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Brief Report

Omicron variant of SARS-CoV-2 exhibits an increased
resilience to the antiviral type I interferon response
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Abstract

The new variant of concern (VOC) of SARS-CoV-2, Omicron (B.1.1.529), is genetically very different from other VOCs. We compared
Omicron with the preceding VOC Delta (B.1.617.2) and the wildtype (wt) strain (B.1) with respect to their interactions with the antiviral
interferon (IFN-alpha/beta) response in infected cells. Our data indicate that IFN induction by Omicron is low and comparable to the
wt, whereas Delta showed an increased IFN induction. However, Omicron exceeded both the wt and the Delta strain with respect to
the ability to withstand the antiviral state imposed by IFN-alpha.
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Introduction
Omicron is a new variant of concern (VOC) of the pandemic SARS-
CoV-2 causing COVID-19. Since its detection in South Africa in
November 2021 (1), Omicron has rapidly spread in all countries
where it was introduced, indicating elevated infectivity and a cer-
tain resistance to pre-existing immunity (2). These features are
due to an unprecedented number of mutations that are distin-
guishing Omicron from the original coronavirus that emerged end
of 2019, as well as from the subsequently appearing VOCs like e.g.
Delta (1).

Type I interferons (IFN-alpha/beta) constitute the first innate
immune response to invading viruses (3). Viral RNA structures are
recognized by cellular sensors that trigger the induction of IFN
genes. Secreted IFN binds to its cognate receptor and stimulates
expression of antiviral genes. SARS-CoV-2, therefore, evolved a se-
ries of countermeasures to the IFN-stimulated antiviral state (4).
Nonetheless, SARS-CoV-2 still induces a certain level of type I IFNs
and other cytokines (5) and exogenously added IFN is inhibitory
to viral replication (5–7).

Results
We investigated interactions of Omicron with the IFN system, in
comparison to the parental “wt” strain and the preceding VOC,
Delta. As a first step, IFN induction was measured in the Calu-
3 human lung cell model using RT-qPCR for mRNAs for type I

IFN-beta and type III IFN-lambda1, and by ELISA for secreted
IFN-beta. As positive control, we used the IFN-inducing Rift Val-
ley fever virus (RVFV) mutant Clone 13 (8). Figures 1(A) and (B)
show that all SARS-CoV-2 strains induced IFN, but that Omi-
cron and wildtype (wt) were weaker than Delta. Levels of viral
RNA, however, were similar for wt and Delta, but lower for Omi-
cron (Fig. 1C). Therefore, whereas Delta seems to have a dimin-
ished IFN-antagonistic activity compared to wt, Omicron may be
a weaker inducer because it generates less IFN-inducing RNAs.

To investigate the other end of the IFN response, namely sen-
sitivity to antiviral action, we pretreated cells with increasing
amounts of IFN-alpha, infected them with the strains, and mea-
sured virus yields 24 h later. Figure 2(A) shows that IFN re-
duces all viruses in a dose-dependent manner. However, 50 units
IFN/ml suppressed Omicron to about 15%, but wt and Delta to
below 10%. The dose–response curves were analyzed by a gen-
eralized linear mixed model that included a fixed intercept term
for each variant and a common slope coefficient, so that the in-
tercepts code the expected titer at 50 U/ml IFN. All slopes in-
tercepts were statistically different from each other, with Omi-
cron being the least affected by IFN, followed by Delta and wt
being the most affected (Fig. 2B). SARS-coronaviruses can en-
ter cells either at the plasma membrane or by endosomal en-
try, but Omicron has evolved toward the latter mode (9). To see
whether these differences could influence IFN sensitivity, we dis-
abled the plasma membrane entry route by applying the TMPRSS2
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Fig. 1. IFN induction by strains of SARS-CoV-2. Calu-3 cells were infected for 24 h (MOI 1), and analyzed by RT-qPCR for IFN mRNAs (A). Shown are
fold-induction over the uninfected mock control, normalized to 18S rRNA. (B) IFN-β in supernatants. Dashed line: detection limit. (C) Viral RNA
presented as CT values for E (coronaviruses) or L (RVFV Cl13) genes normalized to 18S rRNA. Data points (dots) and mean values (bars) are shown. The
log10 transformed values of the different coronaviruses were pairwise tested by one-factorial ANOVA with Tukey correction for multiple comparisons.
∗ indicates P < 0.05. All other coronavirus comparisons had P-values > 0.05.

inhibitor Camostat. Nonetheless, the intercepts of the IFN dose–
response curves were still statistically different for the three
viruses, again with Omicron being the least affected (Fig. 2C). Ap-
parently, the mode of virus entry is not determining IFN sensitivity
differences.

All viruses including Omicron were inducing IFN (see Fig. 1).
To measure a potential influence on virus replication, we inca-
pacitated the IFN system with Ruxolitinib. This treatment could
improve titers of wt and Delta, but not of Omicron (Fig. 3). Thus,
whereas wt and Delta benefit from artificial IFN suppression, Omi-
cron is independent of it.

Discussion
IFNs were shown to restrict wt SARS-CoV-2 in cell culture (5–7),
and in patients an early IFN therapy is associated with reduced
mortality (10). This may also apply to the IFN that is endogenously
produced by the infected individual. In children, a preactivated
IFN system is controlling infection (11), whereas in the elderly the

IFN system is less active and can be additionally hampered by
anti-IFN autoantibodies (12). Thus, virus-IFN system interactions
are a determinant of COVID-19 risk, and the outcome of infec-
tion depends on the timing and amount of IFN production and
on the degree of viral resistance. Earlier reports have shown that
the more pathogenic SARS-CoV-1 is more IFN-resistant than wt
SARS-CoV-2 (6, 7). Therefore, IFN resilience, most likely enabled
by the hallmark mutations in the IFN antagonistic proteins (13),
is an additional feature besides immune escape, increased ACE2
affinity and endosomal entry (9) and may contribute to the hyper-
transmissibility of Omicron.

Materials and Methods
Cells and viruses
Calu-3, VeroE6, and VeroE6-TMPRSS2 cells (kindly provided
by Stefan Poehlmann) were cultivated in DMEM with 10%
FBS. SARS-CoV-2 strains “wt” (München-1.2/2020/984 (B.1) (14);
kindly provided by Christian Drosten), “VOC Delta” (B.1.617.2
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Fig. 2. Sensitivity to type I IFN dose escalation. (A) Calu-3 cells were treated with increasing amounts of IFN-alpha prior to infection at an MOI of 0.01
for 24 h. Upper panel: titers and lower panel: data normalized to the nontreated control. Titer values below the detection level (dashed line) were set to
100 PFU/ml. (B) Regression analysis of the dose–response data shown in (A). Numbers underneath the virus names are estimators for the titers at
50 U/ml IFN, confidence intervals are given in brackets. All comparisons had P-values < 0.05. (C) Analysis of IFN dose–response curves in cells that
were additionally pretreated with 1 μM Camostat. Note that for reasons of compatibility, pretreatment in (A) contained DMSO.

Fig. 3. Effect of the IFN signaling inhibitor Ruxolitinib (Rux) on virus replication. Calu-3 cells were pretreated with Ruxolitinib for 24 h, infected at MOI
0.001 (wt) or 0.01 (VOC Delta and Omicron), and supernatants titrated at the indicated time points. Log-transformed titers were analyzed by unpaired
two-tailed t tests. Asterisk ∗ indicates P < 0.05. All other comparisons had P-values > 0.05.

(FFM-IND8424/2021) (15)), and “VOC Omicron” (B.1.1.529 (FFM-
SIM0550/2021) (16)) were grown on VeroE6-TMPRSS2 cells (wt) or
VeroE6 cells (VOCs), and titrated on VeroE6. Infections were done
under BSL3 conditions.

Interferon induction
Calu-3 cells seeded into 24-well plates were infected at a multi-
plicity of infection (MOI) of 1. At 24 h postinfection, RNAs were
extracted (RNeasy, Qiagen), and reverse transcribed (prime Script
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RT reagent, Takara). Cellular and viral cDNAs were measured us-
ing TB Green Premix Ex Taq II (Tli RNase H Plus, Takara) and Pre-
mix Ex Taq (probe qPCR, Takara), respectively. Primers and probes
were described earlier (8, 14). Supernatants were measured using
the IFN beta Human ELISA Kit (Invitrogen).

Inhibitor and interferon treatment
Cells seeded into 24-well plates were pretreated for 24 h with pan-
species IFN-alpha (B/D; PBL Assay Science) or 1 μM Ruxolitinib
(Selleckchem), or for 2 h with 1 μM Camostat (Selleckchem) or
DMSO, all also added to inoculum and the incubation medium.
Infections were done as indicated in the figures, and cell super-
natants titrated on VeroE6 by plaque assay.

Statistical analyses
T tests and ANOVA were done using Graphpad Prism. Dose–
response analyses were by a generalized linear mixed model of
the gamma family with log link function using a group-specific
intercept and a common slope coefficient over the logarithm of
the IFN-alpha concentration including intercept and slope as ran-
dom factors to account for correlation within individual experi-
ments (P-values adjusted for multiple testing). The analysis was
performed in R 4.1.1 with glmer (lme4 1.1), Tukey-contrasts be-
tween the intercepts of the groups were determined using glht
(multcomp 1.4–17) (17, 18).
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