈ C[z] in the algebraic torus (C∗)n such that the complement of these images consists
of finitely many convex components [39, 43, 62]. While imaginary projections are given
by the projection on the imaginary part, amoebas are defined by taking the logarithm
of the absolute value entry-wise, and co-amoebas use the argument map instead. Thus,
for a polynomial f ∈ C[z], we have the amoeba and co-amoeba given by

A(f) = {(log(|z1|), . . . , log(|zn|)) : z ∈ V(f) ∩ (C∗)n}
and

coA(f) = {arg(z) = (arg(z1), . . . , arg(zn)) : z ∈ V(f) ∩ (C∗)n} .
The structure as well as occurrences of the amoeba [35, 43, 80, 89, 90] and the co-
amoeba [39, 87] have been studied thoroughly. In [62] Jörgens, Theobald and de Wolff
initiated the study of the imaginary projection.

As there already are results on the number of components of the amoeba and the
co-amoeba as well as their respective complements, Jörgens and Theobald investigated
the structure of the imaginary projection. They have shown in [61] that there is no
bound to the number of bounded, strictly convex components of the complement of
the imaginary projection of a real polynomial f ∈ R[z].

Theorem 3.11. [61, Theorem 1.3] Let n ≥ 2. For any k > 0 there exists a polyno-
mial f ∈ R[z] such that f has at least k strictly convex, bounded components in the
complement of I(f).
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Aside from the convexity result, they derived the following transformation properties
such that the study of imaginary projections of arbitrary complex polynomials may be
reduced to studying imaginary projections of corresponding normal forms:

Lemma 3.12. [62, Lemma 5.1] Let f ∈ C[z] and A ∈ Rn×n be an invertible matrix.
Then I(f(Az)) = A−1I(f(z)).
Lemma 3.13. [62, Lemma 5.2] A real translation z 7→ z+ a, a ∈ Rn does not change
the imaginary projection of a polynomial. An imaginary translation z 7→ z+ ia, a ∈ R,
shifts the imaginary projection of a polynomial into direction −a.

Definition 3.14. Let f ∈ C[z1, z2] be quadratic. We say that f is the defining poly-
nomial of a complex conic, or short, a complex conic if its total degree equals two. A
complex conic f is called a real conic if all coefficients of f are real.

Based on Lemma 3.12 and Lemma 3.13, Jörgens, Theobald and de Wolff derived
normal forms for real conics such that up to the action of G2, every real conic is
equivalent to to one of the following polynomials.

(i) z21 + z22 − 1 (ellipse),
(ii) z21 − z22 − 1 (hyperbola),
(iii) z21 + z2 (parabola),
(iv) z21 + z22 + 1 (empty set),

(v) z21 − z22 (pair of crossing lines),
(vi) z21 − 1 (parallel lines/one line z21),
(vii) z21 + z22 (isolated point),
(viii) z21 + 1 (empty set).

Here, the groupGn is given by the semi-direct product of the complex translations Cn

and the real general linear group GLn(R), i.e. Gn = Cn⋊GLn(R). By Lemma 3.12 and
Lemma 3.13, letting Gn act on the imaginary projection I(f) of a complex polynomial
f ∈ C[z] does not affect the topology induced by the imaginary projection in Rn, i.e.
the number of components in I(f) as well as the number of components in I(f)c, the
complement of the imaginary projection, is not changed under the action of Gn.

Theorem 3.15. [62, Theorem 5.3] Let f ∈ R[z1, z2] be a real conic. For the normal
forms (i)–(viii) from above, the imaginary projections I(f) ⊆ R2 are as follows:

(i) I(f) = R2,
(ii) I(f) = {−1 ≤ y21 − y22 < 0} ∪ {0},
(iii) I(f) = R2 \ {(0, y2) : y2 ̸= 0},
(iv) I(f) = {y ∈ R2 : y21 + y22 − 1 ≥ 0},

(v) I(f) = {y ∈ R2 : y21 = y22},
(vi) I(f) = {y ∈ R2 : y1 = 0},
(vii) I(f) = R2,
(viii) I(f) = {y ∈ R2 : y1 = ±1}.

See Figure 1 for a visualization of Theorem 3.15. Afterwards, Jörgens, Theobald and
de Wolff, even generalized this result to the case of n ≥ 3 variables and stated normal
forms for this case together with the computed imaginary projection for those normal
forms. Up to the action of Gn, every quadratic polynomial f ∈ R[z] is equivalent to
one of the following normal forms [62]:

(1)

(I)
∑p

j=1 z
2
j −

∑r
j=p+1 z

2
j (1 ≤ p ≤ r, r ≥ 1, p ≥ r

2
) ,

(II)
∑p

j=1 z
2
j −

∑r
j=p+1 z

2
j + 1 (0 ≤ p ≤ r, r ≥ 1) ,

(III)
∑p

j=1 z
2
j −

∑r
j=p+1 z

2
j + zr+1 (1 ≤ p ≤ r, r ≥ 1, p ≥ r

2
) .

We say a quadratic polynomial f ∈ C[z] is of type X if it is equivalent to the normal
form of type X up to the action of Gn. Jörgens, Theobald and de Wolff derived the
imaginary projection for these normal forms as stated in the subsequent Theorem.
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Figure 1. The blue area represents the imaginary projection’s comple-
ment for all cases with I(f) ̸= R2 of the classification given by Theo-
rem 3.15.

Theorem 3.16. [62, Theorem 5.4] Let n ≥ r ≥ 3 and f ∈ R[z] be a quadratic
polynomial.

(1) If f is of type (I), then

I(f) =
{

Rn if r
2
≤ p ≤ r − 1 or p = r,{

y ∈ Rn : y2r ≤∑r−1
j=1 y

2
j

}
if p = r − 1.

(2) If f is of type (II), then

I(f) =





Rn if p = 0 or 1 < p < r − 1,{
y ∈ Rn : y21 −

∑r
j=2 y

2
j ≤ 1

}
if p = 1,{

y ∈ Rn :
∑r−1

j=1 y
2
j > y2r

}
∪ {0} if p = r − 1,{

y ∈ Rn :
∑r

j=1 y
2
j ≥ 1

}
if p = r.

(3) If n > r and f is of type (III), then

I(f) = Rn \ {(0, . . . , 0, yr+1, . . . , yn) : yr+1 ̸= 0, yr+2, . . . , yn ∈ R}.
Further, as they only encountered polynomials f ∈ C[z] whose imaginary projection

is open if and only if I(f) = Rn, they added the following open question about possible
other occurrences of open imaginary projections apart from the full space.

Question 3.17. [62, Open Problem 3.4] Let f ∈ C[z]. Is I(f) open if and only if
I(f) = Rn ?

4. Combinatorics and Preservation of conically stable polynomials

4.1. Related work. This work [32, see also Appendix C] was co-written with G.
Codenotti and T. Theobald. We were inspired by the immense amount of preservers
for stable polynomials as collected in [20, 31, 104] and stated in Subsection 2.1 as well
as the necessary combinatorial conditions given by the jump system property [20] and
the extensions made for stable binomials [96].
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Our ultimate goal is to study and state a variety of generalizations of preservers
for stable polynomials to the case of K-stable polynomials as well as the invention of
new preservers for K-stable polynomials. A special focus is on the preservation of psd-
stability. Furthermore, we invent new combinatorial conditions for the psd-stability of
a given polynomial.

4.2. Preservation of conically stable polynomials. We start with preservers for
conic stability for general cones. The first one is given by the preservation of K-stable
polynomials under taking directional derivatives.

Lemma 4.1. [32, Lemma 3.1] Let f ∈ C[z] be K-stable and v ∈ K. Then ∂vf is
either K-stable or identically zero.

The proof is based on the the connection to univariate derivatives by ∂vf(z) =
d
dt
f(z + tv)

∣∣
t=0

in order to use the Gauß-Lucas Theorem 2.3. Note that this also
widens the amount of operators that preserve stable polynomials as they are not only
preserved under taking partial derivatives but taking directional derivatives ∂v with
v ∈ Rn

≥0. For v1, . . . ,vk ∈ Rn let pos(v1, . . . ,vk) = {λ1v1 + · · · + λkvk : λj ≥ 0} be
the positive hull of v1, . . . ,vk. This leads to another preserver which generalizes the
specialization property of Proposition 2.2 as follows:

Lemma 4.2. [32, Lemma 3.2] Let f ∈ C[z] be K-stable, a ∈ Cn and v(1), . . . ,v(k) ∈ Rn.
Further set K ′ = pos(v(1), . . . ,v(k)) and assume that Im(a) + K ′ ⊆ K. Then the
polynomial g ∈ C[z] defined by

g(z1, . . . , zk) = f

(
a+

k∑

j=1

zjv
(j)

)

is stable or the zero polynomial.

Although, there has been a generalization of the specialization operator to the case
of K-stability given by Lemma 3.4 already, our preserver can be applied to a larger
variety of cones and establishes a connection to the usual notion of stability.

Our final result for general cones K is given by a generalization of the Lieb-Sokal-
Lemma 2.7 to the case of K-stable polynomials. To formulate the result, we need the
notion of the directional degree as a generalization of the degree w.r.t. a variable. Let
v ∈ Rn. Then we call ρv(f) the degree of f in direction v, defined by the degree of
the univariate polynomial f(w + tv) ∈ C[t] for some generic w ∈ Cn. The directional
degree matches with the intuition for the usual notion of degree in the sense that f
survives taking ρv(f) directional derivatives into direction v but vanishes when taking
ρv(f) + 1. Now, the Lieb-Sokal-Lemma may be generalized as follows:

Theorem 4.3. [32, Theorem 3.4] Let K ′ be given by K ′ = K×R≥0 and g(z)+yf(z) ∈
C[z, y] be K ′-stable and such that ρv(f) ≤ 1 for some v ∈ K. Then g−∂vf is K-stable
or g − ∂vf ≡ 0.

We build on Lemma 4.1 in combination with the following Lemma 4.4 for the proof
of Theorem 4.3.
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Lemma 4.4. [32, Lemma 3.5] Let f, g ∈ C[z], where f ̸≡ 0 and K-stable and let
K ′ = K × R≥0. Then g + yf ∈ C[z, y] is K ′-stable if and only if

Im

(
g(z)

f(z)

)
≥ 0 for all z ∈ Cn with Im(z) ∈ relintK.

Note that in the same way as the preservation under taking directional derivatives,
our generalized version of the Lieb-Sokal Lemma also broadens the amount of preservers
of stable polynomials as the original Lieb-Sokal Lemma may be extended to directional
derivatives w.r.t. directions that lie in the positive orthant rather than only partial
derivatives. We stated this refined version of the Lieb-Sokal Lemma as follows:

Corollary 4.5 (Refined Lieb-Sokal Lemma). [32, Coroallary 3.6] Let g(z) + yf(z) ∈
C[z, y] be stable and assume ρv(f) ≤ 1 for some v ∈ Rn

≥0. Then g(z)− ∂vf(z) ∈ C[z]
is stable or identically 0.

Further generalizations for the remaining operators preserving stable polynomials
are not possible for general cones K. When restricted to simplicial cones its possible to
apply existing preservers for stable polynomials to K-stable polynomials by applying
a suitable transformation T ∈ GLn(R) since its only a transformation between the
positive orthant and any other simplicial cone.

4.3. Preservation of psd-stable polynomials. In this subsection we focus on psd-
stable polynomials, i.e. K = S+

n . As a brief reminder, let C[Z] be the space of
polynomials on symmetric matrix variables. We say f ∈ C[Z] is psd-stable (stable
with respect to the cone of positive semi-definite matrices) if f(Z) ̸= 0, whenever
Im(Z) ∈ S++

n . For f ∈ C[Z], let fDiag ∈ C[Z] denote the polynomial obtained from f
by substituting all off-diagonal variables with 0. We refer back to Subsection 3.1 for
further notations and constructions. Among the possible choices for the cone K, the
psd-cone S+

n is one of the most natural ones since psd-stability generalizes the notion of
stable polynomials directly. Thus, its not surprising that it is rather rich in structure
which enables us to find several elementary operators preserving psd-stability. We
stated a first collection in the following:

Lemma 4.6 (Elementary preservers for psd-stability). [32, Lemma 4.1] Let f ∈ C[Z]
be psd-stable.

a) Diagonalization: The polynomial Z 7→ fDiag(Z) is psd-stable.

b) Transformation: Let S ∈ GLn(R), then f(SZS−1) and f(SZST ) are psd-
stable.

c) Minorization: For J ⊆ [n], let ZJ be the symmetric |J | × |J | submatrix of Z
with index set J . Then f(ZJ), the polynomial on SC

|J | obtained from f by setting
to zero all variables with at least one index outside of J , is psd-stable or zero.

d) Specialization: For a fixed index i ∈ [n], let Ẑi be any matrix obtained from
Z by assigning real values to zij, zji for all indices j ̸= i and a value from H to

zii. Then f(Ẑi), viewed as polynomial on SC
n−1, is psd-stable or zero.

e) Reduction: For i, j ∈ [n], let Z̄ij be any matrix obtained from Z by choosing
real values for zik = zki for k ̸= i and setting zii := zjj. Then f(Z̄ij), viewed as
polynomial on SC

n−1, is psd-stable or zero.
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f) Permutation: Let π : [n] → [n] be a permutation. Then f((Zπ(j),π(k))1≤j,k≤n)
is a psd-stable polynomial on SC

n .

g) Differentiation: ∂V f(Z) is psd-stable or zero for V ∈ S+
n .

Lemma 4.6 b) to f) are derived by basic operations that preserve positive semi-
definiteness of the imaginary part of Z and thus, preserve psd-stability. In some cases
the proof uses the Hurwitz-Theorem for boundary cases and thus, getting the zero
polynomial is also a possibility. Lemma 4.6 g) is a consequence of Lemma 4.1 for the
case of K = S+

n . Lemma 4.6 a) follows due to the fact that for Z = X+iY with Y ≻ 0,
the diagonal values of Y have to be positive. Note that Lemma 4.6 a) is not merely an
operator to preserve psd-stability of a polynomial but also connects psd-stability with
the notion of stability since for a diagonal matrix having a positive imaginary part is
equivalent to all diagonal variables being in H.

The subsequent Corollary may be deduced by exploiting Lemma 4.6 a). This Corol-
lary will have a deeper meaning for later structural and combinatorial results on psd-
stable polynomials since we are able to use results for stable polynomials due to the
connection established here.

Corollary 4.7. [32, Corollary 4.2] Let f ∈ C[Z] be psd-stable. Then:

a) The polynomial (z11, z22, . . . , znn) 7→ fDiag(Z) is stable in C[z11, z22, . . . , znn].
b) If f(0) = 0, i.e., if f does not have a constant term, then there is a monomial

in f consisting only of diagonal variables of Z.
c) If f is homogeneous, then

c1) the sum of the coefficients of all diagonal monomials of f is non-zero.
c2) all non-zero coefficients of diagonal monomials of f have the same phase.

While on the one hand, Corollary 4.7 c) gives two necessary conditions for the psd-
stability of the underlying polynomial which were derived by applying Corollary 4.7
a) and using results for stable polynomials, Corollary 4.7 b), on the other hand, is
not only an easy-to-check necessary condition for psd-stability but will be a pillar of
further structural results presented in subsection 4.4.

A more advanced operation that also preserves psd-stability of a polynomial f ∈ C[Z]
is given by the following inversion operator:

Theorem 4.8 (Psd-stability preservation under inversion). [32, Theorem 4.3] If f(Z) ∈
C[Z] is psd-stable, then the polynomial det(Z)deg(f) · f(−Z−1) is psd-stable.

The factor det(Z)deg(f) ensures that the result after applying the inversion operator
is still a polynomial. Obviously, as det(Z) is psd-stable by Lemma 3.7, the same is true
for det(Z)deg(f). Thus, it remains to show that f(−Z−1) is non-zero if Im(Z) ∈ S++

n . To
show this, note that for any eigenvalue λ of C = A+iB with B ≻ 0 and a corresponding
eigenvector v, we have

λ =
vHλv

vHv
=

vHAv

vHv
+ i

vHBv

vHv
.

Since B ≻ 0, we get λ ∈ H and thus, C is invertible. As a consequence of this, we
derive the following lemma which enables us to finally prove Theorem 4.8.

Lemma 4.9. [32, Lemma 4.6] Let A,B ∈ Sn with B ≻ 0. Then the symmetric matrix
C := A+ iB is invertible and the imaginary part matrix of C−1 is negative definite.
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Our final result of this subsection concerns the preservation of psd-stable polynomials
when passing over to an initial form.

For f =
∑

α∈S cαZ
α ∈ C[Z], the initial form of f is defined with respect to some

functional W in the dual space (Sn)
∗. It is defined as

inW (f) =
∑

α∈SW

cαZ
α,

where SW := {α ∈ S : ⟨W,α⟩F = maxβ∈S⟨W,β⟩F} and ⟨·, ·⟩F is the Frobenius product.
The following example shows that passing over to the initial form for generalW ∈ (Sn)

∗

does not preserve psd-stability.

Example 4.10. [32, Example 4.8] Let f be given by the determinant of the symmetric
matrix variables Z of size 3, i.e.

f(Z) = det



z11 z12 z13
z12 z22 z23
z13 z23 z33


 = z11z22z33 + 2z12z13z23 − z11z

2
23 − z22z

2
13 − z33z

2
12.

Clearly, f is psd-stable by Lemma 3.7. Taking the initial form w.r.t.

W =
1

4



4 1 6
1 4 6
6 6 0


 ,

we end up with inW (f) = 2z12z13z23 − z11z
2
23 − z22z

2
13. Obviously, inW (f) vanishes for

every diagonal matrix as every monomial contains at least one off-diagonal variable.
Thus iI3 is a root of inW (f) which ensures that inW (f) is not psd-stable.

As a consequence of Example 4.10, the natural question now arises of whether there
are subsets S of the space of real symmetric matrices Sn such that passing over to the
initial form with respect to W ∈ S preserves psd-stability. For λ > 0 and matrices
W ∈ Sn, let λW denote the operation given by (λW )ij := λwij . Furthermore, for
two matrices A,B ∈ Sn let A ◦ B denote the Hadamard product of A and B with
(A ◦B)ij = aij · bij.
Lemma 4.11. [32, Lemma 4.9] Let f ∈ C[Z] be psd-stable and let W ∈ Sn be such
that there exists some λ0 > 0 such that for every λ > λ0, λ

W is positive definite. Then
inW (f) is psd-stable.

Lemma 4.11 is proven by constructing a suitable sequence of psd-stable polynomials
which converge to the initial form of f due to the application of the fact that the
Hadamard product preserves the positive-definitness of its arguments. Then the claim
follows by the Hurwitz’ Theorem 2.8.

Lemma 4.11 enables us to show that the psd-stability of a given polynomial is pre-
served when passing over to the initial form w.r.t. real positive definite matrices as
formalized in the following theorem.

Theorem 4.12. [32, Theorem 4.10] Let f ∈ C[Z] be psd-stable and W ∈ Sn be positive
definite, then inW (f) is psd-stable.

For the proof of Theorem 4.12, let W ◦k denote the k-fold Hadamard product of W

with the convention that W ◦0 is the all-ones matrix. Then exp[W ] :=
∑∞

k=0
W ◦k
k!

is
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positive definite if W is positive definite. Thus the claim follows by Lemma 4.11 due
to

exp[ln(λ) ·W ] = (ewij ln(λ))ij = (λwij)ij = λW ≻ 0

for W ≻ 0 and λ > 1.
Along the way to Theorem 4.12, we slightly generalized Theorem 2.11, which con-

cerns the preservation of stable polynomials when passing over to the initial form, to
the case of complex polynomials as follows.

Theorem 4.13. [32, Theorem 2.5] Let f ∈ C[z] be stable and w ∈ (Rn)∗ \ {0}. Then
inw(f) is stable.

Theorem 4.13 has been shown independently in [68, Proposition 2.6]. The proof of
Theorem 4.13 is similar to the proof of Lemma 4.11 as it also consists of the construction
of a sequence of stable polynomials converging to the initial form in order to apply
Hurwitz’ Theorem 2.8.

Figure 2. The left figure shows the support and Newton-Polytope of
f(z1, z2) = (z1+1)(z2+1)(z1+ z2+1) = z21z2+ z21 + z1z

2
2 +3z1z2+2z1+

z22 + 2z2 + 1, which is stable by Theorem 2.16. The right figure shows
the support and Newton-Polytope of inw(f) for w = (1, 1) in red.

4.4. Combinatorial criteria for psd-stability. In this subsection we consider struc-
tural results for psd-stable polynomials which then will lead to combinatorial criteria for
the support of psd-stable polynomials as well as results for specific classes of psd-stable
polynomials. First of all, we state the Structure Theorem (Theorem 4.14) which mirrors
results concerning the completion problem of positive (semi-)definite real symmetric
and Hermitian complex matrices [33, 70] naturally since psd-stability is connected to
these concepts.

Theorem 4.14 (Structure Theorem). [32, Theorem 5.1] Let f ∈ C[Z] be psd-stable.
If an off-diagonal variable zij (i < j) occurs in f , then the corresponding diagonal
variables zii and zjj must also occur in f .

4.4.1. Psd-stable binomials. The Structure Theorem has immediate consequences for
psd-stable binomials whose monomials do not share a factor. They either consist
of two diagonal monomials or a diagonal and an off-diagonal monomial. Further, a
possible common factor of the monomials of a psd-stable binomial should be a diagonal
monomial, since the Structure Theorem applies to it as it may be considered a psd-
stable monomial on its own. Further investigations lead to the main result of this
subsection: The full classification of the support of psd-stable binomials analogous to
the classification of stable binomials given by Rincón, Vinzant and Yu [96].
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Theorem 4.15. [32, Theorem 5.5] Every psd-stable binomial is of one of the following
forms:

a) Only diagonal variables appear in f and f satisfies the conditions of Theo-
rem 2.6: f(Z) = Zγ(c1Z

α1 + c2Z
α2) with |α1 − α2| ≤ 2 and at least one of

α1, α2 is non-zero,
b) f(Z) = Zγ(c1ziizjj + c2z

2
ij) with i < j and c1

c2
∈ R,

where c1, c2 ̸= 0 and Zγ is a diagonal monomial.

Note that Theorem 4.15 a) exactly mirrors Theorem 2.6 for stable binomials since
a psd-stable polynomial f ∈ C[Z] may be considered as a stable polynomial if only
diagonal variables appear in f by Corollary 4.7. We have an appearance of off-diagonal
variables in case b) only. Further, the appearance of off-diagonal variables is restricted
to homogeneous binomials of degree 2 whose monomials do not have a common factor
as appearances in other cases would contradict the Structure Theorem. The proof of
the Classification Theorem 4.15 relies on the preservers of psd-stable polynomials given
by Lemma 4.6 and the Structure Theorem. Those techniques are used to construct a
root S ∈ SC

n with Im(S) ∈ S++
n given by

(2) S =




s+ i t · · · t

t s+ i
. . .

...
...

. . . . . . t
t · · · t s+ i


 with s, t ∈ R

for all binomials which do not belong to one of the two classes given by Theorem 4.15.
This construction relied on the preservation of psd-stability under taking directional
derivatives into directions of positive semi-definite matrices and the notion of non-
mixed polynomials since binomials are not closed under taking such a derivative. To
formalize this, we introduce the following notation (see also [32]):

For 1 ≤ i ̸= j ≤ n, let Bii be the matrix which has 1 in entry (i, i) and zero
otherwise, and let Bij be the matrix which has 1/2 in entry (i, j) and (j, i) and zero
otherwise. Then, for a polynomial f =

∑
α cαZ

α ∈ C[Z] and its equivalent version

f̃ =
∑

α cα
∏n

k=1 z
αkk
kk

∏
k<l z

2αkl
kl in C[{zkl|1 ≤ k ≤ l ≤ n}], we have the identities

∂f
∂Bii

∣∣
zlk:=zkl

= ∂f̃
∂zii

and ∂f
∂Bij

∣∣
zlk:=zkl

= 1
2

∂f̃
∂zij

as symbolic expressions. To see this, it

suffices to observe that for i < j and a monomial f(Z) = z
αij

ij z
αji

ji ∈ C[Z], we have

f̃ = z
2αij

ij and

∂

∂Bij

f(Z) =
1

2
αijz

αij−1
ij z

αji

ji +
1

2
αjiz

αij

ij z
αji−1
ji ∈ C[Z].

Substituting zji by zij gives
∂

∂Bij
f(Z)

∣∣
zji:=zij

= αijz
2αij−1
ij = 1

2
∂

∂zij
f̃ .

Now, consider the example f(Z) = det(Z) = z11z22− z212 and V ∈ S2 with all entries
being 1. Then

∂V f(Z) = z11 + z22 − 2z12,

which shows that binomials are not closed under taking directional derivatives. Due to
this, we invented the notion of non-mixed polynomials as a class of polynomials which
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contains binomials while still maintaining a structure similar to binomials, and being
closed under taking directional derivatives.

Definition 4.16. We call a polynomial f ∈ C[Z] non-mixed if every monomial that
occurs in f either consists only of diagonal variables or only of off-diagonal variables.
We always write such a non-mixed polynomial as f =

∑
α∈A cαZ

α+
∑

β∈B cβZ
β, where

A refers to the exponent matrices of diagonal monomials and B refers to the exponent
matrices of off-diagonal monomials.

Obviously, psd-stable binomials are psd-stable non-mixed polynomials and since
those are closed under taking directional derivatives, they play an essential role in
the construction of the roots given in (2).

4.4.2. Polynomials of determinants. In this subsection, we construct the polynomials of
determinants as a class of psd-stable polynomials which generalizes stable polynomials
in their own way. They take determinants of blocks Z1, . . . , Zk of symmetric matrix
variables as arguments instead of univariate variables.

Definition 4.17. Suppose that the symmetric matrix of variables Z is a block diagonal
matrix with blocks Z1, . . . , Zk. Then

i) f ∈ C[Z] is a polynomial of determinants if f is of the form f(Z1, . . . , Zk) =∑
α cα det(Z)

α, where det(Z)α is defined as det(Z)α = det(Z1)
α1 · · · det(Zk)

αk .
We say a polynomial of determinants f(Z1, . . . , Zk) =

∑
α det(Z)

α is written in
standard form if the largest possible determinantal monomial is factored out,
i.e., f(Z1, . . . , Zk) = det(Z)γ

∑
β cβ det(Z)

β = det(Z)γ f̃(Z), and all cβ ̸= 0.

ii) Let f(Z1, . . . , Zk) =
∑

α cα det(Z)
α be a polynomial of determinants. Then the

determinantal support is defined by suppdet(f) = {α ∈ Zk
≥0 : cα ̸= 0}.

Note that stable polynomials pose a special case of psd-stable polynomials of deter-
minants: If Z is diagonal, i.e. if every block is of size 1, then psd-stable polynomials of
determinants are stable in C[z11, . . . , znn] and the notion of the determinantal support
equals the usual support. Due to this connection, the jump system result of Brändén
can be generalized to the case of psd-stable polynomials of determinants.

Corollary 4.18. [32, Corollary 5.10] Let f(Z1, . . . , Zk) =
∑

α cα det(Z)
α be a psd-

stable polynomial of determinants. Then the determinantal support of f forms a jump
system.

Corollary 4.18 is proven rather directly. By using the diagonalization for a psd-stable
polynomial given by Lemma 4.6 a), we have a stable polynomial by Corollary 4.7 and
thus, can apply the result of Brändén as stated in Theorem 2.4. The following theorem
is our main result on psd-stable polynomials of determinants and shows that their
structure is even more evolved:

Theorem 4.19. [32, Theorem 5.11] Let f(Z1, . . . , Zk) = det(Z)γ
∑

β∈B cβ det(Z)
β =

det(Z)γ f̃(Z) be a psd-stable polynomial of determinants in standard form. Then any

block Zi appearing in f̃ (that is, any Zi such that there is β ∈ B with βi > 0) has size
di ≤ 2.

Further, for any matrix Zi which has size exactly 2, let Ci = maxβ∈B βi. Then if
β ∈ B, then also β + cei ∈ B for all −βi ≤ c ≤ Ci − βi.
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The first part is a consequence of the combination of Lemma 4.6 a), Corollary 4.7

and Theorem 2.4 since then blocks of size greater than 2 in f̃ would lead to distances of
greater than 2 in the support of f̃Diag. The second result is derived by a close observation

of points required in the support of f̃Diag such that taking at most 2 consecutive steps

brings us back into the support of f̃Diag.

4.4.3. Support of general psd-stable polynomials. The support of a stable polynomial
forms a jump system by Theorem 2.4. The connection established by Lemma 4.6
a) and Corollary 4.7 implies various combinatorial results for specific classes of psd-
stable polynomials. Thus, it is natural to ask for a general combinatoric framework
for the support of psd-stable polynomials. Obviously, the jump system property does
not hold as the monomials of f(Z) = det(Z) = z11z22 − z212 have a distance of 4
already. Therefore we need a new notion of steps specifically designed for the case of
psd-stability. Let us express usual steps from the jump system property as follows: We
may call them linear or double steps and instead of considering them as points in Zn

with norm 1, we consider them as the multiplication of a monomial Zα with z±1
ij or

z±1
ij z±1

kl . Additionally, we define a transposition step as the multiplication of a monomial

Zα with zijzklz
−1
ik z−1

jl for some indices i, j, k, l ∈ [n]. Note that for f(Z) = z11z22 − z212
its exactly such a transposition step between the two monomials of f . This is no
coincidence as the following Lemma shows:

Lemma 4.20. [32, Lemma 5.12] Any two monomials in the support of the symmet-
ric determinant det(Z) are linked by a sequence of transposition steps decreasing the
distance between the monomials which never leave the support.

Thus, in the following we combine the structures found: On one side, diagonal
monomials of a psd-stable polynomial f ∈ C[Z] are connected by the jump system
result of Theorem 2.4 due to Lemma 4.6 a), while on the other side, non-diagonal
monomials seem to respect some kind of determinantal structure similar to Lemma 4.20.
This gives rise to the following conjecture:

Conjecture 4.21. [32, Conjecture 5.13] For any monomial Zβ appearing in a psd-
stable polynomial, there is a diagonal monomial Zα appearing in f which can be reached
by a sequence of linear, double and transposition steps which decrease the distance from
β to α and which never leave the support of f .

As a foundation for Conjecture 4.21, we have proven Conjecture 4.21 for the classes
of psd-stable binomials, psd-stable non-mixed polynomials and psd-stable polynomials
of determinants. Further, the conjecture holds for psd-stable lpm polynomials. Those

have been introduced in [14] as polynomials of the form f(Z) =
∑

J⊆[n]

cJ det(ZJ), where

ZJ denotes the square submatrix of Z induced by J ⊆ [n].

4.5. Conclusion. Altogether, we found several preservers for K-stable polynomials
for a general cone K (Lemma 4.1 and Lemma 4.2) as well as for the special case of psd-
stability (Lemma 4.6 and Theorem 4.8). Furthermore, we showed that passing over to
the initial form preserves stability and psd-stability (Theorem 4.12 and Theorem 4.13).
We further developed several structural results for psd-stable polynomials, namely
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the Structure Theorem 4.14, the binomial classification given by Theorem 4.15 as
well as combinatoric results for polynomials of determinants in Theorem 4.19, and
finally stated our combinatorial Conjecture 4.21. This constitutes a good starting
point for more in-depth studies into operators that preserve K-stability and possibly
also into a characterization of operators that preserve K-stability analogous to the one
for stable polynomials given by Theorem 2.9. We have already generalized one of the
key-ingredients of Theorem 2.9, the Lieb-Sokal Lemma, to the conic case.

The class of psd-stable polynomials appears to be rather restricted since the currently
known classes of psd-stable polynomials seem to be extremely dense as determinants
and lpm polynomials or very restrictive as irreducible non-mixed homogeneous psd-
stable polynomials, which are of degree at most 2 with a very special selection of allowed
monomials. It would be interesting to see whether every psd-stable polynomial already
belongs to one of the classes discussed in this section, or if there are others that extend
the amount of classes of psd-stable polynomials. If all psd-stable polynomials belonged
to the classes we discussed, this would automatically prove our Conjecture 4.21 as well.
In any case, it will be interesting to see whether our Conjecture 4.21 turns out to be
true in the end.

5. Imaginary projections: Complex versus real Coefficients

5.1. Related work. This work [42, see also Appendix B] was co-written with M.
Sayyary and T.Theobald. We were inspired by the classification of the imaginary
projection of real conics developed by Jörgens, Theobald and de Wolff in [62]. Our
first attempt to study the imaginary projection of complex conics tried to use the
classification of complex conics given by Newstead in [84]. It turned out to be unprac-
tical as the operations he used to derive the classes do not align with the action of
Gn = Cn ⋊GLn(R) on complex conics, which preserves the topology of the underlying
conic’s imaginary projection. Since the imaginary projection of a polynomial f ∈ C[z]
is closely connected to the imaginary projection of its initial form, we invented our
own classification on conics based on the roots of the initial form and described the
imaginary projection for the normal forms of each class. Furthermore, we investigated
whether the complement components of the imaginary projection are spetrahedral and
thus added results towards the generalized Lax Conjecture [6, 7, 53, 67, 82]. Addi-
tionally, we gave realization results for the occurrence of a specific amount of strictly
convex components in the imaginary projection’s complement which is of immense
interest when considering imaginary projections under the light of general convexity
phenomena in algebraic geometry [35, 39, 43, 80, 87, 89, 90].

5.2. The main classification of complex conics. In this subsection we focus on
the classification of complex conics we developed while looking for a classification of
complex conics such that the orbit of any complex conic under the action of G2 belongs
to one class completely. It turns out that a classification based on the initial form of the
underlying conic satisfies this condition. For a complex conic f ∈ C[z1, z2], its initial
form in(f) has its roots in P1 and we classify the complex conics by the structure of
the roots which may be grouped into two main cases which depend on whether the
complex conic has a hyperbolic initial form or not. Thus, the classification distinguishes
between the following 5 cases:
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Hyperbolic initial form

(1a) A double real root

(1b) Two distinct real roots

Non-hyperbolic initial form

(2a) A double non-real root

(2b) One real and one non-real root

(2c) Two distinct non-real roots

Note that the real dimension of Gn is given by n2 + 2n. Thus, in the case of n = 2,
it is 8. Since the real dimension of the set of complex conics is 10, there are infinitely
many orbits of complex conics under the action of G2 on the set of complex conics. In
the following theorem we state a representative for every orbit.

Theorem 5.1 (Normal Form Classification). [42, Theorem 5.5]
With respect to the group G2, there are infinitely many orbits for the complex conic

sections with the following representatives.

(1a)
(1a.1) f = z21 + γ

(1a.2) f = z21 + γz2

(1b) f = z1z2 + γ

(2a)
(2a.1) f = (z1 − iz2)

2 + γ

(2a.2) f = (z1 − iz2)
2 + γz2

(2b) f = z2(z1 − αz2) + γ

(2c)
(2c.1) f = z21 + z22 + γ

(2c.2) f = (z1 − iz2)(z1 − αz2) + γ

for some γ, α ∈ C such that to avoid overlapping we assume γ ̸= 0 in (1a.2) and (2a.2),
α /∈ R in (2b) and (2c.2), and finally α ̸= ±i in (2c.2).

In the following we will refer to those representatives as normal forms. By studying
the normal forms given by Theorem 5.1, we are able to derive the following topolog-
ical properties of the complement of the imaginary projection of those normal forms:
Letting G2 act on the set of complex conics and using Lemma 3.12 and Lemma 3.13
we are able to extend those results to their respective classes.

Theorem 5.2 (Topological Classification). [42, Theorem 5.1]
Let f ∈ C[z1, z2] be a complex conic. For the above five cases, the set I(f)c is

(1a) the union of one, two, or three
unbounded components.

(1b) the union of four
unbounded components.

(2a) empty.

(2b) empty, a single point,
or a line segment.

(2c) empty or one bounded component,
possibly open.

In particular, the components of I(f)c are spectrahedral in all the first four classes.
This is not true in general for the last class (2c).

Note that Theorem 5.2 answers Question 3.17. In the case (2b) it is possible that
the complement of the imaginary projection consists of a single point and thus, the
imaginary projection is an open set which is not the full space in this case. This is not
the only difference appearing compared to the case of real conics (see also Figure 3):
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(1a) (2b) (2c)

Figure 3. The pictures show cases in the classification of the imaginary
projection of complex conics which do not appear in the real case. The
blue area represents the imaginary projection’s complement.

In the case of real conics, it is not possible for the complement of the imaginary projec-
tion to consist of only one unbounded component. Also the appearance of a bounded
component whose interior is empty in the complement of the imaginary projection is
impossible for real conics. Further, Theorem 5.2 shows that the complement of the
imaginary projection of a complex conic f ∈ C[z1, z2] is unbounded if and only if the
initial form of f is hyperbolic. If f does not have a hyperbolic initial form, the com-
plement of its imaginary projection is always bounded. Theorem 5.2 is connected to
the generalized Lax Conjecture 2.15 since the unbounded components of the comple-
ment of the imaginary projection of a complex conic f ∈ C[z1, z2] in the cases (1a)
and (1b) reflect hyperbolicity cones of the respective initial form in(f) of f by Theo-
rem 3.10. Thus, the hyperbolicity cones of these polynomials are also spectrahedra by
Theorem 5.2.

The proof of Theorem 5.2 is rather straightforward for the cases (1a) to (2b). For
those classes we apply the following techniques: Since every complex variable z may
be expressed as the sum of two real variables x,y by z = x + iy, we also may ex-
press a complex polynomial f ∈ C[z1, z2] as f(z) = Re(f)(x,y) + i · Im(f)(x,y) with
Re(f), Im(f) ∈ R[x,y]. Thus, instead of computing the imaginary projection of f
directly, it suffices to determine all values y such that the polynomial system

Re(f)(x,y) = 0 and Im(f)(x,y) = 0

has a real solution for x. We use this technique to compute I(f) for the normal forms
of the classes (1a) to (2b) and extend the results to any complex conic belonging to
the case (1a) to (2b) by applying Lemma 3.12 and Lemma 3.13. For class (2c), we
show that the complement of the imaginary projection does not contain unbounded
components and at most one bounded component in an indirect proof. We assume the
existence of either at least two bounded or one unbounded component and lead those
assumptions to a contradiction by using a continuity argument. Further, we give the
example of the harmless-looking conic f = z21 + iz22 +

i
4
which belongs to the class (2c)

and has its imaginary projection given by

I(f) = {y ∈ R2 : −64y81 − 128y41y
4
2 − 64y82 − 80y41y

2
2 +48y62 + y41 − 12y42 + y22 ≤ 0} \ {0}.

While in the case of a real conic f ∈ R[z1, z2], the boundary of the imaginary projection
I(f) is of algebraic degree 2, this example shows that this is not true for the case of
a complex conic f ∈ C[z1, z2] in general. In general, the boundary of the imaginary
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projection of a complex conic f is not necessarily algebraic and the algebraic degree
of the irreducible components in the Zariski closure of ∂I(f) is not restricted by 2 but
might rise to 8 which is a sharp bound due to the example above.

5.3. Higher dimensional complex quadratics. Already the case of complex conics
shows that the structure of the imaginary projection of f ∈ C[z1, z2] is well-behaved if
the initial form of f is hyperbolic. This extends to complex quadratics in arbitrarily
many variables z = (z1, ..., zn). Thus, we compute the normal forms of every quadratic
f ∈ C[z] with hyperbolic initial form. This leads to the following Lemma:

Lemma 5.3. [42, Lemma 4.1] Under the action of Gn, any quadratic polynomial f ∈
C[z] with hyperbolic initial form can be transformed to one of the following normal
forms:

(1) z21 + αz2 + rz3 + γ,

(2)
∑j

i=1 z
2
i − z2j+1 + αzj+2 + rzj+3 + γ for some j = 1, . . . , n− 1,

such that terms containing zk do not appear for k > n, and α, r, γ ∈ C.

Based on the normal forms of Lemma 5.3, we are able to compute the imaginary
projection for any quadratic polynomial f ∈ C[z] with a hyperbolic initial form as
follows:

Theorem 5.4. [42, Theorem 4.5] Let n ≥ 3 and f ∈ C[z] be a quadratic polynomial
with a hyperbolic initial form. Up to the action of Gn, the imaginary projection I(f)
is either Rn, Rn \ {(0, . . . , 0, yn) ∈ Rn : yn ̸= 0}, or otherwise we can write f as
f =

∑n−1
i=1 z2i − z2n + γ for some γ ∈ C such that |γ| = 1 and we get

I(f) =





{
y ∈ Rn : y2n <

∑n−1
i=1 y2i

}
∪ {0} if γ = 1,

{
y ∈ Rn : y2n −

∑n−1
i=1 y2i ≤ 1

}
if γ = −1,

{
y ∈ Rn : y2n −

∑n−1
i=1 y2i ≤ 1

2
(1− Re(γ))

}
\ {0} if γ ̸∈ R.

For the proof, we again apply the methods we used for the case of complex con-
ics before. We divide the normal forms given by Lemma 5.3 into 5 cases based on
the parameters α, γ, r which appear in Lemma 5.3 and compute the imaginary pro-
jection for the normal forms given in Lemma 5.3. Instead of computing the imagi-
nary projection of f ∈ C[z] directly, we determine all y ∈ Rn such that the system
Re(f)(x,y) = 0, Im(f)(x,y) = 0 has a real solution for x. In one of the cases it is
necessary to apply an orthogonal transformation in order to succeed.

Surprisingly, the boundary of the imaginary projection of a complex quadratic f ∈
C[z] in n variables with hyperbolic initial form is better behaved than complex conics
whose initial form is not hyperbolic. A complex quadratic with hyperbolic initial
form always has an imaginary projection such that the irreducible components of its
boundary are of algebraic degree 2. Based on the normal forms given by Theorem 5.4,
we are able to describe the topology of the imaginary projection of general quadratic
polynomials with hyperbolic initial form as stated in the following Corollary:
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Corollary 5.5. [42, Corollary 4.6] Let f ∈ C[z] be a quadratic polynomial with hyper-
bolic initial form. Then

(1) the complement I(f)c is either empty or it consists of
- one, two, three, or four unbounded components,
- two unbounded components and a single point.

(2) the complement of the closure I(f)c is either empty or unbounded.
(3) the algebraic degrees of the irreducible components in ∂I(f) are at most two.

5.4. Further results. Our techniques may not be applied to complex polynomials
f ∈ C[z] of higher degree in general. Already the polynomial f = z31 + z32 − 1 leads to
a system Re(f)(x,y) = 0, Im(f)(x,y) = 0 where both x1 and x2 appear with degree
higher than 1 and thus, it can not be solved efficiently by our methods. Although
our methods do not apply in general, we were still able to find a class of bivariate
polynomials whose imaginary projection is the full space R2.

Theorem 5.6. [42, Theorem 3.4] Let f ∈ C[z1, z2] be a complex bivariate polynomial
of total degree d such that its initial form has no real roots in P1. If d is odd then the
imaginary projection I(f) is R2.

For the proof we use our methods to divide f(z) = 0 into a system of real equations
and make a suitable substitution to solve it.

We want to conclude this subsection with a complex analogue to Theorem 3.11.
By going over to complex polynomials, we may break the symmetry of the imaginary
projection with respect to the origin (see [61, Remark 3.5]) and therefore gain more
flexibility when constructing a polynomial with a specific structure in its imaginary
projection. For k > 0, we use a cyclic construction to build up a bivariate polynomial
f ∈ C[z1, z2] such that there are exactly k strictly convex, bounded components in
I(f)c.
Theorem 5.7. [42, Theorem 7.1] For any k > 0 there exists a polynomial f ∈ C[z1, z2]
of degree 2⌈k

4
⌉+2 such that I(f)c consists of exactly k strictly convex bounded compo-

nents.

5.5. Conclusion. We invented a new classification for complex conics and gave a full
description of the structure of the imaginary projection for each class of this classifica-
tion. Furthermore, we extended our results to the cases of families of bivariate complex
polynomials with an arbitrary degree as well as complex quadratics with hyperbolic
initial form in arbitrarily many variables. Thus, the variety of polynomials whose imag-
inary projection’s structure is known was extended significantly due to our research.
Still, this is just the tip of the iceberg and the structure of the imaginary projection of
many complex polynomials remains unknown. Even for the cases of bivariate cubics it
seems to require completely new methods in order to come up with a classification of
their imaginary projections. Since we encountered curves of algebraic degree 8 in the
boundary of the imaginary projection in the case of complex conics already, it is to be
expected that even higher degrees appear for irreducible components of the boundary
of the imaginary projection for complex bivariate cubics. We experienced that qua-
dratic polynomials with hyperbolic initial form behaved better than those whose initial
form is not hyperbolic. Thus, we expect that this will be the same for polynomials of
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higher degrees and therefore focusing on the imaginary projection of bivariate cubics
with hyperbolic initial form seems to be a reasonable next step.

The final question concerns Theorem 5.7. Our construction method probably in-
creased the degree of the required polynomial in Theorem 5.7 artificially. Thus, it
would be interesting to know whether it is possible to realize the k strictly convex
bounded components with a polynomial of degree lower than 2⌈k

4
⌉+ 2.

6. Conic stability of polynomials and positive maps

6.1. Related work. This work [36, see also Appendix A] was co-written with P. Dey
and T. Theobald. We were inspired by the various necessary and sufficient conditions
that are known for stable polynomials or polynomials with the half-plane property (see
for example [20, 104] or or Subsection 2.1). We successfully attempted to combine
results about the connection of the K-stability of a polynomial f ∈ C[z] and its hyper-
bolicity cones given by Jörgens and Theobald [61] with positive maps as they preserve
spectrahedrality under certain conditions [64]. In order to exploit this, we first needed
to determine conic components with a spectrahdral description in the complement of
the imaginary projection I(f) of a given polynomial which poses a question that is
closely connected to the generalized Lax Conjecture [6, 7, 53, 67, 82]. Then, as there
are spectrahedral descriptions known for most of the common cones, we build up a
semi-definite program based on those spectrahedral descriptions. In case of feasibil-
ity of the semi-definite program, we get a positive semi-definite block matrix C, the
so called Choi matrix, which then certifies K ⊆ I(f)c. This implies the K-stability
of f and enables us to determine further determinantal representations which pose a
research field on their own [52, 53, 93].

6.2. Conic components in the complement of the imaginary projection. In
this subsection we focus on determining conic components in the complement of I(f)
for a given polynomial f ∈ C[z]. We focus on polynomials with a determinantal
representation and quadratic polynomials. In this section we assume the cone K to
be convex, closed and full-dimensional. We begin with determinantal polynomials, i.e.
we consider polynomials of the form

(3) f(z) = det (A0 + A1z1 + . . .+ Anzn)

withA0, . . . , An being Hermitian matrices of size d×d. The homogeneous determinantal
polynomial f(z) = det (A1z1 + . . .+ Anzn) is hyperbolic with respect to some e ∈ Rn

if A1e1 + . . .+ Anen ≻ 0 holds. Further the set

{z ∈ Rn : A1z1 + . . .+ Anzn ≻ 0}
as well as its negative are hyperbolicity cones of f [72, Prop. 2]. If f is irreducible,
then these are the only two hyperbolicity cones (see [69]). If f is not irreducible, then
there are more, as all irreducible factors of f are hyperbolic and therefore the amount
of hyperbolicity cones rises. The following theorem establishes a connection between
the hyperbolicity cones of in(f) and I(f).
Theorem 6.1. [36, Theorem 3.1] If f is a degree d determinantal polynomial of the
form (3) and there exists an e ∈ Rn with

∑n
j=1Ajej ≻ 0, then in(f) is hyperbolic and

every hyperbolicity cone of in(f) is contained in I(f)c.
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The proof of Theorem 6.1 first assumes irreducibility of in(f) and then shows that
the two hyperbolicity cones of in(f), namely

C1 = {x ∈ Rn : A1x1 + . . .+ Anxn ≻ 0} and C2 = {x ∈ Rn : A1x1 + . . .+ Anxn ≺ 0} ,
are contained in I(f)c. This is done by expressing the univariate polynomial t 7→
f(x + te) as the characteristic polynomial of a Hermitian matrix which ensures that
it is real-rooted. The reducible case is covered as the hyperbolicity cones of in(f) are
intersections of the hyperbolicity cones of the irreducible factors of in(f) then.
Now, we consider quadratic polynomials of the form

(4) f(z) = zTAz+ bTz+ c

with A ∈ Sn, b ∈ Rn, c ∈ R. Our goal here is to determine the cases which give rise to
spectrahedral components in the complement of I(f). Starting with the homogeneous
case f = zTAz, it is well-known that f is hyperbolic if and only if A or−A has signature
(n − 1, 1) [45]. We assume that A has signature (n − 1, 1) by possibly multiplying A
with −1. By Theorem 3.16, we know that the normal form f(z) =

∑n−1
j=1 z

2
j −z2n has its

imaginary projection given by I(f) =
{
y ∈ Rn : y2n ≤∑n−1

j=1 y
2
j

}
. Therefore, we derive

the two full-dimensional cones given by

{
y ∈ Rn−1 × R>0 :

n−1∑

j=1

y2j < y2n

}
and

{
y ∈ Rn−1 × R<0 :

n−1∑

j=1

y2j < y2n

}

as the only two unbounded components in I(f)c. Due to Lemma 3.12 we know that
the identity I(f(Tz)) = T−1I(f(z)) holds for an invertible transformation T : Rn →
Rn and the imaginary projection of a polynomial f ∈ C[z]. Thus, by applying a
suitable transformation, we get the following result for general homogeneous quadratic
polynomials:

Lemma 6.2. [36, Lemma 3.2] For a quadratic form f = zTAz ∈ R[z] with A having
signature (n− 1, 1), the components C in the complement of I(f) are given by the two
components of the set

(5) {y ∈ Rn : yTAy < 0} ,
and the closures of these components are spectrahedra.

The homogeneous case (type (I) in (1)) has been treated already. It remains to con-
sider the non-homogeneous case. By Theorem 3.16 we know that there are unbounded
components in the complement of the imaginary projection of quadratic polynomials
of type (II) in (1) if either p = 1 or p = r − 1. Quadratic polynomials of type (III) do
not contain unbounded components in the complement of their imaginary projection.
By Theorem 3.16 and [36, Theorem 3.4] we know that the imaginary projections of the
normal forms for the two relevant cases are given by

I(f) =

{
{y ∈ Rn : y21 −

∑r
j=2 y

2
j ≤ 1} if p = 1 ,

{y ∈ Rn :
∑r−1

j=1 y
2
j > y2r} ∪ {0} if p = r − 1 .

For a polynomial f ∈ C[z] there is a bijection between the set of unbounded com-
ponents of I(f)c with full-dimensional recession cone and hyperbolicity cones of in(f).
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In the real cases I(f)c is empty if in(f) is not hyperbolic. Due to these facts, we were
able to derive the following essential lemma:

Lemma 6.3. [36, Lemma 3.5] Let n ≥ 3 and f ∈ R[z] be quadratic of the form (4).
If f is of type (II) with p = 1, then I(f)c does not have connected components whose

closures contain full-dimensional cones.
If f is of type (II) with p = n−1 then every full-dimensional cone which is contained

in I(f)c is contained in the closure of a hyperbolicity cone of in(f).

Finally, we are able to actually complete the description of conic components of
quadratic polynomials by stating the following theorem:

Theorem 6.4. [36, Theorem 3.6] Let n ≥ 3 and f ∈ R[z] be quadratic of the form (4)
and of type (II) with p = n − 1. Then there exists a linear form ℓ(z) in z such that
−ℓ(z)n−2in(f) has a determinantal representation. In particular, the closure of each
unbounded component of I(f)c is a spectrahedral cone.

We use earlier considerations for the proof of Theorem 6.4 as the initial form of the
normal form g(z) =

∑n−1
j=1 z

2
j − z2n + 1, given by in(g) =

∑n−1
j=1 z

2
j − z2n, is a quadratic

polynomial of type (I) of course. The two unbounded components of I(in(g)) are given
by the Lorentz cone and its negative which are both spectrahedral cones. For any
polynomial f of type (II) with p = n−1, it is just a linear transformation T ∈ GLn(R)
from in(f) to in(g). The claimed linear form then is given by the n-th entry of Tz, i.e.
l(z) = (Tz)n. Here, for in(f) = zTAz, T may be computed by an LDLT decomposition
of A.

Note that Theorem 6.4 is closely connected to the generalized Lax Conjecture 2.15
as it recovers the well-known fact that hyperbolicity cones defined by homogeneous
quadratic polynomials f are spectrahedral [83]. Further, in comparison to other con-
structions of determinantal representations from Helton, McCullough and Vinnikov
[52] or Quarez [93], our construction results in a determinantal representation of rather
small size. We consider the following example for clarification:

Example 6.5. [36, Example 3.8] Consider f(z1, z2, z3, z4) = −15z21−12z1z4+z22+z23 =
zTAz with

A =




−15 0 0 −6
0 1 0 0
0 0 1 0
−6 0 0 0


 .

For ℓ(z) = 4z1 + 2z4, a representation from Theorem 6.4 is

−ℓ(z)2 · f(z) = det




4z1 + 2z4 0 0 z1 + 2z4
0 4z1 + 2z4 0 z2
0 0 4z1 + 2z4 z3

z1 + 2z4 z2 z3 4z1 + 2z4


 .

Note that −l(z)2 · f(z) is a polynomial of degree 4 in 4 variables and the sizes of the
symmetric matrices in the determinantal description are 4× 4. Although not directly
applicable here, the construction of Quarez (see [93, Theorem 4.4]) would result in a
determinantal description with symmetric matrices of size 30× 30 for a polynomial of
degree 4 in 4 variables.
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6.3. Conic stability and positive maps. In this subsection we use the determi-
nantal descriptions we derived for unbounded components of the complement of the
imaginary projection earlier as an ingredient for our sufficient criterion that certifies
K-stability in the case of a spectrahedral cone K. The criterion may be considered
as an instance of the containment problem of spectrahedra [51, 64, 65]. We use the
determinantal descriptions of the spectrahedral complement components together with
a spectrahedral description of the cone K. Then, the containment of K in a conic com-
ponent of the complement of the imaginary projection is certified by the existence of a
positive map which maps the spectrahedral descriptions of both sets onto each other.
We refer to [91] for further reading into positive maps.

Definition 6.6. Given two linear subspaces U ⊆ Hermk and V ⊆ Herml (or U ⊆ Sk

and V ⊆ Sl), a linear map Φ : U → V is called positive if Φ(U) ⪰ 0 for any U ∈ U
with U ⪰ 0.

The following proposition from [64] will clarify the connection between positive
maps and the containment problem of spectrahedra. In order to actually state the
proposition, we use the following notation: For the homogeneous linear matrix pen-
cil U(x) =

∑n
j=1 Ujxj and V (x) =

∑n
j=1 Vjxj with hermitian matrices of size k × k

and l × l, respectively, we define the spectrahedra SU := {x ∈ Rn : U(x) ⪰ 0},
and SV := {x ∈ Rn : V (x) ⪰ 0}. Further, let U = span(U1, . . . , Un) ⊆ Sk and
V = span(V1, . . . , Vn) ⊆ Sl.
Let ΦUV : U → V be the linear map defined by ΦUV (Ui) := Vi, 1 ≤ i ≤ n.

Proposition 6.7. [64, Theorem 4.3] Let U1, . . . , Un ∈ Hermk be linearly independent
and V1, . . . , Vn ∈ Herml (or, U1, . . . , Un ∈ Sk and V1, . . . , Vn ∈ Sl, respectively) and
SU ̸= ∅. If the the semi-definite feasibility problem given by

(6) C = (Cij)
k
i,j=1 ⪰ 0 and Vp =

k∑

i,j=1

(Up)ijCij for p = 1, . . . , n

has a solution with Hermitian (respectively symmetric) matrix C, then SU ⊆ UV .

Note that the linear mapping ΦUV is well defined if U1, . . . , Un are linearly indepen-
dent. But since we do not necessarily need ΦUV for our purpose, we do not need to
satisfy this precondition. Thus, if we consider a polynomial f ∈ C[z] such that there is
at least one spectrahedral component in I(f)c together with a spectrahedral cone K,
we may certify the K-stability of f by showing the existence of a block matrix C ≻ 0
in (6), the so-called Choi matrix, which implicates the existence of a positive map Φ
that maps the underlying pencils of those spectrahedra onto each other and thereby,
certifies their containment. Determining C leads to a semi-definite feasibility problem
which certifies the K-stability of f if its feasibility region is non-empty.

Since we have already seen spectrahedral descriptions for the unbounded components
in the complement of the imaginary projection for several classes of polynomials in the
previous subsection, we now state some spectrahedral descriptions for common cones
in the following before we will finally state the main result of this section.

Subsequently, we will denote the linear matrix pencil of the cone K by M(x) =∑n
j=1 Mjxj, i.e. K = {x ∈ Rn : M(x) ⪰ 0}. For the notion of the usual stability, K
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is the positive orthant and thus, we may express K as the positive semi-definiteness
region of the linear matrix pencil given by

M≥0(x) =
n∑

j=1

M≥0
j xj

with M≥0
j = Ejj, where Eij is the matrix with a one in position (i, j) and zeros

elsewhere.
In the case of psd-stability, K is the cone of positive semi-definite matrices and can

be expressed as a spectrahedron quite naturally by using the linear matrix pencil

Mpsd(X) =
n∑

i,j=1

Mpsd
ij xij

with symmetric matrix variables X = (xij) and Mpsd
ij = 1

2
(Eij + Eji), i.e., M

psd(X) is

the matrix pencil Mpsd(X) = (xij)ij in the symmetric matrix variables xij.
Now, we finally state our main result:

Theorem 6.8. [36, Theorem 4.3] Let f = det(A0+
∑n

j=1Ajzj) with Hermitian matrices

A0, . . . , An be a degree d determinantal polynomial of the form (3) such that in(f) is
irreducible and there exists e ∈ Rn with

∑n
j=1 Ajej ≻ 0. Let M(x) =

∑n
j=1Mjxj with

symmetric l× l-matrices be the pencil of the cone K. If there exists a Hermitian block
matrix C = (Cij)

l
i,j=1 with blocks Cij of size d× d and

(7) C = (Cij)
l
i,j=1 ⪰ 0, ∀p = 1, . . . , n : σAp =

l∑

i,j=1

(Mp)ijCij

for some σ ∈ {−1, 1}, then f is K-stable. Deciding whether such a block matrix C
exists is a semi-definite feasibility problem.

For the proof it suffices to note that in(f) is hyperbolic and thus, it is sufficient to
show that K lies in the closure of one of its hyperbolicity cones which are given by
the positive semi-definiteness regions of Ah

+(x) =
∑n

j=1Ajxj ≻ 0 as well as Ah
−(x) =∑n

j=1 Ajxj ≺ 0. Finally, the claim follows by applying the Khatri-Rao product. We

have Ah
+(x) =

∑l
i,j=1(M(x))ijCij. Since M(x) and C are positive semi-definite, this

holds for their Khatri-Rao product

M(x) ∗ C := ((M(x))ij ⊗ Cij)
l
i,j=1 = ((M(x))ijCij)

l
i,j=1

due to Liu [74]. Altogether, since

Ah(x) = (I · · · I)(M(x) ∗ C)



I
...
I


 ,

Ah(x) is positive semi-definite as well. Thus, every x ∈ K also belongs to I(f)c and
the K-stability of f is certified. The argument for Ah

− is analogous.
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In the case of stable polynomials, Theorem 6.8 gives a new proof to Theorem 2.16
as the non-diagonal blocks of C vanish and thus, condition (7) specializes to Ap = Cpp

for all p = 1, . . . , n. Thus, stability is certified if A1, ..., An are positive semi-definite.
Note that Theorem 6.8 is not a necessary criterion as may be seen by the following

adapted example from [51, Example 3.1, 3.4] and [64, Section 6.1]. Consider the
polynomial

f = det

(
z1 + z3 z2

z2 −z1 + z3

)
= z23 − z21 − z22

whose underlying matrix pencil is also one of the matrix pencils defining the Lorentz
cone. As such a polynomial its obviously stable with respect to the Lorentz cone but
this can not be certified by Theorem 6.8.

In order to treat quadratic polynomials as well, we need the linear matrix pencil we
derived for f(z) = zTAz in the proof of Theorem 6.4, which is given by

(8) F (z) :=
n∑

p=1

Fpx
p :=




(Tz)1

(Tz)nI
...

(Tz)n−1

(Tz)1 · · · (Tz)n−1 (Tz)n


 ≻ 0 ,

where T is as in that proof. Now, we may state our second main result for quadratic
polynomials.

Theorem 6.9. [36, Theorem 4.7] Let n ≥ 3 and f be a quadratic polynomial of the
form (4), let f be of type (II) with A having signature (n− 1, 1) and in(f) be irreducible.
Let M(z) be a matrix pencil for the cone K, and let T and F (z) :=

∑n
p=1 Fpz

p be defined

as in (8) w.r.t. in(f). If there exists a block matrix C = (Cij)
l
i=1 with blocks Cij of size

d× d and

(9) C = (Cij)
l
i,j=1 ⪰ 0, ∀p = 1, . . . , n : σFp =

l∑

i,j=1

(Mp)ijCij

for some σ ∈ {−1, 1}, then f is K-stable. Deciding whether such a block matrix C
exists is a semi-definite feasibility problem.

The proof is similar to the proof of Theorem 6.8 and also involves the application
of the Khatri-Rao product in the same manner. This technique may also be used to
directly derive determinantal descriptions for the initial forms of quadratic polynomials
which satisfy (9) (see [36, Theorem 4.8 and Corollary 4.9]).

The previously stated criteria do not capture allK-stable determinantal or quadratic
polynomials and thus, we derived another criterion which applies to scaled versions of
the cone in order to extend the range of captured polynomials. The key idea behind
this approach is that if I(f)c ∩K ̸= ∅, then there should be a scaled version of K such
that this scaled version is contained in I(f)c. To actually find this scaled version, we
intersect the cone K with a hyperplane H which does not pass the origin. The contain-
ment then follows due to the existence of a Choi-matrix for the semi-definite program
which constitutes a scaled version of (6) and is based on the determinantal representa-
tions of the intersections between the underlying spectrahedra and the hyperplane H.
This is formalized as follows:



36

Proposition 6.10. [64, Proposition 6.2] Let A(x) and B(x) be monic linear matrix
pencils of size k × k and l × l, respectively, and such that SA := {x ∈ Rn : A(x) ⪰ 0}
is bounded. Then there exists a constant ν > 0 such that for the scaled spectrahedron
νSA the inclusion νSA ⊆ SB is certified by the system

C = (Cij)
k
i,j=1 ⪰ 0, ∀p = 1, . . . , n : Bp =

k∑

i,j=1

(1
ν
Ap

)
ij
Cij.

This led to the following scaled version of our Theorem. Here, we assume for nota-
tional convenience that the cutting hyperplane is H = {x ∈ Rn : x1 = 1} and M1 = In.
Due to this, we have that the first unit vector e1 lies in the interior of K.

Theorem 6.11. [36, Theorem 5.2] Let f ∈ R[z] and M(z) =
∑n

j=1 Mjzj with symmet-

ric matrices of size l × l and assume that K ∩H is bounded. Let N(z) be the matrix
pencil of a spectrahedral, conic set contained in cl(I(f)c), and assume that N1 = In as
well.

Then there exists a constant ν > 0 such that fν(z1, . . . , zn) := f(z1, νz2, . . . , νzn) is
K-stable and such that the K-stability of fν is certified by the system

C = (Cij)
l
i,j=1 ⪰ 0, ∀p = 1, . . . , n : νNp =

l∑

i,j=1

(Mp)ij Cij,

where the variable matrix C is a block matrix with l × l blocks.
As a consequence, f is K̂-stable with respect to K̂ = cone({1} × ν(K ∩H)), where

the multiplication of ν with the set K∩H is done in the (n−1)-dimensional space with
variables z′ = (z2, . . . , zn) and cone(·) denotes the conic hull.

The proof is written in a manner similar to the proofs of Theorem 6.8 and Theo-
rem 6.9 and additionally relies onto Proposition 6.10.

Note that Theorem 6.11 may be used in both directions. We may either scale the
cone K such that K fits into a component of the imaginary projection’s complement
or we may scale f such that a unbounded component of the imaginary projection’s
complement of our scaled version of f contains K. Thus, we either certify K ′-stability
for f for a scaled cone K ′ or K-stability for fν , the scaled version of f .

6.4. Conclusion. In this section we considered sufficient criteria in order to certify
K-stability of a given polynomial f ∈ C[z]. Our methods were applied on determinan-
tal and quadratic polynomials as well as scaled versions of either cones or polynomials.
Having a spectrahedral cone as a component of the complement of the imaginary pro-
jection was an essential precondition for all of these cases. Thus, it would be interesting
to determine further classes of polynomials which also satisfy this precondition in or-
der to apply similar techniques to certify their K-stability. Developing our main result
towards necessity would also pose an interesting research topic as it would give rise to
a characterization of K-stable polynomials that has yet not been established in such
generality.

7. Author’s contribution

This thesis is based on the articles [32, 36, 42] and the author’s contributions to
these articles are stated in this section.
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• Combinatorics and preservation of conically stable polynomials,
co-written with G. Codenotti and T. Theobald,
submitted and currently under review,
conference-version was accepted for DMD 2022,
preprint available at arXiv: 2206.10913

The general notation and setup of the article was developed jointly. The author con-
tributed to the preservation of stability when going over to initial forms (Theorem 4.12
and Theorem 4.13) largely. Section 3 and 4 were mainly developed with T. Theobald.
Theorem 5.1 was developed by G. Codenotti primarily. The results regarding binomi-
als and non-mixed polynomials including Theorem 5.5 were joint work of the authors.
The notion and the results concerning polynomials of determinants were developed
together by all authors. This includes Theorem 5.11. Conjecture 5.13 as well as the
evidence given for the conjecture was developed jointly.

• Imaginary projections: Complex versus real coefficients,
co-written with M. Sayyary and T. Theobald,
submitted and currently under review,
preprint available at arXiv: 2107.08841

The work was initiated by T. Theobald and the author to answer open questions that
emerged after supervising a master student’s thesis. Based on jointly developed initial
steps, T. Theobald provided the general setup to study the imaginary projections of
polynomials distinguished by their initial forms having a hyperbolic initial form or not.
The author contributed some group theoretical aspects to this setup. Theorem 3.4 was
developed by M. Sayyary primarily. Section 4.1 was joint work of the authors while
Section 4.2 was joint work of M. Sayyary and T. Theobald. The author contributed to
the main classification Theorem (see Theorem 5.1 and Theorem 5.5) by working out
the formal derivation of this theorem together with the other authors. Section 5 and
6 were joint work of the authors as well. Theorem 7.1 was developed by M. Sayyary
primarily.

• Conic stability of polynomials and positive maps,
co-written with P. Dey and T.Theobald,
published in:
Journal of Pure and Applied Algebra 225(7):106610 (2021)

This work was initiated by T. Theobald and the author and then developed into a
slightly different direction under the influence of P. Dey. The author contributed to
Theorem 3.4 and Theorem 3.6 by carrying out the technical calculations. T. Theobald
delivered the initial idea behind the Theorems 4.3 and 4.8, which then were developed
by all authors together. The author contributed to the idea behind Theorem 5.2 and
derived example 5.3. The authors jointly worked out the formal derivation of the
theorems and their proofs.

8. Deutsche Zusammenfassung

8.1. Einführung. Bereits im 18. Jahrhundert haben Newton [85] und Maclaurin [75]
erste Beziehungen zwischen den Nullstellen sowie Koeffizienten von Polynomen und
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kombinatorischen Objekten festgestellt. In unserer modernen mathematischen Sprache
würden wir diesen Zusammenhang wie folgt ausdrücken. Wir nennen eine Folge A =
a0, . . . an log-konkav, falls a2i ≥ ai−1 · ai+1 für alle i ∈ [n − 1] gilt. Die bekannteste
log-konkave Folge ist mit

(
n
0

)
, . . . ,

(
n
n

)
durch die n-te Zeile des Pascal’schen Dreiecks

gegeben.
Newton [85] hat bewiesen, dass die Koeffizienten a0, . . . , an eines Polynoms f =∑n
j=0 ajx

j eine log-konkave Folge bilden, falls alle Nullstellen von f reell und die Ko-
effizienten von f nicht-negativ sind. Auch heute ist die Fragestellung nach der Lage
der Nullstellen äußerst präsent in der Kombinatorik, da insbesondere im Kontext von
Graphen Polynome auftreten, deren Nullstellen entweder reell sind oder die Lage der
Nullstellen bestimmte Eigenschaften des assoziierten Graphen implizieren. Allerdings
sind die Auswirkungen der Lage der Nullstellen von Polynomen nicht auf die Kom-
binatorik oder die dort auftretenden Graphen beschränkt. Alleine dadurch, dass das
charakteristische Polynom det(xIn − A) einer symmetrischen oder hermiteschen Ma-
trix A nur reelle Nullstellen hat, existieren weitere Verbindungen zu Systemen von
Differentialgleichungen erster Ordnung [102], multivariater Analysis [58], dynamischen
Systemen [97] sowie der Statistik und dem Maschinellen Lernen [11].

Oftmals sind die Zusammenhänge zwischen Polynomen und anderen Gebieten keine
Äquivalenzen, sondern lediglich Implikationen. Dies trifft auch auf den Zusammenhang
zwischen Polynomen mit reellen Nullstellen und log-konkaven Folgen zu. Beispielsweise
ist die Folge der Koeffizienten von f(x) = x2 + x + 1 log-konkav, aber f hat keine
reelle Nullstelle. Aus diesem Grund wurden in den letzten Jahren und Jahrzehnten
verschiedene Verallgemeinerungen von Polynomen mit reellen Nullstellen untersucht.
Der Fokus dieser Doktorarbeit liegt auf der konischen Stabilität, die wiederum eine
Verallgemeinerung des folgenden Stabilitätsbegriffes darstellt.

Es sei H = {z ∈ C : Im(z) > 0} die obere offene Halbebene der komplexen
Zahlenebene. Wir nennen ein multivariates Polynom mit komplexen Koeffizienten
f ∈ C[z] = C[z1, . . . zn] stabil, falls f(z) ̸= 0 für alle z ∈ Cn mit z ∈ Hn. Mit an-
deren Worten, wir nennen f stabil, falls die Imaginärteile aller Nullstellen außerhalb
des positiven Orthanten liegen. Da Hn ∩Rn = ∅, ist jedes Polynom, dessen Nullstellen
reell sind, auch stabil. Der Stabilitätsbegriff für Polynome wurde bereits ausgiebig
untersucht [20, 31, 104]. Eine zentrale Rolle bei diesen Untersuchungen haben die sta-
bilitätserhaltenden Operatoren eingenommen. Dabei handelt es sich um Operatoren,
die, wenn sie auf ein stabilies Polynom f angewandt werden, wieder ein stabiles Poly-
nom liefern. Folgende stabilitätserhaltende Operatoren aus [104] bilden die Grundlage
für viele weitere Resulte im Bezug auf stabile Polynome.

Proposition 8.1. [104, Lemma 2.4] f ∈ C[z] sei stabil.
a) Permutation: f(zσ(1), . . . , zσ(n)) ist stabil für jede Permutation σ : [n] → [n].
b) Skalierung: c · f(a1z1, . . . , anzn) ist stabil oder identisch 0 für c ∈ C sowie a ∈ Rn

>0.
c) Diagonalisierung: f(z)

zj=zi
∈ C[z1, . . . , zj−1, zj+1, . . . , zn] ist stabil oder identisch 0

für alle i, j ∈ [n].
d) Spezialisierung: f(b, z2, . . . , zn) ∈ C[z2, . . . , zn] ist stabil oder identisch 0 für alle
b ∈ C mit Im(b) ≥ 0.

e) Invertierung: z
deg1(f)
1 · f(−z−1

1 , z2, . . . , zn) ist stabil.
f) Differentiation: ∂jf(z) ist stabil oder identisch 0 für alle j ∈ [n].
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Basierend auf diesen stabilitätserhaltenden Operatoren gelang Brändén [20] der
Beweis faszinierender kombinatorischer Resultate für stabile Polynome. Um diese
formal auszudrücken, brauchen wir die folgenden Definitionen. Für α, β ∈ Zn sei
St(α, β) = {σ ∈ Zn : |σ| = 1, |α + σ − β| = |α − β| − 1} die Menge der Schritte
von α in Richtung β. Ferner nennen wir F ⊆ Zn ein Sprungsystem, falls für alle
α, β ∈ F und σ ∈ St(α, β) entweder α + σ ∈ F gilt oder ein τ ∈ St(α + σ, β) ex-
istiert, sodass α + σ + τ ∈ F gilt. F kann also nur ein Sprungsystem sein, wenn
die ganzzahligen Punkte in F ausreichend nah beieinander liegen. Für ein Polynom
f =

∑
α cαz

α ∈ C[z] nennen wir supp(f) = {α ∈ Zn : cα ̸= 0} den Support von f . Das
von Brändén bewiesene Resultat lautet nun wie folgt:

Theorem 8.2. [20, Theorem 3.2] f ∈ C[z] sei stabil. Dann bildet supp(f) ein Sprungsys-
tem.

Die Exponentenvektoren der in einem Polynom f ∈ C[z] auftretenden Monome
müssen also ausreichend nah beieinander liegen, damit es überhaupt stabil sein kann.
Theorem 8.2 liefert somit ein kombinatorisches notwendiges Kriterium für die Stabilität
von Polynomen, das sich vergleichweise einfach überprüfen lässt. Im Spezialfall, dass
f nicht nur stabil, sondern auch multi-affin und homogen ist, bildet der Support von f
die Menge der Basen eines Matroiden. Somit hat Brändèn einen äußerst interessanten
Zusammenhang zwischen Polynomen und kombinatorischen Objekten gezeigt.

Weitere stabilitätserhaltende Operatoren, die teilweise ebenfalls eine kombinatorische
Bedeutung haben, sind durch das Lieb-Sokal-Lemma [73] oder den Übergang zu Ini-
tialformen bezüglich linearer Funktionale w ∈ (Rn)∗ \ {0} [32, 96] gegeben. Ferner
ist es Borcea und Brändén gelungen, eine Charakterisierung aller linearen Operatoren
anzugeben, die die Stabilität von Polynomen erhalten [16, 104].

In dieser Arbeit liegt der Fokus nun auf der konischen Stabilität, die den Sta-
bilitätsbegriff verallgemeinert.

Definition 8.3. K ⊆ Rn sei ein abgeschlossener und konvexer Kegel. Ein Polynom
f ∈ C[z] heißt K-stabil, falls f(z) ̸= 0 für alle z ∈ Cn mit Im(z) ∈ relintK, dem
relativen Inneren von K, gilt.

Die Imaginärteile der Nullstellen eines K-stabilen Polynoms f dürfen also nicht im
relativen Inneren des KegelsK liegen. FürK = Rn

≥0 kommen wir wieder zum normalen
Stabilitätsbegriff zurück. Die Stabilität eines Polynoms f ist also ein Spezialfall der
konischen Stabilität. Auch wenn K nicht der positive Orthant ist, lassen sich Bezüge
zur Stabilität herstellen. Jörgens und Theobald haben in [60] gezeigt, dass ein Polynom
f ∈ C[z] genau dannK-stabil ist, wenn das univariate Polynom t 7→ f(x+ty) stabil für
alle x,y ∈ Rn mit y ∈ relintK ist. Ein besonderes Augenmerk liegt auf dem weiteren
Spezialfall des Kegels der positiv semi-definiten Matrizen S+

n . Wir nennen f ∈ C[Z],
ein Polynom in symmetischen Matrixvariablen, psd-stabil (stabil bezüglich des Kegels
der positiv semi-definiten Matrizen), falls f(M) ̸= 0 für alle positiv definiten Matrizen
M gilt.

In [62] haben Jörgens, Theobald und de Wolff den Begriff der Imaginärprojektion
eingeführt und entwickelt. Diese eröffnet uns eine geometrische Perspektive auf die
konische Stabilität, indem die Frage der K-Stabilität, die eigentlich eine Fragestel-
lung innerhalb eines komplexen Vektorraums darstellt, auf einen reellen Vektorraum



40

projeziert wird. Für ein komplexes Polynom f ∈ C[z] mit der Varietät V(f) =
{z ∈ Cn : f(z) = 0} ist I(f), die Imaginärprojektion von f , durch die Projektion von
V(f) auf ihren Imaginärteil gegeben, d.h. I(f) = {y ∈ Rn : ∃x ∈ Rn s.t. x + iy ∈
V(f)}. Die Imaginärprojektion eines Polynoms f ermöglicht nicht nur eine alterna-
tive Betrachtungsmöglichkeit für die konische Stabilität, sondern stellt weitere Zusam-
menhänge zu Klassen von Polynomen her, die mit der Frage nach reellen Nullstellen
verwandt sind.

Eine solche Klasse ist durch hyperbolische Polynome gegeben. Ein homogenes Poly-
nom f ∈ R[z] heißt hyperbolisch bezüglich e ∈ Rn, falls f(e) ̸= 0 und das univariate
Polynom t 7→ f(x + te) für alle x ∈ Rn nur reelle Nullstellen hat. Für diese Klassen
von Polynomen und deren Imaginärprojektionen haben Jörgens und Theobald folgen-
den Zusammenhang gezeigt.

Theorem 8.4. [60, Theorem 3.5] Es sei f ∈ C[z] homogen. Dann sind äquivalent

(1) f ist K-stabil.
(2) I(f) ∩ relintK = ∅.
(3) f ist hyperbolisch bezüglich e für alle e ∈ relintK.

Dieser Zusammenhang gewinnt an zusätzlicher Bedeutung, wenn wir berücksichtigen,
dass hyperbolische Polynome ebenfalls kegelartigen Strukturen unterliegen. Für ein
Polynom f ∈ C[z], das hyperbolisch bezüglich e ∈ Rn ist, ist C(e) = {x ∈ Rn :
f(x + te) = 0 ⇒ t < 0} der Hyperbolizitätskegel von f bezüglich e. Ferner ist
f hyperbolisch bezüglich e′ für alle e′ ∈ C(e). Die Verbindung zwischen Hyper-
bolizitätskegeln eines hyperbolischen Polynoms und dessen Imaginärprojektion lässt
sich wie folgt ausdrücken.

Theorem 8.5. [61, Theorem 1.1] Es sei f ∈ R[z] homogen. Dann stehen die Hyper-
bolizitätskegel von f in Bijektion zu den Komponenten des Komplements von I(f).

Durch Theorem 8.5 konnten Jörgens und Theobald obere Schranken für die An-
zahl an Komponenten im Komplement der Imaginärprojektion homogener Polynome
herleiten. Zudem werden hierdurch weitere Verbindungen der konischen Stabilität
zur konvexen Geometrie eröffnet. Dies gilt insbesondere auch für Zusammenhänge
zu der verallgemeinerten Lax-Vermutung, die besagt, dass jeder Hyperbolizitätskegel
ein Spektraeder ist. Hierbei handelt es sich bei S ⊆ Rn um einen Spektraeder, falls
symmetrische Matrizen A0, . . . An existieren, sodass S eine Darstellung der Form

S = {x ∈ Rn : A0 + A1x1 + . . . Anxn ⪰ 0}
besitzt.

Durch die Zusammenhänge zwischen konischer Stabilität und der Imaginärprojektion,
wie in Theorem 8.4 beschrieben, wird auch die Untersuchung der Imaginärprojektion als
eigenständiger Forschungsgegenstand motiviert. Die Imaginärprojektionen gewinnen
durch andere konvexe Phänomene, die in der algebraischen Geometrie auftreten, weiter
an Relevanz in der mathematischen Forschung. Hier wurden bereits Amoeben sowie co-
Amoeben untersucht, bei denen es sich ebenfalls um Bilder von Varietäten komplexer
Polynome handelt. Genau wie bei der Imaginärprojektion bestehen ihre Komplemente
aus endlichen vielen konvexen Komponenten. Jörgens, Theobald und de Wolff haben
gezeigt, dass sich die Topologie der Imaginärprojektion eines Polynoms f ∈ C[z] unter



41

der Operation der Gruppe Gn := Cn⋊GLn(R) nicht verändert. Die Gruppe Gn besteht
hierbei aus der Zusammensetzung der reellen invertierbaren Transformationen GLn(R)
sowie komplexen Translationen Cn. Basierend darauf haben Jörgens, Theobald und de
Wolff zunächst die Imaginärprojektionen von reellen Kegelschnitten klassifiziert und
ihre Ergebnisse dann auf den allgemeinen Fall von reellen quadratischen Polynomen in
n Variablen verallgemeinert.

8.2. Ergebnisse. Im Folgenden gehen wir stets davon aus, dass K ein abgeschlossener
und konvexer Kegel ist.

8.2.1. Combinatorics and preservation of conically stable polynomials. Dieser Artikel
[32] wurde gemeinsam mit G. Codenotti und T. Theobald verfasst. Ziel dieser Arbeit ist
es, kombinatorische Eigenschaften sowie stabilitätserhaltende Operatoren für den Fall
konischer Stabilität zu erforschen. Die Resultate in Proposition 8.1 sowie Theorem 8.2
können als Augangspunkt für diese Untersuchung betrachtet werden.

Für ein Polynom f ∈ C[z] ist die Initialform von f =
∑

α cαz
α bezüglich w ∈

(Rn)∗ durch die Monome gegeben, deren Exponentenvektor α das Skalarprodukt mit
w maximiert. Formal ist die Initialform inw(f) durch

(10) inw(f) =
∑

α∈Sw

cαz
α, mit Sw = {α ∈ supp(f) : ⟨w, α⟩ = max

β∈supp(f)
⟨w, β⟩}

gegeben. Unser erstes Resultat besagt, dass der Übergang zur Initialform die Stabilität
eines Polynoms erhält.

Theorem 8.6. [32, Theorem 2.5] Es sei f ∈ C[z] stabil und w ∈ (Rn)∗ \ {0}. Dann
ist inw(f) stabil.

Damit verallgemeinern wir ein Resultat von Rincón, Vinzant und Yu, das die gleiche
Aussage für den Fall von Polynomen, die entweder reell oder homogen sind, getroffen
hat. Ferner können wir die Aussage auf psd-stabile Polynome erweitern, wenn wir uns
dabei auf reelle positiv-definite Matrizen einschränken. Für die Definition der Initial-
form inW (f) eines Polynoms f ∈ C[Z] ersetzen wir w ∈ (Rn)∗ sowie das Skalarprodukt
in (10) durch W ∈ (Sn)

∗ sowie das Frobeniusprodukt. Damit können wir das zweite
Hauptresultat zu Initialformen wie folgt formulieren:

Theorem 8.7. [32, Theorem 4.10] f ∈ C[Z] sei psd-stabil und W ∈ Sn positiv definit.
Dann ist inW (f) psd-stabil.

Für den Beweis der Aussage verwenden wir das Hadamard-Produkt, das für Matrizen
A,B durch A ◦B mit (A ◦B)ij = aij · bij definiert ist, da dieses die positive Definitheit
seiner Argumente erhält. Dadurch konstruieren wir eine Folge psd-stabiler Polynome,
die gegen die Intialform inW (f) konvergiert und somit folgt die Aussage letztlich durch
das Theorem von Hurwitz.

Leider lässt sich diese Eigenschaft nicht in voller Breite auf den Fall der psd-Stabilität
erweitern wie ein Gegenspiel (siehe Example 4.8 in [32]) zeigt. Die beiden folgenden
stabilitätserhaltenden Operatoren können jedoch auf den allgemeinen Fall konischer
Stabilität erweitert werden. Beide Operatoren basieren auf Richtungsableitungen. Für
ein Polynom f ∈ C[z] und eine Richtung v ∈ Rn, heißt ρv(f) der Grad von f in Rich-
tung v und ist für ein generisches w ∈ Rn durch den Grad des univariaten Polynoms
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f(w+vt) ∈ C[t] gegeben. Dann erhalten die beiden folgenden Operatoren die konische
Stabilität eines Polynoms f ∈ C[z].

Lemma 8.8. [32, Lemma 3.1] f ∈ C[z] sei K-stabil und v ∈ K. Dann ist ∂vf K-stabil
oder identisch 0.

Theorem 8.9. [32, Theorem 3.4] Es sei K ′ = K ×R≥0 und g(z) + yf(z) ∈ C[z, y] sei
K ′-stabil sowie v ∈ K mit ρv(f) ≤ 1. Dann ist g − ∂vf K-stabil oder identisch 0.

Beide Operatoren verallgemeinern nicht nur ihr Pendant für stabile Polynome, d.h.
partielle Ableitungen bzw. das Lieb-Sokal-Lemma auf den Fall von konischer Sta-
bilität, sondern erweitern das Spektrum bekannter Operatoren, die die Stabilität von
Polynomen erhalten.

Für den den Fall von psd-stabilen Polynomen konnten wir zeigen, dass die nachste-
henden Operatoren die psd-Stabilität eines Polynoms erhalten.

Theorem 8.10. [32, Lemma 4.1 und Theorem 4.3] f ∈ C[Z] sei psd-stabil.

a) Diagonalisierung: Die Einschränkung von Z auf die diagonalen Variablen,
Z 7→ fDiag(Z), ist psd-stabil.

b) Transformation: Es sei S ∈ GLn(R), dann sind f(SZS−1) sowie f(SZST )
psd-stabil.

c) Minorisierung: Für J ⊆ [n] sei ZJ die symmetrische |J | × |J | Untermatrix
von Z mit Indexmenge J . f(ZJ) sei das Polynom, das aus f(Z) entsteht, indem
alle Variablen, die mindestens einen Index aus [n] \ J enthalten, auf 0 gesetzt
werden. Dann ist f(ZJ) als Polynom über SC

|J | psd-stabil oder identisch 0.

d) Spezialisierung: Für einen festen Index i ∈ [n], sei Ẑi die Matrix, die aus Z
entsteht, indem den Variablen zij, zji für i ̸= j reelle Werte sowie der Variablen

zii Werte aus H zugewiesen werden. Dann ist f(Ẑi), betrachtet als Polynom
über SC

n−1, psd-stabil oder identisch 0.

e) Reduktion: Für i, j ∈ [n] sei Z̄ij die Matrix, die aus Z entsteht, wenn zik, zki
für k ̸= i auf reelle Werte sowie zii auf zjj gesetzt werden. Dann ist f(Z̄ij),
betrachtet als Polynom über SC

n−1, psd-stabil oder identisch 0.

f) Permutation: π : [n] → [n] sei eine Permutation über [n]. Dann ist das
Polynom f((Zπ(j),π(k))1≤j,k≤n) psd-stabil.

g) Differentiation: Für V ∈ S+
n ist ∂V f(Z) psd-stabil oder identisch 0.

h) Invertierung: Dann ist das Polynom det(Z)deg(f) · f(−Z−1) psd-stabil.

Insbesondere die Resultate aus Theorem 8.10 a) sowie Theorem 8.10 g) sind im
Folgenden wichtig, um strukturelle Eigenschaften psd-stabiler Polynome zu zeigen.
Theorem 8.10 a) nimmt eine besondere Bedeutung ein, da fDiag(Z) für ein psd-stabiles
Polynom f auch stabil in den Variablen z11, . . . , znn ist und somit eine Brücke zwischen
Stabilitäten bezüglich verschiedener Kegel darstellt.

Unser allgemeinstes strukturelles Resultat ist das folgende Struktur-Theorem für
psd-stabile Polynome.
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Theorem 8.11. [32, Theorem 5.1] f ∈ C[Z] sei psd-stabil und zij für i < j eine Vari-
able, die in f auftaucht. Dann müssen auch die entsprechenden diagonalen Variablen
zii und zjj in f auftauchen.

Mithilfe des Struktur-Theorems sowie Theorem 8.10 a) und g) konnten wir alle psd-
stabilen Binome klassifizieren. Hierbei nennen wir ein Monom Zα diagonal, falls nur
diagonale Variablen in Zα auftreten und wir nennen ein Monom Zβ nicht-diagonal,
falls keine diagonalen Variablen in Zβ auftreten.

Theorem 8.12. [32, Theorem 5.5] Jedes psd-stabile Binom f ∈ C[Z] hat eine der
folgenden Formen:

a) f besteht nur aus diagonalen Variablen und ist von der Form f(Z) = Zγ(c1Z
α1+

c2Z
α2) mit |α1−α2| ≤ 2, wobei mindestens einer der Exponentenvektoren α1, α2

verschieden von 0 sein muss,
b) f(Z) = Zγ(c1ziizjj + c2z

2
ij) mit i < j sowie c1

c2
∈ R,

wobei c1, c2 ̸= 0 gilt und Zγ ein diagonales Monom ist.

Theorem 8.12 zeigt, dass psd-stabile Binome entweder ohnehin schon stabil sind
(Fall a)) oder, falls nicht-diagonale Variablen zij, i < j auftreten, dann in nur sehr
eingeschränkter Form (Fall b)). Ein psd-stabiles Binom kann höchstens eine nicht-
diagonale Variable enthalten. Diese tritt nur bei homogenen Binomen und auch dann
immer nur im Grad von exakt 2 auf.

Neben Binomen haben wir mit Polynomen von Determinanten eine weitere inter-
essante Klasse psd-stabiler Polynome erforscht. Ein Polynom f heißt Polynom von
Determinanten, falls Z die Gestalt einer diagonalen Blockmatrix mit den Blöcken
Z1, . . . , Zk hat und f von der Form f(Z) =

∑
α cα det(Z)

α ist. Genauso wie bei vek-
torwertigen stabilen Polynomen, bilden auch die Exponentenvektoren eines Polynoms
von Determinanten ein Sprungsystem [32, Corollary 5.10]. Wir sagen, ein Polynom von
Determinanten f ist in Standardform, falls das größtmöglichste Determinantenmonom
faktorisiert wurde. Für ein psd-stabiles Polynom von Determinanten in Standardform
sind die Größen, die die Blöcke von Z aufweisen dürfen, beschränkt, wie in folgendem
Theorem beschrieben:

Theorem 8.13. [32, Theorem 5.11] Es sei f(Z1, . . . , Zk) = det(Z)γ
∑

β∈B cβ det(Z)
β =

det(Z)γ f̃(Z) ein psd-stabiles Polynom von Determinanten in Standardform. Dann hat
jeder auftretende Block, d.h. jeder Block Zi für den es ein β mit βi > 0 gibt, eine Größe
von di ≤ 2. Für jeden Block Zi, der tatsächlich Größe 2 hat, sei Ci = maxβ∈B βi. Für
β ∈ B ist dann auch β + cei ∈ B für alle −βi ≤ c ≤ Ci − βi.

Inspiriert durch die Sprungsystemeigenschaft von stabilen Polyonmen, haben wir fol-
gende Notation von Transpositionsschritten entworfen. Analog zu linearen einfachen
oder doppelten Sprüngen, die auch als Multiplikation eines Monoms Zα mit Variablen
z±1
ij bzw. z±1

ij z±1
kl interpretiert werden können, ist ein Transpositionsschritt auch durch

die Multiplikation eines Monoms mit Variablen gegeben. Konkret nennen wir die
Multiplikation eines Monoms Zα mit zijzklz

−1
ik z−1

jl für die Indizes i, j, k, l ∈ [n] einen
Transpositionsschritt. Wir konnten zeigen, dass für f(Z) = det(Z), die Determinante
symmetrischer Matrixvariablen, gilt, dass alle ihre Monome durch Transpositionss-
chritte verbunden sind [32, Lemma 5.12]. Kombinieren wir die vorigen Resultate mit



44

der Tatsache, dass diagonale Monome psd-stabiler Polynome wegen Theorem 8.10 a)
durch ein Sprungsystem verbunden sind, ergibt sich die Vermutung, dass allgemeine
psd-stabile Polynome ebenfalls einer kombinatorischen Struktur unterliegen müssen,
die wir wie folgt formalisiert haben:

Vermutung 8.14. [32, Conjecture 5.13] Für jedes Monom Zβ eines psd-stabilen Poly-
noms f existiert ein diagonales Monom Zα in f , sodass Zα von Zβ durch die Anwen-
dung einer Folge von einfachen und doppelten linearen sowie Transpositionsschritten
erreicht werden kann und die Anwendung jedes einzelnen Schrittes die Distanz zum
Zielmonom Zα verringert und stets zu einem anderen Monom führt, dessen Exponen-
tenmatrix im Support von f liegt.

Als Grundlage für diese Vermutung haben wir diese für alle uns bekannten Klassen
psd-stabiler Polynome bewiesen. Dies beinhaltet Determinanten, Binome, ungemischte
Polynome, die als eine Verallgemeinerung von Binomen betrachtet werden können,
Polynome von Determinanten und lpm-Polynome, die kürzlich von Blekherman et. al.
[14] entworfen wurden.

8.2.2. Imaginary projections: Complex versus real coefficients. Dieser Artikel [42] wurde
gemeinsam mit M. Sayyary und T. Theobald verfasst. Die Arbeit wurde durch [62]
inspiriert. In [62] haben Jörgens, Theobald und de Wolff die Imaginärprojektionen
reeller Polynome untersucht und eine vollständige Beschreibung der Imaginärprojektion
für den Fall quadratischer Polynome mit reellen Koeffizienten angegeben. Wir haben
diese Resultate nun auf den komplexen Fall verallgemeinert. Hierbei treten bereits im
quadratischen Fall interessante Phänomene auf, die im Fall von reellen quadratischen
Polynomen nicht auftreten.

In dieser Arbeit haben wir zunächst eine eigene Klassifikation komplexer Kegelschnit-
te, d.h. quadratischer Polynome in C[z1, z2], entwickelt, da bekannte Klassifikationen
wie die von Newstead [84] nicht mit der Operation der Gruppe Gn = Cn⋊GLn(R), die
die Topologie der Imaginärprojektion eines Polynoms erhält, vereinbar sind. Die von
uns entwickelte Klassifikation unterscheidet die Kegelschnitte danach, ob ihre Initial-
form hyperbolisch ist oder nicht, und teilt die Polynome dann gemäß der Nullstellen
ihrer Initialform wie folgt ein:

Hyperbolische Initialform

(1a) Doppelte Nullstelle in R
(1b) 2 verschiedene Nullstellen in R

Nicht-hyperbolische Initialform

(2a) Doppelte Nullstelle in C \ R
(2b) Jeweils eine Nullstelle in R und C\R
(2c) Zwei verschiedene Nullstellen in C\R

Um für diese Klassen von Kegelschnitten die Imaginärprojektion zu berechnen,
haben wir die Operation der Gruppe G2 zur Bestimmung der Normalformen genutzt,
für die wir dann die Imaginärprojektion bestimmt haben. Die Imaginärprojektion eines
allgemeinen Kegelschnittes ergibt sich dann aus der Imaginärprojektion der jeweiligen
Normalform unter der Operation von G2. Da die reelle Dimension der Menge der
komplexen Kegelschnitte 10 beträgt und die der Gruppe G2 lediglich 8, erhalten wir
unendlich viele Orbits von komplexen Kegelschnitten unter der Operation von G2.
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Theorem 8.15 (Klassifizierung der Normalformen). [42, Theorem 5.5] Unter der
Operation der Gruppe G2 existieren unendlich viele Orbits komplexer Kegel- schnitte
mit den folgenden Normalformen als Representanten.

(1a)
(1a.1) f = z21 + γ

(1a.2) f = z21 + γz2

(1b) f = z1z2 + γ

(2a)
(2a.1) f = (z1 − iz2)

2 + γ

(2a.2) f = (z1 − iz2)
2 + γz2

(2b) f = z2(z1 − αz2) + γ

(2c)
(2c.1) f = z21 + z22 + γ

(2c.2) f = (z1 − iz2)(z1 − αz2) + γ

Um eine Überlappung der Klassen zu vermeiden, setzen wir γ ̸= 0 in (1a.2) und (2a.2),
α /∈ R in (2b) und (2c.2), sowie α ̸= ±i in (2c.2) voraus.

Durch die Untersuchung der Normalformen aus Theorem 8.15 konnten wir folgende
topologische Resultate für die Imaginärprojektionen von komplexen Kegelschnitten
gewinnen.

Theorem 8.16 (Topologische Klassifizierung). [42, Theorem 5.1]
f ∈ C[z1, z2] sei ein komplexer Kegelschnitt. Dann gilt für die obigen Fälle, dass

I(f)c

(1a) die Vereinigung von bis zu drei
unbeschränkten Komponenten ist.

(1b) die Vereinigung von vier unbe-
schränkten Komponenten ist.

(2a) leer ist.

(2b) leer, ein einzelner Punkt oder
ein Geradensegment ist.

(2c) leer oder eine beschränkte,
möglicherweise offene Komponente
ist.

Insbesondere sind die Komponenten von I(f)c in den ersten vier Klassen Spek-
traeder. Dies gilt im Allgemeinen nicht für die letzte Klasse (2c).

Diese Ergebnisse weisen enorme Unterschiede zum reellen Fall auf, da es in diesem
nicht möglich ist, dass das Komplement der Imaginärprojektion lediglich aus einer
beschränkten Komponente besteht. Ferner ist es nur im komplexen Fall möglich, dass
die Imaginärprojektion offen ist, obwohl sie nicht den gesamten Raum R2 ausmacht.
Dies beantwortet eine offene Frage von Jörgens, Theobald und de Wolff [62]. Auch
das Auftreten einer beschränkten Komponente, deren Inneres leer ist, ist für das Kom-
plement der Imaginärprojektion eines reellen Kegelschnitts nicht möglich. Ein anderer
Unterschied ist durch die Randkurven gegeben. Im Fall von reellen Kegelschnitten sind
die Ränder von Imaginärprojektionen stets algebraisch vom Grad 2. Im komplexen
Fall haben wir herausgefunden, dass die Ränder von Imaginärprojektionen weder alge-
braisch sein müssen noch ist der algebraische Grad der irreduziblen Komponenten des
Zariski Abschlusses von ∂I(f) durch 2 beschränkt. Tatsächlich sind hier im Fall (2c)
Grade von bis zu 8 möglich.

Wir haben unsere Resultate auch auf den Fall allgemeiner quadratischer Polynome
mit hyperbolischer Initialform wie folgt ausgeweitet:
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Lemma 8.17. [42, Lemma 4.1] Unter der Operation von Gn kann jedes quadratische
Polynom f ∈ C[z] mit hyperbolischer Initialform in eine der folgenden Normalformen
gebracht werden:

(1) z21 + αz2 + rz3 + γ,

(2)
∑j

i=1 z
2
i − z2j+1 + αzj+2 + rzj+3 + γ für ein j = 1, . . . , n− 1,

wobei α, r, γ ∈ C und Terme, die zk für k > n enthalten, nicht auftreten.

Analog zum Fall von Kegelschnitten konnten wir nun diese Normalformen unter-
suchen.

Theorem 8.18. [42, Theorem 4.5] Es sei n ≥ 3 und f ∈ C[z] ein quadratisches
Polynom mit hyperbolischer Initialform. Unter der Operation von Gn lässt sich f so
umformen, dass die Imaginärprojektion I(f) durch Rn, Rn \{(0, . . . , 0, yn) ∈ Rn : yn ̸=
0} gegeben ist, oder f von der Form f =

∑n−1
i=1 z2i −z2n+γ mit γ ∈ C ist, sodass |γ| = 1

gilt und wir

I(f) =





{
y ∈ Rn : y2n <

∑n−1
i=1 y2i

}
∪ {0} falls γ = 1,

{
y ∈ Rn : y2n −

∑n−1
i=1 y2i ≤ 1

}
falls γ = −1,

{
y ∈ Rn : y2n −

∑n−1
i=1 y2i ≤ 1

2
(1− Re(γ))

}
\ {0} falls γ ̸∈ R.

erhalten.

Basierend auf diesem Resultat konnten wir die Topologie der Imaginärprojektion
für diese Fälle untersuchen. Besonders interessant ist, dass die algebraische Struk-
tur von ∂I(f) in diesem Fall dem Fall reeller Kegelschnitte gleicht. Wir haben stets
algebraische Ränder vom Grad höchstens zwei.

Korollar 8.19. [42, Corollary 4.6] f ∈ C[z] sei ein quadratisches Polynom mit hyper-
bolischer Initialform. Dann

(1) ist I(f)c entweder leer oder besteht aus
- bis zu 4 unbeschränkten Komponenten,
- oder zwei unbeschränkten Komponenten und einem einzelnen Punkt.

(2) ist das Komplement des Abschlusses I(f)c entweder leer oder unbeschränkt.
(3) ist der algebraische Grad der irreduziblen Komponenten von ∂I(f) höchstens

zwei.

Weitere Resultate dieses Artikels zeigen, dass es Klassen bivariater Polynome von
beliebigen ungeraden Grad gibt, deren Imaginärprojektion stets der gesamte Raum R2

ist [42, Theorem 3.4]. Ferner haben wir eine Konstruktion angegeben, die für festes
k > 0 ein Polynom konstruiert, sodass das Komplement der Imaginärprojektion stets
aus exakt k strikt konvexen, beschränkten Komponenten besteht [42, Theorem 7.1].

8.2.3. Conic stability of polynomials and positive maps. Diese Arbeit [36] wurde gemein-
sam mit P. Dey und T. Theobald verfasst. Sie wurde inspiriert durch zahlreiche notwen-
dige und hinreichende Bedingungen für die Stabilität von Polynomen [20, 104]. Der
Fokus dieser Arbeit liegt auf der Entwicklung eines hinreichenden Kriteriums für den
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allgemeineren Fall der konischen Stabilität. In diesem Abschnitt gehen wir davon aus,
dass der Kegel K volldimensional, konvex und abgeschlossen ist.

Für die Entwicklung des hinreichenden Kriteriums war das Finden von Klassen von
Polynomen, die mindestens einen Hyperbolizitätskegel C besitzen, für den eine Darstel-
lung als Spektraeder bekannt ist, ein wichtiger Zwischenschritt.

Dann kann die K-Stabilität von f ∈ C[z] auf die Frage, ob der Spektraeder C
den Spektraeder K enthält, zurückgeführt werden. Dieser Ansatz kann schließlich zu
hinreichenden Bedingung für die K-Stabilität von f ausgeweitet werden, da C ⊆ I(f)c
nach Theorem 8.4 gilt und für gängige Kegel wie den positiven Orthanten, den Lorentz-
Kegel oder den psd-Kegel eine Darstellung als Spektraeder vorliegt. Für die beiden
folgenden Klassen von Polynomen ist es uns gelungen, Darstellungen als Spektraeder
für die zugehörigen Hyperbolizitätskegel anzugeben.

Die erste Klasse sind Polynome mit einer Determinantendarstellung, d.h. Polynome
die von der Form

(11) f(z) = det (A0 + A1z1 + · · ·+ Anzn)

mit A0, . . . An ∈ Cd×d hermitesch sind. Im irreduziblen Fall liegen die beiden Hyper-
bolizitätskegel direkt durch

{z ∈ Rn : A1z1 + · · ·+ Anzn ≻ 0}

sowie dessen Negatives vor [72]. Die zweite Klasse sind quadratische Polynome von der
Form

f(z) = zTAz+ bTz+ c,

wobei A ∈ Sn, b ∈ Rn, c ∈ R sind. Ferner fordern wir, dass f entweder homogen ist
und A die Signatur (n − 1, 1) oder (1, n − 1) hat oder f durch die Operation von Gn

in die Form f(z) =
∑n−1

j=1 z
2
j − z2n + 1 gebracht werden kann. In allen anderen Fällen

weisen reelle quadratische Polynome keine kegelartigen Strukturen im Komplement
ihrer Imaginärprojektion auf, sodass in diesen Fällen ohnehin keine konische Stabilität
vorliegen könnte.

Liegt ein entsprechender Hyperbolizitätskegel für f ∈ C[z] vor, kann dieK-Stabilität
nun durch das Lösen eines semi-definiten Zulässigkeitsproblems verifiziert werden. Hi-
erfür wird zusätzlich zu der Darstellung der Hyperbolizitätskegel als Spektraeder auch
eine Darstellung des Kegels K als Spektraeder benötigt. Im Folgenden werden wir
die Darstellung von K als Spektraeder im Allgemeinen durch M(x) =

∑n
j=1Mjxj, i.e.

K = {x ∈ Rn : M(x) ⪰ 0} ausdrücken. In den konkreten Fällen, dass K entweder
der positive Orthant oder der Kegel der positiv semi-definiten Matrizen ist, können
folgende explizite Beschreibungen verwendet werden: Falls K der positive Orthant ist,
können wir K durch

K =

{
x ∈ Rn : M≥0(x) =

n∑

j=1

M≥0
j xj ⪰ 0

}

als Spektraeder ausdrücken. Hierbei ist M≥0
j = Ejj, wobei die Matrix Eij mit einer

Eins an Position (i, j) und Nullen an allen anderen Positionen gegeben ist. Falls K der
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Kegel der positiv semi-definiten Matrizen sein sollte, so können wir K durch

K =

{
X ∈ Rn×n : Mpsd(X) =

n∑

i,j=1

Mpsd
ij xij ⪰ 0

}

mit symmetrischen Matrix-Variablen X = (xij) und Mpsd
ij = 1

2
(Eij + Eji) ausdrücken.

Die fehlende Komponente, die letztlich auch das semi-definite Problem definiert, ist
durch positive Abbildung gegeben, die wie folgt definiert sind:

Definition 8.20. U ⊆ Hermk und V ⊆ Herml (bzw. U ⊆ Sk and V ⊆ Sl) seien zwei
lineare Vektorräume. Die Abbildung Φ : U → V heißt positiv, falls Φ(U) ⪰ 0 für alle
U ∈ U mit U ⪰ 0 gilt.

Folgendes Resultat von Kellner, Theobald und Trabandt stellt den Zusammenhang
zwischen positiven Abbildungen und der Problemstellung, ob ein Spektraeder einen
anderen enthält, her:

Proposition 8.21. [64, Theorem 4.3] Es seien U1, . . . , Un ∈ Hermk und V1, . . . , Vn ∈
Herml (bzw. U1, . . . , Un ∈ Sk und V1, . . . , Vn ∈ Sl) linear unabhängig sowie SU =
{x ∈ Rn :

∑n
j=1 Ujxj ⪰ 0} ≠ ∅ und SV = {x ∈ Rn :

∑n
j=1 Vjxj ⪰ 0}. Ferner sei

U = span(U1, . . . , Un), V = span(V1, . . . , Vn) sowie ΦUV : U → V mit ΦUV (Ui) := Vi

gegeben. Falls das semi-definite Zulässsigkeitsprolem bestehend aus

C = (Cij)
k
i,j=1 ⪰ 0 und Vp =

k∑

i,j=1

(Up)ijCij mit p = 1, . . . , n

eine Lösung mit hermitescher (beziehungsweise symmetrischer) Matrix C besitzt, gilt
SU ⊆ SV .

Durch die Existenz einer positiv semi-definiten Blockmatrix C, der sogenannten
Choi-Matrix, wird verifiziert, dass der Spektraeder SU im Spektraeder SV enthalten
ist. In unserem Fall bedeutet das, dass der Kegel K in einem der Hyperbolizitätskegel
von f und damit in I(f)c enthalten ist, was letztlich die K-Stabilität von f impliziert.

Theorem 8.22. [36, Theorem 4.3] Es sei f = det(A0 +
∑n

j=1Ajzj) mit hermitschen

Matrizen A0, . . . , An ein Polynom vom Grad d von der Form (11), sodass in(f) irreduz-
ibel ist und ein e ∈ Rn mit

∑n
j=1Ajej ≻ 0 existiert. Ferner sei für K die Darstellung

als Spektraeder durch K =
{
x ∈ Rn : M(x) =

∑n
j=1Mjxj

}
mit symmetrischen l × l-

Matrizen gegeben. Falls eine hermitesche Blockmatrix C = (Cij)
l
i,j=1 mit den Blöcken

Cij der Größe d× d existiert, die

C = (Cij)
l
i,j=1 ⪰ 0, ∀p = 1, . . . , n : σAp =

l∑

i,j=1

(Mp)ijCij

für σ ∈ {−1, 1} erfüllt, dann ist f K-stabil. Die Entscheidung darüber, ob eine solche
Blockmatrix C existiert führt zu einem semi-definiten Zulässigkeitsproblem.

Zusätzlich zu Theorem 8.22 haben wir analoge Resultate für die entsprechenden
Darstellungen für quadratische Polynome [36, Theorem 4.7, Theorem 4.8] sowie für
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den Fall von skalierten Versionen des Kegels bzw. des Polynoms [36, Theorem 5.2]
entwickelt. Für weitere Details verweisen wir auf Appendix A Kapitel 4.

8.3. Fazit. Die zahlreichen Publikationen im Bereich von Verallgemeinerungen von
Polynomen mit reellen Nullstellen sowie die vielen Querverbindungen in andere Be-
reiche der Mathematik und darüber hinaus zeigen deutlich die Relevanz dieses The-
menbereichs innerhalb der mathematischen Forschung. Dies wird nicht zuletzt durch
die Verleihung der Fields-Medaille an June Huh, einen Forscher, der mit den Lorentz-
Polynomen eine andere Verallgemeinerung von Polynomen mit reellen Nullstellen mi-
tentwickelt hat, deutlich.

In dieser Arbeit haben wir offene Fragen zu Imaginärprojektionen [62] beantwortet
und die entsprechenden Klassifikationen weiterentwickelt und ergänzt. Zudem haben
wir erste grundlegende Operatoren aufgezeigt, die die konische Stabilität von Poly-
nomen erhalten sowie das Spektrum der stabilitätserhaltenden Operatoren für die Sta-
bilität erweitert. Ferner haben wir Verbindungen zur Kombinatorik untersucht, deren
Strukturen zu notwendigen Kriterien für die K-Stabilität geführt haben. Abgerun-
det wird dies durch hinreichende Kriterien für die K-Stabilität von Polynomen, die auf
einem Ansatz mittels semi-definiter Programmierung basieren. Durch die Forschung im
Rahmen dieser Arbeit haben sich jedoch auch zahlreiche weitere offene Fragen ergeben,
sodass das Forschungspotential im Bereich der K-stabilen Polynome noch lange nicht
ausgeschöpft ist. Zu den interessantesten Fragestellungen gehören

• Gibt es weitere Klassen von psd-stabilen Polynomen, die nicht durch die hier
behandelten Klassen abgedeckt werden, und lässt sich Vermutung 8.14 für diese
ebenfalls beweisen?

• Lassen sich die kombinatorischen Strukturen von (psd-) stabilen Polynomen auf
andere Kegel abgesehen vom psd-Kegel und dem postiven Orthanten übertragen?

• Gibt es weitere interessante Phänomene von Imaginärprojektionen komplexer
Polynome, die bisher noch nicht beobachtet wurden?

• Gibt es weitere Klassen von Polynomen für deren Hyperbolizitätskegel eine
Beschreibung als Spektraeder vorliegt und lässt sich für diese Klassen eine hin-
reichende Bedingung für deren K-Stabilität analog zu Theorem 8.22 zeigen?

Wir sind überzeugt, dass die Einblicke, die durch unsere Forschung gewonnen wur-
den, hilfreich sein werden, und als Basis für die weitere Forschung in diesem Bereich
dienen können. Ferner wird die Beantwortung der obigen Fragen einen positiven Ein-
fluss auf verwandte Themengebiete haben und wir empfehlen daher eine ausführliche
Beleuchtung dieser offenen Fragen.
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[18] J. Borcea, P. Brändén, and T. Liggett. Negative dependence and the geometry of polynomials.
J. Amer. Math. Soc., 22(2):521–567, 2009.

[19] A. Bouchet and W.H. Cunningham. Delta-matroids, jump systems, and bisubmodular polyhe-
dra. SIAM J. Discrete Math., 8(1):17–32, 1995.
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CONIC STABILITY OF POLYNOMIALS AND POSITIVE MAPS

PAPRI DEY, STEPHAN GARDOLL, AND THORSTEN THEOBALD

Abstract. Given a proper cone K ⊆ Rn, a multivariate polynomial f ∈ C[z] =
C[z1, . . . , zn] is calledK-stable if it does not have a root whose vector of the imaginary
parts is contained in the interior of K. If K is the non-negative orthant, then K-
stability specializes to the usual notion of stability of polynomials.

We study conditions and certificates for the K-stability of a given polynomial f ,
especially for the case of determinantal polynomials as well as for quadratic poly-
nomials. A particular focus is on psd-stability. For cones K with a spectrahedral
representation, we construct a semidefinite feasibility problem, which, in the case of
feasibility, certifies K-stability of f . This reduction to a semidefinite problem builds
upon techniques from the connection of containment of spectrahedra and positive
maps.

In the case of psd-stability, if the criterion is satisfied, we can explicitly construct
a determinantal representation of the given polynomial. We also show that under
certain conditions, for a K-stable polynomial f , the criterion is at least fulfilled for
some scaled version of K.

1. Introduction

Recently, there has been wide-spread research interest in stable polynomials and
the geometry of polynomials, accompanied by a variety of new connections to other
branches of mathematics (including combinatorics [6], differential equations [4], opti-
mization [36], probability theory [5], applied algebraic geometry [40], theoretical com-
puter science [28, 29] and statistical physics [3]). See also the surveys of Pemantle
[32] and Wagner [41]. Stable polynomials are strongly linked to matroid theory [6], as
delta-matroids arise from support sets of stable polynomials.

In this paper, we concentrate on the generalized notion of K-stability as introduced
in [20]. Given a proper cone K ⊆ Rn, a polynomial f ∈ C[z] = C[z1, . . . , zn] is called
K-stable if I(f) ∩ intK = ∅, where intK is the interior of K and I(f) denotes the
imaginary projection of f (as formally defined in Section 2). Note that (R≥0)

n-stability
coincides with the usual stability, and stability with respect to the positive semidefinite
cone on the space of symmetric matrices is denoted as psd-stability. In the case of a
homogeneous polynomial, K-stability of f is equivalent to the containment of intK
in a hyperbolicity cone of f (see Section 2), which also provides a link to hyperbolic
programming.

Here, we study conditions and certificates for the K-stability of a given polynomial
f ∈ C[z], especially for the case of determinantal polynomials of the form f(z) =
det(A0 +A1z1 + · · ·+Anzn) with symmetric or Hermitian matrices A0, . . . , An as well
as for quadratic polynomials. A particular focus is on psd-stability.

Specifically, for cones K with a spectrahedral representation we construct a semidef-
inite feasibility problem, which, in the case of non-emptiness, certifies K-stability of

1
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f . This reduction to a semidefinite problem builds upon two ingredients. Firstly, we
characterize certain conic components in the complement of the imaginary projection
of the (not necessarily homogeneous) polynomial f . Secondly, the sufficient criterion
employs techniques from [23] on containment problems of spectrahedra and positive
maps in order to check whether intK ⊆ I(f)c. For the special case of usual stability,
we will recover the well-known determinantal stability criterion of Borcea and Bränden
(see Proposition 2.6 and Remark 4.4) and thus obtain, as a byproduct, an alternative
proof of that statement.

In the case of psd-stability, if the sufficient criterion is satisfied, we can explicitly
construct a determinantal representation of the given polynomial, see Corollary 4.9.
To this end, the determinantal criterion for psd-stability from [20] can be seen as a
special case of our more general results. The procedure enables to check and certify
the conic stability for a large subclass of polynomials.

Moreover, we show that under certain preconditions, there always exists a positive
scaling factor such that the sufficient criterion applies to a scaled version of the poly-
nomial (or, equivalently, a scaled version of the cone). See Theorem 5.2.

The paper is structured as follows. Section 2 provides relevant background on imag-
inary projections, conic stability and determinantal representations. In Section 3, we
study the conic components in the complement of the imaginary projection for the rel-
evant classes of polynomials. Section 4 develops the sufficient criterion for K-stability
based on the techniques from positive maps. The scaling result is contained in Sec-
tion 5, and Section 6 concludes the paper.

Acknowledgments. Part of this work was done while the first and the third author
were visiting the Simons Institute for the Theory of Computing within the semester
program “Geometry of Polynomials”. They are grateful for the inspiring atmosphere
there. Thanks to Bernd Sturmfels for encouraging us to work jointly on this topic and
to the anonymous referees for very valuable comments.

The first author would like to gratefully acknowledge the financial support through
a Simons-Berkeley postdoctoral fellowship and the third author the support through
DFG grant TH 1333/7-1.

2. Preliminaries

Throughout the text, bold letters will denote n-dimensional vectors unless noted
otherwise.

2.1. Imaginary projections and conic stability. For a polynomial f ∈ C[z], define
its imaginary projection I(f) as the projection of the variety of f onto its imaginary
part, i.e.,

(1) I(f) = {Im(z) = (Im(z1), . . . , Im(zn)) : f(z) = 0},
where Im(·) denotes the imaginary part of a complex number [22].

Let Sd,S+
d and S++

d denote the set of symmetric d×d matrices as well as the subsets
of positive semidefinite and positive definite matrices. Moreover, let Hermd be the set
of all Hermitian d× d-matrices.

We consider the following generalization of stability. Let K be a proper cone in Rn,
that is, a full-dimensional, closed and pointed convex cone in Rn.
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Definition 2.1. A polynomial f ∈ C[z] is called K-stable, if f(z) 6= 0 whenever
Im(z) ∈ intK.

If f ∈ C[Z] on the symmetric matrix variables Z = (zij)n×n is S+
n -stable, then f is

called positive semidefinite-stable (for short, psd-stable).

A stable or K-stable polynomial with real coefficients is called real stable or real
K-stable, respectively.

Remark 2.2. 1. A set of the form Rn + iC, where C is an open convex cone, is
called a Siegel domain (of the first kind). Siegel domains provide an important concept
in function theory of several complex variables and harmonic analysis, see the books
[19, 33, 35].

2. The Siegel upper half-space (or Siegel upper half-plane) Hg of degree g (or genus
g) is defined as

Hg = {A ∈ Cg×g symmetric : Im(A) is positive definite} ,
where Im(A) = (Im(aij))g×g (see, e.g., [38, §2]). The Siegel upper half-space occurs
in algebraic geometry and number theory as the domain of modular forms. Using
that notation, psd-stability can be viewed as stability with respect to the Siegel upper
half-space.

A form (i.e., a homogeneous polynomial) f ∈ R[z] is hyperbolic in direction e ∈ Rn

if f(e) 6= 0 and for every x ∈ Rn the univariate polynomial t 7→ f(x+ te) has only real
roots. The cone C(e) = {x ∈ Rn : f(x + te) = 0 ⇒ t < 0} is called the hyperbolicity
cone of f with respect to e. This cone C(e) is convex, f is hyperbolic with respect to
every point e′ ∈ C(e) and C(e) = C(e′) (see [11]).

Let f be a hyperbolic polynomial and C(e) denote the hyperbolicity cone containing
e. By definition of K-stability, a homogeneous polynomial f is hyperbolic w.r.t. every
point e′ ∈ C(e) if and only if f is (clC(e))-stable, where cl denotes the topological
closure of a set. The following theorem in [20] reveals the connection between K-stable
polynomials and hyperbolic polynomials.

Theorem 2.3. For a homogeneous polynomial f ∈ R[z], the following are equivalent.

(1) f is K-stable.
(2) I(f) ∩ intK = ∅.
(3) f is hyperbolic w.r.t. every point in intK.

By [21], the hyperbolicity cones of a homogeneous polynomial f coincide with the
components of I(f)c, where I(f)c denotes the complement of I(f). This implies:

Corollary 2.4. A hyperbolic polynomial f ∈ R[z] is K-stable if and only if intK ⊆
C(e) for some hyperbolicity direction e of f .

Proof. This follows from the observation that a hyperbolic polynomial f ∈ R[z] is
K-stable if and only if intK ⊆ I(f)c. �

It is shown in [21] that the number of hyperbolicity cones of a homogeneous polyno-
mial f ∈ R[z] is at most 2d for d ≤ n and at most 2

∑n−1
k=0

(
d−1
k

)
for d > n.
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2.2. Determinantal representations. A determinantal polynomial is a polynomial
of the form f(z) = det(A0+

∑n
j=1Ajzj). For our purposes, we always assume that the

matrices A0, . . . , An are Hermitian unless stated otherwise. If the constant coefficient
matrix A0 is positive definite or the identity, then the determinantal polynomial is
called definite or monic determinantal polynomial, respectively. Helton, McCullough
and Vinnikov showed that every polynomial p ∈ R[z] with p(0) 6= 0 has a symmet-
ric determinantal representation of the form p(z) = det(A0 +

∑n
j=1Ajzj) with real

symmetric matrices A0, . . . , An ([17, Theorem 14.1], see also Quarez [34, Theorem 4.4]
and, for the earlier result of a not necessarily symmetric determinantal representation,
Valiant [37] and its exposition in Bürgisser et al. [9]). Note that A0 is not necessarily
positive definite and not even necessarily positive semidefinite.

In [18] and [30], it was shown that several classes of polynomials have monic de-
terminantal representations due to the connection to real zero polynomials. Here, a
polynomial f ∈ R[z] is called real zero, if the mapping t 7→ f(t · z) has only real roots.
Brändén has constructed a real zero polynomial for which A0 cannot be taken to be
positive definite in a determinantal representation [7]. Recently, Dey and Pillai [10]
added a complete characterization of the quadratic case by also using the connection
to real zero polynomials.

Proposition 2.5 ([10]). A quadratic polynomial f(z) = zTAz + bTz + 1 ∈ R[z] is a
real zero polynomial if and only if Q/(1, 1) := A− 1

4
bbT is negative semidefinite. The

polynomial f(z) has a monic determinantal representation if and only if at least one
of the following conditions holds:

• A is negative semidefinite.
• Q/(1, 1) is negative semidefinite and rank(Q/(1, 1)) ≤ 3.

2.3. Real stable polynomials. As specified in the Introduction and Section 2.1, a
real polynomial f is real stable if it is real K-stable with respect to the non-negative
orthant K = Rn

+. This holds true if and only if for every e ∈ Rn
>0 and x ∈ Rn, the

univariate polynomial t 7→ f(te+x) is real-rooted. Indeed, a particular prominent class
of real stable polynomials is generated from determinantal polynomials as follows.

Proposition 2.6. ([2, Thm. 2.4]) Let A1, . . . , An be positive semidefinite d×d-matrices
and A0 be a Hermitian d× d-matrix. Then

f(z) = det(A0 +

n∑

j=1

Ajzj)

is real stable or the zero polynomial.

It is also known a real polynomial f ∈ R[z] is real stable if and only if the (unique)
homogenization polynomial w.r.t. the variable z0 is hyperbolic w.r.t. every vector e ∈
Rn+1 such that e0 = 0 and ej > 0 for all 1 ≤ j ≤ n (see [4]).

Example 2.7. The class of homogeneous stable polynomials is contained in the fol-
lowing class of Lorentzian polynomials, see [8, 15]. Let f ∈ R[z] be homogeneous of
degree d ≥ 2 with only positive coefficients. f is called strictly Lorentzian if

• d = 2 and the Hessian H(f) = (∂i∂jf)
n
i,j=1 is non-singular and has exactly one

positive eigenvalue (i.e., H(f) has the Lorentzian signature (1, n − 1), which

57



CONIC STABILITY OF POLYNOMIALS AND POSITIVE MAPS 5

expresses that f has one positive eigenvalue and n − 1 negative eigenvalues
[15]),

• or d > 2 and for all α ∈ Nn
0 with |α| = d− 2, the α-th derivative ∂αf is strictly

Lorentzian.

By convention, in degrees 0 and 1, every polynomial with only positive coefficients is
strictly Lorentzian. Limits of strictly Lorentzian polynomials are called Lorentzian.

Concerning psd-stability, the following variant of Proposition 2.6 is known.

Proposition 2.8. ([20, Thm. 5.3]) Let A = (Aij)n×n be a Hermitian block matrix
with n× n blocks of size d× d. If A is positive semidefinite and A0 a Hermitian d× d-
matrix, then the polynomial f(Z) = det(A0 +

∑n
i,j=1Aijzij) on the set of symmetric

n× n-matrices is psd-stable or identically zero.

Determinantal representations of complex polynomials which are stable with respect
to the unit ball of symmetric matrices have been studied in [13, 14].

In the present paper, for cones K with a spectrahedral representation, we derive a
semidefinite problem, which, in the case of feasibility, certifies K-stability of f . For
the case of psd-stability, if that criterion is satisfied, we can explicitly construct the
determinantal representation of Proposition 2.8. In this respect, the criterion from
Proposition 2.8 can be seen as a special case of our treatment.

The following examples serve to pinpoint some relationships between stable, psd-
stable and determinantal polynomials.

Example 2.9. a) A quadratic determinantal polynomial does not need to be stable in
order to be psd-stable (with respect to a suitable ordering identification between the
variables zi and the matrix variables zjk). Namely, the determinantal polynomial

f(z1, z2, z3) = (z1 + z3)
2 − z22 = (z1 + z3 − z2)(z1 + z3 + z2)

is not stable, because (1, 2, 1) ∈ I(f) ∩ R3
>0. However, in the matrix variables Z =(

z1 z2
z2 z3

)
, the polynomial f(Z) = f(z1, z2, z3) is psd-stable. To see this, observe that

by the arithmetic-geometric mean inequality, every y ∈ I(f) = {y ∈ R3 : y1 + y3 =
y2 or y1 + y3 = −y2} satisfies

det

(
y1 y2
y2 y3

)
= det

(
y1 ±(y1 + y3)

±(y1 + y3) y3

)
= y1y3 − (y1 + y3)

2 ≤ 0

and thus y 6∈ intS+
2 .

b) An example of a non-psd-stable determinantal polynomial on 2 × 2-matrices, i.e.,

with matrix variables Z =

(
z11 z12
z12 z22

)
, is f(Z) = detDiag(z11, z12, z22) = z11z12z22.

Namely, since I(f) = {X ∈ S2 : x11x12x22 = 0}, we have

(
1 0
0 1

)
∈ I(f) and thus

I(f) ∩ intS+
2 6= ∅.

c) Another example of a non-psd-stable determinantal polynomial on 2× 2-matrices is
the determinant of the spectrahedral representation of the open Lorentz cone g(z) =

det

(
z1 + z3 z2

z2 z1 − z3

)
= z21 − z22 − z23 , where the same variable identification as in a)
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is used. Note that g(z) = 0 for z = (1 + 2i, 1 + i,
√
−3 + 2i) and

(
2 1
1 α

)
∈ int S+

2 for

α = Im(
√
−3 + 2i) > 1. Hence, g is not psd-stable.

3. Conic components in the complement of the imaginary projection

To prepare for the conic stability criteria for determinantal and quadratic polynomi-
als, we characterize particular conic components in the complement of the imaginary
projection for these classes. Denote by X ≻ 0 the positive definiteness of a matrix X .

First consider a determinantal polynomial

(2) f(z) = det(A0 + A1z1 + · · ·+ Anzn)

with A0, . . . , An ∈ Hermd. Note that if A0 = I, then the homogenization of f w.r.t.
a variable z0 is hyperbolic w.r.t. e = (1, 0, . . . , 0) ∈ Rn+1. Moreover, for a homoge-
neous determinantal polynomial f = det(

∑n
j=1Ajzj), if there exists an e ∈ Rn with∑n

j=1Ajej ≻ 0, then f is hyperbolic w.r.t. e, and the set

{z ∈ Rn : A1z1 + · · ·+ Anzn ≻ 0}
as well as its negative are hyperbolicity cones of f , see [26, Prop. 2]. If f is irreducible,
then these are the only two hyperbolicity cones (see [25]), whereas in the reducible case
there can be more (cf. Section 2.1). Let A(z) be the linear matrix pencil A(z) = A0 +∑n

j=1Ajzj . The initial form of f , denoted by in(f), is defined as in(f)(z) = fh(0, z),
where fh is the homogenization of f w.r.t. the variable z0.

Theorem 3.1. If f is a degree d determinantal polynomial of the form (2) and there
exists an e ∈ Rn with

∑n
j=1Ajej ≻ 0, then in(f) is hyperbolic and every hyperbolicity

cone of in(f) is contained in I(f)c.
Proof. Let f = det(A0 +

∑n
j=1Ajzj) with A0, . . . , An ∈ Hermd. Since f is of degree d,

it holds in(f) = det(
∑n

j=1Ajzj). Then
∑n

j=1Ajej ≻ 0 implies that in(f) is hyperbolic.

First we assume that in(f) is irreducible. By the precondition
∑n

j=1Ajej ≻ 0, the

initial form in(f) has exactly the two hyperbolicity cones C1 = {x ∈ Rn :
∑n

j=1Ajxj ≻
0} and C2 = {x ∈ Rn :

∑n
j=1Ajxj ≺ 0}.

First we show that C1 ⊆ I(f)c. For every x ∈ Rn, we have

f(x+ te) = det(A0 +

n∑

j=1

Ajxj + t

n∑

j=1

Ajej).

Since
∑n

j=1Ajej ≻ 0, we obtain

f(x+ te) = det(

n∑

j=1

Ajej) det
(
(

n∑

j=1

Ajej)
−1/2(A0 +

n∑

j=1

Ajxj)(

n∑

j=1

Ajej)
−1/2 + tI

)
.

Since A0+
∑n

j=1Ajxj is Hermitian, all the roots of t 7→ f(x+ te) are real. Hence, there

cannot be a non-real vector a+ ie with f(a+ ie) = 0, because otherwise setting x = a
would give a non-real solution to t 7→ f(x+ te). Thus, there is a connected component
C ′ in I(f)c containing C1. The case C2 ⊆ I(f)c is symmetric, since −e ∈ C2.
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To cover also the case of reducible in(f), it suffices to observe that for reducible

in(f) =
∏k

j=1 hj with irreducible h1, . . . , hk, every hyperbolicity cone C of in(f) is of

the form C =
⋂k

j=1Cj with some hyperbolicity cones Cj of hj, 1 ≤ j ≤ k. �

Quadratic polynomials. Now let f ∈ R[z] be a quadratic polynomial of the form

(3) f = zTAz+ bTz+ c

with A ∈ Sn, b ∈ Rn and c ∈ R. We show that those components of I(f)c which are
cones, can be described in terms of spectrahedra, as made precise in the following.

First recall the situation of a homogeneous quadratic polynomial f = zTAz. By
possibly multiplying A with −1, we can assume that the number of positive eigenvalues
of A is at least the number of negative eigenvalues. In this setting, it is well known that
a non-degenerate quadratic form f ∈ R[z] is hyperbolic if and only if A has signature
(n− 1, 1) [11].

Specifically, for the normal form

f(z) =
n−1∑

j=1

z2j − z2n,

we have I(f) = {y ∈ Rn : y2n ≤∑n−1
j=1 y

2
j} (see [22]). Hence, there are two unbounded

components in the complement I(f)c, both of which are full-dimensional cones, and
these two components are

{y ∈ Rn−1 × R+ :

n−1∑

j=1

y2j < y2n} and {y ∈ Rn−1 × R− :

n−1∑

j=1

y2j < y2n}.

For a general homogeneous quadratic form, this generalizes as follows.

Lemma 3.2. For a quadratic form f = zTAz ∈ R[z] with A having signature (n−1, 1),
the components C of the complement of I(f) are given by the two components of the
set

(4) {y ∈ Rn : yTAy < 0} ,
and the closures of these components are spectrahedra.

The proof makes use of the following property from [22].

Proposition 3.3. Let g ∈ C[z] and T ∈ Rn×n be an invertible matrix. Then, I(g(Tz)) =
T−1I(g(z)).
Proof of Lemma 3.2. Since −A has Lorentzian signature, there exists S ∈ GL(n,R)
with AI := STAS = Diag(1, . . . , 1,−1). Observing

I(f(Sz)) = I(zTAIz) = {y ∈ Rn : y2n ≤
n−1∑

j=1

y2j} = {y ∈ Rn : yTAIy ≥ 0} ,

Proposition 3.3 then gives

I(f(z)) = S · I(f(Sz)) = {S · y ∈ Rn : yTAIy ≥ 0} = {y ∈ Rn : yTAy ≥ 0} .
�
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For the general, not necessarily homogeneous case, recall that every quadric in Rn

is affinely equivalent to a quadric given by one of the following polynomials,

(I)
∑p

j=1 z
2
j −

∑r
j=p+1 z

2
j (1 ≤ p ≤ r, r ≥ 1, p ≥ r

2
) ,

(II)
∑p

j=1 z
2
j −

∑r
j=p+1 z

2
j + 1 (0 ≤ p ≤ r, r ≥ 1) ,

(III)
∑p

j=1 z
2
j −

∑r
j=p+1 z

2
j + zr+1 (1 ≤ p ≤ r, r ≥ 1, p ≥ r

2
) .

We refer to [1] as a general background reference for real quadrics. We say that a given
quadratic polynomial f ∈ R[z] is of type X if it can be transformed to the normal form
X by an affine real transformation.

The homogeneous case, case (I), has already been treated, and by [22], it is known
that in case (III), the imaginary projection does not contain a full-dimensional com-
ponent in I(f)c.

By [22], in case (II), unbounded components only exist in the cases p = 1 and
p = r− 1, so we can restrict to these cases. We list these relevant two cases from [22].

Theorem 3.4. Let n ≥ r ≥ 3 and f ∈ R[z] be a quadratic polynomial. If f is of type
(II), then

(5) I(f) =

{
{y ∈ Rn : y21 −

∑r
j=2 y

2
j ≤ 1} if p = 1 ,

{y ∈ Rn :
∑r−1

j=1 y
2
j > y2r} ∪ {0} if p = r − 1 .

For the proof see [22]. Since the proofs of the case p = 1 and of the case p = r − 1
differ in some important details, which are not carried out there, we include a proof
here for the convenience of the reader.

Proof. Without loss of generality we can assume r = n. Writing zj = xj + iyj, we have
f(z) =

∑p
j=1 z

2
j −

∑n
j=p+1 z

2
j + 1 = 0 if and only if

p∑

j=1

x2
j −

n∑

j=p+1

x2
j −

p∑

j=1

y2j +

n∑

j=p+1

y2j + 1 = 0(6)

and

p∑

j=1

xjyj −
n∑

j=p+1

xjyj = 0.(7)

Set α := −∑p
j=1 y

2
j +

∑n
j=p+1 y

2
j + 1, and let y ∈ Rn be fixed. Note that in both cases

p = 1 and p = n − 1, we have 0 ∈ I(f), since f(x + i · 0) = 0 for x = (0, . . . , 0, 1).
Hence, we can assume y 6= 0.

Case p = 1: Write x = (x1,x
′) = (x1, x2, . . . , xn) and y = (y1,y

′) = (y1, y2, . . . , yn).
Observe the rotational symmetry of (6) w.r.t. x′ and y′ and the invariance of the stan-
dard scalar product (x′,y′) 7→∑n

j=2 xjyj under orthogonal transformations. Hence, if

((x1,x
′), (y1,y′)) is a solution of (6) and (7), then for any T ∈ SO(n−1), the point

((x1, Tx
′), (y1, Ty

′)) is a solution as well, where SO(n−1) denotes the special orthogo-
nal group of order n− 1. Thus, we can assume y3 = · · · = yn = 0, and α simplifies to
α = −y21 + y22 + 1. Solving (7) for x1 (by assuming, without loss of generality, y1 6= 0)
yields x1 =

x2y2
y1

and substituting this into (6) then

0 =

(
y22
y21

− 1

)
x2
2 −

n∑

j=3

x2
j + α =

(α− 1)x2
2

y21
−

n∑

j=3

x2
j + α.
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This equation has a real solution (x2, . . . , xn) if and only if α ≥ 0, which shows I(f) =
{y ∈ Rn : y21 −

∑n
j=2 y

2
j ≤ 1}.

Case p = n − 1: Following the same proof strategy, we now write x = (x′, xn) =
(x1, x2, . . . , xn) and y = (y′, yn) = (y1, y2, . . . , yn). Then the symmetry of the problem
allows to assume y2 = · · · = yn−1 = 0, and α simplifies to α = −y21 + y2n + 1. If y1 6= 0,
solving (7) for x1 gives x1 =

xnyn
y1

, and a substitution into (6)

0 =

(
y2n
y21

− 1

)
x2
n +

n−1∑

j=2

x2
j + α =

(α− 1)x2
2

y21
+

n−1∑

j=2

x2
j + α.

There exists a real solution (x2, . . . , xn) if and only if α < 1, which, taking also into

account the special case y1 = 0, gives I(f) = {y ∈ Rn :
∑n−1

j=1 y
2
j > y2n} ∪ {0}. �

For the inhomogeneous case, we use the following lemma to reduce it to the homo-
geneous case.

Lemma 3.5. Let n ≥ 3 and f ∈ R[z] be quadratic of the form (3).
If f is of type (II) with p = 1, then I(f)c does not have connected components whose

closures contain full-dimensional cones.
If f is of type (II) with p = n−1 then every full-dimensional cone which is contained

in I(f)c is contained in the closure of a hyperbolicity cone of in(f).

Note, that in particular, that I(f)c does not contain a point at all if and only if
in(f) is not hyperbolic.

Proof. If f is of type (II) with p = 1, then the statement is a consequence of (5).
Now consider the case that f is of type (II) with p = n − 1 and let C be full-

dimensional cone which is contained in a component of I(f)c. By [21, Theorem 4.2
and Lemma 4.3], intC is contained in a hyperbolicity cone of in(f). �

Hence, among the quadratic polynomials of type (II), only the ones with p = n− 1
might possibly be K-stable.

Theorem 3.6. Let n ≥ 3 and f ∈ R[z] be quadratic of the form (3) and of type (II)
with p = n−1. Then there exists a linear form ℓ(z) in z such that −ℓ(z)n−2in(f) has a
determinantal representation. In particular, the closure of each unbounded component
of I(f)c is a spectrahedral cone.

The theorem can be seen as an adaption of the well-known result that hyperbolic
quadratic forms have determinantal representations. See, e.g., [39, Section 2] or [30,
Example 2.16] for the determinantal representations which underlie that result and
which are utilized in the subsequent proof.

Proof. First consider the normal form of type (II) with p = n− 1,

g(z) =

n−1∑

j=1

z2j − z2n + 1 .
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By (5), the complement of I(g) has the two unbounded conic components

{y ∈ Rn−1 × R+ :

n−1∑

j=1

y2j ≤ y2n} \ {0} and {y ∈ Rn−1 × R− :

n−1∑

j=1

y2j ≤ y2n} \ {0},

which (up to the origin) are the open Lorentz cone and its negative. Their closures
are exactly the closures of the hyperbolicity cones of the initial form in(g) of g. It is
well-known that the open Lorentz cone has the spectrahedral representation

(8) L(z) :=




z1

znI
...

zn−1

z1 · · · zn−1 zn


 ≻ 0 ,

and thus we also have zn−2
n in(g) = − det(L(z)). Since g results from f by an affine

transformation, the initial form in(g) results from the initial form in(f) by a linear
transformation,

in(g)(Tz) = in(f)(z)

for some matrix T ∈ GL(n,R). Hence, we obtain the spectrahedral representation for
one of the unbounded conic components in I(f)c,

F (z) :=




(Tz)1

(Tz)nI
...

(Tz)n−1

(Tz)1 · · · (Tz)n−1 (Tz)n


 ≻ 0 ,

as well as its negative. Moreover,

− detF (z) = ((Tz)n)
n−2 in(f) ,

so that (Tz)n provides the desired linear form ℓ(z). �
Remark 3.7. Concerning L(z) in (8), by subtracting

zj
zn

times the j-th row from its

n-th row for every j ∈ {1, . . . , n− 1}, we obtain

det(L(z)) = det




z1

znI
...

zn−1

0 · · · 0 zn − 1
zn

∑n−1
i=1 z2i


 = zn−2

n

(
z2n −

n−1∑

i=1

z2i

)
.

By (3), in the proof we have in(f) = zTAz. Let A = LDLT be an LDLT decomposition
of A with D = Diag(d1, . . . , dn−1, dn) such that d1, . . . , dn−1 > 0 and dn < 0. Then the
variable transformation T in the proof is

T = Diag(
√

d1, . . . ,
√
dn−1,

√
|dn|) · LT

and we derive

A = T T ·




0

I
...
0

0 · · · 0 −1


 · T.
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Example 3.8. Consider f(z1, z2, z3, z4) = −15z21 − 12z1z4 + z22 + z23 = zTAz with

A =




−15 0 0 −6
0 1 0 0
0 0 1 0
−6 0 0 0


 .

For ℓ(z) = 4z1 + 2z4, a representation from Theorem 3.6 is

−ℓ(z)2 · f(z) = det




4z1 + 2z4 0 0 z1 + 2z4
0 4z1 + 2z4 0 z2
0 0 4z1 + 2z4 z3

z1 + 2z4 z2 z3 4z1 + 2z4


 .

�

Remark 3.9. A quadratic polynomial f ∈ R[z] is of the form (3) and of type (II)
with p = n− 1 (i.e., −f has Lorentzian signature) if and only if f ∈ R[z] is a real zero
polynomial, see for example [10].

Remark 3.10. For the case of homogeneous polynomials, Theorem 3.6 recovers the
known fact that hyperbolicity cones defined by homogeneous quadratic polynomials f
are spectrahedral [30]. In the affine setting, we can homogenize the type (II) polyno-
mial f w.r.t. variable z0 and get a quadratic polynomial of type (I) in n + 1 variables
with p = n. Then, using in(fh) = fh, Theorem 3.6 recovers that the rigidly con-
vex sets (introduced by Helton-Vinnikov [18]) defined by real zero polynomials f are
spectrahedra [30].

Remark 3.11. The proof of Theorem 3.6 explicitly explains a technique to compute
a suitable linear factor ℓ(z) as well as a determinantal representation to get a spectra-
hedral structure.

4. Conic stability and positive maps

Based on the characterizations of the conic components in the complement of I(f),
we now study the problem whether f isK-stable, in particular, whether it is psd-stable.

In order to decide whether the coneK is contained in one of the components of I(f)c,
observe that in the case of spectrahedral representations of K and of the components
of I(f)c, the problem of K-stability can be phrased as a containment problem for
spectrahedra. The theory of positive and completely positive maps (as detailed in
[31]) provides a sufficient condition for the containment problem of spectrahedra, see
[16, 23, 24].

Definition 4.1. Given two linear subspaces U ⊆ Hermk and V ⊆ Herml (or U ⊆ Sk

and V ⊆ Sl), a linear map Φ : U → V is called positive if Φ(U) � 0 for any U ∈ U
with U � 0.

For d ≥ 1, define the d-multiplicity map Φd on the set of all Hermitian d × d block
matrices with symmetric n× n-matrix entries by

(Aij)
d
i,j=1 7→

(
Φ (Aij)

)d
i,j=1

.
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The map Φ is called d-positive if the d-multiplicity map Φd (viewed as a map on a
Hermitian matrix space) is a positive map. Φ is called completely positive if Φd is a
positive map for all d ≥ 1.

Let U(x) =
∑n

j=1 Ujxj and V (x) =
∑n

j=1 Vjxj be homogeneous linear pencils with

symmetric matrices of size k×k and l×l, respectively (since the matrices are symmetric,
we prefer to denote the variables by x rather than z). Then the spectrahedra SU :=
{x ∈ Rn : U(x) � 0}, and SV := {x ∈ Rn : V (x) � 0} are cones. Further, let
U = span(U1, . . . , Un) ⊆ Sk and V = span(V1, . . . , Vn) ⊆ Sl.

If U1, . . . , Un are linearly independent, then the linear mapping ΦUV : U → V,
ΦUV (Ui) := Vi, 1 ≤ i ≤ n, is well defined.

Proposition 4.2 ([23]). Let U1, . . . , Un ⊆ Hermk (or, U1, . . . , Un ⊆ Sk, respectively) be
linearly independent and SU 6= ∅. Then for the properties

(1) the semidefinite feasibility problem

(9) C = (Cij)
k
i,j=1 � 0 and Vp =

k∑

i,j=1

(Up)ijCij for p = 1, . . . , n

has a solution with Hermitian (respectively symmetric) matrix C,
(2) ΦUV is completely positive,
(3) ΦUV is positive,
(4) SU ⊆ SV ,

the implications and equivalences (1) =⇒ (2) =⇒ (3) ⇐⇒ (4) hold, and if U contains
a positive definite matrix, (1) ⇐⇒ (2).

Note that the statement (1) =⇒ (4) (which does not involve the definition of ΦUV )
is also valid without the assumption of linear independence of U1, . . . , Un (see [16, 23]).

So, in case the cone K and the conic components of I(f)c can be described in terms
of spectrahedra, we can approach the conic stability problem in terms of the block
matrix C � 0 in (9), the so-called Choi matrix, corresponding to an appropriate posi-
tive map Φ, which maps the underlying pencils of those spectrahedra onto each other
certifying their containment. This sufficient condition is provided by a certain semi-
definite feasibility problem whose non-emptiness of its feasible domain thus provides a
sufficient criterion for psd-stability.

Moreover, if we know a spectrahedral description of some of the components of I(f)c
(as in the quadratic case or the determinantal case), the sufficient containment criterion
is based on writing a matrix pencil for these components using linear combinations
of the matrices of a linear matrix pencil for K. As formalized in Theorem 4.8 and
Corollary 4.9, taking the determinant of a matrix pencil for a suitable component
of I(f)c provides a particular determinantal description for the homogeneous part of
the given polynomial f . That description has exactly the structure of the sufficient
determinantal criterion for psd-stability and thus provides an elegant determinantal
representation that certifies the psd-stability of a homogeneous polynomial f .

Let K be a cone which is given as the positive semidefiniteness region of a linear
matrix pencil M(x) =

∑n
j=1Mjxj with symmetric l × l-matrices (since K is a cone in

Rn, we prefer to denote the variables by x rather than z). In the case of usual stability,
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the cone K is the positive semidefiniteness region of the linear matrix pencil

(10) M≥0(x) =
n∑

j=1

M≥0
j xj

with M≥0
j = Ejj, where Eij is the matrix with a one in position (i, j) and zeros

elsewhere. In the case of psd-stability, the matrix pencil is

(11) Mpsd(X) =
n∑

i,j=1

Mpsd
ij xij

with symmetric matrix variables X = (xij) and Mpsd
ij = 1

2
(Eij + Eji), i.e., M

psd(X) is

the matrix pencil Mpsd(X) = (xij)ij in the symmetric matrix variables xij .

Theorem 4.3. Let f = det(A0 +
∑n

j=1Ajzj) with Hermitian matrices A0, . . . , An be

a degree d determinantal polynomial of the form (2) such that in(f) is irreducible and
there exists e ∈ Rn with

∑n
j=1Ajej ≻ 0. Let M(x) =

∑n
j=1Mjxj with symmetric

l × l-matrices be a pencil of the cone K. If there exists a Hermitian block matrix
C = (Cij)

l
i,j=1 with blocks Cij of size d× d and

(12) C = (Cij)
l
i,j=1 � 0, ∀p = 1, . . . , n : σAp =

l∑

i,j=1

(Mp)ijCij

for some σ ∈ {−1, 1}, then f is K-stable. Deciding whether such a block matrix C
exists is a semidefinite feasibility problem.

Note that a necessary condition of K-stability of f is obtained as follows. Fix any
vector v in the interior of the cone K. Then a necessary condition for K-stability is
that v is contained in the complement of I(f).
Proof. Let C be a block matrix C = (Cij)

l
i,j=1 with d×d-blocks and which satisfies (12)

for some σ ∈ {−1, 1}. The initial form in(f) is hyperbolic and, by Theorem 3.1, every
hyperbolicity cone of in(f) is contained in I(f)c. So, in order to show K-stability of f ,
it suffices to show that K is contained in the closure of a hyperbolicity cone of in(f),
i.e., in the closure of a component of I(in(f))c.

As recorded at the beginning of Section 3, since in(f) is irreducible, in(f) has exactly
two hyperbolicity cones, and these are given by Ah(x) =

∑n
j=1Ajxj ≻ 0 as well as

Ah(x) =
∑n

j=1Ajxj ≺ 0.

By Proposition 4.2, if (12) is satisfied, say with σ = 1, then the spectrahedron given
by the matrix pencil M(x) is contained in the closure of I(in(f))c. For the service of
the reader, we provide an explicit derivation of this step in our setting. Namely, for x
in the spectrahedron defined by M(x), we have

Ah(x) =

n∑

p=1

Apxp =

n∑

p=1

xp

l∑

i,j=1

(Mp)ijCij(13)

=

l∑

i,j=1

(M(x))ijCij.(14)
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Apply the Khatri-Rao product (where the blocks ofM(x) are of size 1×1 and the blocks
of C are of size d × d). Since M(x) and C are positive semidefinite, the Khatri-Rao
product

M(x) ∗ C := ((M(x))ij ⊗ Cij)
l
i,j=1 = ((M(x))ijCij)

l
i,j=1

is positive semidefinite as well; see Liu [27], where this property is stated on the space
of symmetric positive semidefinite matrices. Since M(x) is a real symmetric pencil,
Liu’s result carries over to our situation of a Hermitian positive semidefinite matrix C
by employing that a Hermitian matrix Z = X+iY with X ∈ Sk and Y skew-symmetric
is positive semidefinite if and only if the real symmetric matrix

(
X −Y
Y Z

)
∈ S2k

is positive semidefinite (see, e.g., [12]).
Altogether, since

Ah(x) = (I · · · I)(M(x) ∗ C)



I
...
I


 ,

Ah(x) is positive semidefinite as well. Hence, x is contained in the spectrahedron
defined by Ah(x). Since Ah(x) is the matrix pencil of the closure of a component of
I(in(f))c, the claim follows. �

Note that the constant coefficient matrix A0 does not play any role for the criterion
in Theorem 4.3. This comes from Theorem 3.1 and its proof, where only the Hermitian
property of A0 matters rather than the exact values of the coefficients themselves.

Remark 4.4. In the special case of usual stability, Theorem 4.3 provides a new proof
for Borcea and Brändén’s determinantal criterion from Proposition 2.6. Namely, for
usual stability, K is given by (10) and thus, a matrix C satisfying the hypothesis of
Theorem 4.3 can be viewed as a a block diagonal matrix C = (Cij)

l
i=1 with diagonal

blocks Cii of size d × d and vanishing non-diagonal blocks Cij (i 6= j). Since the
condition (12) specializes to

Ap = Cpp for p = 1, . . . , n,

the stability criterion in Theorem 4.3 is satisfied if and only if the matrices A1, . . . , An

are positive semidefinite.

Remark 4.5. Theorem 4.3 gives a sufficient criterion, but it is not necessary. As a
counterexample, consider the following adaption from an example in [16, Example 3.1,
3.4] and [23, Section 6.1]. Let K ⊆ R3 be the Lorentz cone as given by (8). The
polynomial

f = det

(
z1 + z3 z2

z2 −z1 + z3

)
= z23 − z21 − z22

(whose underlying matrix pencil provides an alternative matrix pencil for the Lorentz
cone) has all its zeroes on the boundary of the Lorentz cone or on its negative. Hence,
f is K-stable, but by the results in [16] and [23], the condition (12) is not satisfied.
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Example 4.6. i) Let g(z1, z2, z3) := 31z21+32z1z3+8z23−8z1z2−16z22 . A determinantal

representation of g is given by det

(
4z1 + 2z3 z1 + 4z2
z1 + 4z2 8z1 + 4z3

)
, and at z = (0, 0, 1)T , the

matrix polynomial is positive definite. Let M(x) denote the linear matrix pencil of the
psd cone S+

2 . Then the psd-stability of g follows from Theorem 4.3 and by the matrix

C =




4 1 0 2
1 8 2 0
0 2 2 0
2 0 0 4


 � 0.

ii) Let f =
∑2

i,j=1M
psd
ij xij =

(
1 0
0 0

)
x11+

(
0 1
1 0

)
x12+

(
0 0
0 1

)
x22 be the canonical

matrix polynomial of the 2 × 2-psd cone. Clearly, f is psd-stable, and the following
consideration shows that this is also recognized by the sufficient criterion. For sym-
metric 2 × 2-matrices, the condition in Theorem 4.3 requires to find a block matrix
C � 0 with 2× 2 blocks of size 2× 2 such that

(15) Mpsd
pq =

2∑

i,j=1

(Mpsd
pq )ijCij for 1 ≤ p, q ≤ 2.

This yields C11 =

(
1 0
0 0

)
, C22 =

(
0 0
0 1

)
and C12 + C21 =

(
0 1
1 0

)
. Since C =

(
C11 C12

C21 C22

)
is symmetric, C12 must be of the form

(
0 γ
δ 0

)
with γ, δ ∈ R. Positive

semidefiniteness of C then implies δ = 0, and further, the condition on C12 +C21 gives
γ = 1. Hence, the matrix

C =




1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1




satisfies (15) and thus certifies the psd-stability of f in view of the sufficient criterion
in Theorem 4.3.

For quadratic polynomials, we can provide the following criterion. As in the proof
of Theorem 3.6, for a homogeneous quadratic polynomial f(z) = zTAz of signature
(n− 1, 1), we consider

(16) F (x) :=

n∑

p=1

Fpxp :=




(Tx)1

(Tx)nI
...

(Tx)n−1

(Tx)1 · · · (Tx)n−1 (Tx)n


 ≻ 0 ,

where T is as in that proof.

Theorem 4.7. Let n ≥ 3 and f be a quadratic polynomial of the form (3), let f be
of type (II) with A having signature (n− 1, 1) and in(f) be irreducible. Let M(x) be a
matrix pencil for the cone K, and let T and F (x) :=

∑n
p=1 Fpxp be defined as in (16)
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w.r.t. in(f). If there exists a block matrix C = (Cij)
l
i=1 with blocks Cij of size d × d

and

(17) C = (Cij)
l
i,j=1 � 0, ∀p = 1, . . . , n : σFp =

l∑

i,j=1

(Mp)ijCij

for some σ ∈ {−1, 1}, then f is K-stable. Deciding whether such a block matrix C
exists is a semidefinite feasibility problem.

Proof. By Theorem 3.6 and its proof, the unbounded components of I(f)c which are
full-dimensional cones are exactly the hyperbolicity cones of in(f). For x in the spec-
trahedron defined by M(x) � 0, we have

F (x) =

n∑

p=1

Fpxp =

n∑

p=1

xp

l∑

i,j=1

(Mp)ijCij =

l∑

i,j=1

(M(x))ijCij.

Analogous to the application of the Khatri-Rao product in the proof of Theorem 4.3,
this yields F (x) � 0. Hence, f is K-stable. �

Theorem 4.8. Let n ≥ 3 and f(z) = zTAz be an irreducible homogeneous quadratic
polynomial of signature (n− 1, 1), M(z) be a matrix pencil for the cone K, and let T
and F (z) :=

∑n
p=1 Fpzp be defined as in (16). If there exists a block matrix C = (Cij)

l
i=1

with blocks Cij of size d× d satisfying

(18) C = (Cij)
l
i,j=1 � 0, ∀p = 1, . . . , n : σFp =

l∑

i,j=1

(Mp)ijCij

for some σ ∈ {−1, 1}, then there exists a linear form ℓ(z) such that −ℓ(z)n−2f has a
determinantal representation

−σℓ(z)n−2f = det(

n∑

p=1

zp

l∑

i,j=1

(Mp)ijCij)

with positive semidefinite matrices Cij. The representation provides a certificate for
the K-stability of f .

Proof. The K-stability was shown in Theorem 4.7. By (18) and the definition of F (z),
we have

σ detF (z) = det
( n∑

p=1

zp

l∑

i,j=1

(Mp)ijCij

)
.

Since detF (z) = −((Tz)n)
n−2f , the choice ℓ(z) := (Tz)n provides the desired repre-

sentation. This provides a certificate for the K-stability of f . �

Corollary 4.9. Let n ≥ 2 and f(Z) be a homogeneous quadratic polynomial on sym-
metric n × n-variables, in the linearized vector z = (z1, . . . , zN) let f = zTAz with
A ∈ RN×N of signature (N − 1, 1). If M(z) is a matrix pencil for the psd-cone and C
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is a block matrix satisfying (18), then for some linear form ℓ(z) in z, the polynomial
−ℓ(z)N−2f has a determinantal representation of the form

−ℓ(z)N−2f = det
( l∑

i,j=1

Cijzij
)

with positive semidefinite matrices Cij. This representation provides a certificate for
the psd-stability of f in the sense of the sufficient criterion for psd-stability.

Proof. This is a consequence of Theorem 4.8. �

5. Certifying K-stability with respect to scaled cones

The sufficient criterion does not capture all the cases of K-stable polynomials. Here,
we extend our techniques to scaled versions of the cone. To this end, we will reduce a
scaled version of the K-stability problem to the situation of the following statement.

Proposition 5.1 (Proposition 6.2 in [23]). Let A(z) and B(z) be monic linear matrix
pencils of size k × k and l × l, respectively, and such that SA := {z ∈ Rn : A(z) � 0}
is bounded. Then there exists a constant ν > 0 such that for the scaled spectrahedron
νSA the inclusion νSA ⊆ SB is certified by the system

C = (Cij)
k
i,j=1 � 0, ∀p = 1, . . . , n : Bp =

k∑

i,j=1

(1
ν
Ap

)
ij
Cij.

As before, let K be a proper cone which is given by a linear matrix pencil M(z) =∑n
j=1Mjzj with l×l-matrices, and assume that there exists a hyperplane H not passing

through the origin and such thatK∩H is bounded. For notational convenience, assume
that H = {(x1, . . . , xn) ∈ Rn : x1 = 1} and that M1 = In. In particular, then the first
unit vector e(1) is contained in the interior of the full-dimensional cone K.

Theorem 5.2. Let f ∈ R[z] and M(z) be as described before. Let N(z) be the matrix
pencil of a spectrahedral, conic set contained in cl(I(f)c), and assume that N1 = In as
well.

Then there exists a constant ν > 0 such that gν(z1, . . . , zn) := f(z1, νz2, . . . , νzn) is
K-stable and such that the K-stability of g is certified by the system

(19) C = (Cij)
l
i,j=1 � 0, ∀p = 1, . . . , n : νNp =

l∑

i,j=1

(Mp)ij Cij,

where the variable matrix C is a block matrix with l × l blocks.
As a consequence, f is K̂-stable with respect to K̂ = cone({1} × ν(K ∩H)), where

the multiplication of ν with the set K∩H is done in the (n−1)-dimensional space with
variables z′ = (z2, . . . , zn) and cone denotes the conic hull.

Since the scaling variable ν occurs linearly in (19), its optimal value can be expressed
by a semidefinite program. Further note that the preconditions M1 = In and N1 = In
imply that the induced matrix pencils of the conic spectrahedra of M(z) and of N(z)
give monic pencils within the hyperplane H .
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Proof. Let N ′(z′),M ′(z′) be the matrix pencils in the n− 1 variables z′ = (z2, . . . , zn)
defined by

N ′(z′) = N(z)
∣∣∣
z1=1

and M ′(z′) = M(z)
∣∣∣
z1=1

.

N ′(z′) and M ′(z′) are monic linear matrix pencils and the spectrahedron SM ′(z′) =
{z′ = (z2, . . . , zn) ∈ Rn : M ′(z′) � 0} is bounded. By Proposition 5.1, the inclusion
νSM ′(z′) ⊆ SL′(z′) is certified by the system

(20) C = (Cij)
l
i,j=1 � 0, ∀p = 1, . . . , n : N ′

p =

l∑

i,j=1

(1
ν
M ′

p

)
ij
Cij

with some block matrix C = (Cij)
l
i,j=1. Since M ′

p = Mp and N ′
p = Np for p ≥ 1, this is

equivalent to (19).
Moreover, νSM ′(z′) ⊆ SN ′(z′) implies that νSM(z) ⊆ SN(z) and also that for any z

with z1 = 1 and f(z) = 0, we have (1, z2
ν
, . . . , zn

ν
) 6∈ int SM ′(z′), or, equivalently, gν(z) is

K-stable. Finally, this also gives the reformulation that f is K̂-stable. �
Theorem 5.2 can also be applied to such polynomials f which meet the requirements

of the theorem after applying a invertible linear transformation, since those preserve
the containment of sets.

Example 5.3. Setting

(
z1 z2
z2 z3

)
=

(
z11 z12
z12 z22

)
, the polynomial f = det

(
z1 2z2
2z2 z3

)

= z1z3 − 4z22 is not psd-stable. To fit the requirements of Theorem 5.2, let Q be

the rotation matrix Q = 1√
2




1 0 1

0
√
2 0

−1 0 1


 and consider the rotated versions of the

underlying matrix pencils

NQ(y) = N(Q−1z) =
1√
2

(
y1 − y3

√
8y2√

8y2 y1 + y3

)

and MQ(y) = M(Q−1z) =
1√
2

(
y1 − y3

√
2y2√

2y2 y1 + y3

)
.

For NQ,ν(y) := NQ(y1, νy2, νy3) and MQ(y), (19) leads to the equations

C11 + C22 =

(
1 0
0 1

)
, C12 + C21 =

(
0 2ν
2ν 0

)
, −C11 + C22 =

(
−ν 0
0 ν

)
.

Hence, the set of matrices C = Cν satisfying (19) is given by the system

(21) C =
1

2




1 + ν 0 0 4λν
0 1− ν 4(1− λ)ν 0
0 4(1− λ)ν 1− ν 0

4λν 0 0 1 + ν


 , C � 0 with λ ∈ R.

The largest ν satisfying (21) is given by ν = 1
2
with λ = 3

4
. When rotating back, this

certifies the psd-stability of

f 1
2
(z) := det

(
NQ, 1

2
(Qz)

)
=

1

16
· (3z21 + 10z1z3 + 3z23 − 16z22).
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In addition to that, we obtain that f is K̂-stable with respect to the cone

K̂ =

{
y ∈ R3 :

1

2

(
3y1 − y3 4y2

4y2 −y1 + 3y3

)
� 0

}
.

6. Conclusion and open questions

In this paper, we have shown how techniques from the theory of positive maps and
from the containment of spectrahedra can be used to provide a sufficient criterion for
theK-stability of a given polynomial f . In particular, we have considered quadratic and
determinantal polynomials. Beyond that, our approach generally applies whenever (for
a polynomial of arbitrary degree) some spectrahedral components in the complement
of I(f) are known.

It would be interesting to understand whether this or related techniques can be ef-
fectively exploited also for classes of polynomials beyond the ones studied in the paper.
In particular, with regard to the recent development of a theory of Lorentzian polyno-
mials [8], which provides a superset of the set of homogeneous stable polynomials, it
would be of interest to understand the connection of Lorentzian polynomials to conic
stability and to the effective methods presented in our paper.
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IMAGINARY PROJECTIONS:
COMPLEX VERSUS REAL COEFFICIENTS

STEPHAN GARDOLL, MAHSA SAYYARY NAMIN, AND THORSTEN THEOBALD

Abstract. Given a multivariate complex polynomial p ∈ C[z1, . . . , zn], the imaginary
projection I(p) of p is defined as the projection of the variety V(p) onto its imaginary
part. We focus on studying the imaginary projection of complex polynomials and
we state explicit results for certain families of them with arbitrarily large degree or
dimension. Then, we restrict to complex conic sections and give a full characterization
of their imaginary projections, which generalizes a classification for the case of real
conics. That is, given a bivariate complex polynomial p ∈ C[z1, z2] of total degree two,
we describe the number and the boundedness of the components in the complement
of I(p) as well as their boundary curves and the spectrahedral structure of the
components. We further show a realizability result for strictly convex complement
components which is in sharp contrast to the case of real polynomials.

1. Introduction

Given a polynomial p ∈ C[z] := C[z1, . . . , zn], the imaginary projection I(p) as
introduced in [20] is the projection of the variety V(p) ⊆ Cn onto its imaginary part,
that is,

(1) I(p) = {zim = ((z1)im, . . . , (zn)im) : z ∈ V(p)} ⊆ Rn,

where (·)im is the imaginary part of a complex number. Recently, there has been
wide-spread research interest in mathematical branches which are directly connected to
the imaginary projection of polynomials.

As a primary motivation, the imaginary projection provides a comprehensive geometric
view for notions of stability of polynomials and generalizations thereof. A polynomial
p ∈ C[z] is called stable, if p(z) = 0 implies (zj)im ≤ 0 for some j ∈ [n]. In terms
of the imaginary projection I(p), we can express the stability of p as the condition
I(p)∩Rn

>0 = ∅. Stable polynomials have applications in many branches of mathematics
including combinatorics ([5] and see [8] for the connection of the imaginary projection to
combinatorics), differential equations [3], optimization [34], probability theory [4], and
applied algebraic geometry [37]. Further application areas include theoretical computer
science [23, 24], statistical physics [2], and control theory [25], see also the surveys [29]
and [38].

Recently, various generalizations and variations of the stability notion have been
studied, such as stability with respect to a polyball [13, 14], conic stability [9, 18],
Lorentzian polynomials [6], or positively hyperbolic varieties [31]. Exemplarily, regarding
the conic stability, a polynomial p ∈ C[z] is called K-stable for a proper cone K ⊂ Rn

if p(z) 6= 0, whenever zim ∈ intK, where int is the interior. In terms of the imaginary
projection, this condition can be equivalently expressed as I(p) ∩ intK = ∅.

This work was supported through DFG grant TH 1333/7-1.
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2 STEPHAN GARDOLL, MAHSA SAYYARY NAMIN, AND THORSTEN THEOBALD

Another motivation comes from the close connection of the imaginary projection to
hyperbolic polynomials and hyperbolicity cones [11]. As shown in [19], in case of a real
homogeneous polynomial p, the components of the complement I(p)c coincide with the
hyperbolicity cones of p. These concepts play a central role in hyperbolic programming,
see [15, 26, 27, 32]. A prominent open question in this research direction is the
generalized Lax conjecture, which claims that every hyperbolicity cone is spectrahedral,
see [36]. Representing convex sets by spectrahedra is not only motivated by the general
Lax conjecture, but also by the question of effective handling convex semialgebraic sets
(see, for example, [1, 21]). Recently, the conjecture that every convex semialgebraic set
would be the linear projection of a spectrahedron, the “Helton-Nie conjecture”, has
been disproven by Scheiderer [33].

Moreover, the imaginary projection closely relates to and complements the notions of
amoebas, as introduced by Gel’fand, Kapranov and Zelevinsky [12], and coamoebas. The
amoeba A(p) of a polynomial p is defined as A(p) :={(ln |z1|, . . . , ln |zn|) :z ∈V(p) ∩ (C∗)n},
so it considers the logarithm of the absolute value of a complex number rather than
its imaginary part. The coamoeba of a polynomial deals with the phase of a complex
number. Each of these three viewpoints of a complex variety gives a set in a real space
with the characteristic property that the complement of the closure consists of finitely
many convex connected components. See [10], [12] and [20] for the convexity properties
of amoebas, coamoebas, and imaginary projections, respectively. Due to their convexity
phenomenon, these structures provide natural classes in recent developments of convex
algebraic geometry.

For amoebas, an exact upper bound on the number of components in the complement
is known [12]. For the coamoeba of a polynomial p, it has been conjectured that there
are at most n! vol New(p) connected components in the complement, where vol denotes
the volume and New(p) the Newton polytope of p, see [10] for more background as well
as a proof for the special case n = 2. For imaginary projections, a tight upper bound
is known in the homogeneous case [19], but for the non-homogeneous case there only
exists a lower bound [20].

Currently, no efficient method is known to calculate the imaginary projection for a
general real or complex polynomial. For some families of polynomials, the imaginary
projection has been explicitly characterized, including complex linear polynomials and
real quadratic polynomials, see [20] and [18, Proposition 3.2]. However, since imaginary
projections for non-linear complex polynomials exhibit new structural phenomena
compared to the real case, even the characterization of the imaginary projection of
complex conics had remained elusive so far.

Our primary goal is to reveal fundamental and surprising differences between imag-
inary projections of real polynomials and complex polynomials. In fixed degree and
dimension, for a polynomial p with non-real coefficients, the algebraic degree of the
boundary of the imaginary projection ∂I(p) := I(p) ∩ I(p)c can be higher than the

case of real coefficients. Here (.)c and (.) are the complement and Euclidean closure,
respectively. These incidences already begin when the degree and dimension are both
two. However, the contrast is not only concerning the boundary degrees, but also the
arrangements and the strict convexity of the components in I(p)c.

We start with structural results which serve to work out the differences between the
case of real and complex coefficients. Our first result is a sufficient criterion on the roots
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IMAGINARY PROJECTIONS: COMPLEX VERSUS REAL COEFFICIENTS 3

of the initial form of an arbitrarily large degree non-real bivariate complex polynomial
to have the real plane as its imaginary projection, see Theorem 3.4 and Corollary 3.5.

Next, we characterize the imaginary projections of n-dimensional multivariate complex
quadratics with hyperbolic initial form, see Theorem 4.5 and Corollary 4.6.

In the two-dimensional case, although by generalizing from real to complex conics,
the bounds on the number of bounded and unbounded components in the complement
of the imaginary projections remain unchanged, the possible arrangements of these
components, strictness of their convexity, and the algebraic degrees of their boundaries
strongly differ. See Corollaries 5.3 and 5.4. For conic sections with real coefficients, it
was shown by Jörgens, Theobald, and de Wolff [20] that the boundary ∂I(p) consists
of pieces which are algebraic curves of degree at most two. In sharp contrast to this,
for complex polynomials, the boundary may not be algebraic and the degree of its
irreducible pieces can go up to 8. For example, despite the simple expression of the
polynomial p = z21 + iz22 + z2, an exact description of I(p) is

(2)
I(p) = {y ∈ R2 : −64y81 − 128y41y

4
2 − 64y82 + 256y41y

3
2 + 256y72 − 272y41y

2
2

−400y62 + 144y41y2 + 304y52 − 27y41 − 112y42 + 16y32 ≤ 0} \ {(0, 1/2)},

and the describing polynomial in (2) is irreducible over C. In this example, the set
I(p)c consists of a single convex connected and bounded component. Any polynomial
vanishing on the boundary will also vanish on the single point (0, 1/2) which is not part
of the boundary ∂I(p). Thus, ∂I(p) is not algebraic. See Figure 1 for an illustration
and we return to this example in Section 3 and at the end of Section 6.

(a) (b)

Figure 1. (A) The gray area and its boundary form the imaginary
projection I(p) of p = z21 + iz22 + z2. The polynomial in (2) vanishes on
the red curve, which consists of a single point and another bounded
component. The complement I(p)c contains the single point and it is
bounded by the other component. (B) The amoeba of p is shown in gray.

Since the topology of the imaginary projection in Rn is invariant under the action of
Gn := CnoGLn(R), that is the semi-direct product of GLn(R) and complex translations,
the problem to understand the imaginary projections naturally leads to a polynomial
classification problem.
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4 STEPHAN GARDOLL, MAHSA SAYYARY NAMIN, AND THORSTEN THEOBALD

As starting point, recall that under the action of the affine group Aff(C2), there are
precisely five orbits for complex conics, with the following representatives:

z21 (one line), z21 + 1 (two parallel lines), z21 − z2 (parabola),

z21 + z22 (two crossing lines), z21 + z22 − 1 (circle).

However, the arrangement of the components in I(p)c is not invariant under the
action of Aff(C2), but only under its restriction to G2. There are several other related
classifications of complex conic sections. Newstead [28] has classified the set of projective
complex conics under real linear transformations. However, out of a projective setting
his method becomes ineffective as it is based on the arrangements of four intersection
points between a conic and its conjugate. On the other hand, by considering the
real part and the imaginary part of a complex conic p, under the action of G2 the
classification of conic sections has some relations to the problem of classifying pairs of
real conics. Systematic classifications of this kind are mostly done in the projective
setting and are well understood. See [7, 22, 30, 35]. However, those classifications rely
on the invariance of the number and multiplicity of real intersection points between
the two real conics. The drawback here is that under complex translations on p, these
numbers are not invariant anymore, except at infinity.

To capture the invariance under G2, we develop a novel classification based on the
initial forms of complex conics. This classification is adapted to the imaginary projection
and it is rather fine but coarse enough to allow handling the inherent algebraic degree
of 8 in the boundary description of the imaginary projection.

Finally, we show that non-real complex conics can significantly improve a realization
result on the complement of the imaginary projections. In [19], for any given integer
k ≥ 1, they present a polynomial p of degree d = 4dk

4
e+ 2 as a product of real conics,

such that I(p)c has at least k components that are strictly convex and bounded. Using
non-real conics, we furnish a degree d/2 + 1 polynomial having exactly k components
with these properties. See Theorem 7.1 and Question 7.2.

The paper is structured as follows. Section 2 provides our notation and the necessary
background on the imaginary projection of polynomials and contains the classification of
the imaginary projection for the case of real conics. Section 3 deals with complex plane
curves and provides a highlighting example where the complex versus real coefficients
make a remarkable difference in the complexity of the imaginary projection. Moreover,
we determine a family of arbitrarily large degree non-real plane curves with a full-
space imaginary projection, based on the arrangements of roots of the initial form. In
Section 4, we set the degree to be two and let the dimension grow and we classify the
imaginary projections of complex quadratics with hyperbolic initial form. In Sections 5
and 6, we restrict the degree and dimension both to be two and we provide a full
classification of the imaginary projections for affine complex conics based on their initial
forms. Moreover, we determine in which classes the components in the complement of
the imaginary projection have a spectrahedral description and also state them explicitly.

Section 5 contains our main classification theorems and the corollaries differentiating
the cases of complex and real coefficients. The part where the initial form is hyperbolic
is already covered in 4. Each subsection of Section 6 treats one of the remaining classes
and explains their spectrahedral structure. In particular, we show that the only class
where the components in the complement are not necessarily spectrahedral is the case
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IMAGINARY PROJECTIONS: COMPLEX VERSUS REAL COEFFICIENTS 5

where the initial form has two distinct non-real roots in P1
C such that they do not form

a complex conjugate pair. In Section 7, we prove a realization result for strictly convex
complement components, which highlights another contrast between the imaginary
projections of complex and real polynomials. Section 8 gives some open questions.

2. Preliminaries and background

For a set S ⊆ Rn, we denote by S the topological closure of S with respect to the
Euclidean topology on Rn and by Sc the complement of S in Rn. The algebraic degree
of S is the degree of its closure with respect to the Zariski topology. The set of non-
negative and the set of strictly positive real numbers are abbreviated by R≥0 and R>0

throughout the text. Moreover, bold letters will denote n-dimensional vectors. By Pn
and PnR, we denote the n-dimensional complex and real projective spaces, respectively.

For a polynomial p ∈ C[z], the imaginary projection I(p) is defined in (1) and its

boundary I(p) ∩ I(p)c is denote by ∂I(p).

Theorem 2.1. [20] Let p ∈ C[z] be a complex polynomial. The set I(p)
c

consists of a
finite number of convex connected components.

We denote by are and aim the real and the imaginary parts of a complex number
a ∈ C, i.e., a is written in the form are + iaim, such that are, aim ∈ R. Let p ∈ C[z] be a
complex polynomial. After substituting zj = xj + iyj for all 1 ≤ j ≤ n, the complex
polynomial can be written in the form

p(z) = pre(x,y) + ipim(x,y),

such that pre, pim ∈ R[x,y]. We call the real polynomials pre and pim, the real part and
the imaginary part of p, respectively. Thus, finding I(p) is equivalent to determining
the values of y for which the real polynomial system

(3) pre (x,y) = 0 and pim(x,y) = 0

has real solutions for x.

Definition 2.2. Let p ∈ C[z1, z2] be a quadratic polynomial, i.e., p = az21 + bz1z2 +
cz22 +dz1 + ez2 + f such that a, b, c, d, e, f ∈ C. We say that p is the defining polynomial
of a complex conic, or shortly, a complex conic if its total degree equals two, i.e., at
least one of the coefficients a, b, or c is non-zero. A complex conic p is called a real
conic if all coefficients of p are real.

The following lemma from [20] shows how real linear transformations and complex
translations act on the imaginary projection. These are the key ingredients for computing
the imaginary projection of every class of conic sections.

Lemma 2.3. Let p ∈ C[z] and A ∈ Rn×n be an invertible matrix. Then

I(p(Az)) = A−1I(p(z)).

Moreover, a real translation z 7→ z + a, a ∈ Rn does not change the imaginary
projection. An imaginary translation z 7→ z+ ia, a ∈ Rn shifts the imaginary projection
into the direction −a.
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6 STEPHAN GARDOLL, MAHSA SAYYARY NAMIN, AND THORSTEN THEOBALD

By the previous lemma, to classify the imaginary projection of polynomials we
consider their orbits under the action of the group Gn := Cn o GLn(R), given by real
linear transformations and complex translations. Further let Aff(Kn) := Kn o GLn(K)
be the general affine group for K = R or K = C. The real dimensions of these groups
are

dimR(Aff(Cn)) = 2 dimR(Aff(Rn)) = 2(n2 + n), dimR(Gn) = n2 + 2n.

Up to the action of G2, a real conic p ∈ R[z1, z2] is equivalent to a conic given by one
of the following polynomials.

(i) z21 + z22 − 1 (ellipse),
(ii) z21 − z22 − 1 (hyperbola),

(iii) z21 + z2 (parabola),
(iv) z21 + z22 + 1 (empty set),

(v) z21 − z22 (pair of crossing lines),
(vi) z21 − 1 (parallel lines/one line z21),

(vii) z21 + z22 (isolated point),
(viii) z21 + 1 (empty set).

In [20], a full classification of the imaginary projection for real quadratics was shown.
In particular, the following theorem is the classification for real conics. For illustrations
of the cases, see Figure 2. The theorem that comes after provides the imaginary
projection of some families of real quadratics. Furthermore, they state the subsequent
question as an open problem.

Theorem 2.4. Let p ∈ R[z1, z2] be a real conic. For the normal forms (i)–(viii) from
above, the imaginary projections I(p) ⊆ R2 are as follows.

(i) I(p) = R2,
(ii) I(p) = {−1 ≤ y21 − y22 < 0} ∪ {0},

(iii) I(p) = R2 \ {(0, y2) : y2 6= 0},
(iv) I(p) = {y ∈ R2 : y21 + y22 − 1 ≥ 0},

(v) I(p) = {y ∈ R2 : y21 = y22},
(vi) I(p) = {y ∈ R2 : y1 = 0},

(vii) I(p) = R2,
(viii) I(p) = {y ∈ R2 : y1 = ±1}.

Theorem 2.5. Let p ∈ C[z1, . . . , zn] be p =
∑n−1

i=1 z
2
i − z2n + k for k ∈ {±1}. Then

I(p) =

{{
y ∈ Rn : y2n <

∑n−1
i=1 y

2
i

}
∪ {0} if k = 1,

{
y ∈ Rn : y2n −

∑n−1
i=1 y

2
i ≤ 1

}
if k = −1.

The following question, which is true for real quadratics p ∈ C[z], was asked in [20,
Open problem 3.4]. In Section 6.2, we show that it is not true in general even for
complex conics.

Question 2.6. Let p ∈ C[z] be a polynomial. Is I(p) open if and only if I(p) = Rn?

We use the initial form of p abbreviated by in(p)(z) = ph(z, 0) , where ph is the
homogenization of p. The initial form consists of the terms of p with the maximal total
degree. Furthermore, a complex polynomial p ∈ C[z] is called hyperbolic w.r.t. e ∈ Rn

if the univariate polynomial t 7→ p(x + te) is real-rooted. Note that any hyperbolic
polynomial is a, possibly complex, multiple of a real polynomial.

Finally, a spectrahedron is a set of the form

{x ∈ Rn : A0 +
n∑

j=1

Ajxj � 0},
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Figure 2. The imaginary projections of the real conic sections and their
complements are colored in gray and blue, respectively. The cases (i) and
(vii) are skipped, as their imaginary projection is the whole plane.

where A1, . . . , An are real symmetric matrices of size d. Here, “� 0” denotes the positive
semidefiniteness of a matrix. We also speak of a spectrahedral set if the set is given by
positive definite conditions, i.e., by strict conditions.

3. Imaginary projections of complex plane curves

In this section, we determine the imaginary projection of some families of arbitrarily
high degree complex plane curves. Our point of departure is the characterization of
real conics in Theorem 2.4. In the following example, which is an affine version of case
(B+) in Newstead’s classification [28], we show that by allowing non-real coefficients
the imaginary projection of a complex conic can significantly change in terms of the
algebraic degree of its boundary. See Corollary 5.3.

Remark 3.1. Recall that the discriminant of a univariate polynomial p(z) =
∑n

j=0 ajz
j

is given by Disc(p) = (−1)
1
2
n(n−1) 1

an
Res(p, p′), where Res denotes the resultant. For a

quartic, having negative discriminant implies the existence of a real root. However, a
positive discriminant can correspond to either four real roots or none. Let

P = 8a2a4−3a23, R = a33+8a1a
2
4−4a4a3a2, D = 64a34a0−16a24a

2
2+16a4a

2
3a2−16a24a3a1−3a43.

If Disc(p) > 0, then p = 0 has four real roots if P < 0 and D < 0, and no real roots
otherwise. Finally, if the discriminant is zero, the only conditions under which there is
no real solution is having D = R = 0 and P > 0 (see, e.g., [17, Theorem 9.13 (vii)]).

Example 3.2. Let p = z21 + iz22 + z2. For simplifying the calculations, we use the
translation z2 7→ z2 + i/2 to eliminate the linear term. This turns the equation p = 0
into q := z21 + iz22 + i/4 = 0. Building the real polynomial system as introduced in (3)
implies

qre = x21 − 2x2y2 − y21 = 0 and qim = 4x22 + 8x1y1 − 4y22 + 1 = 0.

First assume y1 6= 0. Substituting x1 from qim = 0 into qre = 0 gives

16x42 + (−32y22 + 8)x22 − 128y21y2x2 − 64y41 + 16y42 − 8y22 + 1 = 0.
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8 STEPHAN GARDOLL, MAHSA SAYYARY NAMIN, AND THORSTEN THEOBALD

We calculate the discriminant of the above equation with respect to x2. By the
previous remark, there is a real solution for x2 if the discriminant is negative, i.e.,

−64y81 − 128y41y
4
2 − 64y82 − 80y41y

2
2 + 48y62 + y41 − 12y42 + y22 < 0.

Now we need to check the conditions where the discriminant is zero or positive. To
show the positive discriminant implies no real solution for x2, we rewrite the condition
with the substitution u = y41:

4 := −64u2 + (−128y42 − 80y22 + 1)u− 64y82 + 48y62 − 12y42 + y22 > 0.

It is a quadratic polynomial in u with negative leading coefficient. It can only be
positive between the two roots for u in 4 = 0. Those are

−y42 −
5

8
y22 +

1

128
±
√

32768y62 + 3072y42 + 96y22 + 1

128
.

To obtain 4 > 0, we need to have a solution u > 0, i.e., we need to have either
−y42 − 5

8
y22 + 1

128
≥ 0 or otherwise
(
−y42 −

5

8
y22 +

1

128

)2

>
32768y62 + 3072y42 + 96y22 + 1

1282
.

The first inequality implies y22 ≤ 3
√
3−5
16

and after simplifications the second inequality
implies y22 < 1/4. The polynomial P from the previous remark for the quartic poly-
nomials evaluates to 4(1− 4y22), which is positive for y22 < 1/4. Therefore, for 4 > 0,
there is no real solution for x2. It remains now to consider the case 4 = 0. Since
y1 6= 0, to have R = −262144y2y

2
1 = 0 we need y2 = 0. Substituting y2 = 0 in D = 0

implies −4096y41− 960 = 0, which is a contradiction. Therefore, if y1 6= 0, the imaginary
projection of q consists of points y ∈ R2 for which 4 ≤ 0.

Now assume y1 = 0. From qim = 0 we can observe that 0 6∈ I(q). Thus, assume
y2 6= 0. Solving qre = 0 for x2 and substituting in qim = 0 implies x41 − y22(4y22 − 1) = 0.
This equation has a real solution if and only if −y22(4y22 − 1) ≤ 0. Substituting y1 = 0
in 4 allows to write 4 in terms of y2, which gives 4y2 = −y22(4y22 − 1)3. Therefore, the
imaginary projection on the y2-axis is {(0, y2) ∈ R2 : 4y2 ≤ 0} \ {(0, 0)}. Thus,

I(q) = {y ∈ R2 : −64y81 − 128y41y
4
2 − 64y82 − 80y41y

2
2 + 48y62 + y41 − 12y42 + y22 ≤ 0} \ {0}.

The irreducibility of the polynomial above over C can be verified for example using
Maple. For the original polynomial p, this gives the inequality description for I(p)
stated in (2) in the Introduction.

Even in the case of real polynomials, extending the case of real conics by letting
the degree or the number of variables be greater than two dramatically increases the
difficulty of characterizing the imaginary projection. Let us see one such example of a
cubic plane curve, i.e., where we have two unknowns and the total degree is three.

Example 3.3. Let p ∈ R[z] = R[z1, z2] be of the form p = z31 + z32 − 1. The similar
attempt as before to calculate the imaginary projection I(p) is to separate the real and
the imaginary parts of p according to (3),

pre = x31 − 3x1y
2
1 + x32 − 3x2y

2
2 − 1 = 0 and pim = 3x21y1 + 3x22y2 − y31 − y32 = 0.
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Despite the simplicity of the polynomial p, one cannot use the previous techniques
to find the values of y ∈ R2 such that the above system has real solutions for x. The
reason is that both x1 and x2 appear in higher degree than one in both equations. The
resultant with respect to one of x1 or x2 is a univariate polynomial of degree six in the
other, where we lack the exact tools to specify the reality of the roots.

In the following theorem, we show that the imaginary projection of a generic complex
plane curve of odd degree is the whole plane.

Theorem 3.4. Let p ∈ C[z1, z2] be a complex bivariate polynomial of total degree d such
that its initial form has no real roots in P1. If d is odd then the imaginary projection
I(p) is R2. As a consequence, the imaginary projection of a generic complex bivariate
polynomial of odd total degree is R2.

Proof. Since the initial form has no real roots, it can be written in the form

in(p) =
d∏

j=1

(z1 − αjz2),

where αj /∈ R for 1 ≤ j ≤ d. Substitute zj = xj + iyj for j = 1, 2 in p and form the
polynomial system pre = pim = 0 as introduced in (3). For any fixed y ∈ R2, both
equations are of total degree d in x1 and x2. Denote by phre and phim, the homogenization
of these two polynomials by a new variable x3. Since both, phre and phim, have odd degree,
the number of complex intersection points (counted with multiplicities) is odd while
the number of non-real intersection points (counted with multiplicities) is even. Thus,
there is a real intersection point in P2

R. We claim that this intersection point lies in the
affine piece where x3 = 1. This implies that for any given y ∈ R2, there exist x1, x2 ∈ R
for which pre = pim = 0 and therefore completes the proof.

To prove our claim, we show that the two curves defined by phre = 0 and phim = 0 do
not intersect at infinity, i.e., their intersection point has x3 6= 0. Let us assume that
they intersect at infinity and set x3 = 0 in phre and phim. This substitution turns the
complex polynomial phre + iphim into

q :=
d∏

j=1

(x1 − αjx2).

Thus, for the two projective curves to intersect at infinity we need to have q = 0.
Since αj /∈ R for 1 ≤ j ≤ d, the only real solution for x1 and x2 is zero. This is a
contradiction. �
Corollary 3.5. Let p ∈ C[z1, z2] be a complex bivariate polynomial. The imaginary
projection I(p) is R2 if p has a factor q such that the total degree of q is odd and its
initial form has no real roots in P1.

Proof. Since for p1, p2 ∈ C[z], we have I(p1 · p2) = I(p1) ∪ I(p2), we claim that if there
is a factor q in p whose imaginary projection is R2, then I(p) = R2. The result now
follows from the previous theorem. �

In the following section, instead of the dimension we set the degree to be two and
characterize the imaginary projection for a certain family of quadratic hypersurfaces.
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4. Complex quadratics with hyperbolic initial form

As we have seen in Example 3.2, the methods used to compute the imaginary
projection of real quadratics is not always useful for complex ones. However, for a
certain family, namely the quadratics with hyperbolic initial form, one can build up on
the methods for the real case. To classify the imaginary projections of any family of
polynomials, Lemma 2.3 suggests bringing them to their proper normal forms.

Lemma 4.1. Under the action of Gn, any quadratic polynomial p ∈ C[z1, . . . , zn] with
hyperbolic initial form can be transformed to one of the following normal forms:

(1) z21 + αz2 + rz3 + γ,

(2)
∑j

i=1 z
2
i − z2j+1 + αzj+2 + rzj+3 + γ for some j = 1, . . . , n− 1,

such that terms containing zk do not appear for k > n, and α, r, γ ∈ C.

Proof. The initial form in(p) is a hyperbolic polynomial of degree two. That is, after
a real linear transformation it can be either z21 or of the form z′TMz′ such that
z′ = (z1, . . . , zj+1) for some 1 ≤ j ≤ n− 1 and M is a square matrix of size j + 1 with
signature (j, 1). See [11]. This explains the initial forms in (1) and (2).

Any term λzj for some 1 ≤ j ≤ n, such that zj appears in our transformed initial
forms, cancels out by one of the translations zj 7→ zj ± λ

2
without changing the initial

form. Finally, we show that the number of linear terms in the rest of the variables is at
most two. Consider the complex linear form

∑n
j=1 λjzj . For 1 ≤ j ≤ n, let λj = rj + isj

such that rj, sj ∈ R. We can now write the sum as (
∑n

j=1 rjzj) + i(
∑n

j=1 sjzj). If
in the real part at least one of the rj, say, r1, is non-zero, then a sequence of linear
transformations z1 7→ z1 − rj

r1
zj for j = 2, . . . , n, cancels out

∑n
j=2 rjzj. Similarly, the

complex part reduces to only one term. �
We first focus on the case where n = 2. In this case, we explicitly express the

unbounded spectrahedral components forming I(p)c. The following subsection covers
part of the proof of Theorem 5.1.

4.1. Complex conics with hyperbolic initial form. To match them with our
classification of conics in Theorem 5.5, we do a real linear transformation in the case
(2) and write them as

(1a.1) p = z21 + γ, (1a.2) p = z21 + γz2 γ 6= 0, (1b) p = z1z2 + γ,

for some γ ∈ C. To find I(p) for each normal form, we compute the resultant of the two
real polynomials, as introduced in (3), with respect to xi to have a univariate polynomial
in xj, where i, j ∈ {1, 2}, and i 6= j. Then we use the discriminantal conditions on the
univariate polynomials to argue about the real roots.

First consider the normal form (1a.1). If γim = 0, then we have the real conics of the
cases (vi) and (viii) in Theorem 2.4. The two real polynomials pre = x21 − y21 + γre =
0 and pim = 2x1y1 + γim = 0 form the system (3) here. From γim 6= 0, we need to have
y1 6= 0. Now substituting x1 = −γim

2y1
from pim = 0 into pre = 0 and solving for y21 implies

y21 = 1
2

(
γre +

√
γ2re + γ2im

)
. Therefore,
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(1a.1) I(p) =

{
A unique line if γ ∈ R≤0,
Two parallel lines otherwise.

Clearly, the closures of the components in the complement are spectrahedra.

Now consider (1a.2) which is a generalization of the parabola case (iii) in Theorem 2.4,
where γ = 1. Similarly to the previous case, we build the corresponding polynomial
system as (3). The discriminantal condition after substituting x2 from pim = 0 into
pre = 0 implies that there exists a real x1 if and only if 4|γ|2(y21 + γimy2) ≥ 0. Hence,
I(p)c consists of y ∈ R2 such that y21 + γimy2 < 0. This inequality specifies the open
subset of R2 bounded by the parabola y21 +γimy2 = 0 and containing its focus. Therefore,

(1a.2) I(p) =

{
R2 \ {(0, y2) : y2 6= 0} if γ ∈ R,
{y ∈ R2 : y21 + γimy2 ≥ 0} otherwise.

Notice that this incidence of I(p)c consisting of one unbounded component does
not occur for real conics. See Corollary 5.4. Further, I(p)c for γ /∈ R is given by the
unbounded spectrahedral set defined by

(
1 y1
y1 −γimy2

)
� 0.

For the last case (1b) from the corresponding real polynomial system pre = pim = 0,
one can simply check that γ = 0 implies I(p) = {y ∈ R2 : y1y2 = 0}. Now let γ 6= 0
and first assume y1y2 6= 0. After the substitution of x2 from pim = 0 to pre = 0, the
discriminantal condition on the quadratic univariate polynomial to have a real x1 implies

γre − |γ| ≤ 2y1y2 ≤ γre + |γ|.
If γ ∈ R \ {0}, then 0 is the only point with y1y2 = 0 that is included in I(p). If

γ /∈ R, then the union of the two axes except the origin is included in I(p). Thus,

(1b) I(p) =





The union of the two axes y1 and y2 if γ = 0,

{y ∈ R2 : 0 < y1y2 ≤ γ} ∪ {0} if γ ∈ R>0,

{y ∈ R2 : γ ≤ y1y2 < 0} ∪ {0} if γ ∈ R \ R≥0,
{
y ∈ R2 : 1

2
(γre − |γ|) ≤ y1y2 ≤ 1

2
(γre + |γ|)

}
\ {0} if γ 6∈ R.

Corollary 4.2. Let p ∈ C[z1, z2] be a complex conic with hyperbolic initial form. The
complement I(p)c of the imaginary projection consists of only unbounded spectrahedral
components.

Proof. We saw this already for the cases (1a.1) and (1a.2). Therefore, we only prove the
statement for (1b). There are four unbounded components, namely in each quadrant one,
and no bounded component in I(p)c. The closures of the four unbounded components
after setting

w =

√
1

2
(|γ|+ γre) and u =

√
1

2
(|γ| − γre)
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have the following representations as spectrahedra. In the quadrants y1y2 ≥ 0, they are
expressed by y1y2 − 1

2
(γre + |γ|) ≥ 0, or equivalently, S1(y1, y2) � 0 and S2(y1, y2) � 0,

where

S1(y1, y2) =

(
y1 w
w y2

)
, S2(y1, y2) =

(
−y1 w
w −y2

)
.

In the quadrants with y1y2 ≤ 0, they are expressed by y1y2 − 1
2
(γre − |γ|) ≤ 0, or

equivalently, S3(y1, y2) � 0 and S4(y1, y2) � 0, where

S3(y1, y2) =

(
y1 u
u −y2

)
, S4(y1, y2) =

(
−y1 u
u y2

)
.

�

Given a conic q, an explicit description of the components of I(q)c can be derived by
using those of its normal form p and applying on y the inverse operations turning q to
p. We close this subsection by providing two examples for the cases (1a.2) and (1b)
and their corresponding spectrahedral components.

Example 4.3. Let q(z1, z2) = z21 +2z1z2+z22 +2iz2+1. By applying the transformation
A and the translation w given by

A :=

(
1 −1
0 1

)
and w :=

(
0

i/2

)
,

the conic q is transformed to its normal form p = z21 + 2iz2. Thus, we have

I(p)c =

{
y ∈ R2 :

(
1 y1
y1 −2y2

)
� 0

}
and I(q)c =

{
y ∈ R2 :

(
1 y1 + y2

y1 + y2 −2y2 + 1

)
� 0

}
,

such that I(q)c is obtained by the inverse transformations for y in I(p)c. Figure 4 (1a)
illustrates I(q)c.

Example 4.4. Let q(z1, z2) = z21 − z22 + 2i. Applying A = 1
2

(
−1 −1
−1 1

)
transfers the

conic q into p = z1z2 + 2i = 0. The value of both u and w introduced in the proof of
Corollary 4.2 is 1. By applying A−1 to y, the matrices S1, . . . , S4 transform to

T1(y1, y2) =

(
−y1 − y2 1

1 −y1 + y2

)
, T2(y1, y2) =

(
y1 + y2 1

1 y1 − y2

)
,

T3(y1, y2) =

(
−y1 − y2 1

1 y1 − y2

)
, T4(y1, y2) =

(
y1 + y2 1

1 −y1 + y2

)
.

Thus, the complement of the imaginary projection as shown in Figure 3 is given by

I(q)c =
4⋃

j=1

{
y ∈ R2 : Tj(y1, y2) � 0

}
.
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Figure 3. The first four pictures represent Tj(y1, y2) � 0 for 1 ≤ j ≤ 4,
and the last one shows their union, which gives I(q)c for q = z21 − z22 + 2i.

In the example above all four components are strictly convex, which can not occur in
the case of real conics. This provides a key ingredient in the proof of Theorem 7.1.

4.2. Higher dimensional complex quadratics. We now let the dimension to be at
least three and we use the normal forms provided in Lemma 4.1 to show the following
classification of the imaginary projection. To avoid redundancy, for each quadratic
polynomial we set n to be the largest index of z appearing in its normal form. Since we
have already covered the case of conics, we need to consider n ≥ 3.

Theorem 4.5. Let n ≥ 3 and p ∈ C[z1, . . . , zn] be a quadratic polynomial with hyperbolic
initial form. Up to the action of Gn, the imaginary projection I(p) is either Rn,
Rn \{(0, . . . , 0, yn) ∈ Rn : yn 6= 0}, or otherwise we can write p as p =

∑n−1
i=1 z

2
i − z2n +γ

for some γ ∈ C such that |γ| = 1 and we get

I(p) =





{
y ∈ Rn : y2n <

∑n−1
i=1 y

2
i

}
∪ {0} if γ = 1,

{
y ∈ Rn : y2n −

∑n−1
i=1 y

2
i ≤ 1

}
if γ = −1,

{
y ∈ Rn : y2n −

∑n−1
i=1 y

2
i ≤ 1

2
(1− γre)

}
\ {0} if γ 6∈ R.

Proof. By real scaling and complex translations, any of the forms in Lemma 4.1 drops
into one of the following cases:

(a)α = r = γ = 0, (b)α = 1, and r = γ = 0, (c)α /∈ R, and r, γ = 0,

(d)α /∈ R, r = 1, and γ = 0, (e)α = r = 0, and γ 6= 0.

For the normal form (1) all cases but (d) drop into the conic sections discussed
previously. Case (d) is similar for both normal forms (1) and (2). Thus we focus on (2).

The imaginary projection for the cases (a) and (b) are known from the real classifi-
cation and they are Rn and Rn \ {(0, . . . , 0, yn) ∈ Rn : yn 6= 0}, respectively. See [20,
Theorem 5.4].

In case (c) after building the system (3) and considering two cases, based on whether
the real part of α is zero or not, one can then check that I(p) = Rn as follows. We have

pre =
∑n−2

i=1 x
2
i − x2n−1 −

∑n−2
i=1 y

2
i + y2n−1 + αrexn − αimyn,

pim = 2
∑n−2

i=1 xiyi − 2xn−1yn−1 + αimxn + αreyn.

First assume αre = 0. For any y ∈ Rn, the equation pre = 0 has solutions
(x1, . . . , xn−1) ∈ Rn−1. By substituting any of those solutions in pim = 0 we can solve it
for xn and get a real solution. Now let αre 6= 0. In this case, we substitute xn from the sec-
ond equation into the first. For any y ∈ Rn, we get

∑n−2
i=1 (xi−ri)2− (xn−1−rn−1)2 = rn
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for some r1, . . . , rn ∈ R and therefore, there always exists a real solution (x1, . . . , xn−1) ∈
Rn−1.

Similarly, in the case (d), for any y ∈ Rn, there exists a real solution (x1, . . . , xn−1) ∈
Rn−1 for pim = 0 and for any y ∈ Rn and any (x1, . . . , xn−1) ∈ Rn−1, there exists a real
xn for pre = 0. Thus I(p) = Rn in this case, too.

Now we focus on case (e). Let p =
∑n−1

i=1 z
2
i − z2n + γ for some γ ∈ C \ {0}. Building

the real system (3) for p yields

pre =
∑n−1

i=1 x
2
i − x2n −

∑n−1
i=1 y

2
i + y2n + γre, pim = 2

∑n−1
i=1 xiyi − 2xnyn + γim.

We can assume |γ| = 1. Note that {0} ∈ I(p) if and only if γ ∈ R. We can thus
exclude the origin in the following calculations. Moreover, Theorem 2.5 shows the cases
where γ = ±1. Thus, we need to consider the case γ /∈ R.

Let T be an orthogonal transformation on Rn−1. Invariance of the polynomials∑n−1
j=1 y

2
j and

∑n−1
j=1 xjyj under the mapping (x, y) 7→ (T (x), T (y)) implies

(y1, y2, . . . , yn) ∈ I(p) if and only if (y′1, . . . , y
′
n−1, yn) ∈ I(p),

where (y′1, . . . , y
′
n−1) = T (y1, . . . , yn−1). For a given y ∈ I(p), let T be a transformation

with the property T (y1, . . . , yn−1) = (
√∑n−1

i=1 y
2
i , 0, . . . , 0) and set (x′1, . . . , x

′
n−1) =

T (x1, . . . , xn−1). We can now rewrite the simplified polynomial system as

pre =
∑n−1

i=1 x
′
i
2 − x2n − y′12 + y2n + γre, pim = 2x′1y

′
1 − 2xnyn + γim.

First consider y′1 = 0. This implies yn 6= 0. Solving pim = 0 for xn and substituting
in pre = 0 implies

4y2n(
n−1∑

i=1

x′i
2
) =

(
γ2re + γ2im

)
−
(
2y2n + γre

)2
= 1−

(
2y2n + γre

)2
.

This has a real solution for (x′1, . . . , x
′
n−1) if and only if y2n ≤ 1−γre

2
. Now assume

y′1 6= 0. Observe that if y′1
2 = y2n then we always get a real solution. Thus assume

y2n
y′1

2 − 1 6= 0. Solving pim = 0 for x′1 and substituting in pre = 0 implies

(
y2n

y′1
2 − 1

)
xn −

γimyn

2y′1
2
(
y2n
y′1

2 − 1
)




2

+

n−1∑

i=2

x′i
2

+

(
y2n − y′12

)2
+ γre

(
y2n − y′12

)
−
(γim

2

)2

y2n − y′12
= 0.

If y′1
2 > y2n, there always is a real solution and otherwise, it has a real solution if

and only if
(
y2n − y′12

)2
+ γre

(
y2n − y′12

)
−
(γim

2

)2 ≤ 0. That is, y2n − y′12 ≤ 1−γre
2

. To
get the imaginary projection of the original system, it is enough to do the inverse
transformation T−1. This completes the proof. �
Corollary 4.6. Let p ∈ C[z1, . . . , zn] be a quadratic polynomial with hyperbolic initial
form. Then

(1) the complement I(p)c is either empty or it consists of
- one, two, three, or four unbounded components; or
- two unbounded components and a single point.

(2) the complement of the closure I(p)
c

is either empty or unbounded.
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(3) the algebraic degrees of the irreducible components in ∂I(p) are at most two.

5. The main classification of complex conics

In this section, we give a classification of the imaginary projection I(p) where
p ∈ C[z] = C[z1, z2] is a complex conic as in Definition 2.2. We state our topological
classification in terms of the number and boundedness of the components in I(p)c. In
particular, this implies that the number of bounded and unbounded components do not
exceed one and four, respectively. Furthermore, I(p)c cannot contain both bounded
and unbounded components for some complex conic p.

A main achievement of this section is to establish a suitable classification and normal
forms of complex conics under the action of the group G2. There are infinitely many
orbits on the set of complex conics under this action, since the real dimension of G2

is 8 and the set of complex conics has real dimension 10. Each of our normal forms
corresponds to infinitely many orbits that share their topology of imaginary projection
by Lemma 2.3.

As a consequence of the obstructions in the existing classifications of conics that we
discussed in the Introduction, we developed our own classification of conic sections. It
is based on the five distinct arrangement possibilities for the roots of the initial form in
P1 that are grouped in two main cases, depending on whether the initial form of the
complex conic is hyperbolic or not:

Hyperbolic initial form

(1a) A double real root

(1b) Two distinct real roots

Non-hyperbolic initial form

(2a) A double non-real root

(2b) One real and one non-real root

(2c) Two distinct non-real roots

Theorem 5.1 (Topological Classification). Let p ∈ C[z1, z2] be a complex conic.
For the above five cases, the set I(p)c is

(1a) the union of one, two, or three
unbounded components.

(1b) the union of four
unbounded components.

(2a) empty.

(2b) empty, a single point,
or a line segment.

(2c) empty or one bounded component,
possibly open.

In particular, the components of I(p)c are spectrahedral in all the first four classes.
This is not true in general for the last class (2c).

The following corollary relates the boundedness of the components in I(p)c to the
hyperbolicity of the initial form in(p).

Corollary 5.2. Let p ∈ C[z1, z2] be a complex conic. Then I(p)c consists of unbounded
components if and only if the initial form of p is hyperbolic. Otherwise, I(p)c is empty
or consists of one bounded component. Moreover, if there is a bounded component with
non-empty interior, then in(p) has two distinct non-real roots.
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(1a) (2b) (2c)

Figure 4. The complements of the imaginary projections are colored
in blue. The pictures show cases in the classification of the imaginary
projection for complex conics which do not appear for real conics. The
orange line in the right figure represents a generic line intersecting the
boundary in two points, which is used to prove the non-spectrahedrality
of this example in Section 6.

Figure 4 represents the types that do not appear for real coefficients. For instance,
the middle picture, labeled as (2b), shows the case where I(p)c consists of a bounded
component with empty interior. This can not occur if p has only real coefficients. The
other two pictures are discussed in the next two corollaries. The following corollary
compares the algebraic degrees of the irreducible components in the boundary ∂I(p).
Its proof comes at the end of the next section.

Corollary 5.3. Let p ∈ C[z1, z2] be a complex conic.

(1) The boundary ∂I(p) may not be algebraic. The algebraic degree of any irreducible
component in its Zariski closure is at most 8. The bound is tight. If I(p)c has
no bounded components, then ∂I(p) is algebraic and it consists of irreducible
pieces of degree at most two.

(2) If all coefficients are real, then ∂I(p) is algebraic and it consists of irreducible
pieces of degree at most two.

Example 3.2, that is shown in Figure 4 (2c), illustrates an instance where the above
contrast appears. The next corollary compares the number and strict convexity of the
unbounded components that occur in I(p)c when p is a complex or a real conic.

Corollary 5.4. Let p ∈ C[z1, z2] be a complex conic.

(1) The number of unbounded components in I(p)c can be any integer 0 ≤ k ≤ 4
and up to 4 of them can be strictly convex.

(2) If all coefficients are real, the number of unbounded components in I(p)c can
be any integer 0 ≤ k ≤ 4 except for k = 1 and up to 2 of them can be strictly
convex.

The proof follows from Theorems 2.4 and 5.1, together with Example 4.4. The
highlighting difference in the previous corollary, i.e., when I(p)c has one unbounded
component, appears in the first class (1a) where the initial form has a double real root.
Example 4.3 provides such an instance and is shown in Figure 4 (1a).
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Theorem 5.1 is only proven by the end of Section 6. In the previous section, we
discussed the case where p has hyperbolic initial form in details. It remains to consider
the case where in(p) is not hyperbolic. As in Subsection 4.1, we first need to compute
proper normal forms and then by Lemma 2.3, it suffices to compute the imaginary
projections of those forms for each case.

Theorem 5.5 (Normal Form Classification). With respect to the group G2, there are
infinitely many orbits for the complex conic sections with the following representatives.

(1a)
(1a.1) p = z21 + γ

(1a.2) p = z21 + γz2

(1b) p = z1z2 + γ

(2a)
(2a.1) p = (z1 − iz2)

2 + γ

(2a.2) p = (z1 − iz2)
2 + γz2

(2b) p = z2(z1 − αz2) + γ

(2c)
(2c.1) p = z21 + z22 + γ

(2c.2) p = (z1 − iz2)(z1 − αz2) + γ

for some γ, α ∈ C such that, to avoid overlapping, we assume γ 6= 0 in (1a.2) and
(2a.2), α /∈ R in (2b) and (2c.2), and finally α 6= ±i in (2c.2).

Proof. By applying a real linear transformation we first map the roots of in(p) to (0 : 1)
in (1a), to (1 : 0) and (0 : 1) in (1b), to (i : 1) in (2a), to (1 : 0) and (α, 1) such that
α /∈ R in (2b), to (±i : 1) in (2c.1), and to (i : 1) and (α : 1) such that α /∈ R and
α 6= ±i in (2c.2). Then, similar to the proof of Lemma 4.1, by eliminating some linear
terms or the constant by complex translations we arrive at the given normal forms
for each case. Since the arrangements of the two roots in P1 is invariant under the
action of G2, the given five cases lie in different orbits. Note that the orbits of the
subcases in each case do not overlap. For the subcases of (1a), in (1a.2), z1 and z2 may
be transformed to az1 + bz2 + e and cz1 + dz2 + f with a, b, c, d ∈ R and e, f ∈ C. This
leads to (az1 + bz2 + e)2 + γ. Since z22 does not appear in the normal form of case (1a.2),
we get b = 0 and thus z2 can not appear. Further z21 + γ1 and z21 + γ2 with γ1 6= γ2
belong to different orbits since the previous argument enforces a = 1, b = 0, e = 0. The
other cases are similar. Thus, for any of the eight normal forms, there are infinitely
many orbits corresponding to each γ ∈ C (and α ∈ C in some cases). �

6. Complex conics with non-hyperbolic initial form

We complete the proof of the Topological Classification Theorem 5.1 by treating the
case where the complex conic p ∈ C[z] = C[z1, z2] does not have a hyperbolic initial
form. In particular, we see that, as previously stated in Corollary 5.2, if the initial
form of p is not hyperbolic, then I(p)c is empty or consists of one bounded component
whose interior is non-empty only if in(p) has two distinct non-real roots in P1.

The overall steps in computing the imaginary projection of the cases with non-
hyperbolic initial form are as follows. After building up the real polynomial system for
the classes (2b) and (2c.1) of Theorem 5.5 as in (3), we use the same techniques as in
Subsection 4.1. However, in the case (2a), by the nature of the polynomial system, we
directly argue that the imaginary projection is R2. In the last case (2c.2), we do not
explicitly represent the components of I(p)c. Instead, in Theorem 6.1 we prove that it
does not contain any unbounded components and the number of bounded components
does not exceed one.
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6.1. A double non-real root (2a). We show that in this case we have a full space
imaginary projection. First consider the normal form (2a.1). We have

pre = x21 − x22 + 2y2x1 + 2y1x2 + γrex2 − y21 + y22 − γimy2 = 0,
pim = −2x1x2 + 2y1x1 − 2y2x2 + γimx2 + 2y1y2 + γrey2 = 0.

We prove I(p) = R2 by showing that for every given y ∈ R2, these two real conics
in x = (x1, x2) have a real intersection point. For any fixed y ∈ R2, the bivariate
polynomial pre in x has the quadratic part x21 − x22, and hence, the equation pre = 0
defines a real hyperbola in x with asymptotes x1 = x2 + c1 and x1 = −x2 + c2 for some
constants c1, c2 ∈ R; possibly the hyperbola degenerates to a union of these two lines.
The degree two part of the polynomial pim is given by −2x1x2 and hence, the equation
pim = 0 defines a real hyperbola in x with asymptotes x1 = d1 and x2 = d2 for some
constants d1, d2 ∈ R; possibly the hyperbola may degenerate to a union of these two
lines. Since the two hyperbolas have a real intersection point, the claim follows. The
case (2a.2) is similar.

6.2. One real and one non-real root (2b). This case gives the system of equations

pre = −αrex
2
2 + x1x2 + 2αimy2x2 + αrey

2
2 − y1y2 + γre = 0,

pim = −αimx
2
2 + y2x1 + y1x2 − 2αrey2x2 + αimy

2
2 + γim = 0.

First assume y2 6= 0. By solving the second equation for x1, substituting the solution
into the first equation and clearing the denominator, we get a univariate cubic polynomial
in x2 with non-zero leading coefficient. Since real cubic polynomials always have a real
root, this shows that for y ∈ R2 with y2 6= 0, there is a solution x ∈ R2.

It remains to consider y2 = 0. In this case, the second equation has a real solution in
x2 whenever the corresponding discriminant y21 + 4αimγim is non-negative, and if one
of these solutions is non-zero, the first equation then gives a real solution for x1. The
special case that in the second equation both solutions for x2 are zero, can only occur
for y1 = 0 and γim = 0. Then the first equation has a real solution for x1 if and only if
γre = 0. Altogether, we obtain

(2b) I(p) =





R2 if γ = 0 or αimγim > 0,

R2 \ {0} if γ ∈ R \ {0},
R2 \ {(y1, 0) : y21 < −4αimγim} if αimγim < 0.

Note that when γ ∈ R \ {0} then I(p) is open but not R2. This answers Question 2.6.
See Figure 4 (2b) for the imaginary projection of p = z2(z1 − iz2)− i from this class.

6.3. Two distinct non-real roots (2c). First we show that in (2c.1), i.e., where the
roots of the initial form are complex conjugate, the imaginary projection is one open
bounded component. After forming the polynomial system (3), the same methods as
those in Subsection 4.1, i.e., taking the resultant of the two polynomials pre and pim
with respect to x2 and checking the discriminantal conditions to have a real x1, lead to
the imaginary projection

(2c.1) I(p) =
{

y ∈ R2 : y21 + y22 ≥
1

2
(γre +

√
γ2re + γ2im)

}
.
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In particular, we have I(p) = R2 if and only if γim = 0 and γre ≤ 0. Hence, in the case
of two non-real conjugate roots, I(p)c consists of either one or zero bounded component
and it is a spectrahedral set.

The subsequent lemma shows that for the case (2c) in general I(p)c is either empty
or consists of one bounded component.

Lemma 6.1. Let p = (z1−αz2)(z1−βz2) +dz1 + ez2 +f with α, β 6∈ R and d, e, f ∈ C.
Then

(1) I(p)c has at most one bounded component.
(2) I(p)c does not have unbounded components.

Proof. (1) Assume that there are at least two bounded components in I(p)c. By
Lemma 2.3, we can assume without loss of generality that the y1-axis intersects both
components. Solving p = 0 for z1 gives

(4) z1 =
α+ β

2
z2 −

d

2
+

C

√(
α− β

2

)2

z22 − ez2 − f .

By letting z2 ∈ R we obtain two continuous branches y
(1)
1 (z2) and y

(2)
1 (z2) satisfying (4).

Therefore, the set I(p) ∩ {y ∈ R2 : y2 = 0} has at most two connected components.
This is a contradiction to our assumption that the y1-axis intersects the two bounded
components in I(p)c.

For (2), assume that there exists an unbounded component in the complement of
I(p). The convexity implies that it must contain a ray. By Lemma 2.3, we can assume
without loss of generality that the ray is the non-negative part of the y1-axis. Similarly
to the proof of (1), we set y2 = 0 and check the imaginary projection on y1-axis, using

the two complex solutions in (4). Since α 6= β, we have D :=
(
α−β
2

)2 6= 0, where D is
the discriminant of in(p) with z2 substituted to 1. We consider two cases: D 6∈ R>0

and D ∈ R>0. In both cases we get into a contradiction to the assumption that the
unbounded component contains the non-negative part of the y1-axis.

First assume D 6∈ R>0. For z2 → ±∞, the imaginary part of the radicand is
dominated by the imaginary part of the square root of D. Since D 6∈ R>0 at least one
of the two expressions

(
α+ β

2

)

im

±

√√√√−Dre +
√
D2

re +D2
im

2

is non-zero. Thus, letting z2 7→ ±∞, implies y1 7→ +∞ in at least one of the branches.
Now assume D ∈ R>0. This implies (α − β)/2 ∈ R. Thus (α + β)/2 /∈ R, since

otherwise it contradicts with α, β /∈ R. In this case, by letting z2 grow to infinity, the
dominating expression for y1 is 1

2
(α + β)imz2. Therefore, y1 converges to +∞ in one of

the two branches. In both cases, for some s > 0, the ray {(y1, 0) ∈ R2 : y1 ≥ s} lies in
the imaginary projection. This completes the proof. �

Before, in Example 3.2 we have shown that the defining polynomial of the imaginary
projection can be irreducible of degree 8. The previous lemma enables us to show that
I(q)c has exactly one bounded component. Note that 0 ∈ I(q)c. Let Bε be an open
ball with center at the origin and radius ε. By letting y1 and y2 converge to zero, the
dominating part of 4 is y41 + y22. Thus, for sufficiently small ε, any non-zero point in Bε
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has 4 > 0. Therefore, I(q)c contains an open ball around the origin. Now the claim
follows from Theorems 6.1.

In this example, the imaginary projection is Euclidean closed, i.e., I(q) = I(q),
however, its boundary is not Zariski closed. We claim that the set I(q)c is not a
spectrahedron. By the characterization of Helton and Vinnikov [16], it suffices to show

that I(q) is not rigidly convex. That is, if h is a defining polynomial of minimal degree
for the component I(q)c, then we have to show that a generic line ` through the interior
of I(q)c does not meet the variety V := {x ∈ R2 : h(x) = 0} in exactly deg(h) many
real points, counting multiplicities. However, this can be checked immediately. For
example, the line y1 = 1/3 intersects the variety V in exactly two real points, and
any sufficiently small perturbation of the line preserves the number of real intersection
points. See Figure 4 (2c).

This completes the proof of Theorem 5.1. We now prove Corollary 5.3 by showing
that 8 is an upper bound.

Proof of Corollary 5.3. For the first four classes we have precisely computed the
boundaries ∂I(p) and they are algebraic with irreducible components of degree at
most two. It remains to consider the case (2c), more precisely (2c.2), where p =
(z1 − iz2)(z1 − αz2) + γ for some α, γ ∈ C, α /∈ R, and α 6= ±i. Using Remark 3.1, we
show that the degrees of the irreducible components in the Zariski closure of ∂I(p) do
not exceed 8. This, together with Example 3.2, completes the proof of (1). We separate
the real and the imaginary parts as before.

pre = x21+((αim+1)y2)−αrex2)x1−αimx
2
2+((αim+1)y1−2αrey2)x2+αrey2y1+αimy

2
2−y21+γre = 0,

pim =((αim+1)x2+αrey2−2y1)x1−αrex
2
2+(αrey1+2αimy2)x2+αrey

2
2−(αim+1)y1y2−γim = 0.

First we assume (αim + 1)x2 + αrey2− 2y1 6= 0. Solving pim = 0 for x1 and substituting
in pre = 0 returns
(
αim(α2

re+(αim+1)2)
)
x42−

(
(α2

1+α2
2+6α2+1)(−α1y2+y1(α2+1))

)
x32+

(
(α2

1+5α2
2+14α2+5)y21

−y1α1(α
2
1+α2

2+14α2+9)y2+(4α2
1+α2(α

2
1+(α2−1)2))y22+(k2α1−2k1−k1α2)α2−k2α1−k1

)
x22

+
(

8(−α2−1)y31 +8α1(α2+2)y21y2−(α2(α
2
1+α2

2−α2−1)+9α2
1+1)y1y

2
2 +α1(α

2
1+(α2−1)2)y32

+4k1(α2+1)y1+((α2
1−(α2−1)2)k2−2k1α1(α2+1))y2

)
x2+4y41−8α1y

3
1y2+(5α2

1+(α2−1)2)y21y
2
2

−α1(α
2
1 + (α2 − 1)2)y1y

3
2 − 4k1y

2
1 + 4α1k1y1y2 − α1(k1α1 + α2k2 − k2)y22 − k22.

Since α /∈ R, the leading coefficient is non-zero. Therefore, we have a quartic univariate
polynomial in x2. The relevant polynomials for the decision of whether this polynomial
has a real root for x2 are P,D and the discriminant Disc from Remark 3.1. By computing
these polynomials, we observe that Disc decomposes as Q2

1 · q, where Q1 is a quadratic
polynomial and q is of degree 8 in y. The total degrees of P and D are 2 and 4,
respectively.

Now let us assume (αim + 1)x2 + αrey2 − 2y1 = 0. If αim 6= −1, then substituting
x2 = −αrey2+2y1

αim+1
into pim = 0 is the quadratic Q1. Otherwise, the substitution αim = −1
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and y1 = αrey2
2

in pre and pim, and setting s = 2pim−αrepre simplifies the original system
to

pre = α2
rey

2
2 − 4αrex1x2 − 8αrex2y2 + 4x21 + 4x22 − 4y22 + 4γre = 0,

s = 2(2α2
rex1 + 3α2

rey2 + 4y2)x2 − (α3
rey

2
2 + 4αrex

2
1 + 4γreα1 − 4γim) = 0.

If the coefficient of x2 in s is non-zero, then solving s = 0 for x2 and substituting
in pre = 0 results in a quartic polynomial in x1 with non-zero leading coefficient. In
this case, the polynomials Disc, P, and D from Remark 3.1 are all univariate in y2. The
decomposition of the discriminant in this case consists of the polynomial q after the
substitution y1 = αrey2

2
and the square of a quadratic polynomial Q2. The total degrees

of P and D are 2 and 4, respectively.
Otherwise, solving 2α2

rex1 + 3α2
rey2 + 4y2 = 0 for x1 and substituting in s = 0, results

in Q2. In all the cases that we have discussed above, the degree of none of the irreducible
factors appearing in the polynomials that could possibly form the ∂I(p) exceeds 8.
Example 3.2 shows an example where this bound is reached. This completes the proof
of (1). (2) follows from Theorem 2.4. �

We have precisely verified the imaginary projections for all the normal forms in
Theorem 5.5 except for (2c.2) . In particular, we have shown that if p is not of the class
(2c.2), then I(p) = R2 if and only if there exist some γ, α ∈ C, and α /∈ R such that p
can be transformed to one of the following normal forms.

(5)





(2a) : (z1 − iz2)
2 + γz2 or (z1 − iz2)

2 + γ

(2b) : z2(z1 − αz2) + γ for γ = 0 or αimγim < 0,

(2c.1) : z21 + z22 + γ for γim = 0 and γre ≤ 0.

An example for a complex conic of class (2c.2) where the imaginary projection is R2

is p = z21 − 3iz1z2− 2z22 . The reason is that for any given (y1, y2) ∈ R2, the polynomial p
vanishes on the point (−y2 + iy1, y1 + iy2). Answering the following question completes
the verification of complex conics with a full-space imaginary projection.

Question 6.2. Let p ∈ C[z1, z2] be a complex conic of the form p = (z1−iz2)(z1−αz2)+γ
such that α /∈ R and α 6= ±i. Under which conditions on the coefficients γ, α ∈ C does
I(p) coincide with R2?

7. convexity results

For the case of complex plane conics, we have shown in Theorem 6.1 that there can
be at most one bounded component in the complement of its imaginary projection.
An example of such a conic is z21 + z22 + 1 = 0, where the unique bounded component
is the unit disc, which in particular is strictly convex. In the following theorem, we
show that for any k > 0, there exists a complex plane curve whose complement of the
imaginary projection has exactly k strictly convex bounded components. For the case
of real coefficients, only the lower bound of k and no exactness result is known (see [19,
Theorem 1.3]).

Allowing non-real coefficients lets us break the symmetry of the imaginary projection
with respect to the origin and this enables us to fix the number of components exactly
instead of giving a lower bound. Furthermore, using a non-real conic which has four
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strictly convex unbounded components, illustrated in Figure 3, notably drops the degree
of the corresponding polynomial.

Theorem 7.1. For any k > 0 there exists a polynomial p ∈ C[z1, z2] of degree 2dk
4
e+ 2

such that I(p)c consists of exactly k strictly convex bounded components.

Proof. Let Rϕ be the rotation map and g : C2 → C2 be defined as

g(z1, z2) = z1z2 + 2i.

Note that the equation

(6)
m−1∏

j=0

(g ◦Rπj/2m)(z1, z2) = 0

where m = dk
4
e as before, has 4m unbounded components in the complement of its

imaginary projection. We need to find a circle that intersects with k of them and does
not intersect with the rest 4m− k components. By symmetry of the construction of
the equation above, the smallest distance between the origin O and each component is
the same for all the components. The following picture shows the case m = 2.

Figure 5. The imaginary projection of (6) for m = 2 is the union of the
imaginary projections for polynomials corresponding to j = 0 and j = 1.

Let C be the boundary of the imaginary projection of z21+z22+r2 where r = |OA1|. The
center of C is the origin and it passes through all 4m points A1, . . . , A4m that minimize
the distance from the origin to each component. A sufficiently small perturbation of
the center and the diameter can result in a circle C ′ with center (a, b) and radius s that
only intersects the interiors of the first k unbounded components. Now define

q := (z1 − ia)2 + (z2 − ib)2 + s2.

By Lemma 2.3 and the fact that the imaginary projection of the multiplication of two
polynomials is the union of their imaginary projections, the polynomial

p := q ·
m−1∏

j=0

(g ◦Rπj/2m)(z1, z2),
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has exactly k strictly convex bounded components in I(p)c. �
Although, by generalizing from real to complex coefficients, we improved the degree

of the desired polynomial from d = 4dk
4
e+ 2 to d/2 + 1, it is not the optimal degree.

For instance if k = 1, the polynomial z21 + z22 + 1 has the desired imaginary projection,
while the degree is 2 < 4. Thus, we can ask the following question.

Question 7.2. For k > 0, what is the smallest integer d > 0 for which there exists a
polynomial p ∈ C[z1, z2] of degree d such that I(p)c consists of exactly k strictly convex
bounded components.

8. Conclusion and open questions

We have classified the imaginary projections of complex conics and revealed some
phenomena for polynomials with complex coefficients in higher degrees and dimensions.
It seems widely open to come up with a classification of the imaginary projections of
bivariate cubic polynomials, even in the case of real coefficients. In particular, the
maximum number of components in the complement of the imaginary projection for
both complex and real polynomials of degree d where d ≥ 3 is currently unknown. We
have shown that in degree two they coincide for real and complex conics, however, this
may not be the case for cubic polynomials.
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COMBINATORICS AND PRESERVATION OF CONICALLY STABLE
POLYNOMIALS

GIULIA CODENOTTI, STEPHAN GARDOLL, AND THORSTEN THEOBALD

Abstract. Given a closed, convex cone K ⊆ Rn, a multivariate polynomial f ∈ C[z]
is called K-stable if the imaginary parts of its roots are not contained in the relative
interior of K. If K is the non-negative orthant, K-stability specializes to the usual
notion of stability of polynomials.

We develop generalizations of preservation operations and of combinatorial criteria
from usual stability towards conic stability. A particular focus is on the cone of
positive semidefinite matrices (psd-stability). In particular, we prove the preservation
of psd-stability under a natural generalization of the inversion operator. Moreover,
we give conditions on the support of psd-stable polynomials and characterize the
support of special families of psd-stable polynomials.

1. Introduction

Multivariate stable polynomials can be seen as a generalization of real-rooted poly-
nomials, and they enjoy many connections to other branches in mathematics, including
differential equations [3], optimization [23], probability theory [4], matroid theory [6, 9],
applied algebraic geometry [24], theoretical computer science [18, 19] and statistical
physics [2]. See also the surveys of Pemantle [20] and Wagner [25].

Classical related notions include hyperbolic polynomials [11] or stability with respect
to an arbitrary domain (see, e.g., [12] and the references therein). Recently, further
variants and generalizations have been developed, including conic stability introduced
by Jörgens and the third author [14], Lorentzian polynomials introduced by Brändén
and Huh [7] and positively hyperbolic varieties introduced by Rincón, Vinzant and Yu
[22].

In this work we focus on the notion of conic stability. Given a closed, convex cone
K ⊆ Rn, a polynomial f ∈ C[z] = C[z1, . . . , zn] is called K-stable, if Im(z) 6∈ relintK
for every root z of f , where Im(z) denotes the vector of the imaginary parts of the
components of z and relintK denotes the relative interior of K. Note that (R≥0)

n-
stability coincides with the usual stability. In the case of a homogeneous polynomial,
K-stability of f is equivalent to the containment of relintK in a hyperbolicity cone of
f . The notion of K-Lorentzian polynomials recently introduced by Brändén and Leake
[8] is, up to scaling, a generalization of homogeneous K-stable polynomials. Stability
with respect to the positive semidefinite cone on the space of symmetric matrices is
denoted as psd-stability. In the homogeneous case such polynomials are also known
as Dirichlet-G̊arding polynomials [13]. Prominent subclasses of psd-stable polynomials
arise from determinantal representations [10]. Blekherman, Kummer, Sanyal et al.
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[1] have constructed a family of psd-stable lpm-polynomials (linear principle minor
polynomials) from multiaffine stable polynomials.

The purpose of the current paper is to initiate the study of generalizations of two
prominent research directions in stable polynomials towards conically stable polyno-
mials: preservation operators and combinatorial criteria. In particular, a focus is to
understand the transition from the classical stability situation to the conic stability
with respect to non-polyhedral cones such as the positive semidefinite cone.

With regard to preservation, stable polynomials have been recognized to remain
stable under a number of operations, see the survey [25]. Prominent examples include
the inversion operation (see [2]), the preservation under taking partial derivatives (as
a consequence of the univariate Gauß-Lucas Theorem), the Lieb-Sokal Lemma ([17,
Lemma 2.3], see also [2, Lemma 2.1]) and the celebrated characterization of Borcea
and Brändén of linear operators preserving stability [2, Theorem 1.3]. Many of the
mentioned applications of stability rely on the preservation properties.

With regard to combinatorial criteria, several important combinatorial results have
been achieved, which provide effective criteria for the recognition of stable polynomials.
A groundbreaking result of Choe, Oxley, Sokal and Wagner states that the support of a
multi-affine, homogeneous and stable polynomial f ∈ R[z] = R[z1, . . . , zn] is the set of
bases of a matroid [9, Theorem 7.1]. Brändén [6, Theorem 3.2] proved a generalization
of this result for the support of any stable polynomial f ∈ R[z], showing that it forms a
jump system, i.e., it satisfies the so-called Two-Steps Axiom. See Section 2 for formal
definitions. Recently, Rincón, Vinzant and Yu gave an alternative proof of the matroid
result, based on a tropical proof of the auxiliary statement that positive hyperbolicity
of a variety is preserved under passing over to the initial form [22, Corollary 4.9].

The proofs of these combinatorial properties strongly rely on the preservation prop-
erties of stable polynomials. These preservation properties establish the connection
between the combinatorial and the algebraic viewpoint. For example, taking the par-
tial derivative of a polynomial f shifts the support vectors of f by a unit vector in a
negative coordinate direction (and some support vectors may disappear). Since sta-
bility of a polynomial is preserved under taking partial derivatives, one can use this
preserver to argue about the combinatorics of the support. In the univariate case, these
considerations are classical for deriving log-concavity of sequences with real-rooted gen-
erating functions.

Our contributions. 1. We generalize several preserving operators for usual stability
to the conic stability. In particular, we derive a conic version of the Lieb-Sokal Lemma
(see Lemma 2.2 and Corollary 3.6).

2. For the case of psd-stability, we can prove the preservation under a natural
generalization of the inversion operator. See Theorem 4.3. This generalized inversion
operator is specific to the case of psd-stability and exhibits a prominent role of this
class. Furthermore, we show that psd-stable polynomials are preserved under taking
initial forms with respect to positive definite matrices. See Theorem 4.10.

3. Combinatorics of psd-stable polynomials. We prove a necessary criterion on the
support of any psd-stable polynomial in Theorem 5.1 and characterize the support of
special families of psd-stable polynomials. In particular, we characterize psd-stability
of binomials (Theorem 5.5), give a necessary criterion for psd-stability of a larger
class containing binomials (Theorem 5.4), and introduce a class of polynomials of
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determinants, which satisfies a generalized jump system criterion with regard to psd-
stability. Theorem 5.11 characterizes the restrictive structure of psd-stable polynomials
of determinants. These results are complemented by an additional conjecture on the
support of general psd-stable polynomials. We provide evidence for this conjecture by
verifying it for the classes of polynomials treated previously.

The paper is structured as follows. Section 2 collects relevant background on pre-
servers of the usual stability notion as well as an introduction to the notion of K-
stability.

In Section 3, we study preservers of conic stability for general and polyhedral cones,
including the generalized version of the Lieb-Sokal Lemma. Section 4 treats the case of
psd-stability, in particular, the preservation of psd-stability under an inversion opera-
tion and under passing over to certain initial forms. Section 5 deals with combinatorial
conditions of psd-stable polynomials. Therein, Subsections 5.1 and 5.2 discuss the sup-
port of special families of psd-stable polynomials. Subsection 5.3 considers the support
of general psd-stable polynomials and also raises a conjecture.

Acknowledgment. This work was supported through DFG grant TH 1333/7-1. The
research was primarily done while the first author was with Goethe University, sup-
ported by an Early Career Researcher grant of Goethe University.

2. Preliminaries

Let R≥0 and R>0 denote the sets of non-negative and of positive real numbers.
Further, let H := {z ∈ C : Im(z) > 0} be the open upper half-plane of C. Throughout
the text, bold letters will denote n-dimensional vectors unless noted otherwise.

In this section, we collect known properties of stable polynomials and then introduce
the generalization of stability, namely conic stability, with which the paper is concerned.

2.1. Stable polynomials. A polynomial f ∈ C[z] is called stable if for every root z
of f , there exists some j ∈ [n] with Im(zj) ≤ 0. Hence, a univariate real polynomial
f is stable if and only if it is real-rooted, because the non-real roots of univariate real
polynomials occur in conjugate pairs. The following collection from [25, Lemma 2.4]
recalls some elementary operations that preserve stability, where f) can be derived from
the Gauß-Lucas Theorem. Denote by degi the degree in the variable zi.

Proposition 2.1. Let f ∈ C[z] be stable.
a) Permutation: f(zσ(1), . . . , zσ(n)) is stable for every permutation σ : [n] → [n].
b) Scaling: c · f(a1z1, . . . , anzn) is stable or zero for every c ∈ C and a ∈ Rn

>0.
c) Diagonalization: f(z)

zj=zi
∈ C[z1, . . . , zj−1, zj+1, . . . , zn] is stable or zero for every

i 6= j ∈ [n].
d) Specialization: f(b, z2, . . . , zn) ∈ C[z2, . . . , zn] is stable or zero for every b ∈ C with
Im(b) ≥ 0.

e) Inversion: z
deg1(f)
1 · f(−z−1

1 , z2, . . . , zn) is stable.
f) Differentiation: ∂jf(z) is stable or zero for every j ∈ [n].

A prominent linear stability preserver is the Lieb-Sokal Lemma ([17, Lemma 2.3],
see also [2, Lemma 2.1] or [25, Lemma 3.2]). It is an essential ingredient in Borcea and
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Brändén’s full characterization of linear operations preserving stability [2, Theorem
1.1], see also [3, Section 3.2].

Proposition 2.2 (Lieb-Sokal Lemma). Let g(z)+yf(z) ∈ C[z, y] be stable and assume
degi(f) ≤ 1. Then g(z)− ∂if(z) ∈ C[z] is stable or identically zero.

The following statement due to Hurwitz allows us to obtain (conic) stability state-
ments as limit of statements on compact subsets under a uniform convergence condition.

Proposition 2.3. [15, Par. 5.3.4] Let {fk} be a sequence of polynomials non-vanishing
in a connected open set U ⊆ Rn, and assume it converges to a function f uniformly on
compact subsets of U. Then f is either non-vanishing on U or it is identically zero.

As a consequence of [9, Theorem 6.1], the following necessary condition for homoge-
neous stable polynomials based on their coefficients applies.

Theorem 2.4. All nonzero coefficients of a homogeneous stable polynomial f ∈ C[z]
have the same phase.

2.2. Stability and initial forms. The initial form inw(f) of a polynomial f(z) =∑
α∈S cαz

α with respect to a functional w in the dual space (Rn)∗ is defined as

inw(f) =
∑

α∈Sw

cαz
α,

where Sw := {α ∈ S : 〈w, α〉 = maxβ∈S〈w, β〉} and 〈·, ·〉 is the natural dual pairing.
That is, we restrict the polynomial f to those monomials whose exponents lie on the
face of the Newton polytope of f where the functional w is maximized.

In the context of their work on positively hyperbolic varieties, Rincón, Vinzant and
Yu [22, Proposition 4.1] showed that for polynomials with real coefficients, stability is
preserved under taking initial forms. Their proof is based on tropical geometry. For the
convenience of the reader, we give here a simplified proof, and at the same time slightly
generalize the statement to also cover polynomials with complex coefficients. The
observation that the statement is also valid for complex coefficients has independently
been derived by Kummer and Sert [16, Proposition 2.6].

Theorem 2.5. If f ∈ C[z] is stable and w ∈ (Rn)∗ \{0}, then inw(f)(z) is also stable.

Proof. Let ϕ := max {〈α,w〉 : α ∈ supp(f)}, and for λ > 0, define the polynomial
fλ(z) :=

1
λϕ · f(λw1z1, . . . , λ

wnzn), which is stable by Proposition 2.1.
To apply Hurwitz’ Theorem to finally achieve stability of the initial form, we need

to ensure that fλ converges uniformly to inw(f) on every compact subset C ⊆ Cn. Let
µ = max{〈α,w〉 : 〈α,w〉 < ϕ, α ∈ supp(f)} and δ = ϕ− µ > 0. Then

lim
λ→∞

sup
z∈C

|fλ(z)− inw(f)(z)| ≤ lim
λ→∞

sup
z∈C

∑
〈α,w〉<ϕ

∣∣∣∣
1

λδ
cαz

α

∣∣∣∣

= lim
λ→∞

1

λδ
sup
z∈C

∑
〈α,w〉<ϕ

|cαzα| = 0,

since the norm in the last equality is bounded, given that C is a compact set. �
The discussion of the preservation of conically stable polynomials when passing over

to initial forms is continued at the end of Section 4.
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2.3. Combinatorics of stable polynomials. For α, β ∈ Zn, the steps between α
and β are defined as the set

St(α, β) := {σ ∈ Zn : |σ| = 1, |α+ σ − β| = |α− β| − 1} ,
where |σ| := ∑n

i=1 |σi|. A collection of points F ⊆ Zn is called a jump system if for
every α, β ∈ F and σ ∈ St(α, β) with α + σ /∈ F there is some τ ∈ St(α + σ, β) such
that α + σ + τ ∈ F . In words, if after one step from α towards β we have left the set
F , then there must be a second step that takes us back into F . This property is also
known as the Two-Steps Axiom. The support of a complex polynomial f(z) =

∑
α cαz

α

is defined as supp(f) = {α ∈ Zn
≥0 : cα 6= 0}, that is, it is the set of all exponent vectors

α such that the corresponding coefficient cα is non-zero in f . The following theorem
reveals the connection between stable polynomials and jump systems.

Theorem 2.6 (Brändén [6]). If f ∈ C[z] is stable, then its support is a jump system.

In [22, Proposition 4.1], the support of stable binomials is explicitly classified as
follows. Here, ei denotes the i-th unit vector in Rn.

Theorem 2.7. Let f = cαz
α + cβz

β with cα, cβ 6= 0 and α, β ∈ Zn
≥0 be stable and let

zα and zβ do not have a common factor. Then one of the following holds,

a) {α, β} = {0, ei} for some i ∈ [n],
b) {α, β} = {ei, ej} for some i, j ∈ [n] and cα

cβ
∈ R≥0, or

c) {α, β} = {0, ei + ej} for some i, j ∈ [n] and cα
cβ

∈ R<0.

2.4. Conic stability. The following notion of conic stability as introduced in [14]
generalizes stability to more general cones. Let K be a closed, convex cone in Rn and
denote by relintK its relative interior.

Definition 2.8. A polynomial f ∈ C[z] is called K-stable, if f(z) 6= 0 whenever
Im(z) ∈ relintK.

Observe that by choosing the cone K = Rn
≥0, we recover the usual notion of stability.

For any closed, convex cone K, conic stability can be characterized through stability
of univariate polynomials (see [14, Lemma 3.4], that proof literally also works without
the assumption of full-dimensionality made there).

Proposition 2.9 ([14], Lemma 3.4). A polynomial f ∈ C[z] \ {0} is K-stable if and
only if for all x,y ∈ Rn with y ∈ relintK, the univariate polynomial t 7→ f(x+ ty) is
stable or identically zero.

Remark 2.10. A homogeneous polynomial f ∈ C[z] is called hyperbolic w.r.t. e ∈ Rn

if f(e) 6= 0 and the univariate polynomial t 7→ f(x + te) is real rooted. For a full-
dimensional coneK ⊂ Rn, every homogeneous K-stable polynomial is hyperbolic w.r.t.
every e ∈ relintK = intK by [14, Theorem 3.5] and hence, up to a multiplicative
constant every homogeneous K-stable polynomial has real coefficients [11].

2.5. Positive semidefinite stability. We introduce the notion of psd-stability, an
important special case of conic stability where the cone is chosen to be the positive
semidefinite cone.

Denote by SC
n the vector space of complex symmetric matrices (rather than Hermit-

ian matrices) and by Sn the space of real ones. The cones of real positive semidefinite
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and positive definite matrices are denoted by S+
n and S++

n . Let C[Z] denotes the ring of
polynomials on the symmetric matrix variables Z = (zij). More precisely, C[Z] is the
vector space generated by monomials of the form Zα =

∏
1≤i,j≤n z

αij

ij with some non-
negative symmetric matrix α whose diagonal entries are integers and whose off-diagonal
entries are half-integers. Polynomials in C[Z] can also be interpreted as polynomials
in the polynomial ring C[{zij |1 ≤ i ≤ j ≤ n}], by identifying zij and zji for i 6= j. For
example, consider the monomial

Z


 0 1/2
1/2 0




= z
1/2
12 z

1/2
21 = z12

in the polynomial ring C[Z] over the vector space SC
2 .

Definition 2.11. Psd-stability is defined as S+
n -stability for polynomials over the vec-

tor space SC
n of complex symmetric matrices. That is, a polynomial f ∈ C[Z] is

psd-stable if it has no root M ∈ SC
n such that Im(M) ∈ S++

n .

The support supp(f) of a polynomial f ∈ C[Z] is the set of all symmetric exponent
matrices of the monomials occurring with non-zero coefficients in the polynomial. The
variables zii are called diagonal variables, while the variables zij with i 6= j are the
off-diagonal variables. We say that a monomial with exponent matrix α is a diagonal
monomial if αij = 0 for all i 6= j ∈ [n], and we say that it is an off-diagonal monomial
if αii = 0 for all i ∈ [n]. By convention, we say that a constant is a diagonal monomial,
but not an off-diagonal one.

Example 2.12. Let f(Z) = det(Z) in the polynomial ring C[Z] over the vector space
SC
2 . Then

f(Z) = z11z22 − z212 = Z


1 0
0 1



− Z


0 1
1 0



.

The monomial z11z22 is a diagonal monomial while the other one is an an off-diagonal
monomial.

A prime example of psd-stable polynomials are determinants. The proof is included
for completeness.

Lemma 2.13. f(Z) = det(Z) is psd-stable.

Proof. Suppose that f is not psd-stable, that is, there exist real symmetric matrices A
and B with B positive definite, such that f(A + iB) = 0. Then B is invertible and

0 = f(A + iB) = det(A + iB) = det(B) det(B− 1
2AB− 1

2 + iIn), where In denotes the
identity matrix of size n. Hence, −i is a root of the characteristic polynomial of, and
thus an eigenvalue of, B− 1

2AB− 1
2 : a contradiction, since a symmetric real matrix has

only real eigenvalues. �
Contrary to the usual stability notion, monomials are not necessarily psd-stable. In

fact, every monomial with an off-diagonal variable as a factor, is not psd-stable since
it evaluates to zero for Z = i · In.

Psd-stability can be viewed as stability with respect to the Siegel upper half-space
HS = {A ∈ Cn×n symmetric : Im(A) is positive definite}. The Siegel upper half-
space occurs in algebraic geometry and number theory as the domain of modular forms.
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3. Preservers for conic stability

We provide generalizations of the stability preservers from Section 2 to conic stability
with respect to some closed, convex cone K. Our focus is on general cones and on the
subclass of polyhedral cones. A main result in this section is Theorem 3.4, a conic
version of the Lieb-Sokal Lemma. In Section 4, the specific case of preservers for
psd-stability will be studied.

A conical analogue of property b) from Proposition 2.1, scaling, holds trivially since
K is a cone: for any c ∈ C and a ∈ R≥0, the polynomial c·f(az1, . . . , azn) is K-stable or
identically zero. We now study the preservation of conical stability under directional
derivatives. For a vector v ∈ Rn \ {0}, denote by ∂v the directional derivative in
direction v, i.e., ∂vf(z) =

d
dt
f(z+ tv)

∣∣
t=0

.

Lemma 3.1. Let f ∈ C[z] be K-stable. For v ∈ K, the polynomial ∂vf is K-stable or
identically zero.

In the homogeneous case, this statement follows from the concept of a Renegar
derivative [21] for hyperbolic polynomials.

Proof. Let f be K-stable and v ∈ K. Assume that ∂vf is neither 0 nor K-stable.
Then there is some z ∈ Cn such that Im(z) ∈ relintK and ∂vf(z) = 0.

To aim at a contradiction to the univariate Gauß-Lucas Theorem, we construct
through a substitution in f a univariate polynomial g 6≡ 0, which has a non-real zero.
Since Im(z) ∈ relint(K), there exists some ε > 0 such that Im(z)−εv ∈ relintK. Define
the univariate polynomial g : t 7→ f(z − iεv + tv). If g ≡ 0, then f(z) = g(iε) = 0
in contradiction to the K-stability of f . Hence, g 6≡ 0. Since Im(z) − εv ∈ relint(K)
and v ∈ K, the univariate polynomial g is stable: if it had any root t with Im(t) > 0,
z− iεv+ tv would be a root of f , but its imaginary part Im(z)− εv+ Im(t)v is in the
relative interior of the cone K, a contradiction to the conical stability of f . Moreover,
g is not constant, because ∂vf 6≡ 0. Hence, by the Gauß-Lucas Theorem, the derivative
g′ is stable. Since

g′(iε) =
∂

∂t
f(z− iεv + tv)

∣∣∣
t=iε

= ∂vf(z) = 0,

we obtain a contradiction to the stability of g′. �
There is a natural generalization of property d) in Lemma 2.1 to conic stability.

Lemma 3.2. Let f ∈ C[z] be K-stable, a ∈ Cn and v(1), . . . ,v(k) ∈ Rn. Further
set K ′ = pos{v(1), . . . ,v(k)} and assume that Im(a) + K ′ ⊆ K. Then the polynomial
g ∈ C[z] defined by

g(z1, . . . , zk) = f(a+
k∑

j=1

zjv
(j))

is stable or the zero polynomial.

Setting K = Rn
≥0, k = n − 1, v(j) = e(j+1) with the (j + 1)-th unit vector e(j+1),

1 ≤ j ≤ n− 1, and a2 = · · · = an = 0 yields Lemma 2.1 d).

Proof. First consider the special case where Im(a) + relintK ′ ⊆ relintK. Further
assume that the polynomial g ∈ C[z] is neither zero nor stable. Then there exists
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w ∈ Ck with Im(w) ∈ Rk
>0 and g(w) = 0, and thus f(a +

∑k
j=1wjv

(j)) = 0. Since

Im(a) +
∑k

j=1wjv
(j) ∈ Im(a) + relintK ′ ⊆ relintK, f is not K-stable, contradiction.

The general case (Im(a) +K ′ ⊆ K) follows from Hurwitz’ Theorem. �
In the rest of this section, we present and prove a generalization of the Lieb-Sokal

Lemma (Lemma 2.2) to conic stability. In the usual Lieb-Sokal Lemma, we take a
partial derivative of a polynomial which has degree at most 1 in the corresponding
variable. To formulate a similar result for arbitrary cones, we take a directional de-
rivative in a direction lying in the cone, since these directional derivatives preserve
conic stability by Lemma 3.1. To this end, we need a generalized notion of degree with
respect to an arbitrary direction.

Definition 3.3. For v ∈ Rn, we call ρv(f) the degree of f in direction v, defined as
the degree of the univariate polynomial f(w + tv) ∈ C[t] for generic w ∈ Cn.

In particular, after taking the directional derivative in direction v exactly ρv(f) + 1
times, we obtain the identically zero polynomial. The degree in the direction of a unit
vector e(j) coincides with the univariate degree with respect to the variable j. We can
now state the conical version of Lieb-Sokal stability preservation.

Theorem 3.4 (Conic Lieb-Sokal stability preservation). Let K ′ be given by K ′ =
K × R≥0 and g(z) + yf(z) ∈ C[z, y] be K ′-stable and such that ρv(f) ≤ 1 for some
v ∈ K. Then g − ∂vf is K-stable or g − ∂vf ≡ 0.

We first establish a connection between a cone K and its lift K ′ into a higher-
dimensional space, which we will use to prove Theorem 3.4.

Lemma 3.5. Let f, g ∈ C[z], where f 6≡ 0 and K-stable and let K ′ = K ×R≥0. Then
g + yf ∈ C[z, y] is K ′-stable if and only if

Im

(
g(z)

f(z)

)
≥ 0 for all z ∈ Cn with Im(z) ∈ relintK.

Proof. Let g + yf be K ′-stable. Fix some z with Im(z) ∈ relintK. By K-stability, we
have f(z) 6= 0, and thus we may consider g(z)+yf(z) as a univariate stable polynomial.

Setting w = −g(z)/f(z), the stability of the univariate polynomial y 7→ g(z)+yf(z)
implies Im(w) ≤ 0. It follows that

Im

(
g(z)

f(z)

)
= Im(−w) ≥ 0.

Conversely, suppose Im
(

g(z)
f(z)

)
≥ 0 for all z ∈ Cn with Im(z) ∈ relintK. Assume g 6≡ 0,

since otherwise yf(z) would clearly be K ′-stable. For z ∈ Cn with Im(z) ∈ relintK, we

have for w ∈ C with Im(w) > 0 that g(z)
f(z)

6= −w. So g(z) + wf(z) 6= 0 and K ′-stability
follows. �

We can now complete the proof of Theorem 3.4.

Proof of Theorem 3.4. We begin by observing that g is K-stable or g ≡ 0. Let v ∈ K
with ρv(f) ≤ 1. If ∂vf ≡ 0, there is nothing to prove. So assume ∂vf 6≡ 0, and thus
implies f 6≡ 0. For a fixed z ∈ Cn with Im(z) ∈ relintK we may consider g(z)+yf(z) as
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a univariate polynomial in y. By Lemma 3.1, the polynomial f(z) = ∂y(g(z) + yf(z))
is K-stable. For z ∈ Cn with Im(z) ∈ relintK, v ∈ K and y ∈ C with Im(y) > 0, we
have Im(z− 1

y
v) ∈ relintK, because

Im

(
z− 1

y
v

)
= Im(z)− Im

(
1

y

)
v = Im(z) +

1

|y|2 Im(y) · v ∈ relintK.

It follows that yf(z − 1
y
v) is K ′-stable. Since ρv(f) ≤ 1, there exist polynomials f0

and f1 with ρf0(v), ρf1(v) = 0 and f(z) = f0(z) + 〈v, z〉 · f1(z). Thus, the identity

yf

(
z− 1

y
v

)
= yf(z)− ∂vf(z)

implies the K ′ stability of yf(z)− ∂vf(z). Applying Lemma 3.5 twice gives

Im

(
g(z)− ∂vf(z)

f(z)

)
= Im

(
g(z)

f(z)

)
+ Im

(−∂vf(z)

f(z)

)
≥ 0.

Using Lemma 3.5 again, theK ′-stability of g(z)−∂vf(z)+yf(z) follows. By specializing
to y = 0 and using Lemma 2.1, we obtain that g(z) − ∂vf(z) is K-stable or g(z) −
∂vf(z) ≡ 0. �

Theorem 3.4 not only generalizes the usual Lieb-Sokal Lemma to the case of arbitrary
cones, but also extends it to directional derivatives with respect to every direction in
the positive orthant. We can formulate this explicitly as the following refined version
for the usual stability notion.

Corollary 3.6 (Refined Lieb-Sokal Lemma). Let g(z) + yf(z) ∈ C[z, y] be stable and
assume ρv(f) ≤ 1 for some v ∈ Rn

≥0. Then g(z)−∂vf(z) ∈ C[z] is stable or identically
0.

4. Preservers for psd-stability

In this section, we restrict to psd-stability. For a complex symmetric matrix Z ∈ SC
n ,

we write Z = X + iY with X, Y ∈ Sn. After collecting some elementary preservers,
our main results of this section are the preservation of psd-stability under an inversion
operation (see Theorem 4.3 and Corollary 4.7) and the preservation of psd-stability
under taking initial forms with respect to positive definite matrices (see Theorem 4.10).

For a polynomial f ∈ C[Z], let fDiag ∈ C[Z] denote the polynomial obtained from f
by substituting all off-diagonal variables by 0. For 1 ≤ i 6= j ≤ n, let Bii be the matrix
which is 1 in entry (i, i) and zero otherwise, and let Bij be the matrix which is 1/2 in
entry (i, j) and (j, i) and zero otherwise. Then, for a polynomial f =

∑
α cαZ

α ∈ C[Z]
and its equivalent version f̃ =

∑
α cα

∏n
k=1 z

αkk
kk

∏
k<l z

2αkl
kl in C[{zkl|1 ≤ k ≤ l ≤ n}], we

have the identities ∂f
∂Bii

∣∣
zlk:=zkl

= ∂f̃
∂zii

and ∂f
∂Bij

∣∣
zlk:=zkl

= 1
2

∂f̃
∂zij

as symbolic expressions.

To see this, it suffices to observe that for i < j and a monomial f(Z) = z
αij

ij z
αji

ji ∈ C[Z],
we have f̃ = z

2αij

ij and

∂

∂Bij
f(Z) =

1

2
αijz

αij−1
ij z

αji

ji +
1

2
αjiz

αij

ij z
αji−1
ji ∈ C[Z].

Substituting zji by zij gives
∂

∂Bij
f(Z)

∣∣
zji:=zij

= αijz
2αij−1
ij = 1

2
∂

∂zij
f̃ .
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Lemma 4.1 (Elementary preservers for psd-stability). Let f ∈ C[Z] be psd-stable.

a) Diagonalization: The polynomial Z 7→ fDiag(Z) is psd-stable.

b) Transformation: Let S ∈ GLn(R), then f(SZS−1) and f(SZST ) are psd-
stable.

c) Minorization: For J ⊆ [n], let ZJ be the symmetric |J | × |J | submatrix of Z
with index set J . Then f(ZJ), the polynomial on SC

|J | obtained from f by setting
to zero all variables with at least one index outside of J , is psd-stable or zero.

d) Specialization: For a fixed index i ∈ [n], let Ẑi be any matrix obtained from
Z by assigning real values to zij , zji for all indices j 6= i and a value from H to

zii. Then f(Ẑi), viewed as polynomial on SC
n−1, is psd-stable or zero.

e) Reduction: For i, j ∈ [n], let Z̄ij be any matrix obtained from Z by choosing
real values for zik = zki for k 6= i and setting zii := zjj. Then f(Z̄ij), viewed as
polynomial on SC

n−1, is psd-stable or zero.

f) Permutation: Let π : [n] → [n] be a permutation. Then f((Zπ(j),π(k))1≤j,k≤n)
is a psd-stable polynomial on SC

n .

g) Differentiation: ∂V f(Z) is psd-stable or zero for V ∈ S+
n .

Proof. a) Assume fDiag is not psd-stable. Then there are real symmetric matrices
A,B with B ≻ 0 and fDiag(A + iB) = 0. Let A′ and B′ be the matrices obtained
from A and B by setting all off-diagonal variable to zero. In particular, B′ is positive
definite. Since the only variables occurring in fDiag are the diagonal ones, we have
f(A′ + iB′) = fDiag(A + iB) = 0. Hence, f is not psd-stable.

b) Both transformations Z 7→ STZS and Z 7→ S−1ZS preserve the inertia of Im(Z)
and thus also psd-stability.

c) Set k := |J | and assume without loss of generality J = {1, . . . , k}. For ε > 0,
let gε be the polynomial on the space Sk defined by gε(Z) := f (Diag(Z, iεIn−k)),
where Diag(Z, iεIn−k) is the block diagonal matrix with blocks Z and iεIn−k. The
psd-stability of g implies the psd-stability of gε for all ε > 0. Hurwitz’ Theorem 2.3
then gives the desired result, because f(ZJ) = g0(Z).

d) is obvious, e) and f) are similar to c), and g) is the special case of Lemma 3.1
when K is the psd-cone. �

The diagonalization property from Lemma 4.1 plays a central role in the theory of
psd-stable polynomials, since it establishes connections to the usual stability notion
and also gives further insights into the monomial structure of psd-stable polynomials.

Corollary 4.2. Let f ∈ C[Z] be psd-stable. Then:

a) The polynomial (z11, z22, . . . , znn) 7→ fDiag(Z) is stable in C[z11, z22, . . . , znn].
b) If f(0) = 0, i.e., if f does not have a constant term, then there is a monomial

in f consisting only of diagonal variables of Z.
c) If f is homogeneous, then

c1) the sum of the coefficients of all diagonal monomials of f is nonzero.
c2) all nonzero coefficients of diagonal monomials of f have the same phase.

Proof. a) By Lemma 4.1, we know that fDiag(Z) 6≡ 0 is psd-stable. Now it suffices to
observe that fDiag(Z) 6= 0 whenever the diagonal of Im(Z) has positive entries only.
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b) Let f(0) = 0. If each monomial in f contains an off-diagonal variable of Z, then
fDiag(Z) ≡ 0, in contradiction to the psd-stability of fDiag(Z).

c1) The claim follows since the sum of the coefficients of all diagonal monomials is
given by f(In) which cannot be zero due to f(i · In) = ideg(f)f(In) 6= 0.

c2) The claim follows by combining a) with Theorem 2.4. �
When investigating the combinatorics of psd-stable polynomials in Section 5, we will

refer to the following observation, which could also be considered as a special case of
specialization. Let f(Z) be psd-stable. For the real matrix variables X and any fixed
real matrix B ≻ 0, the polynomial f(X + iB) does not have any real roots.

As the first main result in this section, we show the following preservation statement
under inversion for psd-stability.

Theorem 4.3 (Psd-stability preservation under inversion). If f(Z) ∈ C[Z] is psd-
stable, then the polynomial det(Z)deg(f) · f(−Z−1) is psd-stable.

Here, the factor det(Z)deg(f) serves to ensure that the product is a polynomial again.
For the proof of Theorem 4.3, we begin with a technical lemma.

Lemma 4.4. Let A,B ∈ Sn with B ≻ 0. Then the symmetric matrix C := A + iB
is invertible and the imaginary part matrix of the symmetric matrix C−1 is negative
definite.

We will use the following elementary computation rules, which can be verified im-
mediately.

Lemma 4.5. Assume that C = A + iB is invertible, and denote its inverse by W =
U + iV .

a) If A is invertible, then U = (A+BA−1B)−1.
b) If B is invertible, then V = (−B −AB−1A)−1.

We also use the following basic statement on eigenvalues in the proof of Lemma 4.4.

Lemma 4.6. Let A,B ∈ Sn and set C = A + iB. If B ≻ 0 then λ ∈ H for all
eigenvalues λ of C.

Proof. Let B ≻ 0, and let λ be an eigenvalue of C with some corresponding eigenvector
v. Then

(1) λ =
vHλv

vHv
=

vHAv

vHv
+ i

vHBv

vHv
.

Since B ≻ 0, we have vHBv
vHv

> 0 and thus λ ∈ H. �
Proof of Lemma 4.4. Let C = A+iB with A,B ∈ Sn and B ≻ 0. Lemma 4.6 gives that
C is invertible. The symmetry of C−1 is an immediate consequence of the invertibility.
Indeed, C−1C = I implies I = IT = (C−1C)T = CT (C−1)T . Since C is symmetric, the
matrix (C−1)T is the inverse of C, that is, (C−1)T = C−1.

By Lemma 4.5, the imaginary part of W = C−1 is given by (−B − AB−1A)−1. We
observe that B−1 is positive definite and thus AB−1A is positive semidefinite. Hence,
−B −AB−1A is negative definite. Since the inverse of that matrix is negative definite
as well, the claim follows. �
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We can complete the proof of Theorem 4.3.

Proof of Theorem 4.3. The inverse of a symmetric matrix C = A+iB with positive def-
inite imaginary part B has a negative definite imaginary part, as shown in Lemma 4.4.
Thus f(−C−1) 6= 0 if B ≻ 0. Since det(Z) is a psd-stable polynomial as well as f ,
the polynomial det(Z)deg(f)f (−Z−1) is psd-stable. Note that the factor det(Z)deg(f)

ensures that det(Z)deg(f)f (−Z−1) is a polynomial. This directly follows from Cramer’s
rule, saying Z−1 = 1

det(Z)
· adj(Z), where adj(Z) denotes the adjugate matrix of Z. �

The following is a slight generalization which resembles the existing formulation of
the scalar version in Lemma 2.1.

Corollary 4.7. If Z is a symmetric block diagonal matrix with blocks Z1, . . . , Zk and
f(Z) = f(Z1, . . . , Zk) is psd-stable, then det(Z1)

degZ1
f · f(−Z−1

1 , Z2, . . . , Zk) is a psd-
stable polynomial. Here, degZ1

f denotes the total degree of f with respect to the vari-
ables from the block Z1.

We close the section with a brief discussion and our second main result of this section
on the preservation of the psd-stability of a polynomial f ∈ C[Z] when passing over
to an initial form. For f =

∑
α∈S cαZ

α ∈ C[Z], the initial form of f is defined with
respect to some functional W in the dual space S∗

n. It is defined as

inW (f) =
∑

α∈SW

cαZ
α,

where SW := {α ∈ S : 〈W,α〉F = maxβ∈S〈W,β〉F} and 〈·, ·〉F is the Frobenius product.
The following example shows that Theorem 2.5 on stability preservation under taking
the initial form for any non-zero functional w does not generalize to the case of psd-
stability.

Example 4.8. The polynomial f ∈ C[Z] given by

f(Z) = det



z11 z12 z13
z12 z22 z23
z13 z23 z33


 = z11z22z33 − z11z

2
23 − z22z

2
13 − z33z

2
12 + 2z12z13z23.

is a psd-stable polynomial. However, taking the initial form inW (f) for

W =



4 4 6
4 4 6
6 6 0




yields inW (f) = −z11z
2
23 − z22z

2
13 + 2z12z13z23, which vanishes at Z = iI3. Since the

imaginary part of iI3 is a positive definite matrix, inW (f) is not psd-stable.

To answer the natural question of whether psd-stability is preserved by passing over
to the initial form with respect to certain symmetric matrices, we show that it is enough
for W to be positive definite.

For λ > 0 and matricesW ∈ Sn, let λ
W denote the operation given by (λW )ij := λwij .

Furthermore, for two matrices A,B ∈ Sn let A ◦ B denote the Hadamard product of
A and B with (A ◦B)ij = aij · bij . Generalizing the notation | · | for vectors, we write
|α| = ∑

1≤i,j≤n |αij| for an exponent matrix α.
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Lemma 4.9. Let f ∈ C[Z] be psd-stable and let W ∈ Sn be such that there exists some
λ0 > 0 such that for every λ > λ0, λ

W is positive definite. Then inW (f) is psd-stable.

Proof. The Schur product theorem states that the Hadamard product of the two
positive definite matrices is positive definite. Thus we have λW ◦ A ≻ 0 for all
A ≻ 0 and λ > λ0. Let ϕ = max {〈α,W 〉F : α ∈ supp(f)} and define the polyno-
mial fλ(Z) := 1

λϕ f(λ
W ◦ Z). This is psd-stable for any λ > λ0, since the positive

semi-definiteness of the imaginary part is preserved due to the previous observation.
Let µ := max{〈α,W 〉 : α ∈ supp(f), 〈α,W 〉 < ϕ} and δ := ϕ − µ > 0. Now, for any
compact subset C ∈ Sn,

lim
λ→∞

sup
Z∈C

|fλ(Z)− inW (f)(Z)| ≤ lim
λ→∞

sup
Z∈C

∑
〈α,W 〉<ϕ

∣∣∣∣
1

λδ
cαZ

α

∣∣∣∣

= lim
λ→∞

1

λδ
sup
Z∈C

∑
〈α,W 〉<ϕ

|cαZα| = 0,

since the norm in the last equality is bounded. By Hurwitz’ Theorem 2.3, inW (f) is
psd-stable. �
Theorem 4.10. Let f ∈ C[Z] be psd-stable and W ∈ Sn be positive definite, then
inW (f) is psd-stable.

Proof. Let W ∈ Sn be positive definite. Then W ◦k, the k-fold Hadamard product of

W , is positive definite for all k ≥ 1 and so is exp[W ] :=
∑∞

k=0
W ◦k
k!

, with the convention
that W ◦0 is the all-ones matrix. For λ > 1, we have ln(λ) ·W ≻ 0. Therefore,

exp[ln(λ) ·W ] = (ewij ln(λ))ij = (λwij)ij = λW

is positive definite. The claim now follows from Lemma 4.9 with λ0 = 1. �

5. Combinatorics of psd-stable polynomials

This section is about combinatorial properties of the support of psd-stable polyno-
mials, inspired by the results in [6, 9, 22] on the support of stable polynomials listed
in Sections 1 and 2. Theorem 5.1 gives a necessary condition on the support of any
psd-stable polynomial. In Sections 5.1 and 5.2, we characterize psd-stability of binomi-
als and non-mixed polynomials and the class of polynomials of determinants. Finally,
Section 5.3 discusses some aspects on the support of general psd-stable polynomials,
provides a conjecture and verifies this conjecture for some special families of polyno-
mials. We sometimes write both zij and zji with some i 6= j, but both denote the same
variable zij with i ≤ j, as explained at the beginning of Section 4.

Theorem 5.1. If an off-diagonal variable zij (where i < j) occurs in a psd-stable
polynomial f ∈ C[Z], then the corresponding diagonal variables zii and zjj must also
occur in f .

This mimics the basic fact about positive semidefinite matrices that if an off-diagonal
entry is non-zero, the corresponding diagonal entries must also be non-zero.

Proof. We prove the contrapositive. Suppose without loss of generality that z1n is a
variable appearing in f but znn is not. We can choose an (n − 1) × (n − 1) complex
symmetric matrix A and a2n, . . . , an−1,n ∈ C such that Im(A) is positive definite and

111



14 GIULIA CODENOTTI, STEPHAN GARDOLL, AND THORSTEN THEOBALD

such that substituting these values into f gives a non-constant univariate polynomial
g in the variable z1n. The second condition is possible because the set S++

n−1 × Cn−2 is
an open set. Indeed, we can choose all real parts to be zero.

The univariate non-constant polynomial g has a complex root a1n. The assignment
zij = aij for all (i, j) 6= (n, n) gives therefore a root of f no matter what value we choose
for znn. We now claim that if we assign a value ann with Im(ann) positive and large
enough, the matrix A′ which results from assigning these values to Z has a positive
definite imaginary part.

Observe that by Sylvester’s criterion of leading principle minors, it is enough to
check that the determinant of Im(A′) is strictly positive; the remaining leading principal
minors will necessarily be positive because they are minors of Im(A), which we chose
positive definite. Now, by developing the determinant along the last row, we obtain

det Im(A′) = Im(ann) · det Im(A) + c,

where c is a constant. Since det Im(A) is positive, we can choose Im(ann) positive and
sufficiently large so that det Im(A′) is positive. Thus f(A′) = 0 with Im(A′) positive
definite, which proves that f is not psd-stable. �

The argument used in the proof is connected to the ’positive (semi-)definite matrix
completion problem’, see for example [5, Section 3.5]. In the special case of binomials
Theorem 5.1 can be extended as follows.

Lemma 5.2. Let f(Z) = cαZ
α + cβZ

β be a psd-stable binomial. If the two monomials
Zα and Zβ do not have a common factor, then either both consist only of diagonal
variables, or one only of diagonal and the other only of off-diagonal variables.

Proof. Zα and Zβ cannot both be off-diagonal monomials, since this contradicts Theo-
rem 5.1. It remains to be shown that neither monomial can contain both diagonal and
off-diagonal variables. Suppose towards a contradiction that one of the two monomials
did contain both, w.l.o.g. Zβ, and choose j such that βjj > 0. Since the monomials of
f do not share any variable, ∂Zα

∂zjj
≡ 0, where we use the derivative notation ∂

∂zij
on the

symmetric matrix space as introduced at the beginning of Section 4.
Hence, g(Z) := ∂f

∂zjj
= cββjjZ

β′
is a non-zero monomial with β ′

kl = βkl for (k, l) 6=
(j, j) and β ′

jj = βjj − 1, that is, g is a monomial containing an off-diagonal variable.
Thus g(i · In) = 0, which is a contradiction since g is psd-stable by Lemma 3.1. �
5.1. Binomials and non-mixed polynomials. We give characterizations of the sup-
port of psd-stable binomials. Some of the results will be stated for the family of non-
mixed polynomials, which includes irreducible binomials thanks to Lemma 5.2.

Definition 5.3. We call a polynomial f ∈ C[Z] non-mixed if every monomial that
occurs in f either consists only of diagonal variables or only of off-diagonal variables.
We always write such a non-mixed polynomial as f =

∑
α∈A cαZ

α+
∑

β∈B cβZ
β, where

A refers to the exponent matrices of diagonal monomials and B refers to the exponent
matrices of off-diagonal monomials.

It is useful to consider this larger family because it is closed under directional deriva-
tives while the family of binomials is not. The following two theorems are the main
results in this subsection.
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Theorem 5.4. Let f(Z) =
∑

α∈A cαZ
α +

∑
β∈B cβZ

β be a homogeneous non-mixed
polynomial of degree d ≥ 3 and assume cβ 6= 0 for some β ∈ B. Then f is not psd-
stable.

The following theorem is a complete characterization of the support of psd-stable
binomials, analogous to the classification of stable binomials from Theorem 2.7.

Theorem 5.5. Every psd-stable binomial is of one of the following forms:

a) Only diagonal variables appear in f and f satisfies the conditions of Theo-
rem 2.7: f(Z) = Zγ(c1Z

α1 + c2Z
α2) with |α1 − α2| ≤ 2 and at least one of

α1, α2 is non-zero,
b) f(Z) = Zγ(c1ziizjj + c2z

2
ij) with i < j and c1

c2
∈ R,

where c1, c2 6= 0 and Zγ is a diagonal monomial.

This theorem shows that the only psd-stable binomials with off-diagonal variables
are those described in b): in particular, at most one off-diagonal variable occurs in a
psd-stable binomial, and it has degree exactly 2.

The following lemma is a first step towards a proof of the main theorems and shows
that the exponents of psd-stable binomials cannot be far apart. The proof relies on
taking derivatives in direction V (ij), with i 6= j, which denotes the n× n matrix with
vii = vjj = vij = vji = 1 and 0 elsewhere. In terms of the basis matrices Bij introduced
at the beginning of Section 4, we have V (ij) = Bii +Bjj + 2Bij.

Lemma 5.6. Let f(Z) = cαZ
α+cβZ

β be a psd-stable binomial (thus cα, cβ 6= 0). Then
||α| − |β|| ≤ 2.

Proof. We may assume that the monomials of f do not have a common factor since
this does neither affect |α − β| nor ||α| − |β||. By Lemma 5.2, either both monomials
are diagonal monomials or w.l.o.g. only Zβ is an off-diagonal monomial. If both mono-
mials are diagonal, the claim follows directly from Theorem 2.6, because psd-stable
polynomials involving only diagonal variables are stable polynomials.

Now assume that Zβ is an off-diagonal monomial. Then |β| ≤ |α| follows from
Theorem 5.1 after possibly taking derivatives in direction V (ij) for some zij appearing in
Zβ. It remains to show |α| ≤ |β|+2. Assume to the contrary that |α|−|β| ≥ 3. Choose

i and j with i < j such that zij occurs in Zβ. Since ∂f
∂V (ij) (Z) =

(
∂

∂zii
+ ∂

∂zjj

)
(cαZ

α) +
∂

∂zij
(cβZ

β) by the computation rules at the beginning of Section 4, we see that ∂f
∂V (ij) (Z)

has at most two diagonal monomials, each of degree |α|−1, and exactly one off-diagonal
monomial of degree |β| − 1. By applying this procedure consecutively |β| times, we
obtain a polynomial g(Z) =

∑
α′ cα′Zα′

+ cβ′ , where
∑

α′ cα′Zα′
is a homogeneous

polynomial in diagonal variables of degree |α| − |β| ≥ 3 and cβ′ is a constant. Further
g(Z) is psd-stable by Lemma 3.1. Since g does not involve any off-diagonal variables,
it is a stable polynomial. This is a contradiction to Theorem 2.6, since the support of
g does not satisfy the Two-Steps Axiom. �

In the following, we show that most binomials are not psd-stable by explicitly con-
structing a root S (of the binomial or a directional derivative of it) whose imaginary
part lies in the interior of the psd-cone. This root S will be a symmetric n× n matrix
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of the form

(2) S =




s+ i t · · · t

t s+ i
. . .

...
...

. . .
. . . t

t · · · t s+ i


 with s, t ∈ R.

Since Im(S) = In ≻ 0, any polynomial with root S is not psd-stable.

Lemma 5.7. Let f(Z) = cαZ
α+cβZ

β be a binomial (thus, cα, cβ 6= 0) with |α| > |β| ≥
1 and such that Zα and Zβ do not have a common factor. Then f is not psd-stable.

Proof. Assume towards a contradiction that f is psd-stable. Since |α| > |β| ≥ 1 and
Zα and Zβ do not share a factor, we have that |α − β| ≥ 3. If both monomials were
diagonal monomials, psd-stability would imply stability, and |α− β| ≥ 3 would yield a
contradiction to Theorem 2.6.

Now assume that Zβ is an off-diagonal monomial. We will show that there are
s, t ∈ R such that S is a root of f , thus contradicting that f is psd-stable. By
Lemma 5.6, the only possibly psd-stable cases are |α| = |β|+ 1 and |α| = |β|+ 2.

First consider the case |β| = 1. Then |α| ∈ {2, 3}. After substituting S, f = 0 is of
the form

(3) (s+ i)a + bt = 0 with a := |α| ∈ {2, 3}, s, t ∈ R, b ∈ C \ {0}.
One may split the real and imaginary part of equation (3) to obtain two real equations,
denoted by (Re) and (Im). First let a = 2. If Im(b) 6= 0, there is a real solution

s = Re(b)
Im(b)

+

√(
Re(b)
Im(b)

)2

+ 1 and t = 1−s2

Im(b)
. If Im(b) = 0, the solution t = 1

Re(b)
and

s = 0 may be found. Now let a = 3. If Im(b) 6= 0, (Im) implies t = 1−3s2

Im(b)
, which then

gives s3 − 3s + Re(b)
Im(b)

(1 − 3s2), which has a real solution. If Im(b) = 0, (Im) becomes

3s2 = 1, which has the real solutions s = ± 1√
3
. Substituting these into (Re) gives a

linear function in t, which has a real solution as well.
Now consider the case |β| > 1. Choose i and j with i < j such that the variable zij

occurs in f . Since f is psd-stable, its partial derivative in direction V (ij) is psd-stable

by Lemma 3.1. Further ∂f
∂V (ij) (Z) =

(
∂

∂zii
+ ∂

∂zjj

)
(cαZ

α) + ∂
∂zij

(cβZ
β) is a non-mixed

polynomial with the degree of each monomial reduced by 1 and exactly one off-diagonal
monomial. Taking |β| − 1 consecutive derivatives in a similar way, we obtain a non-
mixed polynomial of the form g(Z) =

∑
α′ cα′Zα′

+cβ′Zβ′
with |β ′| = 1 and |α′| ∈ {2, 3}.

Substituting S into g gives equation (3). Thus neither g nor f can be psd-stable. �

Now we prove Theorem 5.4, which shows that homogeneous non-mixed polynomials
of high degree cannot be psd-stable.

Proof of Theorem 5.4. Assume to the contrary that f is a homogeneous non-mixed
psd-stable polynomial of degree at least 3. By Remark 2.10, we can assume without
loss of generality that all coefficients of f are real.

First assume the degree of f is d = 3. We will show a contradiction to psd-stability
by explicitly finding a forbidden root of f .
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Let a :=
∑

α∈A cα and b :=
∑

β∈B cβ. Note that a and b are real and a = f(In) 6= 0

by Corollary 4.2 c1). If b 6= 0, w.l.o.g. we normalize so that a = 1. To obtain the
desired forbidden root we look for a solution of the form S introduced above, that is,
real solutions s, t for the equation f(S) = (s+ i)3 + bt3 = 0. By splitting the equation
into real and imaginary part, we obtain the system

(Re) : (s3 − 3s) + bt3 = 0,
(Im) : 3s2 − 1 = 0.

Consider the positive real solution s∗ = 1√
3
of (Im). Plugging this solution into (Re)

gives a real cubic in t, which has a real solution t∗.
If instead b = 0, we tweak matrix S to S ′ as follows: let β0 ∈ B such that cβ0 6= 0, and

let zij be a variable occurring in the monomial Zβ. Then we let S ′
ij = S ′

ji = (1 + ε)t
for a small ε > 0. The remaining entries of S ′ are the same as those in S. Since
b =

∑
β cβ = 0, we have that f(S ′) = (s + i)3 + εcβ0t

3, and εcβ0 > 0, which means we

fall into the case above with the coefficient of t3 non-zero. We have thus constructed
solutions violating psd-stability for any such degree 3 polynomial f .

Now let d > 3 and assume d is the smallest degree such that there is a polynomial
f of the specified form which is psd-stable of degree d. Its partial derivative in any
direction V (ij) is psd-stable by Lemma 3.1. If we choose (i, j), i 6= j such that the
variable zij occurs in f , ∂f

∂V (ij) is a polynomial of the same form of degree d − 1: since
∂f

∂V (ij) (Z) =
(

∂
∂zii

+ ∂
∂zjj

)
(
∑

α cαZ
α) + ∂

∂zij
(
∑

β cβZ
β), the coefficients of off-diagonal

monomials are positive multiples of those of f and therefore there must be a non-zero
one. This is a contradiction, since we assumed that d was the smallest degree which a
psd-stable polynomial of this form could have. �

We finally have all the tools needed to prove Theorem 5.5, which provides a complete
classification of the support of psd-stable binomials.

Proof of Theorem 5.5. Let f be a binomial. Then f can be written in the form f(Z) =

Zγ f̃(Z), where f̃(Z) = cαZ
α+cβZ

β is an irreducible psd-stable binomial and therefore
also a non-mixed polynomial.

If all variables appearing in f are diagonal variables, then f is stable, and by Theorem
2.6 its support has to satisfy the Two-Steps Axiom, which leads to |α−β| ≤ 2 in the case
of binomials. Thus, now we can assume the occurrence of an off-diagonal monomial,
say Zβ. By the structure Theorem 5.1 and after possibly taking derivatives in direction
V (ij) for some zij appearing in Zβ, we see |β| ≤ |α|.

In the homogeneous case, by Theorem 5.4, we have deg(f̃) ≤ 2. The only possibility

is given by f̃(Z) = c1ziizjj + c2z
2
ij with c1, c2 6= 0 and i 6= j, since otherwise we would

get a contradiction to the structure Theorem 5.1. Clearly |α−β| ≤ 2 holds. Further we
have c1

c2
∈ R by Remark 2.10. In the non-homogeneous case, i.e., |α| 6= |β|, Lemma 5.7

implies β = 0 or |β| > |α|. β = 0 is not involving an off-diagonal variable. The case
|β| > |α| contradicts the earlier observation that |β| ≤ |α|. Therefore, there is no
non-homogeneous psd-stable binomial involving off-diagonal variables. �
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From Theorem 5.5, we observe that psd-stable binomials cannot contain a monomial
which is the product of different off-diagonal variables. This also holds for psd-stable
homogeneous non-mixed polynomials.

Theorem 5.8. Let f be a psd-stable homogeneous non-mixed polynomial of degree 2.
Then f is of the form f(Z) =

∑
α∈A cαZ

α +
∑

i<j cijz
2
ij.

Proof. Let f(Z) be a psd-stable homogeneous non-mixed polynomial of degree 2 and
assume to the contrary that there is a monomial zijzkl in f involving distinct variables,
that is, {i, j} 6= {k, l}. Note that the index sets {i, j} and {k, l} can intersect. The
order of the variable matrix must therefore be at least 3.

Consider S ′ as a modified version of S from (2) with S ′
ij := S ′

ji := t1, S
′
kl := S ′

lk := t2
for complex t1 and t2 and set all other off-diagonal entries of S ′ to 0 while the diagonal
of S is set to some complex value s. Thus, up to a factor, f(S ′) = 0 is of the form

(4) s2 + c1t
2
1 + ct1t2 + c2t

2
2 = 0

with some constants c1, c2, c and c 6= 0. Since f is hyperbolic due to its homogeneity
and psd-stability, we may assume c1, c2, c to be real.

Since f is hyperbolic, the quadratic polynomial g in s, t1, t2 on the left hand side
of (4) is hyperbolic as well. Hyperbolic quadratic polynomials have signature (n−1, 1)
or (1, n−1) ([11], see, e.g., also [20]). Since the term s2 in g comes from a substitution
into the terms z211, . . . , z

2
nn, the representation matrix of g must have signature (2, 1).

Hence, the lower right 2× 2-matrix of the representation matrix


1 0 0
0 c1

c
2

0 c
2

c2




has signature (1, 1). If at least one of the ci is positive, then we can choose real values
for t1 and t2 such that s2+γ = 0 with some γ > 0, which gives among the two solutions
for s one with positive imaginary part. If one of the ci, say, c2, is zero and c1 ≤ 0, then
setting t1 = 1 and t2 = 1−c1

c
gives the solution s = i with positive imaginary part. It

remains to consider the case c1 < 0, c2 < 0, in which the signature condition implies
(c/2)2 > c1c2. By choosing t1, t2 to satisfy t21 = − 1

c1
, t22 = − 1

c2
, we obtain

t21t
2
2

( c
2

)2

> t21c1t
2
2c2 =

1

4
(t21c1 + t22c2)

2,

which can formally be viewed as the equality case of the arithmetic-geometric inequal-
ity. We can pick the signs of t1, t2 such that ct1t2 > 0. And the previous inequality
implies

|ct1t2| > |c1t21 + c2t
2
2|

(and the expression in the argument of the absolute value on the right hand side is
negative). Hence, we obtain s2+γ = 0 for some positive γ, which gives among the two
solutions for s one with positive imaginary part.

Altogether, we have constructed a zero S ′ of f with Im(S ′) ≻ 0, which contradicts
the psd-stability of f . �
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5.2. Polynomials of determinants. We show that the following class of polynomi-
als of determinants satisfies a generalized jump system criterion with regard to psd-
stability. Suppose that the symmetric matrix of variables Z is a diagonal block matrix
with blocks Z1, . . . , Zk. A polynomial of determinants is a polynomial in Z of the form
f(Z1, . . . , Zk) =

∑
α cα det(Z)

α, where we define det(Z)α = det(Z1)
α1 · · ·det(Zk)

αk .
We say a polynomial of determinants f(Z1, . . . , Zk) =

∑
α det(Z)

α is written in
standard form if the largest possible determinantal monomial is factored out, i.e.,
f(Z1, . . . , Zk) = det(Z)γ

∑
β cβ det(Z)

β = det(Z)γ f̃(Z), and all cβ 6= 0. We investigate
the following notion of support for polynomials of determinants.

Definition 5.9. Let f(Z1, . . . , Zk) =
∑

α cα det(Z)
α be a polynomial of determinants.

Then the determinantal support is defined as suppdet(f) = {α ∈ Zk
≥0 : cα 6= 0}.

Note that the determinantal support specializes to the usual support when Z is a
diagonal matrix, that is, all Zi are 1 × 1 matrices of a single variable. As a corollary
of Theorem 2.6, we obtain the following analogue for the determinantal support of
psd-stable polynomials of determinants.

Corollary 5.10. Let f(Z1, . . . , Zk) =
∑

α cα det(Z)
α be psd-stable. Then the determi-

nantal support of f forms a jump system.

The next theorem shows that psd-stable polynomials of determinants have a very
special structure.

Theorem 5.11. Let f(Z1, . . . , Zk) = det(Z)γ
∑

β∈B cβ det(Z)
β = det(Z)γ f̃(Z) be a

psd-stable polynomial of determinants in standard form. Then any block Zi appearing
in f̃ (that is, any Zi such that there is β ∈ B with βi > 0) has size di ≤ 2.

Further, for any matrix Zi which has size exactly 2, let Ci = maxβ∈B βi. Then if
β ∈ B, then also β + cei ∈ B for all −βi ≤ c ≤ Ci − βi.

Proof. Observe that, by construction, a variable in the matrix Zi does not appear in
any other matrix Zj. This ensures that all vectors in the support of the polynomial

f̃Diag(Z), which involves only the diagonal variables, are of the form

(5) (β1, . . . , β1︸ ︷︷ ︸
d1 times

, . . . , βk, . . . , βk︸ ︷︷ ︸
dk times

),

where β = (β1, . . . , βk) ∈ B is an exponent vector of det(Z) in f̃ and di is the size of
the matrix Zi for each i.

Further, f̃Diag is stable and its support is therefore a jump system. Suppose now that
some matrix Zi, say Z1, has size d1 ≥ 3. Since f is in standard form, there are β ∈ B
such that β1 > 0 and β ′ ∈ B such that β ′

1 = 0. Then there are corresponding vectors

α = (β1, . . . , β1︸ ︷︷ ︸
d1 times

, β2, . . . ) and α′ = (0, . . . , 0︸ ︷︷ ︸
d1 times

, β ′
2, . . . ) in the support of f̃Diag, which is a

jump system. Thus e1 is a valid step from α′ to α, but since α′ + e1 = (1, 0, . . . , 0, . . . )

is not of the form (5) it cannot belong to the support of f̃Diag. Now by definition of a
jump system, there must be a step from α′+e1 to α which is in the support. However,
whichever step we take will lead us again to a vector where the first d1 entries are not
all equal, since d1 ≥ 3, and thus none of these vectors can be in the support of f̃Diag,
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contradicting the fact that it is a jump system. Thus all blocks Zi in f̃ must have size
di ≤ 2.

Now suppose that di = 2 for some block Zi, without loss of generality let it be Z1.
Just as before, we know there are β ∈ B such that β1 > 0 and β ′ ∈ B such that β ′

1 = 0;
further, If C1 = maxβ∈B β1, then there is also a vector β ′′ ∈ B such that β ′′

1 = C1. This

implies that in the support of f̃Diag there are vectors α = (β1, β1, . . . ), α
′ = (0, 0, . . . )

and α′′ = (C1, C1, . . . ). Thus α − e1 = (β1 − 1, β1, . . . ) is a valid step from α to α′.
Just as before, α − e1 does not belong to the support of f̃Diag because it is not of the
form of (5). Thus there must be a further step from α− e1 towards α′ which is in the
support. The only such step is in the second coordinate, so that (5) is satisfied, and

thus α − e1 − e2 ∈ supp(f̃Diag). This argument can be repeated until we obtain the
statement of the theorem. �

5.3. Considerations on the support of general psd-stable polynomials. By
Theorem 2.6, the support of a stable polynomial defines a jump system. Hence, there
cannot be large gaps in the support, that is, if two vectors are in the support and are far
apart, there is some other vector of the support between them. The families studied in
Subsections 5.1 and 5.2 suggest that a similar phenomenon happens for psd-stability:
when there are too-large gaps in the support, the polynomial cannot be psd-stable.

In order to quantify what a large gap should be, we make two observations. First,
since restricting a psd-stable polynomial in the symmetric matrix variables Z to its
diagonal yields a stable polynomial, between two monomials involving only diagonal
variables the Two-Steps Axiom holds. A weaker statement is that between any two
such monomials there is a sequence of linear and double steps which does not leave
the support of the polynomial, where we define a linear step from a monomial to be
multiplying the monomial by z±1

ij , a double step multiplying by z±1
ij z±1

kl .
Recall from Lemma 2.13 that a prominent example of psd-stable polynomials is

the symmetric determinant det(Z). In the symmetric matrix variables (zij)i≤j, its
support has a special structure: it contains all monomials that can be obtained from
z11 · · · znn by transpositions of indices, that is, by successively multiplying the monomial
by zijzklz

−1
ik z−1

jl for some indices i, j, k, l ∈ [n]. We call such a move on monomials a
transposition step.

Lemma 5.12. Any two monomials in the support of the symmetric determinant det(Z)
are linked by a sequence of transposition steps decreasing the distance between the mono-
mials which never leave the support.

Proof. Monomials in det(Z) are precisely those products of symmetric variables zij
(where i ≤ j) such that each index k ∈ [n] appears exactly twice. Indeed, when
considering the determinant as a polynomial in n2 (i.e., non-symmetric) variables,
each monomial corresponds to a permutation in the symmetric group Sn, and thus each
element of [n] must appear precisely once in the rows and once in the columns index
in the monomial. When considering the determinant as a polynomial in the symmetric
variables, certain distinct permutations define the same monomial. Observe that the
variable zij appears in the monomial defined by a permutation π if either i = π(j)
or j = π(i). Thus, both a cycle σ = (i1i2 . . . ik) ∈ Sk and its inverse (i1ikik−1 . . . i2)
yield the monomial Πjzij ij+1

, and in general, two permutations correspond to the same
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monomial if and only if their cycle decompositions are made of pairwise the same or
inverse cycles. Since two such permutations have the same sign, there is no cancelation
of monomials in the symmetric determinant det(Z).

Thus, applying any transposition step to any monomial of det(Z) will yield another
monomial of det(Z): exchanging zijzkl with zikzjl or zilzkj preserves the property that
each index appears exactly twice. We now only need to show that, given any two
monomials Zα and Zβ of det(Z), there exists a transposition step from α to β. Choose
a variable zij such that zij | Zα but zij ∤ Zβ . There must be an index k 6= j such that
zik | Zβ and an index l 6= i such that zjl | Zβ. Then multiplying Zα by z−1

ij z−1
kl zikzjl is

a transposition step, since it decreases the distance to β in the norm | · |. �
We conjecture that a property inspired by the structure of the determinant and that

of stable polynomials holds for all psd-stable polynomials.

Conjecture 5.13. For any monomial Zβ appearing in a psd-stable polynomial, there
is a diagonal monomial Zα appearing in f which can be reached by a sequence of linear,
double and transposition steps which decrease the distance from β to α and which never
leave the support of f .

Example 5.14. The polynomial

f(Z) = (z11 + z22 − 2z12)(z11z33 − z213)

= z211z33 + z11z22z33 − 2z11z33z12 − z11z
2
13 − z213z22 + 2z12z

2
13

is psd-stable because it is the product of two psd-stable polynomials: the first one is
the derivative in direction V (12) of the 2 × 2 determinant, the other one is a 2 × 2
determinant sharing one variable with the first.

This polynomial satisfies Conjecture 5.13: for example, if we choose the monomial
z12z

2
13, with a double step we reach z11z

2
13, which is also in the support of f , and with

a transposition step we reach z211z33, a diagonal monomial in the support. Notice that
the double step produces a monomial whose exponent vector is closer to the exponent
of the final diagonal monomial (with respect to | · |). Such a sequence of valid steps
can be found for all monomials of f .

As evidence for the conjecture, we observe that it holds for the classes of polynomials
we have studied.

Lemma 5.15. Psd-stable binomials satisfy Conjecture 5.13.

Proof. By Theorem 5.5, cαziizjj + cβz
2
12 is the only irreducible psd-stable binomial

involving off-diagonal variables. Clearly, it is exactly one transposition step between
the both monomials. �
Lemma 5.16. Psd-stable homogeneous non-mixed polynomials satisfy Conjecture 5.13.

Proof. Let f be a psd-stable homogeneous non-mixed polynomial. If f does not involve
off-diagonal monomials, the claim follows from the jump system property of usual
stable polynomials. Thus assume that f involves off-diagonal variables. We have
d := deg(f) ≤ 2 by Theorem 5.4. In the case of d = 1 there is a double step between
every two monomials of f , thus assume d = 2 and let cβZ

β be an off-diagonal monomial
of f . By Theorem 5.8, cβZ

β is of the form cjkz
2
jk for some j 6= k. Let J = {j, k}, then
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f(ZJ) is psd-stable by Lemma 4.1 c). By the structure Theorem 5.1, f(ZJ) is of the
form

f(ZJ) = c1z
2
jj + c2zjjzkk + c3z

2
kk + cjkz

2
jk

with ck ∈ C such that zjj and zkk both appear. We claim that c2 6= 0. Assuming c2 = 0
gives c1, c3 6= 0. Reducing f(ZJ) to the diagonal contradicts the jump system property
and thus we obtain c2 6= 0. Therefore, the monomial c2zjjzkk appears in f(ZJ) and
hence also in f(Z). Thus, it is a transposition step from cjkz

2
jk to the corresponding

diagonal monomial c2zjjzkk. �

Lemma 5.17. Psd-stable polynomials of determinants satisfy Conjecture 5.13.

Proof. Every monomial Zβ in a polynomial of determinants f belongs to a determi-
nantal monomial det(Z)γ and thus is a product of monomials Zβj (with multiplicities
γj) belonging to determinantal blocks det(Zj), 1 ≤ j ≤ k. Let Zαj be the diagonal
monomial of block det(Zj). By Lemma 5.12 there is a sequence of transposition steps
from Zβj to Zαj which never leaves the support of det(Zj) for all 1 ≤ j ≤ k. Con-
catenation of these sequences (with multiplicities γj) gives a sequence of transposition
steps from Zβ to the diagonal monomial Zα of det(Z)γ which never leaves the support
of f . �

Another class of psd-stable polynomials which satisfy Conjecture 5.13 are the psd-
stable lpm polynomials introduced in [1], which are polynomials of the form f(Z) =∑

J⊆[n] cJ det(ZJ), where ZJ is the square submatrix of Z with index set J . Indeed,
every monomial belongs to a square minor of Z, and since every minor has a different
index set, there is no cancellation of monomials in the sum. Thus for each summand
the Lemma 5.12 holds and it holds for the whole polynomial as well.
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[8] P. Brändén and J. Leake. Lorentzian polynomials on cones and the Heron-Rota-Welsh conjecture.

Preprint, arXiv:2110.00487, 2021.
[9] Y.-B. Choe, J. G. Oxley, A. D. Sokal, and D. G. Wagner. Homogeneous multivariate polynomials

with the half-plane property. Adv. Appl. Math., 32(1-2):88–187, 2004.
[10] P. Dey, S. Gardoll, and T. Theobald. Conic stability of polynomials and positive maps. J. Pure

& Applied Algebra, 225(7):106610, 2021.
[11] L. G̊arding. An inequality for hyperbolic polynomials. J. Math. Mech., 8:957–965, 1959.

120



COMBINATORICS AND PRESERVATION OF CONICALLY STABLE POLYNOMIALS 23

[12] A. Grinshpan, D. S. Kaliuzhnyi-Verbovetskyi, V. Vinnikov, and H. J. Woerdeman. Contrac-
tive determinantal representations of stable polynomials on a matrix polyball. Math. Zeitschrift,
283(1-2):25–37, 2016.

[13] F. R. Harvey and H. B. Lawson. Hyperbolic polynomials and the Dirichlet problem. Preprint,
arXiv:0912.5220, 2009.

[14] T. Jörgens and T. Theobald. Conic stability of polynomials. Res. Math. Sci., 5(2):Paper No. 26,
2018.

[15] S. G. Krantz. Handbook of Complex Variables. Birkhäuser, 1999.
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• Einführung in die computerorientierte Mathematik
• Elementare Stochastik
• Diskrete Mathematik
• Datenstrukturen
• Theoretische Informatik

Ehrenamtliches Engagement

2019 - heute Buchhaltung der FeG Oberursel

2021 Mitglied beim Mathe-Buddy-Programm der Goethe Universität

Vordrucke und Publikationen

2022 Combinatorics and preservation of conically stable polynomials
(eingereicht und zur Zeit in Revision)
Autoren: G. Codenotti, S. Gardoll und T. Theobald

2022 Imaginary Projections: Complex Versus Real Coefficients
(eingereicht und zur Zeit in Revision)
Autoren: S. Gardoll, M. Sayyary und T. Theobald

2021 Conic stability of polynomials and positive maps
(Journal of Pure & applied Algebra, 225(7):106610)
Autoren: P. Dey, S. Gardoll und T. Theobald



124

Wissenschaftliche Vorträge und Präsentationen

2022 Jahrestagung der dt. Mathematiker-Vereinigung (FU Berlin)

2022 Discrete Math Days 2022 (UC, Santander, Spanien)

2019 Thuringian Geometry Day 2019 (FSU Jena)

2019 Workshop on Applied Algebra (TU Braunschweig)

Auszeichnungen und Preise

2019 Förderpreis für die jahrgangsbesten Abschlüsse M.Sc. Mathe-
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