
Cell Migration and Organization

Dissertation

zur Erlangung des Doktorgrades
der Naturwissenschaften

vorgelegt beim Fachbereich Biowissenschaften

der Goethe Universität

in Frankfurt am Main

von

Hasnaa Fatehi
aus Casablanca (Marokko)

Frankfurt am Main 2009
(FB 15)





Vom Fachbereich Biologie der Goethe Universität als Dissertation

angenommen.

Dekan: Prof. Dr. Volker Müller
1. Gutachter: Prof. Dr. Jürgen Bereiter-Hahn
2. Gutachter: Prof. Dr. Marcus Bleicher
3. Gutachter: Dr. Michael Meyer-Hermann
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Kurzfassung

Zellen sind komplexe biologische Strukturen. Um sie zu verstehen braucht es daher die

Kombination mehrerer verschiedener Herangehensweisen. Wir befassen uns hier speziell

mit Zellmigration. Obwohl diese im ausgewachsenen Organismus keine so herrausragende

Rolle mehr spielt, ist es bekannt das sich einige Zelltypen, unter anderem Lymphozyten,

Makrophagen oder Fibroblasten, während einer Immunantwort aktiv durch das Gewebe

bewegen. Die Signale, die während einer solchen Immunantwort Informationen zwis-

chen den Zellen übermitteln, sind darüber hinaus essentiell für die selbstregulierende

Entwicklung von Geweben und Organen und steuern globale Prozesse in Körper. Funk-

tionsstörungen in diesem Signal-Netzwerk stehen im Zusammenhang mit Leiden, wie

zum Beispiel Krebs oder Autoimmun-Erkrankungen wie Diabetes und Hepatitis.

Die hier vorgestellte Arbeit befasst sich mit der Unterscheidung verschiedener Wech-

selwirkungen auf interzellulärer Ebene anhand der experimentell beobachteten Mor-

phologie eines Zell-Systems. Wir verwenden Computersimulationen als eine bewährte

Methode, um von der Morphologie auf die zugrunde liegenden interzelluläre Wechsel-

wirkungen zu schliessen. So konnten Computersimulationen beispielsweise auf der Ba-

sis von Migrationsdaten für B-Zellen in Keimzentren, welche mit der Zwei-Photonen-

Mikroskopie gewonnen worden waren, aufklären, welche Rolle die Chemotaxis bei der

Etablierung der dunklen und hellen Zone in Keimzentren spielt. Dabei stellte sich heraus,

daß Chemotaxis - entgegen dem gängigen Migrationsmodell für B-Zellen in Keimzen-

tren - die B-Zell-Migration lediglich zeitlich und räumlich begrenzt bestimmt. Anstatt

fortwährend von Chemotaxis getrieben zu sein, bewegen sich B-Zellen auf der Suche nach

Überlebenssignalen zumeist per Diffusion (Zufallsbewegung) in den Zonen des Keimzen-

trum. Wir verwenden in dieser Arbeit ein mathematisches Modell, welches die bedeu-

tenden Rollen von Chemotaxis und Phototaxis in den meist auf Zell-Ebene ablaufend-

en Aktionen beschreibt und so experimentatorischen Biologen bei deren Unterscheidung

helfen kann. Eine wesentliche Frage, die in dieser Arbeit hinsichtlich Zell-Kommunikation

und Aggregation diskutiert wird, ist die Distanz, über die diese Prozesse wirken können

und ob es, abgesehen von chemischer Diffusion, andere Mechanismen gibt, beispielsweise
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Phototaxis, die zu Aggregation führen können. Im vorgestellten Modell können Zellen

Signale empfangen und aussenden; diese integriert, werden um Informationen über ihre

Umgebung zu sammeln und dementsprechend zu reagieren. Eine gut untersuchte Art

zellulärer Kommunikation arbeitet über die Freisetzung von Chemokinen und Diffusion.

Auch Licht kann einen großen Einfluss auf das Verhalten der Zellen haben, speziell bei

Aggregations-Prozessen. Die folgende Arbeit will vor allem ein Modell vorstellen, welches

dazu beitragen kann, experimentatorischen Biologen dabei zu helfen, die Unterschiede in

den Auswirkungen von Chemotaxis und Phototaxis zu erkennen, sowie die Mechanismen

aufzuzeigen, die der zellulären Aggregation zu Grunde liegen.

Unser Modell ist ein Ansatz Chemotaxis und Phototaxis zu simulieren. Die Ergebnisse

unserer Simulationen zeigen, daß Zellaggregation ein Prozess ist, der komplizierter ist

als es zunächst erscheinen mag. So kann zum Beispiel das Herauslösen von Zellen aus

einem bestehendem Aggregat den überraschenden Effekt haben, den Grad der Aggre-

gation schlußendlich zu erhöhen. Dagegen erschwert vermehrte diffusion der Zellen den

Aggregationsprozess. Bei bestimmten Werte der Herauslösungsrate werden sich Zellen,

die von kleineren Aggregaten abgelöst werden, bei größeren Aggregaten ansiedeln, da

diese stärkere Signale aussenden. Eine Beobachtung der Zellbewegungen in der Simu-

lation zeigt, daß Aggregate aufgrund solcher Diffusions- und Umordnungsprozesse um

ihren Schwerpunkt oszillieren. Zellen, die sich innerhalb eines Aggregates aufgrund von

Diffusion bewegen, kehren in Abhängigkeit von den Anziehungskräften zu der stabil-

sten Position zurück. Außerdem sind sich die durch Chemotaxis und Phototaxis verur-

sachten Aggregationsmuster sehr ähnlich und können nicht mit bloß Auge unterschieden

werden. Bei gleicher Zell-Zell Interaktionsreichweite R kann es jedoch zu sehr unter-

schiedlichen Aggregations-Muster kommen, wie unsere Simulationen zeigen. Während R

die Signal-Reichweite zwischen zwei Zellen ist, sind die Aggregationsmuster durch die

effektive Reichweite Reff charakterisiert. Die effektive Reichweite berücksichtigt kollek-

tive Effekte von Aggregaten und hängt von dem zugrundliegenden Signalprozess ab.

Die effektiven Kommunikationsdistanzen innerhalb derer Zellen sich wahrnehmen sind

die Schlüsselparameter, um zwischen Chemotaxis und Phototaxis zu unterscheiden. Es

konnte gezeigt werden, daß der Bereich der R-Werte bei denen Chemotaxis und Photo-

taxis unterschieden werden kann experimentell relevant ist. Zum Beispiel wurde bei blut-

bildenden CD34+ Zellen eine Kummunikationsreichweite von ca. 14 Zelldurchmessern

beobachtet. Dieser Umstand kann genutzt werden, um einen unbekannten Signalprozess
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aus geschätzten Signal Schwellwerten und Signalstärken zu ermitteln. Eine experimentelle

Bestimmung von R aus Zwei-Zell-Experimenten und Reff aus der Analyse von Aggrega-

tionsmustern ist dann ausreichend, um zwischen Chemotaxis und Phototaxis zu unter-

scheiden. Die Ergebnisse der Dissertation stellen das erste Modell dieser Vorgänge dar

und zielen darauf ab, chemotaktisches und phototaktisches Verhalten auf einen phenome-

nologischen Niveau zu vergleichen. Für weitergehende Analysen müssen die spezifischen

Genotypen der Zellen berücksichtigt werden. Heute fehlt es noch an experimentellen

Daten, die für die eine theoretische biologische Modellierung notwendig sind. Daher

betonen wir die Unterschiede zwischen diesen beiden Mechanismen, die es erlauben

zwischen Prozessen der Aggregation im Experiment zu unterscheiden. Außerdem kann

unser Modell die Untersuchung weiterer Parameter vereinfachen, die bei der Analyse von

großen Systemen mit hohen Zelldichten und erschiedenen Wechselwirkungen notwendig

sind.





Zusammenfassung

Das funktionelle Immunsystem kann zwischen selbst und fremd unterscheiden. Das Im-

munsystem besteht aus zwei verschiedenen Strukturen, die kontinuierlich fremde En-

titäten unterdrücken oder diese unter Kontrolle halten, indem ihre Ausbreitung oder

ihre Vermehrung verhindert wird. Das angeborene Immunsystem ist die erste Verteidi-

gungslinie gegen fremde, potentiell gefährliche Entitäten (z.B. Bakterien, Pilze, Viren

u.s.w.). Es verfügt über mehr oder weniger festgelegte Reaktionen gegen bestimmte

Klassen von Erregern. Des Weiteren hat das adaptive Immunsystem in Wirbeltieren die

Fähigkeit bereits bekannte Erreger zu erkennen und zu speichern, um den Körper bess-

er gegen zukünftige Angriffe zu schützen. Es ist adaptiv, da spezifische Antikörper für

jedes Antigen produziert werden, mittels somatischer Mutation. Dieser Prozess findet

in den Keimzentren der Lymphknoten statt. Das Immunsystem ist über den gesamten

Körper verteilt. Lymphknoten sind Teil des Lymphsystems und sind zentrale Organe,

die die Immunität des Körpers sicherstellen. Sie bestehen aus verschiedenen Zelltypen,

die für das adaptive Immunsystem wichtig sind. Lymphknoten spielen die Rolle von Or-

ganen, in welchen fremde Antigene von Lymphozyten analysiert werden. In speziellen

Regionen der Lymphknoten, den sogenannten Keimzentren, findet die Vermehrung, Mu-

tation und Selektion der Lymphozyten statt. Diese Keimzentren sind in zwei Bereiche,

die dunkle und helle Zone, unterteilt. Es wurde postuliert, dass die Affinitätsreifung von

Antikörpern einen starken und häufigen Austausch von Zellen zwischen diesen Zonen

bedingt. Daher spielen die weitreichende Migration und die kurzreichweitige Interaktion

durch lokale chemische Signale und Kontakte zwischen Zellen, eine zentrale Rolle für die

Immunantwort.

Die Anwendung der Zwei-Photonen-Mikroskopie hat wertvolle neue Informationen

über die Bewegungmuster von B- und T-Zellen in den Keimzentren enthüllt. Da diese

eine Echtzeit-Beobachtung von einigen der vielen Mechanismen die nach der Immu-

nisierung stattfinden erlauben, wurden viele neue Erkenntnisse gewonnen und gängige

Hypothesen korrigiert. Für das Verständnis der Mechanismen ist, die vor der Immun-

sierung (Einführung des Antigens) ablaufen, sowie für die Veränderungen des zellulären
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Verhaltens nach der Immunisierung, ist eine gründliche Untersuchung der Keimzen-

tren von nöten. Daher ist die Analyse und Interpretation von Zelltrajektorien und der

chemische Interaktionen, die die Vorgänge in den Keimzentren beeinflussen, von großer

Wichtigkeit.

Zellen sind komplexe biologische Strukturen. Um sie zu verstehen, braucht es da-

her die Kombination mehrerer verschiedener Herangehensweisen. Wir befassen uns hi-

er speziell mit Zellmigration. Obwohl diese im ausgewachsenen Organismus keine so

herrausragende Rolle mehr spielt, ist es bekannt, dass sich einige Zelltypen, unter an-

derem Lymphozyten, Makrophagen oder Fibroblasten, während einer Immunantwort ak-

tiv durch das Gewebe bewegen. Die Signale, die während einer solchen Immunantwort

Informationen zwischen den Zellen übermitteln, sind darüber hinaus essentiell für die

selbstregulierende Entwicklung von Geweben und Organen und steuern globale Prozesse

in Körper. Funktionsstörungen in diesem Signal-Netzwerk stehen im Zusammenhang

mit Leiden, wie zum Beispiel Krebs oder Autoimmun-Erkrankungen wie Diabetes und

Hepatitis.

Chemische Kommunikation beinhaltet die Regulierung der Synthese von Signal-

Molekülen in der Sender-Zelle zur Anpassung der Konzentration an eine gewünschten

Reizschwelle. Die Diffusion der Moleküle in Richtung der Empfänger-Zelle, sowie die

Bindung derselben an passende Rezeptoren verursacht Veränderungen in der Empfänger-

Zelle hin zu zum Beispiel migratorischem oder aggregierendem Verhalten. Es ist bekan-

nt, dass einzelne Zellen, wie Bakterien, bei ihrer Nahrungssuche auf eine Kombination

von Taxis (Richtungs-Signal) und Kinesis (Geschwindigkeits-Signal) setzen. Immunzellen

scheinen eine ähnliche Methode zu verwenden, um Zelltrümmer oder Bakterien zu finden.

Unter Chemotaxis versteht man den Prozess, bei dem die Zelle eine gerichtete Bewegung

ausführt, indem sie dem Gradienten eines Chemo-Attraktantes folgt. Über die Zellmem-

bran verteilte Rezeptoren, welche sensitiv für spezielle Chemo-Attraktanten sind, messen

den Gradienten dieser Moleküle über die räumliche Ausdehnung der Zelle und können

so dessen Richtung bestimmen. Wird ein solcher Gradient detektiert, bildet die bislang

unpolarisierte Zelle Fortsätze aus, so genannte Pseudo– oder Uropodien. Eine solche

polarisierte Zelle besitzt nun eine führende und eine folgende Seite mit unterschiedlichen

Empfindlichkeiten für das Attraktant. Verändert sich im Folgenden die Richtung des

Gradienten, so bleibt die Aufteilung der Zelle bestehen, das heißt sie bewegen sich in

einer Kurve hin zu ihrem neuen Ziel.



Zusammenfassung ix

Phototaxis ist die gerichtete Bewegung einer Zelle entlang eines Licht-Gradienten.

Lange Zeit ging man davon aus, dass Phototaxis keinen relevanten Prozess für Eukary-

oten darstellt. Chemotaxis konnte so grundsätzlich von einer erhöhten Aufmerksamkeit

und dem Fokus wissentschaftlicher Experimente profitieren. Nichtsdestotrotz gab es in

den letzten Jahren immer mehr Untersuchungen, die sich mit der Bedeutung von Pho-

totaxis bezüglich zellulärer Interaktionen befasst haben. Hinweise auf die Existenz licht-

basierter Kommunikations-Prozesse und licht-geleiteter Bewegungen in Bakterien werden

in der folgenden Arbeit genauso diskutiert wie neueste Ergebnisse zum Einfluss dieser

Prozesse auf das Überleben von Bakterien bei Futtermangel. Auch wenn es bisher keine

klaren Beweise für einen Einfluss von Licht-Signalen auf Aggregation und Migration von

Zellen in Keimzentrum gibt, so deuten einige Ergebnisse doch darauf hin, dass Photo-

taxis für die Erhöhung der Ansteckungskraft von Bakterien und deren Aggregation eine

Rolle spielt. Desweiteren wurden auch durch licht-abhängige Kommunikation ausgelöste

Veränderungen im Verhalten von Neurophilen beobachtet.

Die Beobachtung von Zell-Migration und -Aggregation in einem bidimensionalen

Substrat mit Hilfe eines Mikroskopes, kann der Komplexität der Prozesse, die zu diesem

scheinbar simplen Phänomen führen, nicht gerecht werden. Daher ist es unerlässlich

mathematische Hilfsmittel zu entwickeln, um Hypothesen zu testen, Daten zu analysieren,

verschiedene Zell-Funktionen zu interpretieren und bereits existierende Modelle zu verbessern.

Die Systeme, die wir analysieren wollen, besitzen immer größere Komplexität hinsichtlich

ihrer gegenseitigen Abhängigkeiten. Zudem sind herkömmliche Modellierungs-Ansätze

an ihrem Design-Limit angekommen. Heutzutage werden Systeme bottom-up statt top-

down konstruiert. Agenten-basierte Modelle stellen ein flexibles und intuitives Framework

bereit, um alle verschiedenen Arten der Komplexität von biologischen Systemen abzu-

bilden. Die Struktur des Systems kann durch globale Anpassungen des Systems, aber

auch durch individuelle Veränderungen der Organisation der Agenten spezifiziert wer-

den. Agenten sind identifizierbare, lokalisierte, zielgerichtete und flexible Berechnungs-

Einheiten. Sie sind diskret und besitzen klar definierte Attribute un Verhaltensweisen.

Außerdem können Agenten nach ihrer Funktion und ihrem Verhalten separiert werden,

um der kontext– und zeitabhängigen Natur biologischer Funktionen Rechnung zu tragen.

Sie gewährleisten so maximale Kontrolle über alle System-Eigenschaften.
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Die hier vorgestellte Arbeit befasst sich mit der Unterscheidung verschiedener Wech-

selwirkungen auf interzellulärer Ebene anhand der experimentell beobachteten Mor-

phologie eines Zell-Systems. Wir verwenden Computersimulationen als eine bewährte

Methode, um von der Morphologie auf die zugrunde liegenden interzelluläre Wechsel-

wirkungen zu schliessen. So konnten Computersimulationen beispielsweise auf der Ba-

sis von Migrationsdaten für B-Zellen in Keimzentren, welche mit der Zwei-Photonen-

Mikroskopie gewonnen worden waren, aufklären, welche Rolle die Chemotaxis bei der

Etablierung der dunklen und hellen Zone in Keimzentren spielt. Dabei stellte sich heraus,

dass Chemotaxis - entgegen dem gängigen Migrationsmodell für B-Zellen in Keimzen-

tren - die B-Zell-Migration lediglich zeitlich und räumlich begrenzt bestimmt. Anstatt

fortwährend von Chemotaxis getrieben zu sein, bewegen sich B-Zellen auf der Suche nach

Überlebenssignalen zumeist per Diffusion (Zufallsbewegung) in den Zonen des Keimzen-

trum. Wir verwenden in dieser Arbeit ein mathematisches Modell, welches die bedeu-

tenden Rollen von Chemotaxis und Phototaxis in den meist auf Zell-Ebene ablaufend-

en Aktionen beschreibt und so experimentatorischen Biologen bei deren Unterscheidung

helfen kann. Eine wesentliche Frage, die in dieser Arbeit hinsichtlich Zell-Kommunikation

und Aggregation diskutiert wird, ist die Distanz, über die diese Prozesse wirken können

und ob es, abgesehen von chemischer Diffusion, andere Mechanismen gibt, beispielsweise

Phototaxis, die zu Aggregation führen können. Im vorgestellten Modell können Zellen

Signale empfangen und aussenden; diese werden integriert, um Informationen über ihre

Umgebung zu sammeln und dementsprechend zu reagieren. Eine gut untersuchte Art

zellulärer Kommunikation arbeitet über die Freisetzung von Chemokinen und Diffusion.

Auch Licht kann einen großen Einfluss auf das Verhalten der Zellen haben, speziell bei

Aggregations-Prozessen. Die folgende Arbeit will vor allem ein Modell vorstellen, welches

dazu beitragen kann, experimentatorischen Biologen dabei zu helfen, die Unterschiede in

den Auswirkungen von Chemotaxis und Phototaxis zu erkennen, sowie die Mechanismen

aufzuzeigen, die der zellulären Aggregation zu Grunde liegen.

Wir untersuchen räumliche zelluläre Aggregationen von Zellen mit dem Ziel Unter-

schiede der emergierenden Muster und deren Abhängigkeit von Chemotaxis und Pho-

totaxis zu verstehen. Dazu benutzen wir ein Agenten-basiertes Modell, das Zellen als

Knoten auf einem Gitter darstellt. Diese Zellen sind Einheiten, die Signale empfangen

und emittieren. Alle empfangenen Signale werden innerhalb eines vorgegebenen Bereichs

integriert und dienen als Entscheidungsgrundlage ob eine Zelle sich bewegt, abhängig von
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vorgegebenen Schwellwerten. Agenten-basierte Modelle sind relativ einfach zu implemen-

tieren und sehr gut geeignet, um Systeme zu untersuchen, in welchen Musterbildung eine

wichtige Rolle spielt. Allerdings ist, wie bei vielen theoretischen biologischen Modellen,

die Festlegung der Systemeigenschaften eine Herausforderung, da experimentelle Daten

für die Modellparameter bisweilen fehlen. Die mathematische Beschreibung der Signale,

die zur Simulation des beschriebenen Systems benutzt wurde, sind der Literatur entnom-

men. Das erste Signal beschreibt die Diffusion der Chemokine in dem zellulären Medium

und das zweite Lichtdiffusion innerhalb eines Volumens. Um Gitterartefakte durch die de-

terministischen Eigenschaften der gerichteten Bewegung zu vermeiden, wurde ein Diffu-

sionsprozess der Zellen implementiert, zusätzlich zu der Zufallsbewegung der Zellen wenn

kein Stimulus vorliegt. Unter Zuhilfenahme der zitierten Methoden wurde ein Modell en-

twickelt und der eigeführte Parameterraum mit verschiedenen Simulationen erforscht,

zum Beispiel die Reichweite der Anziehung, der Schwellwert für die Signalverarbeitung,

die Stärke der Diffusion u.s.w.

Unser Modell ist ein Ansatz Chemotaxis und Phototaxis zu simulieren. Die Ergebnisse

unserer Simulationen zeigen, dass Zellaggregation ein Prozess ist, der komplizierter ist

als es zunächst erscheinen mag. So kann zum Beispiel das Herauslösen von Zellen aus

einem bestehendem Aggregat den überraschenden Effekt haben, den Grad der Aggre-

gation schlußendlich zu erhöhen. Dagegen erschwert vermehrte Diffusion der Zellen den

Aggregationsprozess. Bei bestimmten Werten der Herauslösungsrate werden sich Zellen,

die von kleineren Aggregaten abgelöst werden, bei größeren Aggregaten ansiedeln, da

diese stärkere Signale aussenden. Eine Beobachtung der Zellbewegungen in der Simu-

lation zeigt, dass Aggregate aufgrund solcher Diffusions- und Umordnungsprozesse um

ihren Schwerpunkt oszillieren. Zellen, die sich innerhalb eines Aggregates aufgrund von

Diffusion bewegen, kehren in Abhängigkeit von den Anziehungskräften zu der stabilsten

Position zurück. Außerdem sind sich die durch Chemotaxis und Phototaxis verursacht-

en Aggregationsmuster sehr ähnlich und können nicht mit bloßem Auge unterschieden

werden. Bei gleicher Zell-Zell Interaktionsreichweite R kann es jedoch zu sehr unter-

schiedlichen Aggregations-Mustern kommen, wie unsere Simulationen zeigen. Während

R die Signal-Reichweite zwischen zwei Zellen ist, sind die Aggregation-Muster durch die

effektive Reichweite Reff charakterisiert. Die effektive Reichweite berücksichtigt kollek-

tive Effekte von Aggregaten und hängt von dem zugrundliegenden Signalprozess ab.

Die effektiven Kommunikationsdistanzen innerhalb derer Zellen sich wahrnehmen sind
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die Schlüsselparameter, um zwischen Chemotaxis und Phototaxis zu unterscheiden. Es

konnte gezeigt werden, dass der Bereich der R-Werte, bei denen Chemotaxis und Photo-

taxis unterschieden werden kann experimentell relevant ist. Zum Beispiel wurde bei blut-

bildenden CD34+ Zellen eine Kummunikationsreichweite von ca. 14 Zelldurchmessern

beobachtet. Dieser Umstand kann genutzt werden, um einen unbekannten Signalprozess

aus geschätzten Signal-Schwellwerten und Signalstärken zu ermitteln. Eine experimentelle

Bestimmung von R aus Zwei-Zell-Experimenten und Reff aus der Analyse von Aggrega-

tionsmustern ist dann ausreichend, um zwischen Chemotaxis und Phototaxis zu unter-

scheiden. Die Ergebnisse der Dissertation stellen das erste Modell dieser Vorgänge dar

und zielen darauf ab, chemotaktisches und phototaktisches Verhalten auf einen phenome-

nologischen Niveau zu vergleichen. Für weitergehende Analysen müssen die spezifischen

Genotypen der Zellen berücksichtigt werden. Heute fehlt es noch an experimentellen

Daten, die für die eine theoretische biologische Modellierung notwendig sind. Daher

betonen wir die Unterschiede zwischen diesen beiden Mechanismen, die es Erlauben

zwischen Prozessen der Aggregation im Experiment zu unterscheiden. Außerdem kann

unser Modell die Untersuchung weiterer Parameter vereinfachen, die bei der Analyse von

großen Systemen mit hohen Zelldichten und erschiedenen Wechselwirkungen notwendig

sind.



Abstract

Information sent to and received by cells is essential for a homeostatic development

of tissues and organs. These same signals are responsible for the good functioning

of lymphatic organs and therefore govern the immune response. Dysfunctioning of the

signaling networks is related to pathological situations, among which one can find cancer

and auto-immune diseases.

Intercellular communication involves the synthesis and the adjustment of signals by

the secreting/emitting cell in order to reach the needed threshold. Diffusion of the

signal to the target cell in addition to its interpretation lead to functional changes like

cell migration and aggregation. Individual cells such as bacteria find food or increase their

virulence through taxis (directional stimulus) and/or kinesis (speed stimulus). Immune

cells appear to use the same processes to find bacteria and cellular debris, as well as

to perform the cellular dance observed in germinal centers. This behavior is a result of

an up or down regulation of specific signals that suggest to B and T-cells the paths to

follow. Furthermore, cell segregation in the white pulp of the spleen, was also shown

to be a result of a tight adjustment of T-cell kinesis. Restriction to cellular tracks and

other experimentally provided measurements does not ensure a full comprehension of

the observed cellular behavior. Thus, the study of patterns opens new gates to our

understanding of the immune system.

With the help of the agent-based modeling technique, cellular migration and aggre-

gation are investigated in response to various cell-cell interactions. This work aims to

explore different mechanisms that lead to cellular migration and aggregation, by defining

the emergent properties of interest and that will help distinguish between interactions,

starting by a simple look at the emergent patterns, followed by an analysis of their

size, their degree of aggregation and the effective communication distances. Finally,

the results obtained from the in silico experiments provided a guideline to differenti-

ate between many cell-cell interactions under specific circumstances. Chemotaxis and

phototaxis with and without diffusive cellular motion were shown to be distinguishable

through an analysis of the emerging aggregation profiles.
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1 Introduction and Motivation

1.1 Introduction and Motivation

As an essential entity for life, cells are complex biological structures, and their compre-

hension requires a combination of several approaches. Cells continuously perform actions

to maintain homeostasis, among these actions migration and aggregation are widely ob-

served throughout a lifetime. At the adult stage, cells like lymphocytes, macrophages

and fibroblasts perform very precise moves and intercellular contacts to insure the best

immune response.

Observing cell migration and aggregation on a bidimensional substratum with a mi-

croscope does not allow to imagine the extraordinary complexity of all processes that

lead to this seemingly simple phenomenon. Therefore, it becomes essential to develop

mathematical tools to test hypotheses, analyze data, interpret different cell functions

and upgrade already existing models. Recently, the intravital two-photon microscopy

provided great insights on cell tracks before and after immunization in the germinal

center. The analysis of tracks shows typical properties of a random walk. Yet, math-

ematical modeling, based on the study of germinal center patterns combined with cell

tracks, lead to a better understanding of the ongoing processes in the GC. By going

beyond the simple experimental data analysis and making use of the typical germinal

center patterns, Figge et al [Figge 08] showed that cells in GCs do not only perform a

random walk but also follow gradients of chemokines accurately adjusted to direct the

movement of cells from one zone to the other.

Moreover, in the spleen and under non-inflammatory conditions, T-cells are sur-

rounded by a shell of B-cells. Mathematical modeling [Beyer 09] shows this cell segre-

gation to be the result of an increased chemokinesis of T-cells. If T-cell chemokinesis is

reduced the shell pattern is inverted and in the case of an equal chemokinesis of T and

B-cells, the observed cell segregation disappears.
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In our model, cells are able to emit and receive signals that are integrated to collect

information concerning their environment and react with respect to this. One common

way of cellular communication is through chemokine release and diffusion. Likewise, light

can also play a role in affecting cellular behavior and response, particularly, in aggregate

formation. The main motivation of the following work, is to propose a model that helps

distinguishing between different signals, with different scaling behaviors and the random

walk.

1.2 The Immune System

A functional immune system, is capable of the self/non-self discrimination of entities in

the body. Effectively, two distinguished structures enter the immune system composition,

and look continuously after suppressing foreign entities from our body, or keeping them

under control, by preventing their proliferation and/or propagation. The innate system,

is the first line of defense used to fight against non-self potentially dangerous entities (i.e,

bacteria, fungus, viruses etc...). It ensures more or less predetermined reactions to certain

classes of pathogens. More substantial, in vertebrates the adaptive system provides the

ability to recognize and memorize formerly encountered pathogens for a better protection

from future invasions. It is adaptive, because of the production of specific antibodies for

each antigen, called somatic hypermutation, occurring in germinal centers within lymph

nodes.

The immune system is the most diffuse cellular system in the body (Fig. 1-1).

Accordingly, long-range migration of cells and short-range interactions by local chemical

signaling and by cell-cell contacts are critical for the control of an immune response.

Cellular homing and migration within lymphoid organs, antigen recognition, cell signaling

and activation represent only a tiny part of the avalanche of processes taking place

after immunization. However, these events were not directly observed in vivo until only

recently with the help of two-photon microscopy that shed light on many processes,

allowing sometimes the correction of commonly believed mechanisms.
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Figure 1-1: Representation of the human immune system, including primary lymphoid
organs (Thymus and Bone marrow) and secondary lymphoid organs, like lymph nodes

or Peyer’s Patches.1
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1.3 The germinal center

Lymph nodes (Fig.1-1) form a part of the lymphatic system and are essential organs for

immunity. Distributed over many regions of the body, lymph nodes contain several types

of cells and are necessary for the adaptive immune response. Lymph nodes play the role

of key organs where foreign antigens are presented to lymphocytes. Special areas of the

lymph nodes are dedicated to lymphocytes proliferation, mutation and selection, and are

known as germinal centers (GCs).

Germinal centers are usually divided in two distinguished zones, the dark and the light

zone (DZ and LZ). Thus, affinity maturation of antibodies has been posited to require

frequent and intense trafficking between both zones. The recent use of two-photon mi-

croscopy revealed precious information on the migration patterns of B-cells and T-cells in

the GCs. Understanding the ongoing mechanisms before immunization (introduction of

the antigen) and the changes in cellular behavior after immunization requires a thorough

exploration of GCs and the subsequent changes to immunization. Thus, the analysis and

interpretation of cell tracks, patterns and interactions that orchestrate cellular migration

and aggregation are of major importance.

1.4 Aim of this study

One of the crucial questions raised regarding cell migration and aggregation, is the dis-

tance cells sense each other, and whether there are other signaling mechanisms besides

chemical diffusion that lead to aggregation. This work investigates the cellular aggre-

gation and tries to understand the differences between the emergent patterns and their

dependence on different signals for example chemotaxis and phototaxis. The analysis of

the average attraction distance between cells, named effective communication distance,

is considered as an important emergent property of the system. The shape of aggregates,

their size and therefore the average distance between them under different signals are

the major focus of the presented work.

In addition, the model includes random motion of cells accounting for cellular move-

ment in absence of signals and for unrepresented mechanisms. The importance of cellular

adhesion in aggregate formation is also investigated via a parameter regulating cell de-

tachment from aggregates during their diffusion. This work focuses on the differences
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between patterns that emerge as a consequence of different signaling pathways, and the

information held in these patterns to distinguish between different cellular interactions.

1.5 Methods used and developed in this work

Within an agent-based modeling frame, cells are assimilated to nodes on a lattice and

modeled as emitting and receiving entities, that integrate all signals within a certain

pre-defined range and make decisions to move or not in dependence of a pre-imposed

threshold. ABMs (Agent-Based Models) are very suitable for studying systems where

pattern emergence is of importance. The signal expressions used to simulate our system

were taken from literature. The first signal represents the diffusion of chemokines in

the cellular medium, and the second represents light diffusion within a volume. To

overcome lattice artefacts induced by the deterministic nature of directed movements, a

diffusion process of cells was implemented to mimic the cellular behavior in the absence

of signal-induced stimuli.

1.6 Results

With the help of the above cited method, a model was developed and different simu-

lations were run to explore the introduced parameter space, like the maximal commu-

nication distance, the threshold, the detachment, the probability of diffusing and the

probability of responding to signals etc... Our model leads to a consistent description of

cellular migration and aggregation. An important result is the coming up of two distin-

guished regimes, where for the same implemented one-cell/one-cell interaction distance,

the emergent structures hold clearly discernible information. The simulations display

as well the role of diffusive motion and adhesion in pattern formation or dissolution

and can help predict the subjacent phenomenon that rules a particular aggregation. To

summarize, the model helped defining the importance of directed motion and simple ran-

dom walk in aggregate formation, and their influence on the emerging average effective

communication distance and therefore the observed patterns.

1http://www.uabhealth.org.





2 Cell migration and interaction

Cellular migration and interaction are major processes continuously performed to keep

our body functioning in a homeostatic manner. Tissues and cells need to interact and

exchange information concerning their environment. Beyond simple sharing of informa-

tion, the main purpose of intercellular communication, is to give directives to other cells

for them to perform actions like mitosis, apoptosis, cellular division or migration to new

sites as shown in the case of mould formation in Figure 2-1, always with a view to restore

equilibrium in the concerned system.

We focus in this chapter on two main signaling pathways used by cells to migrate

from one point to another. In Section 2.1 we introduce the importance of cellular

random walk as a basic adopted behavior in absence of signals. The mechanism of

chemical signaling between cells is discussed in Section 2.2, where examples of typical

cellular interaction ranges are provided for different cells. Finally, in Section 2.3, light

communication between cells is introduced as a promising new signaling pathway that

is regaining the attention of biologists.

2.1 Random walk: Cells migrating like drunk

In the absence of stimuli, cells perform a random walk characterized by their irregular mo-

tion in random directions, where the next direction of migration can be as unpredictable

as is the next step of a drunkard.

This phenomenon was first observed with the aid of a microscope in the motion of

pollen grains in liquid by the English botanist Robert Brown (1773-1858). Later, Albert

Einstein (1905) explained that the random walk observed by Brown was the result of an

uncountable number of thermally driven collisions of water molecules. This explanation

provided a link to the macroscopic (physical) process of molecular diffusion based on

Fick’s phenomenological law [Deutsch 04].

A more general definition of diffusion is given later by Okubo in 1980 [Okubo 80],

who stated that the collective behavior of many particles is a diffusive phenomenon. This
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is to say that “the microscopic irregular motion of each particle gives rise to a regularity

of motion of the total particle group (macroscopic regularity)” [Okubo 80].

Cells perform random walks with a directional persistence time, i.e. cells persistently

migrate in the same direction for a characteristic time before a new migration direction

is randomly chosen. However, the random walk of cells may be biased in the presence

of stimuli giving rise to the combined random and directed migration of cells.

2.2 Chemotaxis: Cells adhering to chemoattractants

Chemotaxis is the directed motion of cells following a spatial gradient distribution of

chemoattractants [Iglesias 02, Devreotes 03]. Receptors distributed over the cell mem-

brane are sensitive to specific chemoattractants and cells are capable of measuring the

spatial distribution of the chemoattractant across their surface.

In the presence of a gradient, which is to say, a difference in the chemoattractant

concentrations, the unpolarized cells respond by creating extensions of their cytoskeleton

called uropods or pseudopods. After this, cells become polarized and develop a leading

and a trailing edge, where both edges present distinct sensitivities for the chemoat-

tractant. Yet, the polarized cell maintains the same leading edge when turning in the

direction of changing gradients of the chemoattractant distribution. The chemotactic

response of a cell involves different levels. While the receptor expression is directly re-

lated to the genetic level, the process of receptor internalization is relevant for the spatial

re-distribution of receptors on the cell surface [Moser 04].

The sensitivity of cells to the chemoattractant concentration generally obeys a bell-

shaped curve. As a matter of fact, chemotaxis is only initiated for concentrations

above a threshold value,e.g. 10 nM for lymphocytes [Kim 98, Tomhave 94, Yoshida 98,

Willimann 98]. At high chemoattractant concentrations cells may become desensitized

and stop further reactions to the chemoattractant, which is for example the case for

neutrophils [Tomhave 94].

In the presence of multiple chemoattractants, cells seem to compute a vector sum of

the incoming gradient signals to determine the integrated response in terms of the mi-

gration direction [Foxman 99]. Interestingly, if multiple signals are provided in sequential

order, the current migration direction is dominated by the most recent chemoattractant,

even if it is presented in lower concentrations [Foxman 99]. One explanation for this
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behavior could be the desensitization of receptors [Bardi 01]. However, experiments

conducted with neutrophils involving different signaling pathways but introducing differ-

ent chemoattractants suggest a sort of hierarchy of chemoattractants [Heit 02]. The

hierarchical levels are referred to as target and intermediary chemoattractants. If dif-

ferent gradient signals from the same hierarchical level are provided, cells respond by

computing the vector sum. However, chemoattractants from the target level are always

preferred over the intermediary level. Yet, blocking of intermediary chemoattractants by

target chemoattractants can be incomplete [Tomhave 94]. Curiously, the presence of an

intermediary chemoattractant can enhance chemotaxis to a target chemoattractant al-

lowing the cell to respond to lower concentrations than with the target chemoattractant

alone [Tomhave 94].

Cells were seen to sense the presence of other cells at typical distances depending on

their genotype. For example, endothelial cells from bovine pulmonary arteries appeared

to sense each other at a distance of 40 µm [Lee 94]. Hematopoietic progenitor cells

are aware of each other at distances below 100 µm [Möbest 02]. Francis et al. state

that hematopoietic progenitors (CD34+ cells) communicate without direct contact and

the communication distances are in the order of 100 µm [Francis 97]. Taken together,

direct measurements suggest that the effective range of the gradients sensing is 80-140

µm beyond the corresponding target zone [Okada 05].

2.3 Phototaxis: Cells drawn to the light

The movement of organisms in response to a light source is referred to as phototaxis.

This important photo-biological process involves reception of light and translation of

photonic information. Phototaxis is referred to as positive if the cell movement is in the

direction of light and as negative in the opposite case.

In simple organisms such as bacteria, a gradient of light intensity, i.e. difference in

light intensities, is interpreted and translated to a directed movement or to a change

in the frequency of the random turnings [Hoff 94]. In higher animals, these functional

steps become distinct with specific organs such as eyes, neurons and muscles, each with

higher complexity in their mechanisms.

The light source is not always external. Emission of light radiation by cells in the

visible range of the electromagnetic spectrum has been described by many researchers
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for a variety of organs. Using photomultipliers, emission of radiation has been readily

detected from liver, heart, lung, nerve and muscle cells [VanWijk 88]. Photon emission

of leukocytes has also been measured [Trush 78] and a direct relation between photon

emission and the process of phagocytosis has been suggested. Various emission bands

in the range of 400-700 nm were measured in animal cells [VanWijk 88].

The bio-photons are believed to carry information that can be used by cells for

long-range interactions and communication to regulate functions such as biochemical

activity, cellular growth, differentiation [Popp 02] and phototaxis [Popp 88]. Recently a

new study on bacterial pathogens revealed that light regulates several developmental and

behavioral responses like swimming, flagella beatings and rotation [Häder 91]. It can be

concluded that bacteria are provided with sophisticated mechanisms that sense changes

in environmental parameters such as light and nutrients. Under certain conditions,

such changes initiate the motion of an individual bacterium or of an entire colony, like

under starvation conditions as shown in Figure 2-1. In this case, bacteria proceed in

a collective move to increase resource availability [Levy 08]. An individual bacterium

is indeed less likely to move toward light. The observed dynamics of mould formation

(see Figure 2-1) appears to be a complex function of cell density, surface properties and

genotype [Levy 08]. Burriesci and Bhaya [Burriesci 08] showed additional details about

the motility of Cyanobacterium cells under phototaxis. Cyanobacterium were observed

to have a delayed motion, where it will take them a typical time after irradiation to

initiate a motion towards the light source. Such motion is observed in regions with a

high density of bacteria. In areas of low density, bacteria tend to be immobile or move

slower, and only move faster for higher densities leading to finger formation. In this

study, experiments also showed that the cells leave a chemical trace behind providing a

preferred pathway to follower cells.

Aggregation under infra-red light of 3T3 cells was related to nuclei being able to emit

and receive light irradiation that induces the cell migration [Albrecht-Buehler 05]. This

gives rise to cellular aggregation with aggregates forming at characteristic distances well

above several cell diameters. This finding suggests the possibility of long-range cellular

communication via light. Already in 2002, Popp et al. were able to track back the

emission of bio-photons to the nuclei’s DNA [Popp 02].

Effects of light irradiation on chemical interactions have also been observed in

bacteria, where the blue-light activated histidine kinase lead to an increase in viru-
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Figure 2-1: Scanning electron micrograph showing self-organization of cells into a slime
mould under starvation conditions.1
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lence [Swartz 07]. Swartz et al. [Swartz 07] identify a functional role for a new type of

light sensors in bacteria light-Oxygen-Voltage (LOV) histine kinase. Light increased the

enzymatic activity of this kinase, which remarkably increased the virulence of bacteria.

Deletion of the gene encoding LOV kinase from the Brucella abolished the light-mediated

virulence response, reducing bacterial proliferation in light-exposed macrophage cells to

the level observed in the dark [Swartz 07]. Besides, in the multicellular Dictyostelium

Discoideum slug, cells organize themselves through cell-cell communication to coordi-

nate their movement and were able to sense and react to external signals like light and

temperature [Miura 00]. The Dictyostelium Discoideum cAMP secreted waves were also

shown to change in presence of light irradiation. However, the precise role of cAMP,

which is one of the most known pathways of inter-cellular communication, is still to be

determined in the context of phototaxis [Miura 00].

1www.fungalcell.org.



3 Modeling interacting cell systems

The systems that need to be analyzed are becoming more and more complex in terms

of their inter-dependencies. In addition, the old modeling techniques are approaching

their design limits. Nowadays, systems are built from the ground-up, in contrast to the

top-down modeling approach.

Theoretical models are developed in order to mimic biological systems and to identify

the underlying processes between constituents using computer simulations. The art of

mathematical modeling is to choose an adequate modeling approach. This process starts

by specifying the questions to be answered and continues by identifying all variables

and connections between them that are relevant for answering these questions. Each

modeling approach has its assets and drawbacks. As a rule of thumb, computationally

cheap methods often only give a very rough representation of reality and, therefore, they

often only provide answers to questions of a very general kind. Questions with regard to

specific system properties typically require detailed calculations involving sophisticated

computational methods. Ideally, different modeling approaches can be combined where

answers to questions obtained at a certain level of resolution serve as input for modeling

at a level of higher resolution. The simplest model perspective is the macroscopic

approach which assumes that the cellular system under consideration is homogeneously

mixing over its entire spatial extent. This implies that all constituents are present in

sufficiently large amounts such that concentration of cell types rather than individual cells

can be considered. If this condition is met, the system dynamics may be well described

in terms of ordinary differential equations that yield continuous and deterministic results.

However, stochastic effects take over where cell numbers are locally small, and the

dynamic formation of cellular aggregates out of single cells requires a spatio-temporal

modeling approach. This is achievable within the agent-based modeling frame, where

each individual cell is treated as an agent that migrates and interacts with other agents

according to specific rules that are motivated by the underlying biological processes.
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3.1 The agent-based model approach

Agent-based models (ABMs) offer a flexible and intuitive framework for coping with

many types of complexity that are encountered in biological systems. The structure of

the system can be specified both by placing constraints on the system as a whole and by

specifying the organization of agents individually. Agents are identifiable, situated, goal

directed and flexible computational entities. They are discrete and defined in terms of

both their attributes and their behavior. Furthermore, agent instances can be separated

from their function and behavior which addresses the context- and time-dependent na-

ture of biological functions. This ensures a maximal degree of control over all system

properties.

A biological entity can be represented as participating in multiple pathways and

processes at different times or in different environments. Both system and entity behavior

can be dependent on a unique history because agents have unique identities. The actions

of agents can be scheduled to take place synchronously (i.e., every agent performs actions

at each discrete time step) or asynchronously (i.e., agent actions are scheduled with

reference to a clock or to the actions of other agents).

Furthermore, actions follow discrete-event cues or a sequential schedule of interac-

tions and are not simultaneously performed at a constant time-step. The behavior of

agents can vary from completely reactive –this is to say that agents only perform actions

when triggered to do so by some external stimulus, e.g. actions of another agent– to

goal-directed through seeking for a particular goal.

Besides, due to the richer behavioral representations afforded by ABMs, they acquire

several advantages from their computer-simulation heritage. Because an ABM is a

dynamical system, the model can incorporate positive and negative feedbacks, such that

the behavior of an agent has an influence on the subsequent behavior of other agents.

Interactions in ABMs can be dynamically changed as the simulation runs, because they

are defined at the agent level.

Figure 3-1 shows the position of agent-based models on a physical space repre-

sentation versus the internal state representation with a comparison to other modeling

techniques. Ordinary differential equations enable a continuous description of space and

time, discretization of the state with a continuous description of space leads to state

based models and the increase of spatial resolution while keeping low state description
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can be treated within partial differential equations (PDEs). Finally, ABMs come as a

discrete high-resolution description of both state and space. ABMs are applicable to

many situations, for instance when the agent diversity has an effect on the evolution of

the system. Thus, agent simulation can be used to study how patterns and organizations

emerge and to discover how system-level structures form when they are not apparent

from the behavior of individual agents. Agents can act according to base-level rules

with regard to their characteristic behavior, as well as according to high-level rules that

induce changes of the base-level rules in the course of time. In this way ABMs capture

phenomena of adaptivity in biological systems.

In general, ABMs are used in different applied sciences where the complexity of

systems hampers the drawing of conclusions or the setting of hypotheses in a straight-

forward manner. Finally, this realistic modeling approach is of great help when experi-

ments are too expensive or simply not feasible. Moreover, the predictive power of ABMs

can help reducing the number of animal experiments by making concrete proposals for

new relevant experiments.

A unique aspect of ABMs compared with other computational strategies is the inclu-

sion of agents whose behaviors are directed by logical rules. The rules are a collection of

clear, concise statements, often represented as ’If-Then-Else’ relationships in the algo-

rithm. The heterogeneity in agent behavior can be incorporated by drawing parameters

of a utility function from a statistical distribution, or by using alternative decision mak-

ing approaches for different agent types. ABMs can be deterministic, probabilistic, or a

combination of the two, with the possibility to tune stochasticity.

Building a model requires a clear definition of the system and the questions to be

answered. Subsequently, agents must be identified and in addition to the theory that

defines their behavior, the interactions between the same agents have to be designed

too. However, it is difficult to locate key model parameters, including rate constants,

in published literature. In these cases, parameters need to be estimated, and the model

has to be validated, either with experiments or compared to other models. Moreover, a

realistic computational time for running the simulations should also be considered while

designing the model.

Fortunately, ABMs have found applications in solving practical problems and ad-

vancing research agendas. In the following Section 3.2, we will refer to a few standard

mathematical models in biology.
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Figure 3-1: Methods used to model biological systems
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3.2 Agent-based models in biology

In biology, three classes of models can be distinguished. The first instance in which

model observations have been validated or refined by experiments, a second instance in

which models have generated novel hypotheses that still need to be verified by future

experimental efforts, and a third instance in which the development of new models in

the future would improve the understanding of biological processes. Usually, the set of

all the components and the interactions between them gives rise to the general behavior

of the system under observation.

The immune system is capable of self-organizing and adapting to various environ-

mental perturbations or external stimuli, while being able to discriminate between self

and foreign antigens as much as to develop memory. ABMs constitute a very adequate

modeling structure for the representation of the immune system. They can help an-

swering many questions concerning the effect of agent diversity on the evolution of the

system, predict possible dominance of a precise agent, or the evolution to a stable mix

of agent types. Recently, two-photon microscopy shed light on new cellular interactions

and dynamics. Typically, the formation of germinal centers or the cellular migration

between the dark and the light zones, profited from new data but also from predictions

and explanations provided by ABMs applied to this specific matter.

3.2.1 Continuum approach: The seminal Keller-Segel model

The simplest description of a cell population, which produces a chemical signal and

responds to it by performing a chemotaxic move is the Keller-Segel model originally

developed in the context of investigating slime mould formation.

Keller and Segel were the first to formulate a model that describes the formation of

the chemotactic bands of traveling bacteria observed by Adler in 1966. The model is

written in a nondimensionalized form with the cell density and the chemical concentration

both depending on time and position. The first equation 3.1 describes the chemotactic

reaction of cells, and the second equation 3.2 is a quasistationary approximation of a

reaction-diffusion equation for the chemical concentration. In this model, it was assumed

that bacteria did not reproduce during the time scale of interest and responded to a single
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substrate of attractant which did not diffuse.

∂b

∂t
= ∇ (µ(s)∇b) − ∇ (χ(s)b∇s) + g(b, s) − h(b, s), (3.1)

∂s

∂t
= D∇2s − f(b, s)x, (3.2)

where b = b(x, t) is the density of bacteria population, s = s(x, t) is the attractant con-

centration at spatial position x and time t, µ(s) is the bacterial diffusion coefficient, χ(s)

the chemotactic coefficient, g(b, s) and h(b, s) are for growth and death respectively,

f(b, s) is a function describing attractant degradation and D is the diffusion coefficient

of the attractant.

The solution showed that the initial bacterial density does not greatly affect the

results. Unfortunately, this rudimentary description did not lead to the experimentally

observed patterns. Because the Keller-Segel model did not successfully reproduce all of

the experimental observations, other models were derived from the Keller-Segel’s first

formulation, either by accounting or not for bacteria’s reproduction or death-growth

ratio, or including and excluding diffusion of bacteria. Varying the parameters and

boundary conditions allowed several new observations. For example, In 1973 Segel and

Jackson noted that constant rates of diffusion and chemotaxis were only valid in the

case of a population of identical organisms and individual response to chemoattractants

would result in a variance in the overall population response. Nossal and Weiss, by

reformulating the boundary conditions in 1973, showed that the bacterial density curve

increased at a rate proportional to the square root of time. A lack of bacterial growth

did not prevent the formation of the typically traveling bacteria bands, but cells were

lost to diffusion, resulting in a decrease in band speed leading to a broadening of the

bacterial profile.

More complex but more biologically realistic models were developed after the Keller-

Segel’s description [Monk 89] of chemotaxis. However, fully continuous modeling tech-

niques were not suitable for studying systems with many cell types and different in-

teractions. ABMs come as the method of choice, for them being highly adaptable to

different systems. Still, some models called Hybrid models continue to use a discrete

description of the system in combination with reaction-diffusion equations often inspired

from Keller-Segel’s model.
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3.2.2 Discrete Modeling of immunological systems

The first mathematical models for spatial patterning were based on a continuum descrip-

tion of the chemoattractant diffusion. Dallon and Othmer (1997) [Dallon 97] developed

for the first time a model where cells were considered as discrete entities with a con-

tinuous description of the chemoattractant concentration. Many models have been now

developed following this philosophy or with a full discretization of space and time among

which we can find models of the immunological system. A few examples are reviewed

here.

Cancer models Tumors are typically characterized by an unbalanced rate of cellular

death and production. Besides, cancerous cells develop various techniques that avoid

encounters with lymphocytes. In fact, they are able to trick immune mechanisms that

aim to destroy malignant or foreign entities. Understanding the evasive behavior of these

cells is of major importance, and the control of the production-death rates will facilitate

the control of tumor evolution and spreading in the body.

In 1991, Chowdhury et al. [Chowdhury 91] presented an ABM for characterizing

interactions between tumor and immune cells. The model was constituted of several

independent agents, accounting for different cell types like B-cells, T-helper cells, T-killer

cells, T-suppressor cells and tumor cells with and without antigen [Chavali 08]. Using

different concentrations of cell-types. The results were presented as a loss of steady-

state fixed points consisting of high or low concentrations of cell-types corresponding to

cancerous or non-cancerous states.

Years later, Mallet et al. [Mallet 06] presented a hybrid ABM-partial differential equa-

tion model of moderate complexity to describe the interactions between a growing tumor

next to a nutrient source and the immune system of the host organism [Chavali 08].

Natural killer cells, cytotoxic T lymphocytes and tumor cells constitute the implemented

agents that evolved within the surrounding of diffusing nutrients modeled with PDEs

and solved for concentrations of nutrient species. The PDEs solutions were reinjected

into the ABM to evaluate cell activities, such as motility and division. The model allows

both temporal and two-dimensional spatial evolution of the system under investigation

and is comprised of biological cell metabolism rules.
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Germinal center Newly generated data performed with two-photon imaging as pub-

lished by three experimental groups [Depoil 05, Allen 07b, Schwickert 07], provided more

details concerning the movement of lymphocytes in GCs during the affinity maturation.

A three-dimensional reconstitution of B-cell tracks, relying on speed and turning angle

distributions obtained by two-photon imaging, was used for implementation in a model

imagined by Figge et al. [Figge 08] using a statistical and a functional approach to sim-

ulate cell migration during affinity maturation in the GCs. The results suggest that

B-cells in GCs perform a random walk with a directional persistence time and transient

sensitivity to chemokines.

Immunological synapse formation T-cell activation requires interaction of T-cell

antigen receptors with proteins of the major histo-compatibility complex (antigen). This

interaction takes place in a specialized cell-cell junction referred to as an immunological

synapse. To investigate the formation of geometrically repatterned immune synapses

observed in vitro, cells were left to evolve on a lattice with artificially imposed barri-

ers [Figge 06, Figge 09]. Starting with randomly distributed TCR-pMHC (receptor) and

LFA-1-ICAM-1 (ligand) complexes on the lattice, a set of rules and different pre-imposed

probabilities to perform actions, representing attractive and repulsive forces between lig-

ands and receptors, Figge et al. [Figge 06, Figge 09] successfully reproduced the initial

experimental data.

Lymph node In this model, sixty-four virtual viruses were generated by an assortment

of speed of growth, infectivity level and lethal load [Kohler 00]. The aim of this model

was to explore a wide range of virus-host relations, and to offer realistic predictions to

help vaccine development against specific diseases. Several parameters were injected in

this model aiming to reproduce experimental observations, such as positive and negative

selection in the thymus, antibody dynamics and response to different antigens.

The results of in silico experiments were able to predict the success rates of certain

combinations of viral parameters and the immune response to them. Furthemore, this

model enabled the determination of a list of viruses that are more or less sensitive to

the humoral or cellular responses. This was achieved by the exploration of all included

parameters and their inter-dependencies.
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Lymphocyte shape dynamics A theoretical sub-cellular model for B and T-cell motil-

ity in the GC was developed by Meyer-Hermann et al. [Meyer-Hermann 05a]. The move-

ment and deformation of cells were correlated to each other using a subunit system. Cell

movement is considered to be composed of the movement of cell membrane subunits

evolving on a lattice as agents.

The ratio of cell’s long-axis/short-axis describing the cell’s elongation, presumably

induced by its motility, was in agreement with the experimental data. The results revealed

that the rearrangement of subunits with respect to a virtually shifted barycenter of the

cell (active movement) and a rearrangement of the subunits with respect to the actual

barycenter (reshaping force) [Meyer-Hermann 05a] are sufficient to describe lymphocyte

motility as a random walk with a persistence time of about 2 minutes.

Discrete Modeling of phototaxis Agent-based models of the phototactic behavior

of bacteria are still very rare. Recently, Levy et al. [Levy 08] presented a model where the

excitation of each individual bacterium was assumed to vary depending on the excitation

of the neighboring bacteria. Individual cells were less likely to move toward light, in con-

trast to groups of cells that were more likely to move. The observed dynamics appeared

to be a complex function of cell density, surface and genotype. The ABM takes into

account the excitation of each bacterium, in addition to a surface memory effect. The

assumption of the existence of an excitation mechanism is of critical importance. In fact,

this property is what distinguishes the model from other chemotactic models [Levy 08].

An excitation threshold below which cells will move only according to the surface mem-

ory or to the imposed diffusion process. Note that the bacterial population is considered

in this model to be of fixed size and the external light source was always present.

The chart flow in Figure 3-2 describes the logical rules implemented in this ABM,

that lead to the emergence of different patterns observed in vitro, including fingering

depending on different initial conditions.

3.2.3 On discrete Random Walk

Isotropic random walk The motion of agents on a spatial lattice can be either di-

rected or random, dependent or independent on each other, active or passive with regard

to signals. The random walk is a stochastic displacement where single agents make ran-
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Figure 3-2: Rules of motion for the cellular automaton model. The dotted lines are
traversed only if the cell did not move in any of the previous steps. After applying
these rules of motion to every cell in the colony, the excitation is updated based on the

excitation of the new neighboring cells [Levy 08].
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dom steps in each time step.

Random walk is described by choosing a new random direction at each time t and

moving a step in that direction, the spatial steps are always of equal length in any direc-

tion and successive moves are independent of each other. Since the particles should not

have any preferential direction, an equal probability is taken for jumps in all the direc-

tions. In this case the random walk is called isotropic or unbiased. The implementation

of random walks in ABMs is pretty easy and the interaction with the neighborhood de-

fines the range of possible moves and the sequential procedure allows some particles to

move more than others.

Persistent random walk Animal and cell movements are often characterized by some

directional correlation called persistence. Most of the commonly used random walk mod-

els assume that the direction of travel during step i of a random “walker” is independent

of the direction taken at step i− 1. However, the movements of many entities including

animals, exhibit persistence, i.e. the direction of travel during step i is clearly depen-

dent on the direction traveled in step i − 1. Furthermore, it was also observed, that

environmental variation can lead to changes in the persistence of movement and that

with a suitable model it is possible to relate the dynamics of cellular distributions to

environmentally induced changes in this persistence.

Persistent random walks involve a correlation between successive step orientations.

Each newly taken step, has a higher probability of pointing to the same direction as the

previously taken step, called local directional bias [Benhamou 06]. This probability is

reduced with time leading to a uniformly distributed orientation on a long run. Imposing

a certain probability to move in a preferred general direction, is also possible and is

named global directional bias [Benhamou 06].

Turning angle Typical random walk models allow only a restricted number of turning

angles at each step. More complete models integrate a continuous choice of the new

direction for the next step. In a two dimensional system, the walker is allowed to move

in any direction θ on the unit circle [Uttieri 07]. Circular distributions can be used to

pick random angles for either the direction of movement or the turning angle at each

step of a two-dimensional random walk.





4 Intravital microscopy of cell migration

and interaction

Since a few years, the migration and interaction of cells are extensively explored by

non-invasive intravital microscopy techniques [Cahalan 08]. This technique presents the

advantage of following cells in real time and within their natural cellular environment.

A large body of data has been generated in this way, including four-dimensional

records of cell tracks, i.e. the time-dependent position of single cells in three spatial

dimensions, as well as cellular contact times of interactions. The working principle of

imaging by multi-photon microscopy is summarized in Section 4.1 and an overview of

dynamical cell properties that can be explored by this experimental technique is presented

in Section 4.2.

Mathematical methods are required to analyze the experimental data in order to

extract meaningful conclusions and to initiate new insights and experiments. Recent

results from applying intravital microscopy within the field of immunology are reviewed

in Section 4.3.

4.1 Intravital microscopy: Working principle

Optical multi-photon microscopy is the method of choice for in vivo imaging of single-cell

dynamics and cellular interactions. Similar to conventional methods that employ fluo-

rescence techniques, like wide-field and confocal microscopy, multi-photon microscopy

is based on light excitations of fluorophores that absorb and re-emit light at different

wavelengths. Single-photon excitations typically require photon wavelengths in the or-

der of 400 nm. This wavelength corresponds to high photon energies that give rise to

phototoxicity and strong scattering in biological tissue (see Figure 4-1).

Multi-photon microscopy is based on the light excitation by two or more photons

occurring simultaneously. Thus, using a two-photon microscope, a fluorophore is si-

multaneously excited by two photons. Figure 4-2 shows a comparison of two-photon
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fluorescence and single-photon fluorescence. Each of the two photons contributes one

half of the energy required to induce fluorescence, such that low-energetic photons with

long wavelengths in the order of 800 nm can be used. This strongly decreases the ab-

sorption and scattering of light in biological tissue, as schematically shown in Figure 4-1.

Moreover, infrared photons have negligible impact on the biological sample with regard

to phototoxicity and photobleaching, such that imaging up to millimeter-depths can be

realized without inducing significant damage to the biological sample. This is the main

advantage of intravital multi-photon microscopy.

The required photon density at the focal spot of the microscope objective is generated

by a pulsed laser, which is adjusted in such a way that two factors are balanced: On

the one hand, the density has to be sufficiently high in order to induce multi-photon

excitations, on the other hand it has to be kept sufficiently small in order not to damage

the biological sample. These requirements on the photon density for the induction of

multi-photon fluorescence is only met within the confined volume of the focal spot (see

Figure 4-2), since the fluorescence power decays with 1/z2, where z denotes the axial

distance away from the focal focus as shown in Figure 4-3. As a consequence, the

resulting images are free of out-of-focus fluorescence (see Figures 4-2 and 4-3) and

therefore provide higher image contrast as compared to single-photon techniques.

As with conventional microscopes, the multi-photon microscope allows to generate

image sequences, which is achieved by scanning the focal spot across the sample. The

data are typically analyzed by advanced tracking software that can identify individual

cells and follow their history, i.e. the migration path and the interaction events, in the

three-dimensional stacks of image sequences. The high spatial and temporal resolution

makes laser scanning multi-photon microscopy being the state-of-the-art technique for

intravital cell imaging in biological tissue.

4.2 Exploring Dynamic Cell Properties

Multi-photon imaging yields data on the position and on the geometric shape at each

time point of the measurement and for each cell within the three-dimensional focal spot.

We consider an image sequence that consists of N+1 single measurements, recorded

with the time step ∆t. The position of the ith cell, (xi(n), yi(n), zi(n)), and its

geometric shape are observed at time points tn = n∆t with n = 0, 1, 2, . . . , N. The



Section 4.2: Exploring Dynamic Cell Properties 29

geometric shape of the ith cell may be quantified by the shape index si(n) and captures

time-dependent changes of the cell geometry. It is convenient to combine the data on

the cell track and cell shape in the lists

Ti ≡







xi(0) xi(1) xi(2) . . . xi(N)

yi(0) yi(1) yi(2) . . . yi(N)

zi(0) zi(1) zi(2) . . . zi(N)






(4.1)

and

Si ≡
(

si(0) si(1) si(2) . . . si(N)

)

(4.2)

for each cell i = 1, 2, . . . , I, respectively.

The shape index may be defined in various ways. For example, the cell geometry can

be viewed as an ellipsoid with equatorial radii a, b, and c. Performing a two-dimensional

projection, the ellipsoid may be approximated by an oblate (a = b > c) or a prolate

(a = b < c) spheroid. In this case the shape index can be defined as the ratio of the

long to the short axis and is a function of time (see Figure 4-4). As a consequence,

si(n) ≥ 1, where si(n) = 1 indicates a spherical and si(n) > 1 indicates an elongated

cell shape.

The cell track lists Ti serve as the basis for calculating characteristic quantities of

the cell migration. Viewing these lists as 3 × N matrices, the nth column contains the

position vector of the ith cell at time tn:

~Ri(n) ≡







xi(n)

yi(n)

zi(n)






. (4.3)

Typically, observables of interest are presented as the average over all monitored cells.

The average of observable Oi is obtained by summation of the corresponding quantity

for each cell i and dividing by their total number I:

〈Oi〉 ≡
I∑

i=1

Oi . (4.4)

However, it should be noted that the number of cells may be a function of time, I = I(n).
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This is due to practical reasons, since cells may exit the focal spot at longer times and

cannot be imaged and tracked anymore. The fewer remaining cells may give rise to

standard deviations of the averaged observables that are increasing with the measurement

time.

We now turn to examples of observables that serve to characterize the migration

behavior of cells. The time-dependent displacement vector of a cell,

~ri(n) ≡ ~Ri(n) − ~Ri(0) , (4.5)

is measured relative to its starting point and is used in the calculation of the mean cell

velocity

〈~vi,m(n)〉 ≡ 〈~ri(n)〉 − 〈~ri(n − m)〉
m∆t

(4.6)

at times tn = n∆t with n ≥ m. It is important to note that ~vi,m(n) may depend

on the choice of the time interval m∆t. Therefore, the interpretation of a cell’s speed,

vi,m(n) = |~vi,m(n)|, may lead to wrong conclusions: For small time intervals m∆t, the

cell speed may be overestimated due to the jitter motion of otherwise stationary cells.

On the other hand, if the cells perform random walk migration, the actual cell speed

may be underestimated for too long time intervals m∆t.

As has been explained before, random walk migration refers to cells that do not move

unidirectionally but randomly change their migration direction. Such random changes

may occur at each time step of the measurement, or only after a number of time steps

have elapsed. In the latter case, a directional persistence time exists and corresponds to

the time interval ∆tp during which cells migrate in the same direction before randomly

turning into another direction.

Analyzing the time-dependence of the measured mean displacement, 〈|~ri(n)|〉, reveals

characteristic differences between unidirectional migration and random walk migration.

If cells perform unidirectional migration, e.g. by following chemokine gradients, their

mean cell velocity is a constant and

〈|~ri(n)|〉 = 〈|~vi,n(n)|〉 tn . (4.7)
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In other words, 〈|~ri(n)|〉 equals exactly the mean path length 〈li(n)〉. The latter is

defined by:

〈li(n)〉 ≡ 1

n

n∑

n′=1

〈|~ri(n
′) −~ri(n

′ − 1)|〉 . (4.8)

such that
〈|~ri(n)|〉
〈li(n)〉 = 1 (4.9)

for unidirectional migration.

In contrast, for cells performing random walk migration, the mean path length be-

comes significantly larger than the mean displacement,

〈|~ri(n)|〉
〈li(n)〉 ≪ 1 , (4.10)

at times tn ≫ ∆t. This is a consequence of the fact that the cells randomly change their

migration direction and eventually re-approach their starting point, as can be seen in

Figure 4-5. The difference between unidirectional migration and random walk migration

is depicted in Figure 4-6. In the latter case, the mean displacement does not scale

linearly with time but with the square-root of time,

〈|~ri(n)|〉 =
√

2dM
√

tn . (4.11)

Here, the proportionality constant depends on the system’s spatial dimension d and

the motility coefficient M. The mean displacement for different migration behaviors is

schematically shown in Figure 4-7. Note that random walk migration with a directional

persistence time is a combination of unidirectional migration on small time scales and

random walk migration on large time scales. The time scale is set by the directional

persistence time: At times tn < ∆tp, 〈|~ri(n)|〉 scales linear with time and assumes

scaling with the square-root of time for tn > ∆tp.

Taken together, multi-photon imaging provides a firm data basis to characterize

the migration behavior, shape dynamics, and cellular interaction times of cells in intact

biological tissue. A summary of accessible motility parameters is presented in Table 4.3.3.

The main strength of multi-photon microscopy is the ability to maintain resolution and

contrast within scattering tissue, which allows direct visualization of cells in their natural
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environment and in response to systematic manipulations [Helmchen 05].

4.3 Analysis of multi-photon data in immunology

Optical microscopy employing fluorescence techniques has proven to be highly suited

for imaging in immunology, permitting both labeling of specific cells, organelles, or

proteins and functional reading of biological events [Petty 07] The accurate and ingenious

choreography of cell motility and cell-cell interactions in a variety of in vivo settings has

been revealed at imaging depths up to one millimeter into living tissue [Cahalan 08].

Quantitative information on the cell motility, shape dynamics and contact durations

for cellular interactions can be derived from these data by mathematical analysis that

shape our interpretation of these data. In this section we consider various examples of

mathematical analysis of two-photon microscopy data including lymphocyte migration,

interaction and shape dynamics.

It should be stressed that mathematical analysis is not just a descriptive approach.

Rather, it constitutes a predictive consistency check of working hypotheses underlying

the interpretation of experimental data. An example of this process will be described in

Chapter 5 on B-cell migration in germinal centers.

A mandatory prerequisite for realistic models of lymphocyte migration and interac-

tions is a firm experimental data basis. New system features are discovered by including

more detailed aspects of cell dynamics into the mathematical models. This is becom-

ing more feasible in recent years due to continuously growing computer resources. At

the same time experimental techniques are developing fast and highly accurate data are

generated, such that the real challenge for modelers and experimentalists is to keep pace

in working hand in hand. The highest benefit can be expected from symbiotic effects of

theory and experiment.

4.3.1 T-cell migration in lymphoid tissue

Various studies have concentrated on imaging individual T-cells within lymphoid or-

gans [Mempel 04, Miller 02, Miller 03, Miller 04]. In general, the experimentally derived

mean displacement curves as a function of the square-root of time show the character-

istics of random walk migration with a directional persistence time.
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A mathematical analysis was performed within a statistical cell track model approach

with the aim to estimate values of parameters underlying T-cell migration

[Beauchemin 07]. We briefly outline the general procedure of this mathematical analysis

that involves the reconstruction of experimentally observed cell tracks in order to identify

underlying migration mechanisms.

Cells are treated as independently migrating point particles that have a speed and a

polarity vector. Cell tracks are re-constructed by calculating the position vector ~ri(n+1)

of the ith cell at time tn+1 = (n + 1)∆t from its position ~ri(n) and its velocity ~vi(n)

at time tn:

~ri(n + 1) = ~ri(n) + ∆t~vi(n) . (4.12)

Thus, the new cell position is calculated by updating the velocity,

~vi(n) = vi(n)~ei(n) , (4.13)

at each time step ∆t of the measurement. The velocity is represented in terms of the

cell speed vi(n) and the cell polarity vector ~ei(n), which in spherical coordinates is given

by

~ei(n) =







sin(ϑn) cos(ϕn)

sin(ϑn) sin(ϕn)

cos(ϑn)






, (4.14)

with ϑn ∈ [0, π[ and ϕn ∈ [0, 2π[ denoting the spherical angles.

Depending on the available data basis, one has to specify the procedure according

to which Eq. (4.12) is updated. In Ref. [Beauchemin 07], the three-dimensional T-cell

tracks were projected on a two-dimensional plane by neglecting the z-component of the

polarity vector Eq. (4.14). The new polarity vector reads

~ei(n) =







sin(ϑn) cos(ϕn)

sin(ϑn) sin(ϕn)

0






(4.15)

and does not have anymore the property of being a unit vector. The re-construction of

cell tracks was then performed according to Eqs. (4.12) and (4.13). In doing so, the cell
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speed was set to a constant value,

vi(n) = v , (4.16)

for all cells.

Figure 4-8 gives an idea how the reconstituted two-dimensional tracks may look like.

The square root time plotted against the mean displacement of the cells is clearly indica-

tive of a random walk. Furthermore, the time step ∆t was decomposed into two time

intervals: (i) the persistence time ∆tp during which cells migrate with constant speed,

and (ii) the re-polarization time ∆tr during which cells do not move but are thought to

reposition their lamellipods and uropod. After having paused, T-cells randomly pick a

new direction of migration. This was realized by choosing new angles ϑn and ϕn from

uniform distributions [Beauchemin 07].

The set of parameters contains three quantities: {v, ∆tp, ∆tr}. Re-constructing a

number of 106 individual cell tracks in a randomized fashion, the parameters were ex-

plored in the range v = [5, 50] µm/min, ∆tp = [0.5, 20] min, and ∆tr = [0, 3.5] min.

Then, the optimal values were determined from a fitting procedure to the experimen-

tal data. Combining the T-cell tracks of different experimental data sets [Mempel 04,

Miller 02, Miller 03, Miller 04], the optimal values of the parameters are {v = 18.8

µm/min, ∆tp = 2 min, ∆tr = 0.5 min}. It can be concluded from this analysis that

T-cells perform random walk migration with a persistence time of 2 minutes and the

time for re-polarization is 30 seconds. Interestingly, neglecting the re-polarization time,

∆tr = 0 min, the optimal values changed into {v = 16.6 µm/min, ∆tp = 2 min}. Thus,

the T-cell speed attains a somewhat smaller value, however, the persistence time remains

unchanged.

It has been concluded from this analysis that the re-polarization time does not play

a central role in improving the agreement with the experimental data.
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4.3.2 T-cell interaction with dendritic cells

Applying the agent-based model approach, which we introduced in Chapter 3, the inter-

action of T-cells with dendritic cells can be studied and compared to data obtained from

two-photon imaging of lymph nodes of mice [Beltman 07b, Beltman 07a]. In particular,

a Potts model has been used where cells are represented by several connected points

in a three-dimensional lattice. The considered cell types include T-cells, dendritic cells

and static fibroblastic reticular cells forming the reticular network in lymph nodes. In

the model, surface and volume energies are assigned to cells that are in contact with

other cells and changes in the cellular configuration are determined by a minimization

procedure of an energy functional.

The energy functional is given in terms of a Hamiltonian that has the general form:

H =
∑

ijk

∑

i′j′j′

J [~τ(σijk), ~τ(σi′j′j′)]
(

1 − δσijk,σi′j′j′

)

+

+
∑

~σ

[

λv(v~σ − V~σ)2 + λp(p~σ − P~σ)2
]

. (4.17)

The first term represents the surface energy J, which depends on the interacting cell

types ~τ(~σ). Here, ~σ denotes the identification number of the cells on the lattice. The

sum accounts for all lattice points {ijk} and neighboring lattice points {i′j′j′}, where the

Kronecker delta excludes all surface energy self-terms. The volume energy is determined

by λv. It is a measure for the cell inelasticity and drives the actual cell volume v~σ to

a pre-defined target cell volume V~σ. For dendritic cells the relatively large surface to

volume area is imposed by the λp-term in the Hamiltonian. The actual dendritic cell

surface is given by p~σ and the target surface is given by P~σ.

The details on the time evolution of the system for motile T-cells can be found in

Ref. [Beltman 07b] together with the chosen model parameters. The procedure involves

random changes in the cellular configuration that give rise to the energy difference ∆H

between the two configurations. A Metropolis Monte Carlo algorithm is used to decide

whether or not the new cellular configuration is accepted.

In agreement with the experimental data, the model predicts that T-cells perform

random walk migration with a directional persistence time in the order of two min-

utes [Miller 03]. The model suggests that the migration behavior is a consequence of



36 Chapter 4: Intravital microscopy of cell migration and interaction

T-cells having a preferred direction of motion that is adjusted by the reticular network

and dendritic cells in the nearby environment. It has been proposed that T-cells mi-

grating preferentially along the fibres of the reticular network could give rise to small,

dynamic streams of T-cells through the lymph node.

With regard to the interaction between T-cells and dendritic cells, the simulations

revealed that T-cells are able to scan 100 different dendritic cells per hour. This result is

of interest for estimating the efficiency of negative selection in the thymic medulla and

it is concluded that maturing T-cells scan about 3.4 × 104 different dendritic cells in

14 days [Beltman 07b]. It should be noted, however, that the contact duration and the

scanning estimate depend on the imposed densities of the different cell types. Moreover,

this estimate involves many brief contacts that last around one minute and also counts

the simultaneous interaction between one T-cell and multiple dendritic cells.

The three distinct phases of T-cell stimulation have also been investigated within

the cellular Potts model [Beltman 07a]. In a first phase, T-cells are rapidly migrating

trough the lymph node and undergo brief encounters with dendritic cells. Then, in a

second phase that starts several hours after T-cells are first exposed to their cognate

antigen, T-cells are clustered around dendritic cells for more than 30 minutes. Finally,

in a third phase, T-cells are again rapidly migrating and proliferating in response to

antigen stimulation. The simulations based on two-photon imaging suggest that, in

order to enter the second phase of T-cell stimulation, stop signals have to be provided

by dendritic cells. Most probably, these signals are integrated by the T-cells during the

first phase and initiate the transition to the second phase.

4.3.3 Cell shape dynamics of migrating T and B-cells

Two-photon microscopy data reveal that cell motility and cell shape are closely interlinked

with each other [Miller 02]. Therefore, to analyze these data, cells cannot be treated

as point particles but have to be modeled in a spatially resolved fashion. Different

model approaches that can describe the shape dynamics of migrating cells [Beltman 07b,

Beltman 07a, Meyer-Hermann 05b] exist. In general, an agent-based model is used with

a sufficiently high lattice resolution in order to represent each cell by a collection of

subunits. In addition, updating rules have to be implemented in the agent-based model

to mimic realistic shape deformations of migrating cells.
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Following Ref. [Meyer-Hermann 05b], cells are represented by the cell volume, the

cell polarity and a list of connected cell subunits that constitute the cell shape on the

lattice. Two main contributions of cell dynamics have been identified:

(i) Rearrangement of subunits with respect to the virtually shifted cellular barycenter

(active movement). In reality, the direction of active movement is a complex interplay

of the cytoskeleton organization and intra-cellular signaling pathways. In the model, the

normalized polarization vector determines the direction of the active movement and is

assumed to change randomly with a probability that is associated with the persistence

time.

(ii) Rearrangement of the subunits with respect to the actual barycenter (reshaping

forces). This ingredient of the cell motility model concerns the cell shape stability, since

during the procedure of active cell movement the details of forces that reshape the cell

towards a sphere are ignored. Within a phenomenological approximation, all reshaping

forces are included in a single force, which is an overall elastic force that drives the

subunits of an elongated cell back to the current barycenter and promotes a spherical

shape.

The two ingredients active movement and reshaping forces turned out to be suffi-

cient in order to describe the lymphocyte motility data obtained from two-photon imag-

ing [Miller 02]. For example, the shape index was calculated from the data obtained for

T-cell and B-cell migration in lymph nodes of mice. Projecting the cell volume on a

two-dimensional plane and approximating the area by an ellipse, the shape index si(n)

of the ith cell can be calculated as the ratio of the long to the short axis. Thus, at each

time step tn, si(n) > 1 corresponds to an elongated cell shape that becomes circular

for si(n) = 1.

The measurement of I = 46 T-cells and B-cells reveals that the average shape

index is around 2.3 for T-cells and 1.6 for B-cells. Thus, the cellular elongation is

about a factor 1.5 larger for T-cells compared to B-cells and this result is in agreement

with the observations by two-photon microscopy [Miller 02]. It may be speculated that

this points to cardinal differences in the cytoskeleton dynamics of migrating T and B-

cells [Meyer-Hermann 05b]. Nevertheless, in the simulations both cell types dynamically

round up and take a symmetric shape during the process of re-polarization. The shape

index is a direct consequence of the reshaping forces that cells experience while they are

continuing to migrate.
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Figure 4-1: Signal generation and fluorescence collection in clear tissue (no scatter)
and in scattering tissue (scatter). In clear tissue all excitation light reaches the focus,
but in scattering tissue, scattering (even by a small angle) causes light rays to miss the
focus and be lost to signal generation. This leads to a roughly exponential decrease
in excitation with depth. In clear tissue only fluorescence light rays initially emitted
into the collection cone, determined by the objective’s NA, can be detected, but in
scattering tissue fluorescence light is (multiply) scattered and may even ’turn around’.
Fluorescence light apparently originates from a large field of view but a larger fraction
than in the nonscattering case is actually within the angular acceptance range θf of the

objective [Helmchen 05].
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Parameter Description (Unit)

Instantaneous velocity Velocity calculated as displacement/time
during a single time step (µm/min).

Mean velocity Mean velocity of a cell over several time steps
(usually the entire imaging period)(µm/min).

Contact time Time for which a cell is in contact with a
defined cell or structure (sec:min).

Shape index Measure of cell polarization (long axis/short axis)

Path length Cumulative distance traveled by a cell over a given
time (µm).

Displacement Straight-line distance of a cell from its starting
point after any given time (µm).

Molitily coefficient M = displacement2/4t (for 2-D measurements) or
M = displacement2/6t (for 3-D measurements);
analogous to the diffusion coefficient for Brownian motion (µ2m/min).

Chemotactic index Displacement/path length for a given time interval
(a measure of cell directionality).

Turning angle The angle through which a cell deviates between
successive time steps (degrees).

Persistence time (length) Time (length) for which a cell continues moving in
a straight line before making appreciable turn (min(µm)).

Table 4-1: A list of parameters utilized to characterize cell motility and migration after
extraction and interpretation of data provided by two-photon imaging [Cahalan 08].
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1Boston University, Biomicroscopy Lab.
2The Parker Lab, Dept. of Neurobiology and behavior, Uni. of California, Irvine.
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Figure 4-2: A cuvette of fluorescent dye excited by single-photon excitation (right
line) and multiphoton excitation (localized spot of fluorescence at left) illustrating that

two-photon excitation is confined to the focus of the excitation beam.1
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Figure 4-3: Working principle of one and two-photon microscopy, z denotes the axial
distance away from the focus.2
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Figure 4-4: The instantaneous velocity of T-cells fluctuates in a characteristic manner
versus time accompanied by changes in shape index (long-axis/short-axis) as the cell

elongates while moving faster [Cahalan 08].
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Figure 4-5: Schematic showing a cell track at five successive time points, t1, t2, etc.
Instantaneous velocities are calculated from the net distance d traveled during each time
interval δt, and the turn angle θ is the angle through which the cell turns between time
steps. The displacement D is the straight-line distance of the cell from its origin at any
given time. Path length is given by the sum of d1, d2, d3, etc. Persistence time (or
length) is the time for which a cell continues to move without turning appreciably, as is

illustrated for time points t2t4 [Cahalan 08].
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Figure 4-6: Chemotactic index defined as path length/displacement from origin con-
stant with a value of unity for linear-directed motion and decreases progressively with

time for cells following a random walk [Cahalan 08].
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Figure 4-7: Mean displacement from origin of multiple cells is expected to follow a
straight line when plotted as a function of square-root of time, if the motility follows a

random walk [Cahalan 08].
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Figure 4-8: T and B-cells move within the lymph node by a random walk. (A) Super-
imposed tracks of 43 T-cells in the diffuse cortex, normalized to their starting coordi-
nates. (B) Corresponding tracks of 41 B-cells in a primary follicle. (C) Mean displace-
ment plot for T (green) and B (red) cells from (A) and (B). (D) The data from (C),
replotted as a function of the square root of time. Points fall on straight lines, consistent
with random movement, and the slope of each line represents the motility coefficient M,
given by M = x2/4t, where x is the mean distance from origin at time t [Miller 02].





5 Cell migration in the Germinal Center

Germinal centers (GCs) are located in the lymph nodes (see Figures 1-1 and 5-1), and

represent the major sites for high-affinity maturation. The initiation of an immune

response leads to the activation of B-cells specific to a foreign antigen and the formation

of GCs. Within GC reactions, B-cells mutate their antibody coding region and by this

generate memory and plasma cells that produce antibodies with a high-affinity to a

specific antigen. GCs reappear after subsequent encounters with the same antigen by

activation of the memory B-cells that have been generated in the primary response.

Figure 5-2 shows an in vitro image of a transversal cut of a GC.

Germinal centers characteristically arise during the first days following immunization

by exposure to an antigen and last for about three weeks. GCs produce memory B-cells

that continue to proliferate in follicles during the months following T-cell dependent

anti-body responses [MacLennan 94].

In this chapter, we will first introduce the morphology of germinal centers in Sec-

tion 5.1. Then elucidate, in Sections 5.1.1 and 5.1.2 the role two-photon imaging plays

in understanding T and B-cell dynamics inside GCs. In Section 5.2, we will discuss the

changes occurring in cellular behavior after immunization.

5.1 Introduction to Germinal Centers

The light and dark zones Germinal centers are divided into two compartments, the

dark and the light zone. In the light zone, lymphoid cells are smaller and less closely

distributed in comparison to the dark zone where GC B-cells are closely arranged. Both

in the light and the dark zone, B-cells are separated by the FDC (follicular dendritic cell)

network [Allen 07a] which is more extensive in the light zone. FDCs that constitute this

network have the capacity to take up antigen and hold it on their surface for periods

of more than one year [Allen 07a]. It has been suggested by Lui et al. and Wang et

al. [Lui 91, Wang 05], that in the beginning of an immune response the dark zone is

inexistent, and as the GC develops the GC B-cells will move from the FDC network to
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Figure 5-1: Sketch of the typical anatomy of lymph nodes. In yellow, is the ger-
minal centers with their usual spherical shape, positioned inside follicles and close to

afferent/efferent veins.1
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Figure 5-2: In vitro picture of a germinal center surrounded by the mantle zone and
the T-cell zone.2
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establish the dark zone. The orientation of the light zone in GCs, often next to afferent

vessels coming from different organs, suggests the existence of antigen transport into

the follicles. In 1994, MacLennan et al. [MacLennan 94] presented a model for GC

functioning. GC B-cells were defined as centroblasts in the dark zone, and as centrocytes

in the light zone. Centroblasts were mitotically active and have no immunoglobulin (Ig)

on their surface undergoing rapid proliferation, hypermutation and exiting the cell cycle,

after what they re-express surface Ig, decrease their size, and move to the light zone as

anti-body expressing centrocytes that will compete for antigen/immune-complex binding,

suggesting that centroblasts in the dark zone are continuously giving rise to centrocytes.

Affinity maturation can be summarized as the process of somatic hypermutations,

proliferation and selection of B-cells happening in GCs. During the first week following

the administration of antigen (immunization), näıve B-cells are recruited in the boundary

of follicles facing the T-zone. B-cells that receive T-cell help get activated, return into

the follicle and become the founder cells for a GC reaction. Somatic hypermutation of

B-cells occurs in GCs. Different somatic mutations are observed in GCs but are not

the same in all cells. Most of these mutations affect the antibody affinity adversely, so

that cells would be unlikely selected to become memory or antibody producing plasma

cells. Many cells that were picked up and genetically analyzed from the same GCs, were

stemming from the same clone which suggests that the resulting B-cells in a GC reaction

are of oligoclonal origin. Moreover, some short-lived plasma cells from the primary extra-

follicular tissues did not show signs of hypermutations, which suggests the absence of

affinity maturation process outside GCs. However, more recent results exhibit evidence

for mutation events outside B-cell follicles [Shlomchik 03].

While the general principles of a GC reaction and many molecular mechanisms have

been identified, many important aspects of affinity maturation in GCs are still not un-

derstood. For example, the selection mechanisms that give rise to positive or negative

selection events are not understood while these are of major importance for the control

of GC reactions in the context of medical applications or vaccination. Recently, a process

of affinity dependent selection in GCs by T-cells was predicted [Meyer-Hermann 06] and

increasing evidence was found by intravital multi-photon imaging [Allen 07a].
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5.1.1 T-cells in Germinal Centers

T-cells develop in the thymus where they reach their maturation. T-cells belong to the

lymphocytes group and are distinguishable from other lymphocytes like B-cells by the

presence of TCRs (T-Cell Receptors) displayed on their surface (see Figure 5-3). They

are differentiated in several subsets, like T-Helper cells, cytotoxic cells and regulatory

cells. The GC response has a strong dependence on T-cell signals such that GCs forming

with T-independent antigens and without T-cell help collapse shortly after compartmen-

talization into dark and light zones. Figure 5-4 shows in detail the role of different T-cell

subtypes in the immune response after activation by an antigen. Most of T-cells in

the body belong to one of two subsets, distinguishable by the presence on their surface

of one or the other of two glycoproteins designated as CD4 and CD8. CD8+ T-cells

bind epitopes that are part of class I MHC (Histo-compatibility Complex) molecules,

and CD4+ bind epitopes that are class II MHC molecules (see Figure 5-3). CD4+ helper

T-cells are of major importance for GCs onset.

T-cell motility T-cells are highly motile entities constituting between 5-20% of the GC

cells with a higher density in the light zone but have been also observed within the dark

zone. Recent studies using two-photon imaging, showed that the CCR7 chemokine has

a substantive role in promoting T-cell motility in the lymph node. As a matter of fact,

CCR7-/- T-cells show a 20%-30% reduction in T-cell velocities [Huang 07, Worbs 07,

Asperti-Boursin 07, Okada 07]. CCL19 and CCL21 are both ligands for CCR7, and

both enhance motility of T-cells when bound to substrates in vitro [Stachowiak 06,

Woolf 07]. In mice lacking CCL19 and CCL21, velocities of wild-type T-cells are in-

hibited to a similar extent as in CCR7-deficient T-cells [Worbs 07, Asperti-Boursin 07,

Okada 07]. The motility of wild-type T-cells in mice recovers to normal after an injection

of CCL19 [Worbs 07]. Together, these results indicate that CCR7 plays an important

role in enhancing T-cell motility within the lymph node (see Figure 5-1), with resid-

ual motility of cells perhaps reflecting chemokinesis mediated by another chemokine.

Self-recognition mediated by contact with MHC class II is vital for T-cell survival and

proliferation in vivo [Delon 02]. Cells injected into MHC class II-deficient recipients be-

come progressively immotile and disabled in their in vivo proliferative response to antigen.
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Figure 5-3: Differences between CD8 and CD4 T-cells in binding MHC I and MHC II
respectively. MHC class I, which is found on the surface of most of our cells, interacts
with T-cell receptors and CD8 on cell-killing T-cells. MHC class II interacts with T-cell

receptors and CD4 on other T-cells that stimulate the immune system.3
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Figure 5-4: Role played by the activated T-cells following an immunization [NIH 03].
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5.1.2 B-cells in Germinal Centers

B-cells are the basis of a humoral immune response, as opposed to the cell-mediated

immune response governed by T-cells. B-cells can differentiate to antibody producing

plasma cells. The produced antibodies are directed against specific antigens (see Fig-

ure 5-5). B-cells also perform the role of antigen presenting cells (APCs) or develop into

memory B-cells after activation by an antigen intrusion. Note that B stands for bone

marrow where they are produced and matured.

Quickly after immunization B-cells move to the secondary lymphoid organs where

they proliferate within the FDC network. However, näıve B-cells have little capacity if

at all to respond to antigen localized on FDCs (see Figure 5-6), indicating that the cells

that colonize GCs have been activated first at the follicular border to the T zones of

secondary lymphoid organs. After activation, B-cells migrate either to extra-follicular

sites of antibody production where they differentiate into short-lived plasma cells or

enter primary follicles and seed a GC reaction in response to antigen held on the FDC

network. On the long term of an immune response, one can observe the disappearance of

short-lived plasma cells present in the extra-follicular foci, and the increase in number of

memory B-cells. Long-lived plasma cells secrete for several weeks anti-bodies and exhibit

high affinity maturation measurements together with memory B-cells. This supports the

hypothesis of a selection process happening in the GCs. Memory B-cells can also be

found in small quantities even after the GCs are no longer present and for the following

months of the established T-dependent responses. This gives rise to plasma cells that live

longer and new memory B-cells without forming new GCs or undergoing further rounds of

somatic hypermutation. GC B-cells express high amounts of MHC II (Histo-compatibility

complex). The antigen is endocytosed into MHC class II processing compartments, faster

than the näıve B-cells, suggesting that GC B-cells have their own way of processing and

presenting pathways for the antigen (see Figure 5-6).

Most of GC B-cells die in the GC, and are digested by the TBMs (Tingible Body

Macrophages) present in both light and dark zones. In addition, to undergoing negative

selection because of inadequate BCR engagement, cells can die because of mutations that

disactivate the BCRs expression, or because of the accumulation of too many mutations

leading to a DNA-damage checkpoint. Cells also might die to keep the homeostasis

of GCs, like size control, and limit the spreading of rapidly dividing cells. After dying,
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Figure 5-5: Differences between näıve and memory B-cell. The latter being able to
quickly differentiate to plasma cells that produce antigen specific antibodies.
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Figure 5-6: Role played by the activated B-cells following an immunization [NIH 03].
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GC B-cells fragment into small blebs (vesicles), picked up by macrophages and/or GC

T-cells. The absence of nuclear breakdown outside macrophages, is probably to prevent

auto-immune reactions [Miller 02].

Tracking of cells showed that most B-cell/T-cell contacts are of short time (less than

5 mins). GC B-cells were seen to compete for cognate interaction with the T-cell help

and are 5-20 times more abundant than the T-cells in the GCs. Competition for T-cell

help might achieve selection against high-affinity clones that react with self antigens

because of the internalization of a mixture of foreign and self antigens and as a result

dilute the amount of foreign peptide-MHC complexes that are displayed compared to

nonreactive high affinity clones. Autoreactive clones might be selectively recognized and

controlled or eliminated by regulatory T-cells.

B-cell division in Germinal Centers Flow cytometry cell-cycle analysis, showed cells

in the S phase in both zones, in addition to cells in the G2 and M phases, in both

light and dark zones. However, more cells in G2 and M phases were observed in the

dark zone (see Figure 5-7). Unfortunately, the flow-cytometry analysis does not provide

information for the differentiation of both zones, the only indicator is CXCR4 high or

low expression by cells. High expression pointing to a positioning in the dark zone of

GC B-cells. To find out whether GC B-cells are dividing in both dark and light zone,

a thymidine analog pulse that labels cells in the S phase, was together used with flow

cytometry for tracking cells with a higher CXCR4 expression. Cells were observed to

move from the dark zone to the light zone to perform the M phase (see Figure 5-7),

than come back to the dark zone and leave again to the light zone [Allen 07a], before

completing a second division round. However, it is not clear whether the clones left

the GC or underwent apoptosis. The frequency in one zone, decreased as the frequency

in the other zone increased. These observations do not exclude that some of the GC

B-cells never leave one zone or another, or stay for longer. The cell cycles of different

GC B-cells were seen to be asynchronous, varying between 7 to more than 12 hours.

Cells seemed waiting for a signal from BCRs or helper T-cells in order to re-enter the S

phase, which would increase their efficiency in the case GCs have different distributions

of antigens.
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Figure 5-7: Sketch of the cell cycle showing all relevant phases in a cell’s life. The
resting phase G0 being purposely omitted. G1 and G2 designate phases where the cell

synthesizes enzymes and proteins, needed either for the S phase or the M phase.4
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Difference between centroblasts and centrocytes It is commonly believed that B-

cells, do differentiate into centrocytes and centroblasts each of them occupies a different

zone. Centrocytes occupy the light zone and are non proliferative cells and centroblasts

are larger cells that proliferate very fast and undergo somatic hypermutation leading

to centrocytes in the light zone. However, recent observations of centroblasts and

centrocytes shows that they have similar morphologies, motility profile, and cycles in

both zones. What is then the difference between both zones? Is the surface Ig expressed

in centrocytes and assumed lacking in centroblasts enough to differentiate between them?

In fact, many studies showed that the light zone contains bigger amounts of surface Ig

suggesting that centrocytes present in the light zone are the surface Ig carriers. However,

new experiments using in vivo two-photon microscopy suggest that GC B-cells express

continuously a reduced amount of surface Ig, lower than the näıve B-cells. This set

aside the idea of an eventual Ig surface difference between centroblasts and centrocytes.

A difference in gene expression between GC B-cells and näıve B-cells was observed,

but no difference between centroblasts and centrocytes was recorded. These two cell

types seem in fact much more similar than previously thought. In addition, CD77 was

thought to be widely expressed in centroblasts but showed a broad staining in all GC B-

cells too. Therefore, CD77 is not sufficient in order to distinguish between centroblasts

and centrocytes. Presently, all conducted studies using flow cytometry and two-photon

imaging refute a crucial difference between centroblasts and centrocytes, concerning

surface Ig expression and only point out a difference in the expression of some plasma

cell-specific genes.

B-cell motility B-cells are highly polarized while crawling, sometimes to an extreme

of being four to five times longer than they are wide, and they move in a stop-and go

manner, with pauses between bursts, and reach peak velocities up to 20 m/min for B

cells [Cahalan 08]. Several hours after entering the G1 phase of the cell cycle, CXCR4 is

downmodulated on some of the cells. These cells are then no longer retained by SDF-1

in the dark zone and can migrate to the light zone in response to CXCL13. During this

period, the cells most likely have substantially turned over their low amounts of surface

Ig, replacing the original BCRs with newly mutated versions. Within the light zone,

the GC B-cells rapidly move about the FDC network where they can pick up antigen,

receiving prosurvival BCR signals while also internalizing, processing, and presenting the
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antigen as peptides on MHC class II molecules [Allen 07a].

5.1.3 FDCs in Germinal Centers

Follicular dendritic cells are probably of stromal origin and form a part of the immune ap-

paratus in lymphoid follicles. FDCs main function is processing antigen material and pre-

senting it on their surface on FC-receptors to other cells for examination and up-take. Fol-

licles develop in humans during the second trimester of fetal development and FDCs ap-

pear within few days following the formation of B-cell clusters necessary for the existence

of FDCs in follicles. The surface of FDCs is covered with diverse chemokines and carry

surface-bound CXCL13, a chemokine ligand of CXCR5 expressed by B-cells. Similarly,

FDCs also secrete the chemokines CCL19, CCL21, and CXCL12 and stain most strongly

for surface-bound CCL21 in the paracortex [Bajenoff 06, Asperti-Boursin 07]. The anti-

gen is presented in the shape of ICs (Immune complexes) highly ordered molecules

called also Iccosomes [Cyster 00, Kosco-Vilbois 03, Aydar 03]. When the FDC net-

work becomes filled with B-cells, an identified differentiation signal is delivered induc-

ing them to move to one pole of the FDC network and form the dark zone of the

GC [Wang 05, Lui 91]. Antigen trapping on FDCs is not a passive process. It involves

active transport of immune complexes to the surface of FDCs. This process takes several

hours and is delayed until the onset of antibody production in primary antibody response

necessary for the location of antigen on FDCs.

5.2 Zoning in Germinal Centers

In the absence of antigen lymphocytes are highly polarized in the lymph node (see

Figure 5-1) and move faster than other cell types. The prevailing random-walk pattern

of T and B-cells within their respective regions is inconsistent with what would be

expected for chemotaxis. On the other hand, recent studies have clarified the role of

chemokines in enhancing overall lymphocyte motility (chemokinesis). Chemokines were

shown to trigger downstream changes in lymphocyte polarity and migration.

Cell aggregation in primary follicles Primary lymphoid organs are considered to

be a precursor state of germinal centers [Beyer 08]. The main constituents of primary
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lymphoid follicles are näıve B-cells and follicular dendritic cells (FDCs). Primary follicles

are the sites where antigen, presented by FDCs, and näıve B-cells make encounters, with

specialized transport systems that carry antigens from peripheral sites of entry into each

secondary lymphoid organ.

In the last years, details have begun to emerge on the cues that guide cell movements

inside lymphoid organs, and the central role for the chemokine family of molecules

has been uncovered [Cyster 99]. In the most simple way, chemotactic cues lead to

the formation of aggregates using homeostatic chemokines such as CCL19, CCL21 and

CXCL13. These chemokines guide lymphocytes to their compartments, i.e. the dark and

the light zone. Besides, specific interactions of T-cells with APCs (Antigen Presenting

Cells) lead to the multicellular aggregation and formation of stable cell clusters observed

both in vitro [Underhill 99] and in vivo [Ingulli 97]. It has also been shown that the

interaction of TCRs with plate-bound cognate MHC molecules induced migratory arrest

in T-cells provided by LFA-1/ICAM-1-mediated adhesion [Dustin 97].

Kesmir et al. [Kemir 03] proposed a novel mechanism where centrocytes are sorted

on FDCs according to their affinity. The results obtained with a spatial model suggest

that this adhesion-based selection mechanism is the most likely to generate the affinity

maturation observed in vivo. Recently, Beyer et al. [Beyer 07] focused on the role

of speed-based sorting of cells in GCs. An agent-based model was designed, where cell

movement is guided by specific chemoattractants diffusing slower than cells are migrating

considering the specificity of lymphocytes being rather fast cells in comparison to other

cell types. Experimental data on cell speed distributions were reproduced. In addition,

tissue homeostasis was not achieved by the balance of growth and death but by a flow

equilibrium of cells migrating in and out the tissue under consideration.

Three models for B-cell migration in the GC Affinity maturation of B-cells oc-

curs within germinal centers. During this process, a specific spatial cell sorting is

observed within the two main compartments, i.e. the light and the dark zone. In-

travital two-photon microscopy provides data of cell shape, motility and contact as a

function of time. Experimentalists [Depoil 05, Allen 07b, Schwickert 07] and theoreti-

cians [Figge 08] agree on the interpretation that B-cell motility follows a random walk

with a directional persistence time. It is also observed from two-photon data, that B-

cells migrate from one zone to another. However, there is no agreement on a unique
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GC migration model of B-cells. Three different models were therefore proposed. The

cyclic re-entry model assumes that a functional dependence exists between the light and

the dark zone. B-cells proliferate and mutate in the dark zone then follow a gradient

provided by the chemokine CXCL13 to the light zone. The migration back to the dark

zone is made through an upregulation of the chemokine CXCL12 [MacLennan 94]. The

intra-zonal model views the light and the dark zone as functionally independent zones.

B-cells circulate only within one of the two zones. The exchange between both zones

occurs only rarely [Hauser 07]. The one-way migration model suggests that cells per-

form a persistent random walk and re-entry of selected B-cells to the dark zone is neither

necessary for reproliferation nor are these cells actively moving towards the dark zone.

As a consequence B-cells proliferate also in the dark zone, and migration between zones

occurs only by chance as a result of random migration [MacLennan 91]. Recently, Figge

et al. [Figge 08] developed a model resulting in the conclusion that the intra-zonal cir-

culation model is unlikely and that the data support a compromise between the one-way

and the cyclic re-entry model. There was also an agreement in all three two-photon

microscopy studies that the B-cell motility in GCs can be interpreted as a random walk

with persistence time. Simulations showed that chemotaxis and desensitization mech-

anisms have a prominent impact on the GC organization and guarantee the existence

of distinguishable zones without getting into conflict with the two-photon motility data

that rather support a random walk. This implies that the morphology of the GC requires

an additional mechanism that conducts freshly differentiated centrocytes from the dark

zone to the light zone and recycled B-cells back to the dark zone. Natural candidates

for such a random walk with a drift are the chemokines CXCL12 and CXCL13.

5.2.1 Summary of the Germinal Center dynamics

In the classical model, the GC dark zone is populated by large centroblasts that pro-

liferate. The light zone is occupied by non proliferating centrocytes that compete for

binding antigens on follicular dendritic cells. Competition for antigen is dependent on

the affinity between BCRs (B-Cell Receptors) and the antigen presented in a form of ICs.

In GCs, B-cells move from the light zone to the dark zone, this migration is performed

with the help of CXCR4 chemokine provided that the CXCR4 and its ligand CXCL12 are

much more abundant in the dark zone. The movement of GC B-cells in the other direc-
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tion, i.e towards the light zone, requires the chemokine CXCR5 and its ligand CXCL13.

Most of GC B-cells die after or do not make it through the process of competition for

antigens. Dead B-cells are cleared by tingible body macrophages. The few GC B-cells

that remain alive present the processed antigen to helper T-cells in the light zone which

might promote their differentiation into memory B-cells or long-lived anti-body secreting

plasma cells.

Two-photon live imaging provided insights that confute the classical view of germinal

centers. Centroblasts and centrocytes were shown to be morphologically similar unlike

what the two different terms might suggest. Proliferation occurs in both zones, and GC

B-cells compete for T-cell help as well as for antigen. One of the major new findings,

is that GC B-cells are highly motile and exhibit a dendritic morphology. Surprisingly,

the speed and morphology of GC B-cells were similar in the dark and light zones. Cells

transit between dark and light zones in both directions. The movement from the dark

to the light zone, is due to the downregulation of the CXCR4 on GC B-cell surface. The

movement from the light zone to the dark zone, seems to be achieved by an upregulation

of CXCR4 [Allen 07a].

A new model for the GC organization was proposed by Cahalan et al. [Cahalan 08].

GC B-cells accumulate in the dark zone after undergoing mitosis and are constantly in

cycle. However, the cellular growth during the early G1 phase (see Figure 5-7) occurs

preferentially in the dark zone to leave space in the light zone for cells undergoing

selection. Somatic mutation might also occur during this phase. Several hours after G1

phase (see Figure 5-7), CXCR4 is downregulated such that cells are not anymore retained

in the dark zone and can migrate to the light zone in response to CXCL13. In the light

zone, GC B-cells move rapidly around FDCs where they can bind to antigen. High affinity

cells, may capture more antigens from FDCs than low affinity ones [Meyer-Hermann 06].

They might even pick up antigens from low affinity cells in a direct cell-cell competition.

GC B-cells also compete with GC B-cell blebs, and with other GC B-cells for T-cell help

in the light zone. Because T-cells must polarize in a fashion that only allows interaction

with one antigen presenting cell at a time, a single GC T-cell is suggested to form a stable

interaction with the GC B-cell that presents the highest number of antigen peptide-MHC

class II complexes compared with neighboring cells [Meyer-Hermann 06, Depoil 05]. The

time window in the light zone is tightly regulated, such that all GC B-cells must undergo

apoptosis, exit the GC or return to the dark zone within few hours of entering the
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light zone. Cells exiting the GC rapidly change to long-lived plasma cells or memory

B-cells. The two zones do not have big state differences. However, there is may be

further diversification in the Ig level by somatic hypermutation, and cell division in the

light zone. Selection by antigen recognition and T-cell help might be followed by an

asymmetric cell division, where GC B-cell is dividing to a GC B-cell and a plasma cell or

a precursor memory-cell. Finally, selection might as well frequently occur in both zones

but may be more efficient in the light zone.

1www.britannica.com.
2www.virginia.edu.
3Molecule of the Month by www.pdb.org.
4www.dnarp.com.
5Nature Reviews/Immunology.



6 An agent-based model of cellular

aggregation

6.1 Mechanisms of aggregation

Cell aggregation involves intercellular communication and cellular migration, and is widely

observed in different normal and pathological situations. This phenomena was proven

to be mediated by chemotaxis to specific molecules secreted by aggregation centers,

i.e. other cells or by phototaxis towards a light signal, observed in many works to be

emitted by cells themselves. The aggregation process (see Figure 6-1) involves cellular

adhesion achieved by the use of surface proteins with binding capacities either to other

proteins on other cell surfaces or to the extracellular matrix, these proteins are often

referred to as adhesion molecules such as Integrins. Cell adhesion is modulated by very

precise mechanisms and interactions that lead to morphological or structural changes

of tissues. In the immune system, B-cells provide one of the most striking examples of

cellular adhesion and sorting at the adult stage. During the process of affinity maturation

B-lymphocytes perform numerous intercellular contacts with FDCs [Kemir 03], and T-

cells with antigen presenting cells (APCs). T-cells deliver adhesive and cytokine signals

to the B-cells, leading to B-cell activation and differentiation either into B-memory or

plasma cells.

In the model we developed Ref. (Section 6.2), we restrict our description of aggre-

gate formation to the multicellular scale, by investigating the role of chemotaxis and

phototaxis in inducing cell movement and aggregation and focusing on the properties of

emergent patterns formed after receiving one of the two different signals. Cell transport

is mediated by chemotaxis, phototaxis and/or diffusive motion. A parameter γ regu-

lates detachment of single cells from already formed aggregates. For the model purpose

we make the assumption that intercellular adhesion by signal is stronger than adhesion

caused by a diffusive motion.
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Figure 6-1: Drosophila cells before and after aggregation.1

6.2 An ABM for cellular interaction and aggregation

6.2.1 Mathematical modeling

The application of mathematical models to explain the dynamics of biological morpho-

genesis started with the work of D’Arcy Thompson who showed that mathematics can

not only describe static forms but also the change of forms [Deutsch 04]. Models of

biological pattern formation are dynamical systems in which concepts of space, time

and interaction are combined. Pattern formation arises from the interplay of directed

and random cell motion with short-or long-range mechano-chemical interactions of cells

and/or molecules [Deutsch 04]. Traditional methods of mathematical modeling can

handle systems with either few degrees of freedom that interact strongly, or very many

degrees of freedom all of which interact weakly. However, complex systems occupy the

intermediary regime, where local and global phenomena interact in complicated, often

nonlinear ways.

The fact that complex systems are nevertheless organized systems, makes them

accessible for mathematical modeling. Mainstream modeling of cell culture systems

to date has followed two distinct approaches: Cell-population modeling and single-cell

modeling. The former aims to capture increasing heterogeneity between cells, while the

latter attempts to faithfully capture intracellular processes.

Models dealing with chemotaxis can also be separated in the above cited classes.

The consideration of cell population models like the Keller-Segel’s model (first model of

chemotaxis built in 1971 [Keller 71]) and various modifications of it are not suitable to
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the purpose of agent-based modeling. Mostly because these models usually introduce

partial differential equations [Horstmann 02].

ABMs for cellular communication Cells are able to sense other cells in their neigh-

borhood and to communicate through chemokine release and detection. This com-

munication plays an essential role, e.g. in tissue formation and function. It is well

known that cells migrate towards each other, form aggregates as shown in Figure 6-

1, and then move on collectively [Albrecht-Buehler 05, Miura 00]. Interestingly, it has

been observed that cell migration and aggregation may also be mediated by light ir-

radiation [Harris 01, Swartz 07, Kahn 64, Hong 80, Stavis 73]. Cells were also seen to

emit biophotons [VanWijk 88] that carry information translatable to signals captured by

the neighboring cells and that lead to a change in their functions or behavior inducing

aggregation as observed in 3T3 cells by Albrecht-Buehler et al. [Albrecht-Buehler 05].

Mathematical models of cellular migration and aggregation are often focused on

chemotaxis [Painter 00], whereas models of cellular aggregation induced by phototaxis

are still rare [Levy 08]. A generic agent-based model is presented here to describe the

dynamics of cellular aggregation to address the question: How can chemotaxis and

phototaxis be distinguished on a phenomenological level? A two-dimensional ABM was

developed for simulating cellular response to chemotaxis and light excitation where each

cell is represented as a single node on a lattice (see Figure 6-2). Cellular aggregation was

simulated using established modeling techniques [Deutsch 04], where cells are treated

as discrete agents that migrate and communicate by intercellular signaling. Motivated

by recent experiments [Albrecht-Buehler 05], the migration of cells is restricted to a

quasi-one-dimensional stripe. The stripe-structured substrate is represented by a two-

dimensional lattice of rectangular shape as shown in Figure 6-2 and the total number of

lattice sites is given by:

N = NxNy, (6.1)

where Nx and Ny refer to the x- and y-direction, respectively, with the consideration of

the case:

Ny ≪ Nx. (6.2)

The lattice constant a is set to one cell diameter and each lattice site is occupied by at

most one cell at a time. While the total cell number, Ncell, is a constant in time, both
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the number of single cells Nsingle and the number of aggregates Nagg are functions of

time. The update is asynchronously performed and cells are not allowed to exit the grid.

Besides, cells can perform only one move per time step and are not allowed to move

diagonally.

6.2.2 Modeling chemotaxis with an ABM

Models for chemotaxis mostly focus on the internal signaling requirement to sense

spatial gradients. Global inhibition and local excitation assumptions usually provide

a good estimate of the underlying mechanisms for the gradient sensing in eucaryotic

cells [Levchenko 02]. In this work we focus on developing a model that offers an esti-

mate for the maximum communication distances over which a single cell can meaningfully

propagate a soluble signal received by another cell and that yield its movement. The

signal distribution as a function of this distance will be used in the ABM.

The general diffusion equation reads as follows:

∂c

∂t
= D

−→∇2c, (6.3)

where c is the density of the diffusing cyto/chemokine and D is the diffusion coefficient.

To describe the time dependent mass transport in the case of chemical signal propagation

from a spherical source [Francis 97], the diffusion equation in the spherical coordinates

reads:
∂c

∂t
= D

1

r2

∂

∂r

[

r2∂c

∂r

]

. (6.4)

Solving the equation (Eq. 6.4) under the stationary boundary conditions of a constant

flux at the cell surface and a complete dilution very far from the cell as shown in Figure 6-

3 and mathematically stated as:

−D
∂c

∂r
= F0 at r = ρ and c → 0 as r → ∞, (6.5)

leads to the solution [Francis 97]:

c(r, t) =
F0ρ

2Dr
, (6.6)
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here F0 is the cyto/chemokine production rate (molecules/area.time) and ρ is the cell

radius [Francis 97]. Thus, the signal distribution scales with the inverse distance from

the cellular source. This result will be implemented in the ABM to model chemotaxis.

6.2.3 Modeling phototaxis with an ABM

In 2008, Levy et al. [Levy 08] proposed a model for phototaxis of Cyanobacterium. Com-

munication between bacteria via cellular excitation levels was assumed. Cells propagated

their excitation level to neighboring cells, including a memory effect facilitating the mo-

tion of cells to previously visited locations. Cells also tend to move faster on such regions

while diffusing slowly and communicating between each other.

Cells sense the light intensity, as a function of the distance from the constant light

source. The light source may be represented by cells themselves [VanWijk 88, Popp 02].

Light intensity scales with the inverse square of the distance from the light source. This

scaling behavior is illustrated by the diagram in Figure 6-4, which shows the apparent

light intensity of a fixed source with an intensity L0 at distances r, 2r, 3r, etc. As the

distance increases, the light spreads over a larger area in three dimensions. The intensity

decrease scales with r2 because the area over which the light spreads is proportional to

the distance squared.

6.2.4 General description of the system

At the origin of aggregation is the attractive interaction between cells that migrate in

response to signals released and detected by themselves. The following model differs in

two aspects from previous models [Levy 08]. Firstly, the differences in the characteristic

scaling behavior of the signal distribution for chemotaxis and phototaxis are explicitly

taken into account. Secondly, The migration of aggregates was modeled as a whole to

be suppressed by a factor that depends on the actual aggregate volume. During a time

step of the simulation, the ith selected cell will either stay at its lattice site ~ri or migrate

to a nearest-neighbor site as the result of the following processes:

� Intercellular signaling,

� Diffusive motion,

� Cellular adhesion.
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� �

�

��

��

Figure 6-2: Sketch of the used lattice. In red a cell/node of diameter a is represented.

Figure 6-3: Illustration of a solitary cell secreting a soluble cyto/chemokine and the
concentration gradient that results from the secretion [Francis 97].
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Figure 6-4: Relationship between light intensity and distance from the source.2

Response to signals The movement of biological cells alternates between a random

walk like behavior and that of a directed walk in presence of a signal. Relative to cellular

diffusion, a cell is responding to signals with probability pcell sig, where we consider the

range:

0 ≤ pcell sig ≤ 1. (6.7)

The probability that aggregates respond to signals as a whole is reduced by the factor:
1

Nagg cells
, representing frictional forces acting on the aggregate:

pagg sig =
pcell sig

Nagg cells

. (6.8)

Importantly, beside these processes for single cells, the agent-based model recognizes

evolving cellular aggregates of two or more cells. These move and interact as a whole

following the digram shown in Figure 6-5. Single cells can also move within an aggregate

or detach from it.

Aggregate definition We define an aggregate as a group of cells with direct contacts

made of two cells or more. A script using a recursive function was developed to recognize

aggregates, and store them with the list of cells composing each aggregate at each time
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step. A randomly chosen cell is picked from the list of cells evolving in the system, and

a procedure of neighborhood check is started. Cell positions are also stored at each time

step, this information is used to define the aggregates. We consider two cells belonging

to the same aggregate in the case where the two cells share the same position on the

x-axis or the same position on the y-axis with at least one cell belonging to an aggregate.

Each process is associated with a time, τprocess and the corresponding realization

probability of this process reads:

pprocess =
τ

τprocess

, (6.9)

with the simulation time step:

τ ≤ τprocess. (6.10)

The simulation time step is determined by the fastest of all processes with:

pprocess = 1. (6.11)

� Intercellular signaling Cells feel gradients and migrate in response to chemotaxis

or phototaxis. The signals are considered to be sustained by the cells themselves. We

assume that autochemotaxis does not give rise to the self-localization of cells [Grima 05]

and we model signaling processes in the presence of diffusive cell motion as outlined

above. The signal distribution Sij,α for two interacting cells that are located at sites

~ri and ~rj is a function of their distance:

|~rij| = |~rj −~ri|. (6.12)

It obeys the scaling law:

Sij,α =
Sαaα

|~rij|α
, (6.13)

where Sα represents the dimensionless signal strength and the exponent α is different for

chemotaxis and phototaxis. In the case of chemotaxis, the signal is mediated by the con-

centration of chemokines that are permanently released from the cells with constant flux.

Solving the corresponding three-dimensional diffusion equation (Eq. 6.6) for the spatio-
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Figure 6-5: Flowchart of the designed Agent-Based Model



76 Chapter 6: An agent-based model of cellular aggregation

temporal chemokine concentration yields α = 1 in the stationary limit [Francis 97]. In

the case of phototaxis, the role of the mediating signal is taken over by the light inten-

sity [Albrecht-Buehler 05]. A scaling argument reveals that the light intensity decreases

in three dimensions with the square of the distance between emitting and receiving cells,

thus, α = 2 in this case. We stress that, while cell migration takes place on a surface,

the three-dimensional nature of the cellular interaction is taken into account.

Since cells measure the gradient of signal distributions, we calculate the direction of

cell migration by differentiation. For two cells i and j we obtain:

~Gij,α = −~∇Sij,α. (6.14)

The additive impact of all cells on the ith cell is given by the superimposed gradient

between all pairs of cells:

~Gi,α =

′∑

j

~Gij,α, (6.15)

where the prime at the sum indicates the summation over all j 6= i.

In the spirit of modeling chemotaxis rather than chemokinesis, the direction of mi-

gration is obtained from the normalized vector ~Gi,α/|~Gi,α|, whereas the speed of the cell

does not depend on the value of |~Gi,α|. However, we impose the biologically motivated

condition that cell migration is only induced if the signal gradient is above a certain

threshold Tα, i.e. expressed:

|~Gi,α| > Tα. (6.16)

Thus, below this threshold value no migration of the cell is induced by the signal.

The concept of a signal gradient threshold can be expressed in terms of a maximal

communication distance between two cells up to which these cells can still sense each

other. This distance for a pair of cells depends on the underlying signaling mechanism

and, in units of the cell diameter a, is given by:

R =

(

αSα

aTα

)1/(α+1)

. (6.17)

Thus, cells have the same sensitivity to chemo- and phototaxis signals, T1 = T2, if both

signals exhibit a maximal interaction range of two cell diameters, R = 2. For R > 2
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the sensitivity to phototaxis signals is larger than the sensitivity to chemotaxis signals,

T1 > T2, whereas T1 < T2 for R < 2. Cells move alone if they appear to have no direct

contact with other cells. In case of conflict with an other cell, this is to say that the future

position of the calculated cell is occupied, the aggregate is recognized and all cells within

the same aggregate move. However, if the cell can move alone without detaching from

the aggregate, it is allowed to move which leads to the aggregate rearrangement. Note

that the aggregates are also not allowed to move beyond the imposed lattice dimensions.

There is a restriction of the aggregates moving by signal, regarding their volume,

and the medium they are evolving in by using the following expression and comparing it

to a randomly generated number from a uniform distribution between 0 and 1:

P1 ≤
1

Nagg cells

, (6.18)

where P1 ∈ [0, 1], and Nagg cells is the number of cells within the calculated aggregate.

� Cellular diffusion and adhesion Our model account for cellular diffusion. Each

time step a random direction is picked for each move. Cells that randomly migrate

within an aggregate are constantly reshaping it, whereas detachment of cells from an

aggregate by diffusion may eventually result into its dissolution. However, adhesion

between neighboring cells hampers their detachment from the aggregate and stabilizes

the aggregate.

The probability of detachment by diffusion is measured relative to free cell diffusion:

pcell detach =
pcell diffγ

Nnn

. (6.19)

This is done by comparing a randomly generated number between 0 and 1 to:

P2 ≤
γ

Nnn

, (6.20)

and is inversely proportional to the number of nearest-neighbor cells in the same ag-

gregate Nnn, with 1 ≤ Nnn ≤ 3 and P2 ∈ [0, 1]. The dimensionless parameter γ is

considered in the range 0 ≤ γ ≤ 1 and controls the relative impact of detachment.
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Two approaches for looking at this problem were considered with the aim of compar-

ing both. The first one considers cells to move without diffusive motion, where signals

are the only initiators of cell movement. The second approach, includes a diffusive

motion, and enables time consideration unlike the movement without diffusive motion.

Random migration of agents on a lattice mimics active cell migration into randomly

chosen directions with a diffusion constant D:

D =
a2

2dτcell diff

, (6.21)

where d denotes the spatial dimension and D the diffusion constant. For a given diffusion

constant and a cell diameter the time step of the simulation can be gauged by:

τcell diff =
a2

2dD
, (6.22)

The corresponding probability for cellular diffusion is given by:

pcell diff =
τ

τcell diff

. (6.23)

Similar to single cells, aggregates can perform random migration as a whole. However,

this is realized with a reduced probability, since Nagg cells cells that form the aggregate

have to be moved collectively. The phenomenological ansatz is made:

pagg diff =
pcell diff

N2
agg cells

, (6.24)

which is the product of two equal contributions: (i) Diffusion of aggregates as a collective

process of individual cells. (ii) Frictional forces in solution that hinder the free diffusion

of aggregates.

Each contribution is considered to scale with the inverse aggregate volume, thus,

enters the probability with a factor 1
Nagg cells

.
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Two extreme limits are considered in this model.

2 Cell diffusion is the fastest of all processes This consideration seems closer to

reality. In fact, two big processes are happening here, the cells move by signal and/or

by diffusion.

pcell diff =
τ

τcell diff

= 1. (6.25)

One of these two processes is chosen by chance at the beginning. In addition, there is a

probability of entering at all, each of these two processes that is decided by the values

previously fixed between 0 and 1 of pcell diff or pcell sig and that are compared with a

uniformly distributed random number.

2 Cell diffusion is absent Here we consider, that the cells are evolving in a very

deterministic environment,

pcell diff = 0, (6.26)

where only the received signals with the previously set threshold are responsible of moving

or not a cell. Since aggregate diffusion is absent no detachment of cells from aggre-

gates occurs because cells are not allowed to detach by signal reception. Furthermore,

the quantitative measure for τ is lost, therefore, the number of simulation steps is cho-

sen sufficiently large in order to guarantee that the system configuration has reached

equilibrium.

2 Lattice artifacts In the quasi-one-dimensional cell aggregation system, lattice ar-

tifacts become apparent in the limit of vanishing cell diffusion, pcell diff → 0. These

artifacts are eliminated by randomizing the x- and y-direction of the signal-induced cell

displacement with weights that are defined by the components of the total direction

vector ~Gi/|~Gi|. In the limit of fast cell diffusion, pcell diff → 1, such lattice artifacts are

absent.
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6.3 Results

Simulations are started from random initial configurations and performed with an asyn-

chronous update, where at each time step each cell is randomly chosen and all processes

are performed in random order.

6.3.1 Pattern formation

Typical cellular aggregation patterns in response to chemotaxis and phototaxis are shown

in Figure 6-6, both in the absence and presence of diffusive motion. Simulations are

performed where the two signaling mechanisms are compared for the same parameter

values R and S1 = S2 = S. Since experimental values for Sα and Tα are generally not

known, in all simulations we choose S = 0.5 and calculate the threshold value as a

function of R the maximal communication distance:

Tα =
αS

aRα+1
. (6.27)

The number of time steps are of the order 103 and 104 for pcell diff = 1 and pcell diff = 0,

respectively. When measuring the degree of aggregation:

Dagg =
1

Nsingle + Nagg

, (6.28)

we find in the case of chemotaxis, Dagg = 13% as shown in Figure 6-6 (b) and Dagg =

100% as shown in Figure 6-6 (c) in the absence and in the presence of diffusive motion,

respectively. Similarly, for phototaxis we find Dagg = 8% (see Figure 6-6 (d)) and

Dagg = 25% (see Figure 6-6 (e)), respectively.

6.3.2 Degree of aggregation

In the Figure 6-7, Dagg Ref. 6.28 is plotted as a function of R averaged over 100 simula-

tions. We show the results for chemotaxis and phototaxis, and both in the absence (104

time steps) and in the presence (103 time steps) of diffusive motion. Even though we

impose the condition that chemotaxis and phototaxis are detectable up to the same max-

imal distance, R, the degree of aggregation for the two signaling mechanisms is similar
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(a) Initial configuration.

(b) α = 1, R = 5, T1 = 0.02a−1, γ = 1, pcell diff = 0.

(c) α = 1, R = 5, T1 = 0.02a−1, γ = 1, pcell diff = 1.

(d) α = 2, R = 5, T2 = 0.008a−1, γ = 1, pcell diff = 0.

(e) α = 2, R = 5, T2 = 0.008a−1, γ = 1, pcell diff = 1.

Figure 6-6: Typical cellular aggregation patterns as obtained from the same initial
configuration (a) for chemotaxis ((b) without and (c) with diffusive motion) and for
phototaxis ((d) without and (e) with diffusive motion). All patterns are obtained for
parameter values Nx = 150, Ny = 3, Ncell = 50, S = 0.5, and pcell sig = 1. Chemotaxis
together with a diffusive motion produced full aggregation (c). Simulations without

diffusive motion (b) and (d) lead to significantly smaller aggregates.
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only for R > 25, where the degree of aggregation attains the maximal value. Note that

25 cell diameters is still a realistic range of communication between two cells [Francis 97].

For smaller values of R, chemotaxis and phototaxis can be distinguished, with chemotaxis

leading to a substantially higher degree of aggregation than phototaxis. This observation

is made in the absence of diffusive motion (see Figure 6-7 (a)) as well as in the presence

of diffusive motion (see Figure 6-7 (b)), however, the overall difference between both

signaling processes becomes less significant for larger values of pcell diff . In the presence

of diffusive motion, the degree of aggregation increases faster for small R but does not

reach Dagg = 100% since cells detach from aggregates.

6.3.3 Emerging communication distances

The average distance between neighboring aggregates, Ragg, is an emerging property

of many interacting cells. This distance is measured from the center of mass of the

aggregates and is calculated imposing periodic boundary conditions in the x-direction of

the lattice. The result is presented in Figure 6-8 as a function of the two-cell interaction

range R. Note the qualitative similarity between Dagg (see Figure 6-7) and Ragg (see

Figure 6-8): As follows from Figure 6-7 (a), for the same degree of aggregation, e.g.

around 60%, it is required that R = 10 for chemotaxis (α = 1) and R = 20 for phototaxis

(α = 2). Extracting from Figure 6-8 (a) the corresponding value of the average distance

between neighboring aggregates for chemotaxis (R = 10) and phototaxis (R = 20) we

obtain Ragg ≈ 100 for both signaling processes. It thus follows that the two aggregation

patterns are comparable in regard to the number of aggregates and the average distance

between them. On the level of interactions between two cells, this implies a clearly

distinct value of R for the two mechanisms.

6.3.4 Influence of cellular adhesion

The impact of detachment on aggregation is studied by variation of γ. For chemotaxis

(α = 1) the result is shown in Figure 6-9, where a qualitative change in Dagg is observed

when varying pcell sig, i.e. the relative importance of movement by signaling versus

diffusion. For small values of pcell sig < 0.3 we observe that Dagg decreases for increasing

γ, which reflects, as expected, the dissolution of aggregates by detachment. However,

for large values pcell sig > 0.3, aggregates do not dissolve but rather merge and give rise



Section 6.3: Results 83

ag
g

(%
)

(a) S = 0.5, γ = 1, pcell diff = 0.

ag
g

(%
)
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Figure 6-7: Degree of aggregation, Dagg, as a function of the maximal two-cell inter-
action distance R for the same parameter values as in Fig. 6-6. Error bars are plotted
single-sided for reasons of clarity. In both cases, with and without diffusive motion,
chemotaxis (red) experiments reach higher degrees of aggregation faster than photo-

taxis (blue) experiments.
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Figure 6-8: Average effective distance between aggregates, Ragg, as a function of
the maximal two-cell interaction distance R and for the same parameter values as in
Figure 6-6. The emergent effective distances are bigger for chemotaxis experiments.
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to higher values of Dagg. The cellular rearrangement required in this process is found to

be actually supported by increasing the detachment probability.

6.3.5 Importance of collective movement

We investigate the effect of the collective movement on the degree of aggregation, thus

on patterns formed and the emerging communication distances. In this experiment ag-

gregates were not allowed to move, and the model was run for the same parameters cited

above (see Figure 6-7). We can seen from Figure 6-10, that the aggregate movement

is essential for the emergence of patterns similar to what is observed in in vitro exper-

iments. It is obvious, according to the obtained results, that the degree of aggregation

Dagg hardly reaches 20% in both cases, with or without diffusive motion. This confirms

that cells do not only move alone but also in groups of two and more to reach the range

of communication distances observed experimentally. Besides, one also observes that in

presence of a diffusive motion, the degree of aggregation is substantially bigger than in

the absence of diffusive motion. Single cell diffusion supports aggregate formation.

6.3.6 Determination of aggregate size

The degree of aggregation Dagg presented above does not fully inform us about the

exact size of aggregates. The way it is computed gives degrees of aggregations of for

example 50% in the case of a final configuration of two aggregates, but it does not

inform us about the size of the two aggregates. It could very well be that one is of 47

cells, and that the other one is of 3 cells only (all runs were performed with 50 cells).

Of course, averaging over several runs gives reliable measurements that are valid for the

interpretation of the general behavior of the system under study.

Still, the information concerning the number of cells constituting the aggregates is

missing. A ratio for determining the aggregate size was then considered:

Ratio of aggregates of size L =
1

Nexper

j=Nexper∑

j=1

Ni=j

Ni6=j + Ni=j

, (6.29)

where Nexper is the number of experiments that are run with the same parameters, Ni=j

is the number of aggregates of size i and Ni6=j the number of aggregates of different
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Figure 6-9: Degree of aggregation as a function of γ for different values of pcell sig

representing the impact of the signal distribution with pcell diff = 1 and for the same
parameter values as in Fig. 6-6 and with parameter values Nx = 150, Ny = 3, Ncell =

50, α = 1, R = 5, S = 0.5, and pcell diff = 1. Detachment lead to aggregate dissolution
(smaller Dagg(%)) only in the case of weak signaling as shown for pcell sig = 0.1,

pcell sig = 0.2 and pcell sig = 0.3.
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Figure 6-10: Role of the collective movement on aggregate formation for values of
pcell sig = 1, pcell diff = 1, α = 1, R = 5, S = 0.5, and γ = 1. In both cases, with and
without diffusive motion, the degree of aggregation remains lower then 20%, indicating

the importance of the collective movement in reproducing the in vitro observations.
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size. Each of Figures 6-11, 6-12, 6-13 and 6-14 shows a histogram of aggregates

of size L, where L varies between 2 and 50. These results also confirm the importance

of the diffusive motion and chemotaxis in comparison to phototaxis, with respect to

the formation of bigger aggregates for different maximal interaction distances R. If we

compare Figures 6-11 and 6-12, it is clear that for the same implemented values of R

and the same parameters, chemotaxis and phototaxis lead to different aggregate sizes.

A general conclusion would be that chemotaxis always leads to bigger aggregates than

phototaxis. This observation is still valid in the absence and presence of the diffusive

motion as shown in Figures 6-13 and 6-14.

6.3.7 Counting cellular moves

Cellular movements were recorded by the use of counters. These counters were incre-

mented every time a single cell, or an aggregate, moved due to a signaling process or

due to diffusive motion. This gives us an idea about the evolution of single cells and ag-

gregate movement with time and allows us to see whether the system reaches a dynamic

equilibrium.

Figure 6-15 shows a decreasing number of detachments with time. This is consistent

with aggregates getting bigger. Indeed, cells can only detach when they are on the

aggregate borders. The more aggregates we have the more detachments are seen, but

when aggregates get bigger because of merging with others the possibilities for a cell to

detach are smaller.

The same is observation holds when counting of signal-directed single cell move-

ments. The curve shows the expected behavior, single cells perform less movement

simply because they become part of aggregates, and perform aggregate movements.

The same observation is valid for the diffusion of single cells.

On the other hand, single cell movement within aggregates stays more or less of

the same order throughout the in silico experiment, due to an ongoing rearrangement

and reshaping of the aggregates. The restriction put on aggregate movements regarding

their size can also be seen from the counters, with less moves towards the end.
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Figure 6-11: Aggregate size in chemotaxis (α = 1) simulations in the presence of dif-
fusive motion. Aggregates are of bigger size for bigger R values, reaching one aggregate

of fifty cells for R > 3.5.
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Figure 6-12: Aggregate size in phototaxis (α = 2) simulations in the presence of
diffusive motion. Aggregates are of smaller size for the same R values as in Figure 6-11,

reaching big aggregates of fifty cells only for R > 6.5.
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Figure 6-13: Aggregate size in chemotaxis (α = 1) simulations in the absence of
diffusive motion. In this case full aggregation (one big aggregate of fifty cells) is not

reached even for the biggest R values.
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Figure 6-14: Aggregate size in phototaxis (α = 2) simulations in the absence of
diffusive motion. The observations made for Figure 6-13 are also valid here, however,

aggregates in this case are visibly smaller.
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Figure 6-15: Single cell as well as aggregate number of moves per time step using the
following parameters: α = 1, R = 5, S = 0.5, T2 = 0.008a−1, γ = 1, pcell diff = 1,
pcell sig = 1. Single cell moves decrease with time as they become part of aggregates.
Aggregate moves decrease with time as they become larger. However, single cell moves
within aggregates stays steady all along the simulation time, indicating a continuous

reshaping of aggregates.
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6.3.8 Aggregate dissolution

Specific simulations were run with the same initial configuration as in Figure 6-6, to in-

vestigate the effect of the ratio
pcell sig

pcell diff
and γ on aggregation. The results show that using

a small probability of movement by the emitted signal and a high diffusion coefficient

increases the chances of aggregate dissolution. This is a consequence of detachment

being only allowed during the diffusion process. For the same number of simulation

steps, aggregates loose cells at their edges as shown in Figures 6-16(c) and 6-16(e).

Increasing or reducing the detachment parameter γ has an effect only when pcell sig is

small enough compared to pcell diff . Figure 6-16(e) shows the result of a very small prob-

ability of moving pcell sig by signal combined with a big detachment value for instance

γ = 1. If we compare this figure to Figure 6-16(d) where the ratio
pcell sig

pcell diff
is very big,

is become clear that ratio is also responsible for aggregate formation or dissolution. To

summarize, we observe for the same values of the detachment parameter γ, that only

when pcell sig = 0.1, namely only when the signal is weak enough in comparison to diffu-

sion, detachment is observed. It is also clear from the initial configuration of cells (see

Figure 6-16(a)), that aggregates did form then dissolved during the simulation time. If

the γ value is big, aggregates are smaller for the same values of pcell sig and pcell diff , as

shown in Figures 6-16(b) and (d). This is due to cells performing more detachment,

however, the signal is so strong that it keeps them from detaching by forming smaller

aggregates.

1web.neurobio.arizona.edu.
2imagine.gsfc.nasa.gov.
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(a) Initial configuration

(b) α = 1, R = 5, S = 0.5, γ = 0.2, pcell diff = 0.1, pcell sig = 1.

(c) α = 1, R = 5, S = 0.5, γ = 0.2, pcell diff = 1, pcell sig = 0.1.

(d) α = 1, R = 5, S = 0.5, γ = 1, pcell diff = 0.1, pcell sig = 1.

(e) α = 1, R = 5, S = 0.5, γ = 1, pcell diff = 1, pcell sig = 0.1.

Figure 6-16: The importance of a precise adjustment of the detachment parameter
γ, the diffusive motion and the signal strength in aggregates formation or dissolution.
To reach high aggregate dissolution, the response to signals has to be smaller than the

diffusive motion with a maximal value of γ.





7 Summary

The presented PhD work proposes a mathematical model to help distinguish between

several cellular interactions by the study of the emergent patterns. Chemotaxis, photo-

taxis and random diffusion were used as well identified interactions for the analysis of

the emergent properties.

In the introduction of this thesis, communication between cells was shown to be

of great importance in many processes with a focus on cell migration and aggrega-

tion. Different ways of cellular communication and signaling were introduced. We then

concentrated our attention on the importance of pattern analysis in recognizing the un-

derlying mechanisms behind a given behavior. Mathematical modeling could revealed

chemotaxis presence despite experimental data supporting random walk. Cell migration

data together with cell compartmentalization were shown to allow the determination of

the underlying interaction modes.

It was also indicated that chemotaxis is necessary for actions performed during the

immune response. Evidence using live two-photon imaging techniques together with

mathematical modeling demonstrated the primordial role chemotaxis plays in inducing

cellular migration and aggregation within germinal centers. These signaling pathways

are essential for affinity maturation and therefore for a proper functioning of the immune

response. In parallel, evidence for the existence of a light-based cellular communication

and a light directed movement were presented. The role of phototaxis in different

mechanisms like increasing bacteria’s virulence and cellular aggregation were as well

discussed. These two signals are used as a base for the construction of our model, for

them being well known signals that present different scaling behaviors.

Later, we introduced the agent-based modeling technique as a reliable and relatively

flexible tool for simulating biological systems. It enables the study of the evolution of

many-cell systems in presence of different interactions. Its particular advantages over

other modeling techniques were discussed as well, especially in the case of investigating

pattern emergence which is the aim of the presented dissertation.
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After what, we described our agent-based model that simulates chemotaxis and

phototaxis as intrinsic processes of the cell. This is to say that cells emit and receive

signals responsible of their actions. Our model also account for cellular diffusion or

random walk. We also described the way our model is recognizing aggregates, including

aggregate signaling and movement. Cellular adhesion is also incorporated in the model

via a detachment parameter that regulates aggregate dissolution.

The results of our simulations showed that cellular aggregation is more subtle than

might be thought on first sight. Yet, our simulations show that the same maximum com-

munication distance R can lead to very different information held in and deducible from

the aggregation patterns. The implemented distance R is a one-cell/one-cell range of

detection. However, the resulting effective communication distance Reff is not the same

due to the collective effect of aggregates that accounts for broader signaling distances

and that varies depending on the chosen signal. The signals used have two different

scaling behaviors with the distance between two communicating cells. The general de-

scription reads 1/rα, α = 1 is representative of chemotaxis and α = 2 of phototaxis.

The resulting effective communication distance over which cells seem to feel each other

is incontestably the key parameter for recognizing different signals. Within our model,

chemotaxis always produced bigger Reff.

Allowing the detachment of cells from an already formed aggregate may have the

counterintuitive effect of ultimately increasing the degree of aggregation. Indeed, dif-

fusion has usually an effect of making the aggregation process harder. However, under

specific values of the detachment parameter, cells detached from small aggregates to

reattach to bigger aggregates with stronger emitted signals. More detachment was

recorded in the case of a bigger α, due to smaller resulting aggregates and therefore

bigger chances to detach from them.

Recordings of cellular moves showed that aggregates incessantly oscillate around their

centers of mass, as a result of the diffusion and rearrangement process. Hopping around

the same position does not contradict the experimental observations. Cells that are

moved within the aggregates by diffusion are brought back to a more stable position in

dependence of the attractive strength of the signal.

The range of R-values for which chemotaxis and phototaxis can be distinguished was

shown to be relevant to real cells. For example, hematopoietic CD34+ cells were seen to

communicate across 14 cell diameters [Francis 97], this is in agreement with our model
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results. Thus, our model can be used to uncover the unknown signaling process for

an estimated threshold value T or signal strength S. Experimental determination of R

from two-cell experiments and Reff from the analysis of aggregate patterns will then be

sufficient to distinguish between the different underlying signals.

The model aims to present a tool to define the signal behind a particular cellular

behavior on a phenomenological level. It is a first attempt to compare patterns induced by

different signals, for instance chemotaxis and phototaxis, while accounting for a collective

movement of cells and providing the key parameters for this. For further applications

specific types of the studied cells have to be considered which will obviously involve more

parameters. Yet, the field is lacking experimental data relevant for the mathematical

representation, caused by limitations either in designing new experiments or restrictions

on their feasibility. We endeavor to point out the differences between two signaling

mechanisms to propose a tool that will help experimentalists discern between different

regimes given certain parameters. In addition, we believe that our model will facilitate

the exploration of other parameters which can be used for studying larger systems with

higher cell densities with the integration of new interactions and new rules. The next

natural extension of this model would be the investigation of inter-dependencies between

chemokine release, phototaxis, chemotaxis and cellular diffusion on pattern emergence.
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