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2 Mechanisms of emotion-cognition interaction

Abstract

Human behaviour is inextricably linked to the interaction of emotion
and cognition. For decades, emotion and cognition were perceived as
separable processes, yet with mutual interactions. Recently, this differen-
tiation has been challenged by more integrative approaches, but without
addressing the exact neurophysiological basis of their interaction. Here,
we aimed to uncover neurophysiological mechanisms of emotion-cognition
interaction. We used an emotional Flanker task paired with EEG/FEM
beamforming in a large cohort (N=121) of healthy human participants,
obtaining high temporal and fMRI-equivalent spatial resolution. Spa-
tially, emotion and cognition processing overlapped in the right inferior
frontal gyrus (rIFG), specifically in pars triangularis. Temporally, emo-
tion and cognition processing overlapped during the transition from
emotional to cognitive processing, with a stronger interaction in β-band
power leading to worse behavioral performance. Despite functionally
segregated subdivisions in rIFG, frequency-specific information flowed
extensively within IFG and top-down to visual areas (V2, Precuneus)
– explaining the behavioral interference effect. Thus, for the first time
we here show the neural mechanisms of emotion-cognition interaction
in space, time, frequency and information transfer with high temporal
and spatial resolution, revealing a central role for β-band activity in
rIFG. Our results support the idea that rIFG plays a broad role in both
inhibitory control and emotional interference inhibition as it is a site of
convergence in both processes. Furthermore, our results have potential
clinical implications for understanding dysfunctional emotion-cognition
interaction and emotional interference inhibition in psychiatric disor-
ders, e.g. major depression and substance use disorder, in which patients
have difficulties in regulating emotions and executing inhibitory control.

Keywords: Emotion-cognition interaction, emotional interference, EEG,
source reconstruction, finite element headmodel

1 Introduction

The interplay of emotional and cognitive processing is of fundamental practical
importance to human behavior, and to psychopathology: emotions can drive us
to excel and exceed ourselves or interfere disastrously with task performance
to a degree that can change the course of our lives. Therefore, emotional inter-
ference inhibition, i.e., the inhibition of salient, distracting emotional stimuli
is critical for well-being and mental health, especially as emotional stimuli
receive, at least when sufficiently arousing and salient, preferred processing
resources [1–3]. Hence, emotional interference inhibition requires the integra-
tion of emotional with cognitive processing in the brain by recruiting neural
systems and control processes that govern both processes. Such cognitive con-
trol functions include inhibition, updating and shifting, which compete for
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(limited) common processing resources [2, 4, 5]. To ensure goal-directed behav-
ior, it is fundamental to safeguard cognitive control functioning via emotional
interference inhibition against the impact of emotional interference, which can
strain the common processing resources shared by cognitive and emotional
processing, requiring an integration of emotion and cognition [2]. Tradition-
ally emotion and cognition were viewed to be separate, anatomically divided
processing streams, yet, recent studies revealed that they are integrated in var-
ious brain regions and modulate each other’s processing [2] – acknowledging
that common processing resources in the brain are limited, and multiple pro-
cesses must compete for an allocation of these resources [6]. Such a competition
for resources potentially causes interactions between the processes which can
be beneficial or detrimental to task-performance depending on the ability for
emotional interference inhibition. In general the critical information, such as
emotional stimuli, may allocate resources more efficiently [3, 7], thus receiving
preferred processing resources [8, 9], affecting a variety of cognitive processes.
According to Pessoa’s dual competition model, interactions can occur on the
perceptual and executive level [2, 3] depending on the dimensionality of the
emotional stimulation, such as reward or threat or task relevance. Several brain
areas have been described as crucial hubs for emotion-cognition interaction and
thus potentially for emotional interference inhibition, amongst them in particu-
lar, the right inferior frontal gyrus (rIFG) [10–14]. RIFG is a brain area that has
been frequently linked to inhibitory control, as recently associated to response
inhibition mediated by the β-band [15, 16]. This is not surprising, since many
studies have shown that emotional influences on behavioral inhibition are par-
ticularly pronounced [17–19], where behavioral inhibition is a specific subtype
of cognitive inhibition [20]. However, it is currently unclear if the β-band-
mediated influence of the rIFG generalizes to other subtypes of cognitive
inhibition, as operationalized by other paradigms. This is because previous
research suggests that these subtypes are indeed separable [20] and rely on
partially separate underlying neural networks [21]. Additionally, it is yet to be
determined if the role of rIFG in behavioral inhibition applies only to cogni-
tive interference or if the β-band and rIFG also mediate emotional interference
and emotional interference inhibition. Commonalities between inhibitory and
emotion regulation processes have been described [22]. In this study, we inves-
tigated the hypothesis that the (right) IFG is the mediator of emotional and
cognitive interference as well as emotional interference inhibition. Our current
understanding of the neuropsychological underpinnings of the above emotion-
cognition interaction and emotional interference inhibition is limited due to the
lack of studies that employ both high spatial and high temporal resolution tech-
niques. Most studies either employ high spatial (functional magnetic resonance
imaging) or high temporal (magneto/electroencephalography) resolution, but
not both at the same time. Therefore, the aim of our study was to investigate
the neural mechanisms of emotion-cognition interaction for the first time with
combined high temporal and high spatial resolution. To this end, we employed
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a large-cohort (N=121) electroencephalography (EEG) study using Finite Ele-
ment Modeling of the electromagnetic forward solution and beamforming for
the inverse solution. This combination allowed us to examine the interaction
in space, time, frequency, and information transfer at a high temporal and
high spatial resolution. The obtained understanding of the underlying neural
basis of emotion-cognition interaction is particularly important as alterations
in emotional and non-emotional interference processing have been observed in
many patients with mental disorders, e.g., in patients with major depression
[23], bipolar disorder [24], and post-traumatic stress disorder [25]. Hence, the
effective integration of emotion and cognition is vital for the quality and range
of many human experiences and for mental health [26].

Our study revealed that a statistical emotion-cognition interaction effect
occurs during the transition from emotional to cognitive processing in the
β-band in rIFG, specifically in pars triangularis. This neural-level interac-
tion effect was linked to emotional interference inhibition via its correlation
to the behavioral performance in the emotional Flanker task. Additionally,
we found extensive frequency-specific top-down modulation from rIFG to
posterior areas, which was linked to the behavioral emotional and cognitive
interference effects. These findings highlight the role of the rIFG in inhibitory
control, emotion-cognition interaction and emotional interference inhibition.

2 Results

2.1 Large-cohort, FEM-based EEG-beamforming for a
highly resolved study of neural sources in
emotion-cognition interaction

To study how emotion interferes with cognition and how this interference can
be controlled, EEG data were collected from a large cohort of healthy human
participants (n=121) while they performed an emotional Flanker task. During
this task emotional (negative/neutral) images preceded the Flanker stimu-
lus (incongruent/congruent). EEG data were analyzed using a combination of
finite element head modeling (FEM) for the electromagnetic forward solution,
and beamformer EEG source localization, yielding temporally and spatially
highly resolved source data (see Fig. 1 A and Methods, Task Design section
for a detailed description. See also Fig. 10 for the full analysis pipeline). We
focused our analyses on the time window after onset of the Flanker stimulus,
i.e., tROI Flanker in Fig. 1, because only then an emotion-cognition interac-
tion could occur. Results from these analyses are presented in the following
sections. Of note, here a main effect of emotion indicates significant differ-
ences between negative vs. neutral trials during tROI Flanker, i.e., during
cognitive processing (but independent of the cognitive task condition). For
analyses before Flanker stimulus onset, i.e., during the initial emotional pro-
cessing following display of the emotional images only (tROI Emo), please see
supplementary material section Supplementary results of source localization
and Tab. A4.
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2.2 Emotional interference versus emotional interference
inhibition and their relation to statistical contrasts

The reader of the results presented below will have to be aware of (i) the dif-
ference between emotional interference and emotional interference inhibition,
and (ii) of the differences arising from applying certain statistical contrasts
(like the main effect of emotion) to behavioral data on the one hand and to
neural data on the other. We speak of emotional interference, when emotion
processing interferes with the performance in the cognitive task, i.e., when
there is a statistical main effect of emotional valence on task performance. In
the case of neural data the statistical main effect of emotion may reflect emo-
tional interference as well as pure emotional processing. In contrast, we speak
of emotional interference inhibition when there is a statistical interaction effect
between cognitive load and emotional valence; we use the shorthand notation
statistical emotion-cognition interaction in the results section, when referring
to the statistical interaction.

2.3 Behavioral effects demonstrate an emotion-cognition
interaction

To quantify the interference effect of emotion on goal-directed cognitive pro-
cessing (emotion-cognition interaction), we used Bayesian Hierarchical linear
models (for comparison with previous studies, please see additional linear
mixed effect models in the Supplementary information about behavioral effects
of emotion-cognition interaction and Tab. A1). In Bayesian regression mod-
els, the more plausible the experimental effects are, the more exclusively
positive or negative the posterior distribution of the regression parameters
are [27]. Therefore, when the 94% posterior highest density interval (HDI)
contains exclusively positive or negative values we here speak of an ’effect’
for brevity of the presentation, but urge the reader to inspect the full pos-
terior distributions. In this sense, reaction time (as a measure of cognitive
stimulus interference) and accuracy (as a measure of cognitive response inter-
ference) revealed effects of emotion and cognition, as well as an statistical
emotion-cognition interaction effect, as all posterior HDIs distributions were
negative (reaction time) or positive (accuracy). As for the emotional effect,
reaction times were slower (posterior median: βE = −0.084, posterior HDI:
[−0.097,−0.07]) and accuracies lower (posterior median: βE = 0.19, posterior
HDI: [0.097, 0.29]) for negative compared to neutral trials. As for the effect of
cognition, reaction times were slower (posterior median: βC = −0.91, posterior
HDI: [−0.96,−0.86]) and accuracies lower (posterior median: βC = 2.6, poste-
rior HDI: [2.4, 2.8]) for incongruent compared to congruent trials, corroborating
well-known cognitive interference effects in the Flanker task. Overall, the
behavioral effect of cognition was larger than that of emotion and the statistical
emotion-cognition interaction (see Fig. 1, for detailed behavioral description
see Supplementary information about behavioral effects of emotion-cognition
interaction). An interaction effect of emotion and cognition was observed
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for both reaction time (posterior median: βEC = −0.02, posterior HDI:
[−0.035,−0.0033]) and accuracy (posterior median: βEC = 0.12, posterior HDI:
[−0.072, 0.3]), with the effect of emotion (i.e., negative vs. neutral condition)
being stronger during low compared to high cognitive load (i.e., incongru-
ent vs. congruent condition). Thus, a stronger cognitive load might use more
processing resources than a lower cognitive lead, thereby decreasing the emo-
tional interference effect. Mixed effect model analyses showed similar results
(see Supplementary information about behavioral effects of emotion-cognition
interaction and Tab. A1 for comparison).
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Fig. 1 Emotional Flanker task design and behavioral effects. A, We collected EEG
data (1) from 121 healthy human participants and located each electrode’s position (2). Using
individualized Finite Element Models (FEM) of the head from structural MR images (3), we
calculated electrical signal propagation in the brain (forward solution). With a beamforming
algorithm, we reconstructed the signals in source space in the brain (4) – based on scalp
recordings, sensor positions, and the forward solution (Please see Methods and Fig. 10).
B, Basic trial design: images with neutral or negative valence (placeholder images indicate
IAPS pictures) precede onset of a congruent or incongruent Flanker stimulus (time, 0 ms),
determining which button to press in the subsequent behavioral response (left for a central
< symbol or right for a central > symbol). C, Temporal regions of interest (tROI) of 380
ms length tROI EMO (-400 to -20 ms relative to Flanker stimulus onset, yellow) during
presentation of the IAPS picture, tROI FLANKER (50 ms to 430 ms, red) after Flanker cue
onset and baseline (-1000 to -620 ms relative to Flanker cue onset, gray) were used for further
source reconstruction. Of note, tROIs were defined for each frequency band separately, and a
duration of 380 ms is an average value; see below, Task Design and Temporal ROI definition
D, Posterior distribution of the Bayesian linear regression model parameters for reaction time
(cognitive stimulus interference) and accuracy (cognitive response selection interference).
βmeanpower= β mean power, βC=cognition effect, βE=emotion effect and βEC=interaction
effect. Inset values indicate the median and 94% credible intervals of the posteriors; the
latter values are also represented by horizontal bars of the same color. Priors in Tab. A3.
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2.4 Source-level activity reveals rIFG as a key region for
emotion-cognition interaction
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Fig. 2 Source activity in the β-band (9-33 Hz). Surface plots show significant F-
values of ANOVA (cluster-based permutation test, Bonferroni corrected for four frequency
bands and two time windows, alpha and clusteralpha <0.00625, n=103). Peak voxels (local
extrema) of significant clusters are indicated with circles and labels (for MNI coordinates,
see Tab. 1, for a detailed description of the methods, see Source analysis and Statisti-
cal analyses of source reconstruction results). Dashed circles mark peak voxels invisible in
this representation. A, Task design and analyzed tROI; B, main effect of emotion (E); C,
main effect of cognition (C); D, interaction effect between emotion and cognition (EC).
Anatomical regions: ACC, anterior cingulate cortex; AG, angular gyrus; dlPFC, dorsolat-
eral prefrontal cortex; dmPFC, dorsomedial prefrontal cortex; FFA, fusiform face area; FP,
frontal pole; IFG, inferior frontal gyrus; LOC, lateral occipital cortex; M1, primary motor
cortex; mTL, medial temporal lobe, PMC, premotor cortex; Prec, Precuneus; PSSC, primary
somatosensory cortex; SFG, superior fusiform gyrus.
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For analysis of neural source activity during emotion-cognition interaction,
i.e., during cognitive processing after emotional image presentation (tROI
Flanker), we contrasted neural source-level spectral power in a non-parametric
2×2 repeated-measures cluster permutation ANOVA with the within-subject
factors emotion (negative/neutral) and cognition (incongruent/congruent). In
line with our hypothesis (see Introduction, [10, 15]), rIFG was the only source
significantly activated (p<1.9996e-04) by all three contrasts (n=103, main
effects of emotion (pars orbitalis, MNI peak coordinates x=45, y=40, z=0,
F-Value=10.4, p<1.9996e-04), cognition (pars opercularis, MNI peak coor-
dinates x=55, y=10, z=10, F-Value= 7.9, p<1.9996e-04), and interaction
effect (pars triangularis, MNI peak coordinates x=45, y=40, z=20, F-Value=
9.6, p<1.9996e-04)) – with these effects occurring in the β-band (Fig. 2),
again, as hypothesized (see Introduction). We additionally report results from
exploratory analyses in all other frequency bands during tROI Emo and tROI
Flanker in the supplementary material under Supplementary results of source
localization. Strikingly, peak activation locations of rIFG sources differed
across contrasts: in particular, the only source showing a significant interaction
effect in the β-band within the inferior frontal gyrus was the pars triangularis.
An overview of all sources, with their respective MNI peak coordinates, can be
found in Tab. 1 for the β-band and in Tab. A4 for the other frequency bands;
also see (Fig. A2, A3) for θ-, (Fig. A4) for γ- (Fig. A5) and for high γ-band
surface plots.

Contr. Region (label)
Coordinat.

(x,y,z)
Source
F-value

point estimate
(Mean)

Bootstrap
95% CI

Cluster
F-value

Cluster
P-value

E Fusiform Face Area R (rFFA) 35 -50 10 16.1438 0.4319 [0.2187; 0.6455] 5.2295e+0.3 <1.9996e-04
E dorsomedial Prefrontal Cortex R (rdmPFC) 5 40 40 15.9367 0.4302 [0.2212; 0.6483] 5.2295e+0.3 <1.9996e-04
E dorsolateral Prefrontal Cortex R (rdlPFC) 25 30 60 13.5796 0.3963 [0.1808; 0.6073] 5.2295e+0.3 <1.9996e-04
E lateral Occipital Cortex R (rLOC) 35 -70 30 13.3564 0.3686 [0.1680; 0.5689] 5.2295e+0.3 <1.9996e-04
E Frontal Pole R (rFP) 5 60 40 12.8408 0.4005 [0.1744; 0.6177] 5.2295e+0.3 <1.9996e-04
E Angular Gyrus R (rAG) 45 -50 20 12.6571 0.3737 [0.1714; 0.5859] 5.2295e+0.3 <1.9996e-04
E Superior Frontal Gyrus R (rSFG) 25 10 60 12.4352 0.3686 [0.1613; 0.5781] 5.2295e+0.3 <1.9996e-04
E Premotor Cortex R (rPM) 45 0 50 11.2470 0.3553 [0.1453; 0.5647] 19.5099 <1.9996e-04
E Inferior Frontal Gyrus R (rIFG) 45 40 0 10.4409 0.3852 [0.1510; 0.6221] 5.2295e+0.3 <1.9996e-04
E Precuneous Cortex R (rPrec) 15 -70 50 9.7742 0.3459 [0.1311; 0.5695] 5.2295e+0.3 <1.9996e-04
E Frontal Pole L (lFP) -25 50 10 9.6548 0.3641 [0.1238; 0.5947] 25.9950 <1.9996e-04
E Primary Somatosensory Cortex R (rPSSC) 45 -10 30 8.8410 0.3268 [0.1172; 0.5519] 5.2295e+0.3 <1.9996e-04
E Inferior Frontal Gyrus L (lIFG) -35 30 10 8.7014 0.3131 [0.1040; 0.5265] 8.7014 <1.9996e-04
E Primary Motor Cortex R (rPrMC) 35 -20 50 8.2433 0.3131 [0.1016; 0.5327] 8.2433 <1.9996e-04
C dorsolateral Prefrontal Cortex R (rdlPFC) 45 20 30 8.5053 0.3048 [0.1082; 0.5220] 8.5053 <1.9996e-04
C medial Temporal Lobe R (rmTL) 65 -10 -10 8.3118 0.3278 [0.1194; 0.5716] 8.3118 <1.9996e-04
C Inferior Frontal Gyrus R (rIFG) 55 10 10 7.9618 0.3034 [0.1010; 0.5278] 7.9618 <1.9996e-04
EC Inferior Frontal Gyrus R (rIFG) 45 40 20 9.6267 -0.5948 [-0.9589;-0.1966] 9.6267 <1.9996e-04

Table 1 Significant β-band sources during tROI Flanker. All significant sources in the
β-band are given for the contrasts (Contr.) of emotion (E), cognition (C) and statistical
emotion-cognition interaction (EC). The table lists sources (Region (label)) with respective
coordinates and F-values. Furthermore, it shows the point estimate in terms of source
activity (mean differences of first level statistics (i.e., t-statistics) for main effects, and
mean double differences for interaction effects) and the bootstrap Confidence-Interval (95%
CI). Additionally, Cluster F- and P-values are reported.
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2.5 Source-level activity confirms a functional
parcellation of rIFG

Further inspection of the IFG sources showed that they were located in differ-
ent anatomical subdivisions of the rIFG: in the anterior ventral pars orbitalis
(IFGOrb) for the main effect of emotion, in the posterior pars opercularis
(IFGOp) for the main effect of cognition, and in the anterior dorsal pars
triangularis (IFGTri) for the interaction effect of emotion and cognition. To dif-
ferentiate whether activity of these three sources originated from three separate
sources or from one underlying source, we correlated activities in the virtual
channels reconstructed at the peak coordinates obtained from the beamformer
source reconstruction with each other. Pairwise correlations between IFG sub-
divisions existed (r = 0.2844 for IFGTri and IFGOp, r = 0.3600 for IFGTri

and IFGOrb, and r = 0.2937 for IFGOrb and IFGOp), but were far from unity,
suggesting separate sources and a functional segregation of emotion/cognition
processing within rIFG. Notably, these three EEG sources are in correspon-
dence with three of five rIFG clusters indicated by an fMRI meta-analysis
[11] and are located within the respective clusters with striking anatomical
closeness to their respective centers-of-gravity, i.e., a maximum distance below
10 mm (see Fig. 3, A). In line with the model by Hartwigsen and colleagues
[11], the IFGOp source, revealed by our cognition contrast, is located in a
region associated to execution, compatible with an involvement in stimulus
and response interference processing in our Flanker task. The IFGOrb source,
revealed by our emotion contrast, is located in a region associated with emotion
or social processing, compatible with an involvement in emotional processing in
our emotional Flanker task. Finally, the IFGTri source, revealed by our statis-
tical emotion-cognition interaction contrast, is located in a more dorsal region
associated with reasoning and adaptive control, compatible with interaction
or integration of emotion and cognition in our emotional Flanker task.
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Fig. 3 Segregation of task-related β sources within rIFG. A, Three separate β
sources within rIFG (IFGOrb, IFGOp and IFGTri represented by dots) were revealed by
contrasts between task conditions (emotion: blue; cognition: yellow; statistical emotion-
cognition interaction: purple), corresponding to anatomical subdivisions of IFG (pars
orbitalis, pars opercularis and pars triangularis) and close to the centers of gravity of func-
tional clusters (1-3, represented by circles; cluster 1: adaptive control/reasoning, purple;
cluster 2: execution, yellow; cluster 3: emotion/social cognition, blue) obtained from fMRI
meta analysis ([11]) B, Revision of the model by Hartwigsen and colleagues [11] indicat-
ing different processing domains in rIFG with incorporation of our findings (as indicated by
brackets).

2.6 Temporal Generalization analysis reveals an
emotion-cognition interaction effect in IFG pars
triangularis during early cognitive processing

In order to investigate the precise temporal dynamics of emotional versus
cognitive processing, and of their interaction, we performed a temporal gener-
alization classification in each rIFG subdivision with a support vector machine
(SVM) (Fig. 4) classifying the task conditions based on source-localized neural
activity time courses. Thus, we were able to (1) classify between emotion (E),
cognition (C), and the statistical emotion-cognition interaction (EC) process-
ing, (2) determine the temporal unfolding of information processing in relation
to these conditions, and (3) determine whether shared or isolated process-
ing preferences exist in these rIFG subdivisions (see Fig. 3, A). This analysis
revealed that information related to emotion processing can be detected long
after presentation of the emotional stimulus: we received a robust classifi-
cation above chance level for emotion in all three IFG subdivisions starting
around 200 ms before Flanker stimulus onset and lingering until around 400 ms
after Flanker stimulus presentation (p<0.0028, n=103, maximum classification
accuracy and time point (Bootstrapping mean [95% CI]) was 60.1% [59.9; 60.2]
at -18.5 ms [-20.8; -16.2] in IFGOrb, 59.5% [59.4; 59.7] at 2.6 ms [-1.3; 6.5] in
IFGOp and 58.5% [55.4; 58.7] at 56.0 ms [51.8; 60.2] in IFGTri. The classifica-
tion performance of the emotional process alternated between periods of high
and low decoding accuracy, indicating that emotional information recurrently
occupied processing resources. In contrast, accuracy of cognitive classification
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after Flanker signal onset continuously increased with time up to approxi-
mately 350 ms and remained relatively high until 500 ms post Flanker stimulus
onset (p<0.0028, n=103, maximum classification accuracy and time point
(Bootstrapping mean[95% CI]) was 64.9% [64.7; 65.1] at 354.1 ms [351.1; 357.1]
in IFGOrb, 65.3% [65.1; 65.5] at 365.4 ms [362.5; 368.2] IFGOp and 65.0% [64.8;
65.2] at 339.0 ms [189.8; 286.0] in IFGTri, indicating that resources devoted to
this process ramp up over time. As expected, cognitive processes could reliably
be classified above chance level after onset of the Flanker stimulus in all three
subdivisions. Importantly, at the moment when cognitive information process-
ing entered the network, i.e., when the SVM first classified the cognitive task
conditions correctly, the strongest, temporally specific, statistical interaction
effect between emotion and cognition took place in IFGTri (p<0.0028, n=103,
maximum classification accuracy (mean, [95% Bootstrap-CI]) was 55.8% [55.3;
55.9] at 216.8 ms [214.5; 219.0] in IFGTri. Of note, the strongest interaction
effect thus did not occur when the decodability of both processes was highest,
but rather when the cognitive process entered the emotionally loaded network,
presumably introducing a competition over processing resources. Together with
our beamforming results, these findings strongly imply that IFGTri serves as
the critical subdivision for emotion-cognition interaction.
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Fig. 4 Temporal Generalization of task condition classification. Temporal gener-
alization matrices for the three contrasts emotion (E), cognition (C) and their interaction
(EC) (rows) in the three IFG subdivisions IFGOrb (emotion), IFGOp (cognition) and IFGTri

(EC interaction) (columns). In each panel, a classifier was trained for each time sample
(vertical axis: training time) and tested on all other time samples (horizontal axis: testing
time), for each subject separately. The resulting individual decoding matrices were averaged
across subjects, decoding contrasts and IFG subdivisions. Black contours indicate significant
decoding values. Statistical tests used a cluster-size permutation procedure using a cluster
defining threshold of p < 0.0028, and a corrected significance level of p < 0.0028 (n = 103).
Grey boxes indicate time window of statistical test: contrast E was computed over the full
time-range (-0.5-0.5 ms); since effects of contrasts C or EC can logically be present only
after Flanker stimulus onset, a restricted time-range of 0-0.5 ms was used for these contrasts.
Dotted lines indicate Flanker stimulus onset (0 (ms),”Flanker”).

2.7 β-band emotion-cognition interaction in IFG pars
triangularis is behaviorally relevant

Given the findings described above (see section: Source-level activity reveals
rIFG as a key region for emotion-cognition interaction), we sought to deter-
mine the behavioral relevance of β activity in IFGTri for emotion-cognition
interaction. Since interactions can be of both signs (i.e., negative and positive),
we calculated the interaction effect ((negative incongruent − neutral incon-
gruent) − (negative congruent − neutral congruent)) in the β-band (9 − 33
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Hz, 0.05−0.43 s) and searched for the minimum and maximum β power inter-
action values for each individual subject, respectively, as we were specifically
interested in individual effects of emotion-cognition interaction. We then cor-
related the individual maximum and minimum β interaction power values (i.e.
the double differences described above) and the individual mean reaction time
(stimulus interference) and mean response accuracy (response interference)
(Fig. 5, A). In an analysis of Bayes factors, there was extreme evidence for a
correlation of response accuracy and the maximum (BF10=984e+03; posterior
median: β = −0.513, posterior HDI: [−0.646,−0.362]) and minimum (BF10=
694; posterior median: β = 0.391, posterior HDI: [0.220, 0.545]) β interaction
power. For reaction time, there was moderate evidence for a correlation with
the maximum β interaction power (BF10= 9.368; posterior median: β = 0.282,
posterior HDI: [0.099, 0.452]), but no evidence for a correlation with minimum
β interaction power (BF10=0.272; posterior median: β = −0.123, posterior
HDI: [−0.308, 0.069]) (see Fig. 5, B). Together, these findings suggest that the
stronger the β-band interaction is, the worse is the behavioral performance.
Thus, stronger β-band emotion-cognition interaction means less emotional
interference inhibition, means more emotional and cognitive interference as
visible in overall worse behavioral performance.

In order to understand whether only β-band power in relation to the statis-
tical emotion-cognition interaction is informative for the behavioral outcome,
or whether also β-band power in general (average power), or β-band effects
in relation to emotion or cognition, were behaviorally relevant, we employed
an additional Bayesian linear regression analyses including each β-power mea-
sure as a factor in the model (see Fig. 5, C). As expected given the correlation
results, the parameters for the β power interaction values were by far the
most influential as shown by the model posteriors: The posterior distributions
of the regression parameters for predicting the reaction time based on the
maximum cluster were: posterior median: βmeanpower = 0.056, posterior HDI:
[−0.15, 0.25]; posterior median: βE = −0.16, posterior HDI: [−0.3,−0.012];
posterior median: βC = 0.14, posterior HDI: [−0.026, 0.3]; posterior median:
βEC = 0.32, posterior HDI: [0.089, 0.56]. The posterior distributions for pre-
dicting the accuracy based on the minimum cluster were: posterior median:
βmeanpower = 0.2, posterior HDI: [0.003, 0.4]; posterior median: βE = −0.034,
posterior HDI: [−0.17, 0.097]; posterior median: βC = −0.04, posterior HDI:
[−0.18, 0.1]; posterior median: βEC = 0.5 , posterior HDI: [0.26, 0.74], and
based on the maximum cluster: posterior median: βmeanpower = 0.036, pos-
terior HDI: [−0.15, 0.21]; posterior median: βE = 0.098, posterior HDI:
[−0.034, 0.23]; posterior median: βC = 0.075, posterior HDI: [−0.07, 0.22]; pos-
terior median: βEC = −0.69, posterior HDI: [−0.9,−0.47]. The posteriors for
predicting the mean reaction time based on the minimum cluster were posterior
median: βmeanpower = −0.085, posterior HDI: [−0.31, 0.12]; posterior median:
βE = 0.072, posterior HDI: [−0.07, 0.22]; posterior median βC = −0.059, pos-
terior HDI: [−0.21, 0.093]; posterior median: βEC = −0.14, posterior HDI:
[−0.4, 0.11]). In line with our correlation results (Fig. 5, B) these findings
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indicate that, indeed, specifically the statistical emotion-cognition interaction
in the β-band is the key factor for determining the behavioral outcome of
emotional and cognitive interference and of its inhibition, rather than overall
β-band power or β-band power effects from sources located with respect to
the main effects of emotion or cognition only.
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Fig. 5 Behavioral prediction based on maximum and minimum β power inter-
action values. A, Time-Frequency Representation for the statistical emotion-cognition
interaction contrast in an exemplary subject with maximum (magenta dot) and minimum
(cyan dot) β power interaction values during tROI Flanker. Overall, the averaged individual
maximum β interaction frequency was 20.93 Hz and appeared 237 ms after Flanker stim-
ulus onset, whereas the averaged individual minimum β interaction frequency was 20.71
Hz and appeared 248 ms after Flanker stimulus onset. B, Bayesian correlation of β power
interaction values (maximum and minimum) with mean reaction time and response accu-
racy (per subject, n=103). Correlation coefficients ρ are shown with prior (dashed line) and
posterior distributions (solid line), median, central 94% credible interval, and Bayes Factors
BF10 and BF01. Regression plots are shown above each distribution. C, Posterior distribu-
tions of the regression coefficients of the Bayesian linear regression models predicting mean
reaction times and accuracy (per subject, n=103) with median and 94% credible interval
(horizontal bars) for βmean= β mean power, βC=cognition effect, βE=emotion effect and
βEC=interaction effect of maximum and minimum β power values. Graphs follow the same
order as in panel B and show (from left to right) the posterior distributions of models pre-
dicting mean reaction times based on minimum β power values, predicting mean reaction
times based on maximum β power values, predicting mean accuracy based on minimum β
power values, predicting accuracy based on maximum β power values. See Bayesian corre-
lation of min/max β power interaction values with behavioral measures and Bayesian linear
regression of β power with behavioral measures for a detailed description of the methods.
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2.8 Integration and segregation of emotional and
cognitive information within IFG
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Fig. 6 Spectrally-resolved conditional Granger Causality (cGC) within IFG sub-
divisions. Blue (IFGOrb, emotion (E)), yellow (IFGOp, cognition (C)), and purple (IFGTri,
statistical emotion-cognition interaction (EC)) nodes refer to the IFG sources in the β-band
(see Fig. 2 and Fig. 3). Arrows indicate a significant spectral-cGC modulation (information
flow) related to main effects of emotion (E, blue) and cognition (C, yellow) and their inter-
action (EC, purple) (see Methods), respectively. A cluster-based permutation ANOVA was
used to identify significant differences between E, C, and EC contrasts. Significant differ-
ences after Bonferroni correction (n = 103 for all links, six links and two windows tested,
αcrit = 0.05/12) are reported with their significant spectral range. A, spectral cGC at early
processing, 50-300 ms after Flanker stimulus onset. The modulation of information flow-
ing between IFG nodes is mostly related to emotion and the statistical emotion-cognition
interaction (blue and purple arrows). B, spectral cGC in the later time window 250-500 ms
after Flanker stimulus onset. The modulation of information flow is mostly related to cog-
nition (yellow arrow). Statistics were computed for n=103. For an overview of significant
participants, links, and frequencies, please see Tab. 2.

Given the functional segregation of IFG subdivisions (see Source-level activity
reveals rIFG as a key region for emotion-cognition interaction, Source-level
activity confirms a functional parcellation of rIFG [11]) and the specific and
behaviorally relevant role of IFGTri for emotion-cognition interaction, as well
as the known anatomical interconnectivity of IFG subdivisions [28], we next
aimed to understand the exact temporal and spectral dynamics of information
flow within rIFG. To this end, we computed spectrally-resolved conditional
Granger Causality (cGC) in two time windows (i.e., an early processing
(visual to cognitive) phase [50-300 ms] and a late processing (cognitive to
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motor) phase [250-500 ms]) after Flanker stimulus onset between the three
IFG subdivisions obtained from our source reconstruction contrasts cognition
(IFGOp), emotion (IFGOrb) and statistical emotion-cognition interaction
(IFGTri)(see Non-parametric Granger Causality Analysis and Statistical test-
ing of cGC for detailed description). Results showed significant spectral-cGC
differences between IFG subdivisions, with the early time window (50-300
ms) primarily showing main effects of emotion in the β frequency (18-24 Hz,
p < 9.99e− 05, n = 103, see also Tab. 2 for an overview), indicating lingering
emotional processing. During this time window, IFGOrb and IFGTri acted as
both senders and receivers of emotional information, while IFGOp only served
as a receiver. In contrast, cognitive information was only sent from IFGOrb to
IFGTri, at a frequency of 10 Hz (p < 9.99e− 05, n = 103) (Fig. 6, Tab. 2).

Contrast toi Hz Link N(sig.) p-values
p.e.

(Mean)
Bootstrap
95% CI

E early 22-22 Hz IFGOrb −→ IFGOp 103 9.999e-0.5 0.0059 [0.0022; 0.0098]
E early 18-24 Hz IFGOrb −→ IFGTri 103 9.999e-0.5 -8.8583e-04 [-0.0049; 0.0029]
E early 20-22 Hz IFGTri −→ IFGOp 103 9.999e-0.5 0.0072 [0.0033; 0.0118]
E early 20-24 Hz IFGTri −→ IFGOrb 103 9.999e-0.5 0.0083 [0.0041; 0.0125]
C early 10-10 Hz IFGOrb −→ IFGTri 103 9.999e-0.5 -0.0077 [-0.0127; -0.0025]
EC early 42-44 Hz IFGOp −→ IFGTri 103 9.999e-0.5 0.0135 [0.0075; 0.0229]
EC early 44-44 Hz IFGOp −→ IFGOrb 103 9.999e-0.5 0.0118 [0.0061; 0.0204]
C late 30-30 Hz IFGOp −→ IFGOrb 103 9.999e-0.5 -0.0044 [-0.0076; -0.0017]
C late 34-38 Hz IFGOp −→ IFGOrb 103 9.999e-0.5 -0.0051 [-0.0083; -0.0025]
C late 38-42 Hz IFGOp −→ IFGTri 103 9.999e-0.5 -0.0053 [-0.0088; -0.0026]

Table 2 Overview of significant links within IFG. Table shows in which contrast,
temporal region of interests (toi), frequencies (Hz) a link was significant in for how many
participants (N(sig.)) with respective p-values of frequency-resolved group-level statistics.
Point estimates (mean) and 95% confidence intervals from bootstrapping are reported. The
frequency-agnostic individual level statistic was done for n=103; all reported links reached
the lowest possible p-value in the permutation test. Threshold for significance was
p < 0.0042. See Fig. 6

While receiving emotional information in the β frequency band, IFGOp

sent information related to statistical emotion-cognition interaction to both
other subdivisions, at a frequency in the low γ range (42-44 Hzp < 9.99e− 05,
n = 103). Thus, emotion-cognition interaction seems to take place when the
network is loaded with emotional processing, but before cognitive processing
is firmly established. This finding is fully in line with findings from our tem-
poral generalization analysis (Fig. 4). During the late time window (250-500
ms) a shift in processing style within the IFG from emotional to cognitive pro-
cessing occurred, with cognitive information flowing primarily from IFGOp to
both other IFG subdivisions in the high β/low γ frequency range (30 to 38 Hz,
p < 9.99e − 05, n = 103). Of note, these frequency ranges are similar to the
ones reported by Schaum and colleagues [15] in relation to a purely cognitive
response inhibition task. In summary, while information related to emotional
processing, and emotion-cognition interaction, is distributed during an early
processing phase after Flanker stimulus onset in the IFG network, informa-
tion related to cognitive processing is mainly sent by IFGOp during a later
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phase. In addition, data clearly support functional integration of information
in a temporal and frequency-specific manner in the IFG network concurrent
with functional segregation of anatomical IFG subdivisions, as described above
(Temporal Generalization of condition classification).

2.9 Top-down long-range inter-regional modulation by
IFG

Precuneus V2 
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34-3
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β band source reconstruction: 
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High γ band source reconstruction: 
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Fig. 7 Spectrally-resolved conditional Granger Causality (cGC) between IFG
subdivisions and Precuneus and V2. Blue, yellow and purple nodes refer to the IFG sub-
divisions reconstructed in the β-band (see Fig. 2 , Fig. 3 and Fig. 6); orange and black nodes
refer to Precuneus and V2, reconstructed in the high γ band (see supplemental material).
Blue, yellow and purple arrows indicate a significant spectral cGC modulation in emotion
(E), cognition (C) and statistical emotion-cognition interaction (EC), respectively (see Meth-
ods for the definitions of these contrasts). Significant differences after Bonferroni correction
(i.e., six links and two windows tested, p<0.0042) are reported as solid arrows with cor-
responding contrasts and significant spectral ranges. Close to significant links (p<0.00559)
are denoted as dashed arrows. A, Spectral cGC at 50-300 ms after Flanker stimulus onset,
showing IFGTri-Precuneus modulation related to emotional processing. B, Spectral cGC at
250-500 ms relative to Flanker stimulus onset, showing IFGTri and IFGOrb modulation of
Precuneus and V2 related to cognitive processing. The frequency-agnostic individual level
statistic was done for n=103. The frequency-resolved group-level statistics was done on
significant participants, links, and frequencies, please see Tab. 2.

Beyond the behavioral significance of IFG in emotion-cognition interaction,
we next sought to understand whether IFG exerts top-down control [29] over
other areas relevant for emotion-cognition interaction with known anatomical
connections to IFG [28]. As rIFG was the only source exhibiting a statistical
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emotion-cognition interaction effect in the β-band (see Fig. 2), we had to search
for potential target sources of top-down control in other frequency bands. In
the high-γ band we indeed identified two posterior sources, i.e., Precuneus
(Fig.A5, n=103, MNI peak coordinates =-5, y=-60, z=30, F-Value=7.8551,
p<1.9996e-04) and visual area V2 (n=103, MNI peak coordinates =5, y=-80,
z=20, F-Value=7.9948, p<1.9996e-04), that showed a statistical emotion-
cognition interaction effect (see Supplementary results of source localization).
Next, we thus conducted a spectrally-resolved cGC analysis including all three
IFG subdivisions (IFGOrb, IFGOp, and IFGTri) and both posterior sources
(Precuneus and V2) (Fig. 7) to reveal potential top-down modulations (see
Non-parametric Granger Causality Analysis and Statistical testing of cGC for
detailed description of cGC analysis). In the early time window [50-300ms]
we found significant emotion effects on information flow (p<0.0042, Bonfer-
roni corrected for time windows and links; details in Table 3) from IFGTri to
Precuneus at 10 Hz (p = 0.00369, n = 97). In the later time window [250-
500 ms] we found significant cognitive effects on information flow from IFGTri

to Precuneus and V2 at 34-36 Hz (p = 0.00439, n = 97), and from IFGOrb

to Precuneus at 10-14 (p = 0.00309, n = 97) and 32-36 Hz (p = 0.00119,
n = 97) and to V2 at 34-36 Hz (p = 0.00349, n = 85). Further, we found a
close to significant emotion effect on information flow from IFGOp to V2 at
30-32 Hz (p = 0.00559, n = 100). No significant interaction effect of emotion
and cognition on information flow was found in the top-down direction from
IFG to the posterior areas. However, we again observed a switch in processing
style, as cGC from IFGTri signals emotional information in the early phase of
processing, while in the later phase cGC from IFGOrb signals cognitive infor-
mation. These findings highlight a temporally-, spectrally- and context-specific
long-range modulation from rIFG to Precuneus and V2.

Contr. toi Hz Link N p-values
p.e.

(Mean)
Bootstrap
95% CI

E early 10-10 Hz IFGTri −→ Prec 97 0.00396 -0.0019 [-0.0035; -4.2407e-04]
E late 30-32 Hz IFGOp −→ V2 100 0.00559 -0.0014 [-0.0024; -3.9837e-04]
C late 34-36 Hz IFGTri −→ Prec 97 0.00439 -0.0012 [-0.0022; -2.7789e-04]
C late 34-36 Hz IFGTri −→V2 91 0.00409 -0.0012 [-0.0021; -3.8342e-04]
C late 34-36 Hz IFGOrb −→ V2 85 0.00349 -0.0014 [-0.0023; -4.2687e-04]
C late 10-14 Hz IFGOrb −→ Prec 97 0.00309 0.0020 [3.4456e-04; 0.0038]
C late 32-36 Hz IFGOrb −→ Prec 97 0.00119 -0.0014 [-0.0026; -4.4325e-04]

Table 3 Overview of significant top-down links from IFG to Prec and V2. Table shows in
which contrast (Contr.), temporal region of interests (toi), frequencies (Hz) the link was
significant in how many participants (N) with respective p-values of frequency-resolved
group-level statistics. Point estimates (mean) and 95% confidence intervals from
bootstrapping are reported. The frequency-agnostic individual level statistic was done for
n=103. Threshold for significance was p < 0.0042. See Fig. 7.
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2.10 The Top-down Influence from IFG to Precuneus
and V2 explains the behavioral interference effect

Finally, we studied the behavioral relevance of the long-range inter-regional
modulation by rIFG. To this end, we determined which of the above identi-
fied links are relevant for the behavioral performance by correlating changes in
spectral cGC on these links with the behavioral measures of the interference
effects in our emotional Flanker task, i.e., reaction time (stimulus interference
inhibition) and response accuracy (response interference inhibition) as well
as the respective emotional interference effects (see Correlation of top-down
Granger Causality with behavior). We found that the change in information
flow from IFGOrb to Precuneus and V2, and from IFGOp to V2 predicted
behavior: for cognition, the change in cGC from IFGOrb to V2 (34-36Hz con-
nection; posterior median: β = −0.22, posterior HDI: [−0.45,−0.0074]) was
negatively correlated with the change in reaction time and the same held for the
information flow Precuneus (32-36 Hz connection; posterior median: β = 0.22,
posterior HDI: [−0.1, 0.44]). For emotion, the change in cGC from IFGOp to V2
(30-32 Hz connection) was positively correlated with reaction time (posterior
median:β = 0.17, posterior HDI: [0.068, 0.26]) and negatively correlated with
response accuracy (posterior median:β = −0.24, posterior HDI: [−0.34,−0.15])
(see Fig 8,A). The other links were not informative for predicting the behavior.
Additionally, we computed Bayesian linear models to predict the interference
effects (∆ RT or ∆ acc) caused by emotion and cognition, respectively, on
behavioral performance, based on a model including all links originating in one
subdivision as factors. That is, the cognitive information flow from IFGOrb to
both Precuneus and to V2 were used as factors in the same model to predict
∆ reaction time (incongruent | congruent). Fig. 8,B shows that the difference
in top-down modulation (incongruent − congruent) from IFGOrb to Precuneus
was negatively associated with the cognitive interference effect on reaction
time (posterior median:β = −0.27, posterior HDI: [−0.55,−0.0021]), i.e., the
stronger the difference in cognitive information flow was, the less impaired was
the participants’ behavior due to the incongruent Flanker stimulus (i.e., cogni-
tive interference). No association was seen for the cognitive information from
IFGOrb to V2 (posterior median:β = −0.035, posterior HDI: [−0.3, 0.25]). In
contrast, the difference in emotional top-down modulation (negative − neu-
tral) from IFGOp to V2 was associated to the emotional interference effect on
reaction time (negative − neutral) (posterior median: β = 0.12, posterior HDI:
= [−0.065, 0.3]) and accuracy (posterior median: β = −0.14, posterior HDI:
[−0.32, 0.046]), i.e., the stronger the emotional information flow from IFGOp

to V2 in the negative condition was, the worse the behavioral performance
was in the negative compared to the neutral conditions for both stimulus and
response interference. Hence, top-down effects on emotional processing nega-
tively impacted goal-directed, task-relevant behavior in our task, while those
on cognitive processing improved it.
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Fig. 8 Spectrally-resolved cGC from IFG to Precuneus and V2 correlates with
behavior. A, Posterior distributions of the Bayesian linear regression model parameters
for models with cGC links from IFG subdivisions to Precuneus (Prec) or visual area V2
(see black arrow above posterior) as predictors, and behavioral measures (reaction time and
accuracy) as outcomes. Contrast and frequency information can be found above the black
arrows. Inset values indicate the median and 94% credible intervals of the posteriors; the
latter values are also represented by the horizontal bars in black. Links with a 94% credible
interval that were entirely positive or negative were used for subsequent Bayesian multiple
linear regression models. B. Linear regression for a regression of the differences between con-
ditions (E, C) in behavior (reaction times, accuracies) on the differences between conditions
for cGC (∆cGC), for cGC from IFGOrb to Prec and V2, and IFGOp to V2, respectively. Cor-
responding marginal posterior distributions are shown below. See Correlation of top-down
Granger Causality with behavior for a detailed description

3 Discussion

This high-powered EEG study uncovered neurophysiological mechanisms of
emotion-cognition interaction, providing evidence for an overlap and interac-
tion between emotion and cognition processing in rIFG. Information related
to emotion, cognition, and their interaction flowed between different subdivi-
sions of rIFG in a frequency-specific manner. A statistical interaction of the
factors emotion and cognition, indicating emotional interference inhibition,
was specifically confined to a modulation in pars triangularis of rIFG in the
β-band activity during the transition from emotional to cognitive processing,
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which was linked to performance in our emotional Flanker task. Moreover,
rIFG exerted long-range top-down modulation of visual areas, which predicted
the behavioral interference effects. Findings corroborate the notion that infor-
mation related to emotion, cognition, and their interaction both segregates
and integrates functionally and temporally in rIFG, the activity of which mod-
ulates top-down posterior, perceptive areas of the brain to shape behavioral
performance.

Our study found that emotion and cognition-related neural activity inter-
act in a single frontal cortical area, the rIFG, indicating that this brain
area serves as a crucial hub for controlling emotional interference of cogni-
tive processing, i.e., emotional interference inhibition. This concurs to fMRI
findings [2, 3] that the IFG is affected by emotional processing, and that it
is a specific site of convergence and integration of emotional and cognitive
processing [2, 10], contributing to the control of behavior [30]. It also clearly
argues against the traditional view that emotion and cognition originate from
separate processing streams (see [31] for a push-pull relationship model).
We precisely determined one subdivision of the rIFG, specifically the pars
triangularis, as the site most important for emotion-cognition interaction.
Emotional processing resides more in pars orbitalis and cognitive processing
more in pars opercularis. Hence, we show a functional and anatomical segrega-
tion within the rIFG. The very same functional and anatomical segregation of
rIFG at almost identical anatomical locations can be found in meta-analytic
fMRI evidence by [11]. Our findings also add to a previous report of parallel
but distinct processing streams originating from ventral and dorsal rIFG,
respectively, in the context of response inhibition [32], and are in line with the
notion of posterior to anterior and dorsal to ventral gradients in the frontal
cortex, as observed for the insula [33] and the inferior frontal gyrus [11].
Our findings go beyond this previous evidence in providing a deeper under-
standing of the temporal and spectral dynamics of emotion-cognition
interaction. The temporal resolution of fMRI – which is in the order of 500
ms – is clearly insufficient to demonstrate a true emotion-cognition interac-
tion at the timescale of neural activity, which changes in the order of tens
of milliseconds. Therefore, we employed state-of-the-art finite element head
modeling-based EEG-beamforming in a large cohort of subjects and conserva-
tive statistics in order to achieve a spatio-temporal resolution that is clearly
sufficient to demonstrate true interactions at the neural level.
Analysis of the temporal dynamics (temporal generalization by SVM) revealed
lasting emotional processing in all subdivisions of rIFG long into the phase of
cognitive processing, while cognitive processing increased with time after the
onset of the cognitive task (i.e., Flanker stimulus onset, see Fig. 4). Hence,
we observed two parallel, rather than two consecutive, processes competing
for the same processing resources. Competition for limited neural resources
thus necessitates an interaction of both processes on the neural and process
level, which is dominantly handled in pars triangularis of rIFG as indicated
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by the statistical interaction effect (Fig. 2 and Fig. 9). The above competi-
tion for neural resources follows more general theories of limited (neural and
cognitive) resources [2], stating that present emotional stimuli demand pro-
cessing resources. As soon as a cognitive task appears, the cognitive process
competes for such resources in order to respond correctly to the task at hand.
Our highly resolved temporal data offer a mechanism of how this competi-
tion unfolds over time: the interaction specifically occurs temporally focused
when the entering cognitive processing forces a redistribution of processing
resources. Based on these findings, we propose a process model in which the
use of neural resources of one process overrides those of the other in rIFG
during the competition of emotional and cognitive processing demands (see
Fig. 9), highlighting the role of pars triangularis in this context. Interestingly,
significant emotional processing seems to start over 100 ms later in pars tri-
angularis compared to pars orbitalis and pars opercularis (see Fig. 4), further
corroborating the notion that pars triangularis may have a supervisory role
among the three rIFG subdivisions.

re
so

u
rc

e
s 

u
se

d
(n

e
u
ra

l 
a
ct

iv
it

y
)

(emotional) (cognitive) 
processing interval

cognitive 
process

emotional 
process

Flanker 

IFGTriIFGTri IFGTri

Test time (ms)

Tr
ai

n
in

g
 t

im
e 

(m
s)

Test time (ms)

Tr
ai

n
in

g
 t

im
e 

(m
s)

Test time (ms)

Tr
ai

n
in

g
 t

im
e 

(m
s)

Fig. 9 Neurophysiological model of emotion-cognition interaction. Emotional and
cognitive processing compete for limited resources, with resources allocated to emotional
processing decreasing during the ramp-up of cognitive processing. Emotion-cognition inter-
action occurs in rIFGtri at the cross-over of resource allocation to emotional and cognitive
processing (also compare Fig. 4).

Emotion-cognition interaction in the rIFG was mediated by β-band activ-
ity. This is consistent with previous research suggesting that β-band plays a
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key role in cognitive inhibition [15]. Our findings further support the idea that
β-band activity not only plays a critical role in cognitive processing, but also
in emotional processing, suggesting that β-band activity is a general driver of
inhibition, regardless of the type of interfering information. Likewise, the role of
the IFG in cognitive processing has mainly been studied in specific subcompo-
nents of inhibitory control [15, 34], i.e., behavioral inhibition [20]. However, our
study found that rIFG is also involved in two other inhibitory subcomponents,
i.e., stimulus interference inhibition (reaction time) and response inhibition
(accuracy) as measured by the Flanker task. This suggests that rIFG plays a
broader role in inhibitory control, not limited to specific inhibitory subcom-
ponents. Its particular role in emotion processing is even less well studied and
understood (see [10, 11, 35]). Our findings, which link activity in rIFG to
both emotional and cognitive processing (i.e., emotional and cognitive inter-
ference) as well as their interaction (i.e., emotional interference inhibition),
support the idea that the rIFG plays a critical general role in interference inhi-
bition, regardless of the type of information causing the interference. Such a
central role in interference inhibition is even further supported by our obser-
vation of the long-range modulation that rIFG exerts over visual and parietal
areas, explaining the behavioral emotional and cognitive interference effect.
Here, task-relevant cognitive top-down modulation from rIFG is beneficial for
behavioral performance, whereas task-irrelevant emotional top-down modula-
tion is detrimental. The involvement of the rIFG in interference inhibition to
pursuit of a goal can be explained by the fact that this process often requires
inhibition, cancelling or stopping, in conjunction with updating and shifting,
which share a common (inhibitory) basis, as suggested by [4, 5]. Such a broad
involvement in various processes requires large-scale interactions in the brain,
with the pars orbitalis and pars triangularis showing among the rIFG sub-
divisions the highest level of anatomical and functional connectivity to other
brain areas [10, 28]. In line with this notion, research by [36] suggested that
the macaque Broadman area 45, which corresponds to the rIFG pars trian-
gularis, is part of a tightly integrated large-scale innermost core network that
connects various brain regions, including premotor, prefrontal, occipital, tem-
poral, parietal and thalamic regions, as well as the basal ganglia, cingulate
cortex, and insula. These connections offer both direct and indirect pathways
that could explain the observed long-range top-down effects of rIFG to V2 and
Precuneus serving as a basis for emotional and cognitive processes and their
behavioral expression.

Top-down modulations of parietal and occipital cortices by rIFG had sig-
nificant effects on behavioral performance in our study. Specifically, negative
emotions had a negative impact on behavioral performance, possibly by engag-
ing resources due to implicit emotion regulation [37], or to their increased
saliency [38]. This effect was more pronounced when the cognitive load was
low (congruent condition) compared to when it was high (incongruent condi-
tion). This suggests that there is competition for resources between cognitive
processing and resources allocated to emotional interference (see [6, 39]), with
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cognitive processing being more successful under high cognitive load. In other
words, the cognitive process “won” when the load was sufficiently high, i.e.,
we observed a form of emotional interference inhibition during increased cog-
nitive load. Hence, in order to prevent task-failing during high cognitive load,
the cognitive process demands a substantial allocation of neural processing
resources to ensure goal-directed and beneficial behavioral outcomes, even at
the cost of resources allocated away from the emotional process. Our inter-
pretation is that on the neural level, the rIFG plays a critical role in solving
resource competition by allocating resources to either process and thereby
implements a form of emotional interference inhibition. The outcome of this
process is also transmitted to visual and parietal cortices via top-down modu-
lations of V2 and Precuneus. These long-range modulations could bias visual
sensory processing in favor of task-beneficial processing by reducing emotional
or cognitive (stimulus) interference. This interpretation is supported by previ-
ous research indicating IFG’s involvement in visual processing, such as salience
[38] or change detection [40], and its potential to alter sensory processing
[29, 41]. Since the IFG is also part of the attentional network, such long-range
modulations and the sensory biases induced by them might involve attentional
processes as well [42]. Our findings of frequency-specific top-down modulation
are consistent with previous research, implicating α/β-band (see [43–46]) and
(high) γ-band [47] activity in inter-regional connections, feedback, inhibitory
control, attention [48] and emotional perceptual processing, respectively.

Implications for a general theory of emotion-cognition interaction

Our findings fit within Pessoa’s dual competition model, where competition
can arise at the perceptual and executive level [2]. Such competition due to
emotion (or motivation, as he described) can both enhance and impair behav-
ioral performance in cognitive tasks. Pessoa’s framework is based, inter alia,
on the limited resources theory by Norman [6], which proposes that systems
have limited processing resources and must allocate them to competing pro-
cesses, selecting the most relevant processes for goal-directed behavior [3, 7].
Spare capacities are used for task-irrelevant processes if resources are not
fully consumed [39]. Processes will interfere only once the limited capaci-
ties of the shared common pool are exceeded [6]. However, emotional stimuli
receive processing resources automatically and passively, even if irrelevant [1].
Yet, the brain must actively focus on task-relevant cognitive stimuli, displac-
ing emotional processing. Our results reveal the spatio-temporal evolution of
this shifting process at the neurophysiological and behavioral level. The shift
depends on factors such as task-relevance of the emotional stimuli, threat vs.
reward quality, and the level of processing where resource competition occurs
(perceptual or executive) [2] as emotional processing is capacity-limited [3, 39].
Meaning that only when resources are not fully occupied, free resources are
used for task-irrelevant processes [39]. Thus, the perceptual load is conse-
quently the critical factor in determining whether distractors are perceived
and require late selection and active control, or whether they are not perceived
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due to early selection [39]. Even though emotional and cognitive stimuli are
presented successively in our task, our observations demonstrate a competi-
tion between emotion and cognition on both the neural and the behavioral
level. Regarding behavioral performance, Pessoa states that task-relevant
stimuli typically improve performance, while task-irrelevant stimuli impair
it by diverting resources away from the task. Our experiment corroborates
this notion, as task-irrelevant emotional stimuli (negative images) impaired
behavioral performance, as seen in slower reaction time and lower accuracy,
i.e., showed an emotional interference effect. The emotional interference was
stronger in low cognitive load conditions. This finding can be explained by
the reallocation of executive processing resources from task-irrelevant emo-
tional stimuli to the task-relevant Flanker stimulus when cognitive load is
high. With more executive resources occupied by the high cognitive load, there
are fewer resources available for late processing of emotional stimuli, reducing
the emotional interference effect. On the neural level, according to Pessoa’s
model, the ACC is identified as a key brain region mediating the interaction
between emotion/motivation and executive functions [2]. The ACC is known
for its involvement in conflict monitoring [49, 50], but also cognitive and emo-
tional processes [12, 13]. However, our study found that although the ACC
was affected by the emotional interference, as it showed main effects of emo-
tion during Flanker stimulus presentation (i.e., tROI Flanker), it did not show
a significant emotion-cognition interaction effect, and therefore is not involved
in emotional interference inhibition. The rIFG, on the other hand, showed
significant interaction effects and thus may play a more crucial role in emo-
tional and cognitive processing and might serve as a common resource pool
besides the ACC in our task. However, the amygdala, which Pessoa considers
to have a central role in his model based on its extensive connectivity, did not
show significant effects at all in our study. This may be due to the difficulty
of reconstructing subcortical regions with EEG and FEM models, or due to
our conservative statistics. Our study supports the dual competition model of
[2] by showing the involvement of the rIFG in both inhibiting task-irrelevant
emotional processing and shifting attention towards task-relevant stimuli, i.e.,
employing emotional interference inhibition. The results of our study suggest
that the rIFG serves as an executor of shifting (see also [4]) and inhibition at
the intersection of executive functions and emotion processing, as evidenced
by the interaction effects found in the rIFG. On the perceptual level, a compe-
tition may occur if lingering effects of emotional images interfere with Flanker
stimuli. Other previous studies indicate that perceptual competition occurs in
visual cortex, as emotions enhance sensory representations here [8, 51], which
is in accordance to our findings of an emotion-cognition interaction effect in
the high γ band in Precuneus and V2. This indicates that emotional inter-
ference in such regions requires emotional interference inhibition executed by
rIFG that regulates activity in Precuneus and V2 via top-down modulations.
These top-down modulations by rIFG might serve as a regulatory mechanism
to counter-balance automatic processing effects of emotional stimuli or bias
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visual processing. Thus, the re-distribution of perceptual resources might be
driven by executive processes in rIFG. These results provide empirical support
for the dual role of the IFG described in Pessoa’s model, and detail the com-
petition of emotion and inhibition as one executive process. Specifically, our
results underscore the pivotal role of IFG in this interaction and shed light on
the specific brain regions, timing, frequency, and connectivity involved. In con-
clusion, our study supports and extends Pessoa’s model, providing new insights
into the underlying neural mechanisms of emotion-cognition interaction.

Why does resource competition have large behavioral effects when
seemingly less resources are needed overall?

Some readers may find it counter-intuitive that resource competition is consid-
ered the source of emotional interference, and yet the effect of this interference
seems to be larger in the behavioral performance when the competition for
resources seems to be weak, i.e., in the low cognitive load condition. While
our observations do indeed fit with established theories, we would like to give
a more detailed explanation here. There are actually two potential explana-
tions for our observations within the above theoretical framework: First, it
could be that there is simply not enough pressure to ”solve the competition”
in the condition with low cognitive load. Thus, both processes get resources,
whereas the actual need to assign resources predominantly to the cognitive
process, i.e., to employ emotional interference inhibition, is greater in the high
load condition where failing is more likely. In other words, even though there
is a larger emotional interference during low cognitive load (congruent condi-
tion), the task is still sufficiently well solved; there is even a behavioral ceiling
effect in that condition. Second, as reaction times are slower (and accuracies
lower) in the high cognitive load (incongruent) condition there is more time to
employ emotional interference inhibition and to modulate the final emotional
impact on the behavior, whereby the emotional interference effect is reduced
in this condition.

Potential Clinical Implications

Impairment to control interfering impulses, whether cognitive or emotional,
is a hallmark of various psychiatric disorders, including attention-deficit-
hyperactivity disorder [52], autism [53], borderline personality disorder [54],
major depression [55], obsessive-compulsive disorder [56], or substance use
disorder [57]. Of note, recent research by [20] suggests that different sub-
types of interference control are operative in different psychiatric disorders,
implying that these constructs may not be universally applicable. In contrast,
findings from our current study show that both stimulus and response interfer-
ence inhibition are affected by emotional interference. Further research is thus
needed to elucidate the exact endophenotypes and pathophysiology of (selec-
tive) impairments of inhibitory control in patients with psychiatric disorders.
Our study found evidence of the involvement of the rIFG, specifically the pars
triangularis, in emotional interference inhibition. Previous research has linked
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aberrant neural activation patterns in IFG to anxiety and depression [58] and
obsessive-compulsive disorder [59], and suggests that rIFG is a convergent site
for response inhibition and state anger [60]. Likewise, reduced rIFG activity
was reported in the context of impaired emotional interference inhibition in
patients with major depressive disorder [61]. Taken together, these and our
own findings highlight the critical role of rIFG in emotional interference inhi-
bition and its potential as a target structure for therapy of mental disorders.
The temporal and frequency information provided by our current study could
guide development of targeted interventions, e.g., by non-invasive (electric or
magnetic) brain stimulation [62, 63]. However, further research in patients with
psychiatric disorders is clearly needed to elucidate the neural mechanisms of
dysfunctional emotion-cognition interaction with similar spatio-temporal pre-
cision as in this study, thus potentially identifying neural targets for engaging
and modulating rIFG and its subregions for treatment of impaired inhibitory
control in these disorders. In addition to the importance for pathological condi-
tions, our results will inform future preventive interventions for self-regulation
and resilience fostering [64].

4 Conclusion

In summary, our study provides compelling evidence for the importance of the
rIFG, particularly the pars triangularis, in the interaction between emotion
and cognition. By determining this interaction in space, time, frequency, and
information transfer with high spatial and temporal resolution, we have shed
new light on the neurophysiological mechanisms underlying emotional and
cognitive processing, and the crucial role of rIFG in emotional interference
inhibition. Overall, our study contributes to a more integrated understanding
of the interplay between emotion and cognition, with clinical implications for
psychiatric disorders such as depression and substance abuse.

5 Methods

Ethics information

The study and all experimental protocols were approved by the local ethics
committees of the Medical Board of Rhineland-Palatinate, Mainz, Ger-
many, and Johann Wolfgang Goethe-University, Frankfurt, Germany, (ethical
approval: 837.074.16(10393)) and all participants were financially compensated
for study participation.

Participants

A total of 121 healthy human subjects participated in this dual-center study
after written informed consent (i.e., 59 and 62 subjects at study sites Frank-
furt and Mainz, respectively). All participants were screened for magnetic
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resonance imaging (MRI) exclusion criteria, mental health status (Mini-
International Neuropsychiatric Interview [65]) and handedness (Edinburgh
Handedness Inventory [66]) prior to study inclusion. Four participants had
to be excluded due to technical failures of the stimulus presentation during
task performance. The data of the remaining 117 subjects were used for the
behavioral analysis. Another thirteen participants were excluded from elec-
trophysiological analysis due to missing or incomplete MRI data sets (three
subjects due to panic attacks in the MR scanner which led to a premature
abortion of the measurement, one subject due to pain during MRI measure-
ment which led to a premature safety abort of the measurement, one subject
did not fit into the MR scanner due to excessive abdominal girth, and eight
subjects withdrew study consent before MRI measurements took place) and
one subject had to be excluded due to external noise during EEG recording
which could not be controlled for. Thus, all presented electrophysiological data
are from analyses of the remaining 103 participants (65 females; mean age ±
SD, 25 ± 6 years), who completed the study.

Questionnaires

After study inclusion and screening for MRI exclusion criteria (see above),
participants completed questionnaires on demographic information (Gender,
date, and place of birth, family origin, psychological diseases within the fam-
ily, family tree, marital status), Health and Lifestyle (physical and mental
diseases, height and weight, blood pressure, medication, usage of internet,
working conditions, income, family relationships, MRI compatibility) and their
drug consumption (Fagerström for nicotine consumption and the AUDIT for
alcohol consumption) (secutrial, www.secutrail.com). Further questionnaires
were the Trier Inventory for the Assessment of Chronic Stress (TICS), the
Short Form 36 Health Survey Questionnaire, the General Health Question-
naire (GHQ-28), the Life events checklist from LHC (adapted from [67]), the
Cognitive Emotion Regulation Questionnaire (CERQ), the Positive and Neg-
ative Affect Schedule (PANAS), the State-Trait Anger Expression Inventory
(STAXI), the State-Trait Anxiety Inventory (STAI), the Barratt Impulsiveness
Scale (BIS-11 [68]), the Behavioral Activation and Behavioral Inhibition Scales
(BIS/BAS), the Edinburgh Handedness Inventory [66] and an Intelligence test
(L-P-S Leistungsprüfsystem UT-3 [69]).

Experimental Design

Data collection took place in Frankfurt (Site 1) and Mainz (Site 2), respec-
tively. At Site 1, 59 participants and at Site 2, 62 participants took part in
the experiment. We attempted to set up and standardize the procedures as
closely as possible. The experiment comprised of three experimental days (Day
1-3), two EEG measurements (Day 1 and 2) and one fMRI measurement (Day
3). On Day 1, participants were screened for exclusion criteria (see subsection
Participants). Additionally, on Day 1 and 2, participants filled out the study
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questionnaires (see subsection Questionnaires). In total, four different behav-
ioral paradigms (emotional Stop stimulus Task, emotional Recent Probes Task,
Cognitive Emotion Regulation Task and emotional Flanker Task) were per-
formed by the participants on Day 1 and 2, with two tasks being performed
per experimental day [FMD: order of tasks randomized across subjects? /
OT: counterbalanced across subjects?]. For each task, the order of the trials
was counterbalanced within and across participants. During execution of the
tasks, an electroencephalography (EEG), which was spatially localized using
digitalized electrode localization and finite element head models (see Finite
element head modeling (FEM)), was recorded simultaneously. In addition to
task-related EEG, an eyes-closed resting state EEG (rsEEG, 10 min) was
recorded, either on Day 1 or Day 2 prior to task-related recordings, with the
order of rsEEG on Day 1 or Day 2 counterbalanced across subjects. On Day 3,
a resting state fMRI as well as structural T1 and T2 MRI measurements were
carried out on each participant. Here, only data from the emotional Flanker
Task EEG recordings as well as structural MRI measurements will be reported
(see Structural imaging and head modelling and Electroencephalography –
recording and analysis).



Mechanisms of emotion-cognition interaction 31

source model

skin
skull
csf

gm
wm

Behavioral paradigm of emotion cognition interaction
("emotional Flanker Task")

Large cohort of participants
N=121

EEG recording Behavioral Analysis

Bayesian 
Models

electrode  
colocalization

source model

EEG data
64 channels

Linear Mixed 
Effects Models

Tessellation of masks 
(FEM: conductivity value 

for each hexaheder)

Solving the forward problem

Preprocessing

Spectral analysis

Solving the inverse problem/
Source reconstruction

(beamformer algorithm)

Broad-band times courses
("Virtual Channels")

Temporal generalization 
decoding

Network analysis
(within/between areas)

Time frequency analysis

T
im

e
 dom

ain

F
re

qu
en

cy
do

m
ai

n

D
IC

S  B
ay

es
ia

n 
M

od
el

s/
 B

ay
es

ia
n 

C
or

re
la

tio
ns

SVM 

classification
TFR 

representations

LC
M

V

>>>>>>>

EMO FLANKER

< >
<<<><<<

sp
ec

tr
al

 G
ra

ng
er

 
ca

us
al

ity

skin

skull

csf

gm

wm

Segmentation of anatomy
(Simnibs, Seg3D)

structural MRI recordings
(T1, T2)

Oscillatory actvity
(theta/beta/gamma/
high gamma band)

Fig. 10 Pipeline for the analysis of emotion-cognition interaction. All major
analysis steps are shown in the pipeline including EEG source reconstruction with Finite
Element Headmodeling Finite element head modeling (FEM) based on digitalized electrode
positions Electrode digitalization and spatial localization, structural analysis Structural
imaging and head modelling and beamforming Source analysis, non-parametric statistics
on source level Statistical analyses of source reconstruction results, temporal generaliza-
tion of sources Temporal Generalization of condition classification, and Granger Causality
analysis of information transfer between neural sources Integration and segregation of emo-
tional and cognitive information within IFG, Non-parametric Granger Causality Analysis
and behavioral analysis Bayesian analysis of behavioral data Bayesian correlation of min/-
max β power interaction values with behavioral measures,Bayesian linear regression of β
power with behavioral measures, Correlation of top-down Granger Causality with behavior.



32 Mechanisms of emotion-cognition interaction

Task Design

For testing cognitive processing (i.e., stimulus interference and response selec-
tion interference operationalized by reaction time and accuracy, respectively,
[20]) in the context of emotional distraction, a custom-made modified ver-
sion of the Eriksen Flanker Task [70] was used, which was implemented in
Presentation® (Version 18.1, Neurobehavioral Systems, Inc., Berkeley, CA,
www.neurobs.com). Specifically, the Flanker stimulus in each trial was pre-
ceded by a picture with either neutral or negative emotional valence, taken
from the International Affective Picture System (IAPS, [71]). Each trial con-
sisted of (see Fig. 1 A): fixation cross (central, on black background, duration:
1000 ms), emotional stimulus (IAPS picture, neutral and negative, duration:
500 ms) and Flanker stimulus (white arrows on black screen, with congruent or
incongruent flanking arrows, duration: 1000 ms). The inter-trial interval (black
screen) was 400 ms. Participants were instructed to indicate the direction of
the central target arrow via left or right button presses (i.e., left and right ctrl
buttons on regular keyboard) via the index finger of the respective hand and
ignore the flanking arrows. In case of an incorrect (wrong button press) or a
response that was too slow (reaction time > 1000 ms) an error/no response
feedback was displayed on the screen for 300 ms. In total, 1120 trials in five
blocks of 224 trials each (duration: 11 min) were performed during simultane-
ous EEG recording. IAPS pictures were used as emotional stimuli: 280 neutral
pictures (mean valence was 5.15, mean arousal was 3.17) and 280 negative
pictures (mean valence was 2.47, mean arousal was 6.41). Each emotional pic-
ture was repeated twice and with different Flanker stimulus. The combination
of the emotional stimulus (negative/neutral) followed by the Flanker stimulus
(incongruent/congruent) led to four different conditions, i.e., neural congruent:
neutral picture followed by congruent Flanker, neutral incongruent: neutral
picture followed by incongruent Flanker, negative congruent: negative picture
followed by congruent Flanker, and negative incongruent: negative picture fol-
lowed by incongruent Flanker. For each condition, 280 trials were presented
with half of the trials showing a right- and left-side directed central target
arrow, respectively. Blocks of trials were separated by 5 minutes to allow par-
ticipants to relax in between blocks. To familiarize subjects with the task, prior
to the recording, a training block with 20 trials with neutral pictures only was
presented at the beginning of the experiment.

Behavioral Response acquisition

Behavioral responses were analyzed in terms of reaction time and accuracy.
Reaction time was measured as the time in ms after the Flanker stimulus onset
until the button press of the subject. Only correct trials were considered for
reaction time analysis. Reaction times faster than 90 ms were excluded, as
reaction times in this range have been reported to be biologically implausible
[72, 73]. Trials with a reaction time above 1000 ms were excluded too. Accuracy
was determined as the ratio of all correct trials and all displayed trials of a given
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task condition, and calculated for each condition separately. The statistical
analysis was performed on 117 subjects (see above).

Bayesian analysis of behavioral data

The experimental effect of the factors emotion and cognition on reaction time
and accuracy was determined with a Bayesian linear regression. We employed
a hierarchical model and used a non-centered parameterization [74, 75] to
foster convergence. We modelled the emotion and cognition effects and their
interaction. For comparison to previous studies using frequentist statistics
a similar mixed-effect model was also analyzed [76] with (RStudio Version
1.4.1106 © 2009-2021 RStudio, PBC); the corresponding mixed-effects mod-
eling procedures and results are reported in the Supplementary information
about behavioral effects of emotion-cognition interaction and Tab. A1. In the
following, we describe the Bayesian model definition for reaction time and
accuracy data. Single-trial values of reaction times were z -transformed and log-
transformed (to account for their skewed distribution) before fitting the model,
the estimated regression coefficients are reported with respect to these trans-
formations. For the ith trial and the j th subject, we can define the likelihood
of the reaction time given by yi,j as:

yi,j ∼ N (αj + xEi,jβ1j + xCi,jβ2j + xEj ∗ xCj β3, σ
2) (1)

where for the j th subject, αj is the random intercept and encodes the grand
average response time and β1j , β2j are the random slopes which capture the
differences in response times for emotion (negative vs. neutral), cognition
(incongruent vs. congruent), respectively. Adding per-subject random slope
parameters also for the interaction predictor term β3 did not improve the
model and was thus left out. The term xEi,j encodes the emotion condition (-

0.5 = negative; 0.5 = neutral), the term xCi,j encodes the cognitive condition
(-0.5 = incongruent; 0.5 = congruent). To obtain a more efficient sampling of
the posterior, we inferred the random effects (intercepts and slopes) with a
deterministic transformation of the parameters αj and β1..2j . More specifically,
we did not infer individual slopes by modeling their values directly, for exam-
ple saying that they are normally distributed around a group mean. Instead,
we modelled their values relative to the mean (i.e., βoffset ) and allowed the
effects to deviate from the mean to a certain degree (i.e., σb).

α = αintercept + αoffset ∗ σa (2)

β1 = βE + βE
offset ∗ σbE (3)

β2 = βC + βC
offset ∗ σbC (4)

(5)
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For the accuracy data we assumed Yi,j to have a Bernoulli distribution:

yi,j ∼ Bernoulli(p) (6)

with probability of success pi, where in the logistic regression model the logit
of the probability pi is a linear function of the predictor variable xi:

logit(pi) = αj + xEi,jβ1j + xCi,jβ2j + xEj ∗ xCj β3, σ
2 . (7)

As above, we used the same non-centered parameterization. All parameters
were assumed to be drawn from normal distributions. We used non-informative
priors in both models that can be found in Tab. A3.

Structural imaging and head modelling

Electrode digitalization and spatial localization

The position in space of all electrodes as well as the location of the nasion
and fiducials were digitized and recorded with the ultrasonic sensor pen 3D-
Digitizing System ELPOS and the respective ElGuide Software (ZEBRIS,
Zebris Medizintechnik, Tübingen, Germany). Care was taken to ensure cor-
rect registration and spatial configuration of the electrodes. To this end, we
created an average configuration file for each EEG cap size (56 cm, 58 cm, 60
cm) of all participants wearing the respective cap size. We then compared each
electrode position of each individual electrode configuration to i) the respec-
tive electrode position of the average electrode configuration and ii) to the
respective electrode position of the same participant’s electrode configuration
at her/his second EEG session (not of interest for this study) via Euclidean
distance. In case an electrode position exceeded 1 cm off reference, we replaced
its position with the respective coordinates of either the average configuration
or of the second EEG session configuration, depending on visual inspection to
ensure correct electrode position.

Magnetic resonance imaging (MRI)

To create individual head models for source reconstruction, T1- and T2-
weighted structural MRI datasets were acquired for each individual partici-
pant. To ensure later co-registration and alignment of the digitized electrode
position, fiducials were used as anatomical markers. We added vitamin E pills
at the fiducials positions when acquiring the MRI, using the same convention
when marking them during the digitization of the electrodes’ location. At the
study site 1 (Frankfurt), MRI data were acquired at a SIEMENS MAGNE-
TOM Trio Syngo MR A35 3 Tesla MRI System (Erlangen, Germany) with an
8-channel head coil. A magnetization prepared rapid gradient echo (MPRAGE)
T1-weighted sequence with fat suppression lasting 4:28 min (192 sagittal slices
of 1 mm thickness with a distance factor of 50%, FOV 256 × 256 mm, 256
× 256 matrix, TR = 1900 ms, TE = 2.74 ms, flip angle = 9°, 1.0 × 1.0 ×
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1.0 mm3 voxels) and a turbo spin-echo sequence (TSE) sequence lasting 7:51
min (192 sagittal slices of 1 mm thickness with a distance factor of 0%, FOV
256 × 256 mm, 256 × 256 matrix, TR = 1500 ms, TE = 355 ms, flip angle =
0°, 1.0 × 1.0 × 1.0 mm3 voxels) were acquired. At study site 2 (Mainz), MRI
data were acquired at a SIEMENS MAGNETOM TrioTim Syngo MR B17 3
Tesla MRI System (Erlangen, Germany) with a 32-channel head-coil. The spe-
cific parameters for each sequence were defined to match as closely as possible
those from study site 1 given the respective specificities of the MRI system
and the available software. That is, an MPRAGE T1-weighted sequence with
fat suppression lasting 4:26 min (192 sagittal slices of 1 mm thickness with a
distance factor of 50%, FOV 256 × 256 mm, 256 × 256 matrix, TR = 1900
ms, TE = 2.23 ms, flip angle = 9°, 1.0 × 1.0 × 1.0 mm3 voxels) and a TSE
sequence lasting 7:50 min was used (192 sagittal slices of 1 mm thickness with
a distance factor of 0%, FOV 256 × 256 mm, 256 × 256 matrix, TR = 1500
ms, TE = 339 ms, flip angle = 0°, 1.0 × 1.0 × 1.0 mm3 voxels) were used.

Finite element head modeling (FEM)

To create individual finite element head models, we used SimNIBS (Version
2.0.1, www.simnibs.org) with mri2mesh [77] and the FieldTrip-SimBio pipeline
(Version 2.0.1) [78]. First, the mri2mesh pipeline from SimNIBS was used
with the individual T1 and T2 images as input to create realistic individ-
ual segmentations. Hereby T2-weighted images, in addition to T1-weighted
images, are used to further improve the segmentation between skull and
cerebrospinal fluid [79]. This pipeline involves Freesurfer [80, 81] and FSL
[82] to automatically segment brain and non-brain tissue into five compart-
ments (skin, skull, cerebrospinal fluid, white, and gray matter) [77]. The
results of the automatic segmentations were visually inspected in Seg3D (ver-
sion 2.2.1, Scientific Computing and Imaging Institute, University of Utah,
https://www.sci.utah.edu/cibc-software/seg3d.html) to check for segmenta-
tion errors and manually correct them if necessary. The surface masks so
generated were checked for holes and overlaps. Using the Fieldtrip-Simbio
pipeline, the masks were then transformed into meshes consisting of hexahe-
drons, which subsequently were used to compute the individual FEM forward
solutions. Following [83, 84] we assigned 0.33, 0.14, 1.79, 0.01 and 0.43 S/m as
conductivity values for gray matter, white matter, cerebrospinal fluid, skull,
and scalp. The FEM models were aligned to the digitized electrode positions
via the nasion and fiducials. To reduce the space between the real record-
ing site (lower part of the electrode) and the digitized site (upper part of
the electrode), the electrode position of each electrode was projected down to
the nearest point onto the skin. We warped a 3-D template grid with 10 mm
spacing in Montreal Neurological Institute (MNI) from fieldtrip [85] to each
individual head model covering the whole brain. Hereby, each grid point can
directly be compared to the same grid points of other participants, as each
point represents the same respective brain area. As a last step, we calculated
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the individual lead fields per warped grid point, representing the electrical field
of the respective tissue, given the individual electrode position.

Electroencephalography – recording and analysis

Data acquisition

Surface EEG was continuously recorded during the emotional Flanker task
with an active 64-channel EEG system (actiCAP system, Brain Products
GmbH, Gilching, Germany) using the standard 64Ch-actiCAP-Slim electrodes
montage (Brain Products GmbH, Gilching, Germany). Four recording chan-
nels (predefined in the montage by brain products at position P7, P8, P9,
P10) were placed near the outer right and left edges of the eye and 1 cm below
and above the right eye to collect horizontal and vertical electrooculography
(EOG), respectively. Therefore, EEG data was collected from only 60 chan-
nels. EEG data were recorded with BrainVision Recorder (Version 1.20.0601)
with a sampling rate of 2.5 kHz, except for the first nine participants at Site
1, where a sampling rate of 5 kHz was used. Participants were placed centrally
at about 80 cm distance in front of a standard PC monitor (ASUS VG278HV,
27”, 144Hz, 1920×1080, 1 ms GTG) within an EEG chamber with sound and
RF shielding. In order to minimize artifacts during data acquisition, partici-
pants were instructed to relax their jaw and neck muscles and sit as still as
possible during the recordings.

Preprocessing of EEG data

Preprocessing and analysis of the EEG data were performed with MATLAB
R2012b (MathWorks Inc, Natick, MA, USA) and the FieldTrip toolbox (Ver-
sion 20180729) [85]). First, data were low-pass filtered with a cut-off at 300
Hz. Subsequently, data were down-sampled to 500 Hz and cut into 1500 ms
long epochs starting with the emotional picture onset. Other epochs were
cut 2000 ms starting with the fixation cross onset and ending 500 ms after
Flanker stimulus onset. Bad trials (i.e., with electrode jumps or muscle arti-
facts) were rejected using the FieldTrip automatic artifact rejection functions
and line noise was filtered out with discrete Fourier transform filters at 50,
100, 150 and 200 Hz. Further artifacts (e.g., due to eye movements or heart
beat) were removed using an extended infomax (runica) algorithm (provided
in Fieldtrip/EEGLAB) [86]. Independent components were visually inspected
and rejected based on topography and spectral power [87] and/or if there was a
significant correlation (rho> 0.3) with either the EOG stimulus or with a pro-
totypical “square-root” spectrum commonly observed in muscle artifacts [88].
Then data was re-referenced to the common average. This EEG data cleaning
approach resulted in, on average, exclusion of 16.29 ± 29.72 (mean ± standard
deviation) trials (range of excluded trials 0 to 177) out of a total of 1120 tri-
als. To assure that statistical differences in subsequent comparisons were not
caused by different numbers of trials per condition, we stratified the number
of trials per condition per subject by randomly selecting for each condition the
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minimum amount of trials found across conditions in case of differences in the
number of trials per condition. Furthermore, we only used correct trials, i.e.,
trials with correct button presses within required response times (> 90 ms, <
1000 ms).

Spectral analysis at sensor level

To define specific frequency bands for subsequent source reconstruction and
further source-level analysis (see Source analysis), we first analyzed the spec-
tral power at sensor level in order to find all potentially task relevant frequency
bands. We obtained spectral power estimates between 3 and 120 Hz with Han-
ning tapers, over the tROI Flanker, and baseline period (see Temporal ROI
definition), for all EEG channels and participants. In order to avoid circu-
lar reasoning and ’double-dipping’ with respect to the subsequent statistical
analysis comparing conditions in EEG source space, we performed sensor-level
statistics by contrasting ’pooled’ task conditions (all four conditions) with cor-
responding baseline periods ([89]). For this, we used a dependent samples t-test
and a cluster-based correction method ([90]) to account for multiple compar-
isons across frequencies only (since data was averaged across channels and
time). We employed a two-tailed test with an alpha threshold of α = 0.025
and cluster alpha of αcluster = 0.025. Finally, to delineate different frequency
bands in the statistical analysis results, we identified the points of maximum
curvature in the t-value vs. frequency curve by visual inspection. This allowed
us to determine four non-overlapping frequency bands (a θ band from 5 to 9
Hz with a center frequency of 7 Hz (± 2 Hz spectral smoothing), a β band from
9 to 33 Hz with a center frequency of 21 Hz (± 12 Hz spectral smoothing), a
γ band from 33 to 64 Hz with a center frequency of 49 Hz (± 16 Hz spectral
smoothing) and a high γ band from 64 to 140Hz with a center frequency of
102 (± 38 Hz spectral smoothing) (see Fig. A1).

Temporal ROI definition

Two temporal regions of interest, one during the Flanker stimulus presenta-
tion (tROI Flanker) and another during the emotional picture presentation
(tROI Emo) were defined 1 for each frequency band. To exclude early visual
processing, the tROI Flanker started only 50 ms after the Flanker stimulus
onset ([91, 92] and ended around the average minimum reaction time (430 ms)
to exclude motor responses. This led to time windows of interest for each fre-
quency band (beta, γ, and high γ band) with a duration of approximately 380
ms. The duration of tROIs varied slightly to match a full number of cycles of
the center frequency of each frequency band, i.e., a center frequency of 21 Hz
in the beta band resulted in a tROI of 380.95 ms (8 full cycles), a center fre-
quency of 49 Hz in the γ band resulted in a tROI of 387.76 ms (19 full cycles)
and a center frequency of 102 Hz in the high γ band resulted in a tROI of
382.35 ms (39 full cycles). As lower frequencies have longer wavelengths, we
increased the time window for the θ band to obtain three full cycles of the
center frequency of 7 Hz to 428.57 ms by starting at tROI FLANKER onset.
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The same procedure was applied to the tROI EMO during the emotional pic-
ture presentation. In the θ band, analogous to the tROI FLANKER, the tROI
EMO was 428.57 ms long and started at the emotional picture onset; see Fig.
1 B and Temporal ROI definition for definition of tROIs).

Source analysis

Beamformer source analysis was performed using the dynamic imaging of
coherent sources (DICS) algorithm [93], with real-valued filter coefficients, as
implemented in FieldTrip. This adaptive spatial filter estimates the power at
each grid point based on individual lead fields (see Finite element head mod-
eling (FEM)) and cross-spectral density matrices. The latter were computed
for the two previously described ROIs (see Temporal ROI definition for fur-
ther details) and for a baseline period (from -500 ms to -120 ms (and to
-71.65 ms in the case of θ) before the onset of the emotional picture during
the fixation cross) and four different bands. The frequency bands were defined
as described in section Spectral analysis at sensor level, and consisted of a
θ band with a center frequency of 7 Hz (± 2 Hz spectral smoothing), a β
band with a center frequency of 21 Hz (± 12 Hz spectral smoothing), a γ
band with a center frequency of 49 Hz (± 16 Hz spectral smoothing) and a
high γ band with a center frequency of 102 (± 38 Hz spectral smoothing).
Cross-spectral density matrix calculation was performed using the FieldTrip
toolbox with the multitaper method [94]. We used a regularization of 5% ([95]).
Beamformer filters were computed based on the data from both tROIs and
the baseline across all conditions (’common filters’), thus assuring that differ-
ences in source activation do not arise from differences in filters derived from
the individual conditions. Additionally, we report point estimates (mean) and
95% confidence intervals from bootstrapping with 5000 random resampling for
each contrast: emotion (negative − neutral), cognition (incongruent − con-
gruent) and emotion-cogniton interaction ((negative incongruent − neutral
incongruent) − (negative congruent − neutral congruent)).

Statistical analyses of source reconstruction results

The source statistics comprised of two levels. First, we computed within-
subject t-values by two-sided t-tests on single trial data for tROI Flanker
versus baseline and for tROI Emo versus baseline (see Fig. 1) for each task
condition and grid point (dual state beamformer [96]) with an alpha of 0.025.
Second, a 2x2 repeated-measures cluster permutation ANOVA [97] (for code
see https://github.com/sashel/permANOVA) with the within-subject factors
emotion (negative/neutral) and cognition (incongruent/congruent) was per-
formed on t-values obtained from the first level, across subjects. To correct for
multiple comparisons in four frequency bands (θ, β , γ and high γ) and two
time windows (tROI Emo and tROI Flanker) we used Bonferroni correction
with a factor of 8 leading to an alpha level of 0.00625. To correct for the num-
ber of grid voxels, we used a cluster-based correction approach [90] with 5000
permutations and a cluster-alpha level of 0.00625. Further, we obtained the
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coordinates of the active sources using the local maxima of the activation –
without resorting to prior assumptions on their locations. This approach is in
line with best practices recommendations for source reconstructions in MEG
[98].

Temporal Generalization of condition classification

We used a time-resolved support vector machine analysis (t-SVM) with a linear
kernel to test the ability of a classifier trained at each time sample to discrim-
inate conditions at all other time samples [99] on source activity time courses
as input data. The t-SVM was trained and tested separately for each subject,
and each IFG subregion (IFGTri, IFGOp and IFGOrb). First, we z-normalized
each source activity time course relative to the baseline period (see Temporal
ROI definition for definition of baseline). Then, we smoothed the data with
a Gaussian Kernel of ±25 ms and down sampled it to 250 Hz, similar to the
approach in [100], and low-pass filtered at 60 Hz, in order to reduce the com-
putational cost and increase the stimulus-to-noise ratio. After preprocessing,
the source data were randomly assigned to one of twenty supertrials (per con-
dition) and averaged (MATLAB code was adopted from [101], which builds
on the library for SVMs by [102]). Finally, we separated these supertrials into
training and testing data, with one supertrial per condition serving as test data
and all others as training data. The binary classification was performed for
each time point from 0 ms to 1000 ms after the onset of the emotional picture.
Training one classifier at time t and generalizing it to time t’ was performed
within the cross-validation so that t and t’ data came from independent sets
of trials. To obtain a more robust estimate of the classification accuracy, we
performed 200 iterations of supertrials creation, averaging and classification.
The final temporal generalization classification reflects the average across these
iterations. Classification for the emotional effects was performed between neg-
ative and neutral conditions, for cognitive effects classification was performed
between incongruent and congruent and for the emotion-cognition interaction
effects classification was performed between the pooled conditions of incongru-
ent negative and congruent neutral versus the pooled conditions of incongruent
neutral and congruent negative. This allowed to create two conditions with
pooled data reflecting the interaction effect and thereby be classified with an
SVM. For statistical testing, we employed a dependent-samples permutation
t-test and a cluster-based correction method [90], where the number of permu-
tations was set to 10000. The null hypothesis of no experimental effect for the
two-dimensional classification matrix was equal to 50% chance level and tested
within a tROI of 1000 ms including the emotional picture presentation and
500 ms of the Flanker stimulus presentation (tROI EMO and tROI Flanker)
for the E contrast, while during the tROI Flanker for C and EC contrasts.
The statistical tests were two-sided (the α value was set to 0.025) and Bonfer-
roni corrected for the number of tests performed (nine tests; three IFG regions
by three classifications: E, C and EC). Since the results of statistical analyses
are random variables themselves, we additionally conducted bootstrapping of
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the cluster parameter estimates to obtain confidence intervals. Specifically, we
calculated bootstrap-confidence intervals for maximum classification accuracy
and the respective time by running the cluster statistics with 5000 bootstrap
samples. We calculated point estimates (mean) and 95% confidence intervals
from these bootstrap samples.

Bayesian correlation of min/max β power interaction values
with behavioral measures

Based on the source reconstruction and temporal generalization results (see
Source analysis) we focused the subsequent analysis on IFGTri activity. To
determine its behavioral relevance, we calculated the interaction effect ((neg-
ative incongruent − neutral incongruent) − (negative congruent − neutral
congruent) in the β-band ((9−33 Hz, 0.05−0.43 ms, similar frequency and time
range as for the source reconstruction, tROI Flanker). Since the magnitude
of an interaction is proportional to its absolute value, the closer the interac-
tion value is to zero, the weaker the interaction is, while the farther away it is
from zero, the stronger the interaction is. This means that both minimum and
maximum interaction values reflect the strongest interaction present. As we
were specifically interested in individual effects of emotion-cognition interac-
tion, we searched for the minimum and maximum β power interaction values
for each subject respectively correlated them to behavioral measures (aver-
age reaction time and average accuracy per subject). We performed two-sided
Bayesian correlations (Pearson’s correlation) using their JASP implementation
[103], regressing behavioral parameters on β-band spectral-power interaction-
values. Hypotheses tested were H0: ρ = 0, which is a standard setting in
JASP (see http://static.jasp-stats.org/Manuals/Bayesian Guide v0.12.2.pdf),
and H1: ρ 6= 0. The standard settings of JASP for the beta priors were used
to give all correlations between -1 and +1 an equal prior probability, i.e., a
stretched beta prior width of 1 (see Tab. A6).

Bayesian linear regression of β power with behavioral
measures

We used Bayesian linear regressions to determine the most informative factor
for behavioral measures: mean β power, β power interaction, or β power inter-
action in relation to emotion or cognition. In the following, we describe the
respective Bayesian model definitions for predicting mean reaction time and
mean accuracy data based on β power values per subject. We define the like-
lihood of the reaction time or the accuracy respectively (given by y), denoted
as:

yj ∼ N (α+meanmin/max
power + β1 ∗ βmin/max

j,powerE β2 ∗ βmin/max
j,powerC

β3 ∗ βmin/max
j,powerEC , σ

2)
(8)

where for the j th subject, α is the intercept and encodes the grand average

of reaction time or accuracy, the mean
min/max
power is the average power over con-

ditions and β1, β2 and β3 are regression coefficients capturing the influence

http://static.jasp-stats.org/Manuals/Bayesian_Guide_ v0.12.2.pdf
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of differences in β
min/max
power for emotion (E, negative − neutral), cognition (C,

incongruent − congruent) and the interaction emotion-cognition (EC, (neg-
ative incongruent − neutral incongruent) − (negative congruent − neutral
congruent)), respectively. We z -normalized all variables before modeling, and
β coefficients are reported with respect to these standardized variables. All
parameters were assumed to be drawn from normal distributions. We used
non-informative priors in both models that can be found in Tab. A8.

Non-parametric Granger Causality Analysis

To compute conditional Granger Causality (cGC), we employed a multivariate
non-parametric spectral matrix factorization. We computed the CSD matrix
of the source stimulus using a fast Fourier transform in combination with
multitapers (5 Hz smoothing). We used the non-parametric variant of cGC
[104] in order to avoid choosing a multivariate autoregressive model order,
which can introduce a bias. Additionally, we used a block-wise approach [105]
considering the first two principal components (PCs) of each source stimulus
as a block, then estimating the cGC that a source X exerts over a source
Y conditional on the remaining areas [44]. We applied the cGC to the three
IFG subdivisions (IFGTri, IFGOrb and IFGOp) and the posterior sources that
showed significant interaction effects: V2 and Precuneus (High γ band). We
focused on bidirectional connectivity within IFG (IFGTri, IFGOp and IFGOrb)
and of each IFG subdivision and V2 and Precuneus, respectively, in the post
cognitive stimulus window (0.05 to 0.500 s). To alleviate the problem of non-
stationarity we computed the cGC over two shorter time windows with 250 ms
duration, with a spectral resolution of 2 Hz. The two time-sliding windows had
an overlap of 50 ms: from 50 to 300 and from 250 to 500 ms. As the frequency
ranges observed by [15] in relation to behavioral inhibition, were found to be
low γ range, we broadened the statistical analysis from 10 to 44 Hz, despite
our main interest lying on the β-band.

Statistical testing of cGC

First, we assessed whether the average cGC (in the frequency range of 8− 44
Hz) of the source-target pairs was reliably above the bias level for each condi-
tion (negative congruent, neutral congruent, negative incongruent and neutral
incongruent) separately. In order to estimate the bias, we randomly permuted
the trials 200 times in each condition to create a surrogate distribution of
mean cGC values. We tested if the found cGC value was in the upper 99.37%
extreme (equivalent p<0.025 with Bonferroni correction for four conditions)
of the surrogates’ distribution. If the average cGC exceeded the bias level,
this source-target link was considered significant. These steps were repeated
for each subject separately. Second, for both source-target pairs, we computed
interaction effects on cGC values at group level on subjects showing a signifi-
cant link at least in one condition. The statistical comparison was performed
in the range of 8− 44 Hz using a dependent-samples permutation ANOVA. A
cluster-based correction was used to account for multiple comparisons across
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frequencies [90]. Adjacent frequency samples with uncorrected p-values of 0.05
were considered as clusters. Fifty-thousand permutations were performed, and
the critical α value was set to 0.05. Further Bonferroni correction was applied
to account for multiple comparisons across links. Additionally, we report point
estimates (mean) and 95% confidence intervals from bootstrapping with 50000
random resampling for each contrast: emotion (negative − neutral), cognition
(incongruent − congruent) and emotion-cogniton interaction ((negative incon-
gruent − neutral incongruent) − (negative congruent − neutral congruent))
for each link and each significant frequency range.

Correlation of top-down Granger Causality with behavior

To understand whether the links we found are of behavioral relevance, we used
Bayesian linear regressions to determine which of the significant links from
IFG to visual areas is the most informative factor to predict mean reaction
time and mean accuracy, respectively. In the following, we describe the respec-
tive Bayesian model definition for predicting mean reaction time and mean
accuracy data based on the links that showed significant effects of emotion,
cognition or emotion-cognition interaction in Granger causality at certain fre-
quency range: For the j th subject, we define the likelihood of the reaction time
or the accuracy respectively given by y; denoted as:

yj ∼ N (α+ β1 ∗ cGClink1
j + ...+ βn ∗ cGClinkn

j , σ2) (9)

where for the j th subject, α is the intercept and encodes the grand average
of reaction time or accuracy, respectively, and β1...βn capture the relation
between the cGC links of the IFG subdivisions to Precuneus or V2 and the
dependent variables (reaction time or accuracy). Additionally, we performed
Bayesian regression regressing the differences in behavioral measures (∆rt

for reaction time, ∆acc for accuracy) on the difference in Granger causality
(∆cGC) across links selected based on the analysis above (links that had a
94% HDI of entirely one sign). Differences between conditions were computed
as incongruent − congruent, in relation to cognitive processing (c contrast),
and negative − neutral for emotional processing (E contrast). In the following,
we describe the respective Bayesian model definition for a regression of ∆rt

reaction time and ∆acc accuracy data:

y∆rt/acc

j ∼ N (α+ β1 ∗ cGC
link∆

1
j + ...+ βn ∗ cGC

link∆
n

j , σ2) (10)

where for the ∆rt in the C contrast (incongruent − congruent) the selected
links were the IFGOrb to Precuneus and V2, while only the link IFGOp to V2
entered the E contrast (negative − neutral) for ∆rt and ∆acc . We z -normalized
all variables before modeling, and β coefficients are reported with respect to
these standardized variables. All parameters were assumed to be drawn from
normal distributions. We used non-informative priors in both models that can
be found in Tab. A8 and Tab. A10, respectively.
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Software and settings for parameter inference of Bayesian
models when using Markov chain Monte Carlo sampling

Except for those cases where we indicate the use of the JASP software package,
we estimated all the model regression coefficients using Bayesian inference
with MCMC, using the python package PyMC3 [106] with NUTS (NO-U-Turn
Sampling), using multiple independent Markov Chains. We ran four chains
with 3000 burn-in (tuning) steps using NUTS. Then, each chain performed
8000 steps for the Bayesian Hierarchical model of reaction times and accuracy
and 10000 steps for the Bayesian linear regression of β power and cGC values;
those steps were used to approximate the posterior distribution. To check the
validity of the sampling, we verified that the R-hat statistic was below 1.05.

The Bayesian Hierarchical analysis of behavioral data and Bayesian linear
regression of β power and cGC values were conducted using Python (Version
3.7) [107] in Jupyter Notebook [108].
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Vorab. We thank Shirin Hagner, Kristin Weineck, Sarah Brosche and Svenja
Hummel for their help in data collection.

Appendix A Supplementary Material

A.1 Supplementary information about behavioral
effects of emotion-cognition interaction

The average reaction time was 547.75±51.74ms. The increased cognitive load
during incongruent versus congruent trials slowed down the reaction time by
95.2 ms on average. The increased emotional interference during negative com-
pared to neutral trials slowed down the reaction time by 8.2 ms on average.
The mean reaction time were 601.6± 59.49ms for negative incongruent trials,
593.6 ± 58.96ms for neutral incongruent trials, 506.6 ± 44.55ms for negative
congruent trials and 498.2 ± 43.97ms for neutral congruent trials. There was
a stronger emotional interference when the cognitive load was lower, as the
difference on incongruent minus congruent for negative was 90.4 ms compared
to 95.4 ms for neutral trials. This means subjects are slowed down in their
reaction time due to higher emotional valence (negative) especially when the
cognitive load is lower (congruent Flanker). For reaction time, a linear mixed
effect model was used to predict reaction time based on an interaction of emo-
tion (i.e., negative/neutral) and cognition (incongruent/congruent) as main
effects, allowing for different intercepts per subject (random effects). For accu-
racy, the same model was used in a general linear mixed effect model approach.

https://doi.org/10.7717/peerj-cs.55
https://doi.org/10.7717/peerj-cs.55
https://doi.org/10.7717/peerj-cs.55
https://docs.anaconda.com/
https://docs.anaconda.com/
https://www.R-project.org/


54 Mechanisms of emotion-cognition interaction

Both models were statistically tested against the respective null model, the
same model but without the interaction term. To test for statistical signifi-
cance of the interaction term, a maximum likelihood ratio approach [109] was
used to compare the models. Model coding was done in R [110] with the lmer
and glmer function from the lme4-package [111]. To test whether modeling
the interaction is more informative compared to the null model without the
interaction when predicting the reaction time, a maximum likelihood ratio was
computed. The interaction of emotional load and cognitive load is significant
(p=0.001563) in terms of reaction time (see supplementary Table A1). The
accuracy was generally high, as the average accuracy was 95.18 ± 4.79% sug-
gesting an easy feasibility of the task. Nevertheless, the increased cognitive
load of incongruent compared to congruent trials led to a drop in accuracy of
7.15 % on average. The increased emotional interference during negative com-
pared to neutral trials led to a drop in accuracy of 0.55 % on average. The
mean accuracy was 91.2 ± 7.14% for negative incongruent, 92.0 ± 7.38% for
neutral incongruent, 98.6± 2.53% for negative congruent and 98.9± 2.1% for
neutral congruent trials. There was a stronger emotional interference when the
cognitive load was higher, as the difference on incongruent minus congruent for
negative was -7.4% compared to -6.8% for neutral. This means subjects make
more incorrect responses during high cognitive load (incongruent Flanker)
especially with high emotional load (negative valence). In sum, the cognitive
effect was ten times stronger than the emotional effect, which in turn was ten
times stronger than the interaction effect on the level of behavior (see Fig. 1).
To test whether modeling the interaction is more informative compared to the
null model without the interaction when predicting the accuracy, a maximum
likelihood ratio was computed. The interaction of emotional load and cognitive
load is not significant (p=0.2199) in terms of accuracy (see Table A1).

Table A1 Results for the frequentist linear mixed models for reaction times and accuracy

Model AIC BIC deviance χ2 χ df p
RT Null Model -350810 -350761 -350820 NA NA NA
RT Interaction Model -350818 -350759 -350830 10.002 1 0.001563**
Acc Null Model 41713 41752 41705 NA NA NA
Acc Interaction Model 41714 41762 41704 1.5052 1 0.2199

A.2 Supplementary Results of EEG source
reconstruction

A.2.1 Definition of frequency bands of interest at the sensor
level

To identify frequency bands of interest for the subsequent source-level analysis,
we computed the contrast task against baseline at the sensor level, and identi-
fied four frequency bands of interest: θ 7 ± 2 Hz, β 21 ± 12 Hz, γ 49 ± 16 Hz
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Table A2 Priors of Hierarchical Bayesian linear regression for reaction time and accuracy

parameter value
αintercept Normal (µ = 0, σ = 5)
βE Normal(µ = 0, σ = 3)
βC Normal(µ = 0, σ = 3)
βEC Normal(µ = 0, σ = 3)
αoffset Normal(µ = 0, σ = 1)
βEoffset Normal(µ = 0, σ = 1)
βCoffset Normal(µ = 0, σ = 1)
σ HalfNormal (σ = 1)

Table A3 Mean reaction time and mean accuracy per subject was predicted based on E,
C and EC contrast (see Referencessubsection:bayesianbehavior)

and high γ 102 ± 38 Hz (center frequency ± spectral smoothing) for both time
windows of interest before (tROI Emo) and after (tROI Flanker) (Fig. A1).
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Fig. A1 Spectral sensor level analysis for the task-independent definition of frequency
bands of interest. Power spectrum analysis, obtained from pooled task conditions versus
baseline to determine frequency bands (n=103). Grey lines in the power spectrum frame the
frequency ranges of interest for subsequent beamforming analysis

A.2.2 Supplementary results of source localization

In order to identify neural sources significantly modulated by the factors emo-
tion and cognition in our task, and by their interaction, we reconstructed
sources of each contrast (E, C and EC), both, before (tROI Emo) and after
(tROI Flanker) Flanker signal onset. In Tab. A4 we report the full results of
four different frequency bands, θ 7 ± 2 Hz, β 21 ± 12 Hz, γ 49 ± 16 Hz and
high γ 102 ± 38 Hz (center frequency ± spectral smoothing) for both time
windows of interest – before (tROI Emo) and after (tROI Flanker).
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Fig. A2 Source activity in the θ band (5-9 Hz) during tROI Emo. Surface plots show
significant F-values of ANOVA (cluster-based permutation test, Bonferroni corrected for four
frequency bands and two time windows, alpha and clusteralpha <0.00625, n=103). Peak
voxels (local extrema) of significant clusters are indicated with circles and labels (for MNI
coordinates, see Tab. A4). Dashed circles mark peak voxels invisible in this representation.
A, Task design and analyzed tROI; B, main effect of emotion (E); C, main effect of cognition
(C); D, interaction effect between emotion and cognition (EC).
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Fig. A3 Source activity in the θ band (5-9 Hz) during tROI Flanker. Surface plots show
significant F-values of ANOVA (cluster-based permutation test, Bonferroni corrected for four
frequency bands and two time windows, alpha and clusteralpha <0.00625, n=103). Peak
voxels (local extrema) of significant clusters are indicated with circles and labels (for MNI
coordinates, see Tab. A4). Dashed circles mark peak voxels invisible in this representation.
A, Task design and analyzed tROI; B, main effect of emotion (E); C, main effect of cognition
(C); D, interaction effect between emotion and cognition (EC).
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Fig. A4 Source activity in the γ band (33-65 Hz) during tROI Flanker. Surface plots show
significant F-values of ANOVA (cluster-based permutation test, Bonferroni corrected for four
frequency bands and two time windows, alpha and clusteralpha <0.00625, n=103). Peak
voxels (local extrema) of significant clusters are indicated with circles and labels (for MNI
coordinates, see Tab. A4). Dashed circles mark peak voxels invisible in this representation.
A, Task design and analyzed tROI; B, main effect of emotion (E); C, main effect of cognition
(C); D, interaction effect between emotion and cognition (EC).
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Fig. A5 Source activity in the High γ band (64-140 Hz) during tROI Flanker. Surface plots
show significant F-values of ANOVA (cluster-based permutation test, Bonferroni corrected
for four frequency bands and two time windows, alpha and clusteralpha <0.00625, n=103).
Peak voxels (local extrema) of significant clusters are indicated with circles and labels (for
MNI coordinates, see Tab. A4). Dashed circles mark peak voxels invisible in this represen-
tation. A, Task design and analyzed tROI; B, main effect of emotion (E); C, main effect of
cognition (C); D, interaction effect between emotion and cognition (EC).

A.2.3 Supplementary information on Bayesian priors
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Freq. tROI. Contr. Region (label)
Coordinat.

(x,y,z)
Source
F-value

p.e.
(Mean)

Bootstrap
95% CI

Cluster
F-value

Cluster
P-value

θ EMO E Superior Parietal Lobe (rSPL) R 15 -80 60 11.1455 -0.4158 [-0.6641; -0.1692] 11.1455 3.9992e-04
θ EMO E Precuneus (lPrec) L -5 -70 40 8.9030 -0.3417 [-0.5697; -0.1146] 33.0149 1.9996e-04
θ EMO E Superior Parietal Lobe (lSPL) L -25 -90 50 8.3064 -0.3503 [-0.5858; -0.1043] 8.3064 3.9992e-04
θ Flanker E Lateral Occipital Cortex (rLOC) R 55 -70 10 46.6805 -0.8177 [-1.0558; -0.5825] 6.1468e+04 1.9996e-04
θ Flanker E Superior Parietal Lobe (rSPL) R 25 -50 40 44.4014 -0.7868 [-1.0194; -0.5505] 6.1468e+04 1.9996e-04
θ Flanker E Primary Visual Cortex (rV1) R 5 -80 10 43.9917 -0.7519 [-0.9778; -0.5291] 6.1468e+04 1.9996e-04
θ Flanker E Primary Somatosensory Cortex R (rPSSC), BA2 25 -40 60 43.9502 -0.7575 [-0.9854; -0.5344] 6.1468e+04 1.9996e-04
θ Flanker E Superior Parietal Lobe L (lSPL) -15 -40 80 41.8829 -0.7834 [-1.0158; -0.5373] 6.1468e+04 1.9996e-04
θ Flanker E Precuneous Cortex R (rPrec) 15 -70 30 41.7265 -0.7527 [-0.9829; -0.5226] 6.1468e+04 1.9996e-04
θ Flanker E Primary Somatosensory Cortex R (rPSSC), BA1 55 -20 60 41.3273 -0.6751 [-0.8769; -0.4609] 6.1468e+04 1.9996e-04
θ Flanker E Premotor Cortex R (rPM) 25 -20 80 41.1597 -0.6969 [-0.9070; -0.4762] 6.1468e+04 1.9996e-04
θ Flanker E Precuneous Cortex L (lPrec) -5 -70 30 41.0866 -0.7976 [-1.0435; -0.5524] 6.1468e+04 1.9996e-04
θ Flanker E Superior Parietal Lobe L (lSPL) -5 -80 60 40.6483 -0.7424 [-0.9750; -0.5121] 6.1468e+04 1.9996e-04
θ Flanker E Inferior Parietal Lobe R (rIPL) 55 -40 40 40.2498 -0.7208 [-0.9448; -0.4948] 6.1468e+04 1.9996e-04
θ Flanker E Superior Parietal Lobe (rSPL) R 15 -80 60 40.0227 -0.7825 [-1.0306; -0.5403] 6.1468e+04 1.9996e-04
θ Flanker E Superior Parietal Lobe L (lSPL) -15 -50 60 38.5924 -0.7574 [-0.9965; -0.5163] 6.1468e+04 1.9996e-04
θ Flanker E Superior Parietal Lobe L (lSPL) -25 -80 60 38.1349 -0.7820 [-1.0372; -0.5379] 6.1468e+04 1.9996e-04
θ Flanker E Cerebellum R (rCer) 15 -50 -30 37.2761 -0.7205 [-0.9513; -0.4818] 6.1468e+04 1.9996e-04
θ Flanker E Cerebellum R (rCer) 5 -80 -30 35.5559 -0.7370 [-0.9811; -0.4893] 6.1468e+04 1.9996e-04
θ Flanker E Primary Somatosensory Cortex L (lPSSC) -55 -20 60 34.9523 -0.6195 [-0.8256; -0.4114] 6.1468e+04 1.9996e-04
θ Flanker E Primary Motor Cortex L (lPrM) -35 -10 70 33.6669 -0.6428 [-0.8573; -0.4141] 6.1468e+04 1.9996e-04
θ Flanker E Premotor Cortex L (lPM) -15 -10 80 33.4476 -0.6700 [-0.8955; -0.4347] 6.1468e+04 1.9996e-04
θ Flanker E Primary Somatosensory Cortex L (lPSSC) -65 -10 40 28.6332 -0.5728 [-0.7849; -0.3628] 6.1468e+04 1.9996e-04
θ Flanker E Middle Temporal Lobe L (lTL) -65 -60 10 26.4450 -0.6204 [-0.8632; -0.3853] 6.1468e+04 1.9996e-04
θ Flanker E Middle Temporal Lobe L (lTL) -65 0 -10 18.5366 -0.4800 [-0.7096; -0.2655] 6.1468e+04 1.9996e-04
θ Flanker E Inferior Frontal Gyrus R (rIFG) 55 40 0 15.3509 -0.4218 [-0.6327; -0.2090] 6.1468e+04 1.9996e-04
θ Flanker E Inferior Frontal Gyrus L (lIFG) -55 40 10 12.1197 -0.3917 [-0.6177; -0.1716] 6.1468e+04 1.9996e-04
θ Flanker E Inferior Frontal Gyrus L (lIFG) -45 50 20 11.2494 -0.3972 [-0.6322; -0.1639] 11.2494 1.9996e-04
β Flanker E Fusiform Face Area R (rFFA) 35 -50 10 16.1438 0.4319 [0.2187; 0.6455] 5.2295e+0.3 <1.9996e-04
β Flanker E dorsomedial Prefrontal Cortex R (rdmPFC) 5 40 40 15.9367 0.4302 [0.2212; 0.6483] 5.2295e+0.3 <1.9996e-04
β Flanker E dorsolateral Prefrontal Cortex R (rdlPFC) 25 30 60 13.5796 0.3963 [0.1808; 0.6073] 5.2295e+0.3 <1.9996e-04
β Flanker E lateral Occipital Cortex R (rLOC) 35 -70 30 13.3564 0.3686 [0.1680; 0.5689] 5.2295e+0.3 <1.9996e-04
β Flanker E Frontal Pole R (rFP) 5 60 40 12.8408 0.4005 [0.1744; 0.6177] 5.2295e+0.3 <1.9996e-04
β Flanker E Angular Gyrus R (rAG) 45 -50 20 12.6571 0.3737 [0.1714; 0.5859] 5.2295e+0.3 <1.9996e-04
β Flanker E Superior Frontal Gyrus R (rSFG) 25 10 60 12.4352 0.3686 [0.1613; 0.5781] 5.2295e+0.3 <1.9996e-04
β Flanker E Premotor Cortex R (rPM) 45 0 50 11.2470 0.3553 [0.1453; 0.5647] 19.5099 <1.9996e-04
β Flanker E Inferior Frontal Gyrus R (rIFG) 45 40 0 10.4409 0.3852 [0.1510; 0.6221] 5.2295e+0.3 <1.9996e-04
β Flanker E Precuneous Cortex R (rPrec) 15 -70 50 9.7742 0.3459 [0.1311; 0.5695] 5.2295e+0.3 <1.9996e-04
β Flanker E Frontal Pole L (lFP) -25 50 10 9.6548 0.3641 [0.1238; 0.5947] 25.9950 <1.9996e-04
β Flanker E Primary Somatosensory Cortex R (rPSSC) 45 -10 30 8.8410 0.3268 [0.1172; 0.5519] 5.2295e+0.3 <1.9996e-04
β Flanker E Inferior Frontal Gyrus L (lIFG) -35 30 10 8.7014 0.3131 [0.1040; 0.5265] 8.7014 <1.9996e-04
β Flanker E Primary Motor Cortex R (rPrMC) 35 -20 50 8.2433 0.3131 [0.1016; 0.5327] 8.2433 <1.9996e-04
β Flanker C dorsolateral Prefrontal Cortex R (rdlPFC) 45 20 30 8.5053 0.3048 [0.1082; 0.5220] 8.5053 <1.9996e-04
β Flanker C medial Temporal Lobe R (rmTL) 65 -10 -10 8.3118 0.3278 [0.1194; 0.5716] 8.3118 <1.9996e-04
β Flanker C Inferior Frontal Gyrus R (rIFG) 55 10 10 7.9618 0.3034 [0.1010; 0.5278] 7.9618 <1.9996e-04
β Flanker EC Inferior Frontal Gyrus R (rIFG) 45 40 20 9.6267 -0.5948 [-0.9589;-0.1966] 9.6267 <1.9996e-04
γ Flanker E dorsolateral Prefrontal Cortex R (dlPFC) 55 20 40 14.7569 0.3379 [0.1642; 0.5134] 586.3702 <1.9996e-04
γ Flanker E Inferior Frontal Gyrus R (IFG) 65 20 10 14.1434 0.3717 [0.1730; 0.5644] 586.3702 <1.9996e-04
γ Flanker E orbitofrontal Frontal Pole R (oFP) 35 50 30 12.9234 0.2990 [0.1364; 0.4642] 586.3702 <1.9996e-04
γ Flanker E Insula R (In) 45 20 -10 12.7424 0.3383 [0.1470;0.5234] 586.3702 <1.9996e-04
γ Flanker E ventromedial Frontal Pole R (vFP) 15 60 0 9.2366 0.2885 [0.1052; 0.4790] 9.2366 0.0028
High γ Flanker E Superior Parietal Lobe L (lSPL) -15 -70 60 10.5863 -0.2977 [-0.4814; -0.1177] 10.5863 <1.9996e-04
High γ Flanker E Secondary Visual Cortex L (lV2) -5 -80 30 9.6571 -0.2956 [-0.4866; -0.1086] 17.8269 <1.9996e-04
High γ Flanker E Primary Visual Cortex V1 L (lV1) -5 -80 10 8.9396 -0.3073 [-0.5139; -0.1080] 8.9396 <1.9996e-04
High γ Flanker E Lingual Gyrus L (lLG) -5 -70 -10 8.4952 -0.2811 [-0.4740; -0.0921] 8.4952 <1.9996e-04
High γ Flanker E Fusiform Face Area R (rFFA) 25 -50 10 8.4180 -0.2715 [-0.4545; -0.0857] 8.4180 <1.9996e-04
High γ Flanker E Precuneous Cortex L 1 (lPrec) -5 -60 10 8.3565 -0.2789 [-0.4714; -0.0882] 8.3565 <1.9996e-04
High γ Flanker E Precuneous Cortex L 2 (lPrec) -5 -60 30 8.3055 -0.2913 [-0.4961; -0.0943] 8.3055 <1.9996e-04
High γ Flanker EC Secondary Visual Cortex R (rV2) 5 -80 20 7.9948 -0.4994 [-0.8461; -0.1485] 7.9948 <1.9996e-04
High γ Flanker EC Precuneous Cortex L (lPrec) -5 -60 30 7.8551 -0.4667 [-0.7983; -0.1334] 7.8551 <1.9996e-04

Table A4 Overview of significant sources. Significant sources for all frequency bands and
tROIs are given for the contrasts (Contr.) of emotion (E), cognition (C) and
emotion-cognition interaction (EC). The table shows sources (Region (label)) with
respective coordinates and F-values. Furthermore, it shows the point estimate (p.e.) of
source activity (mean difference for main effects mean double difference for interaction
effects) and the bootstrap Confidence-Interval of the effect (95% CI). Additional Cluster F-
and P-values are presented.

Table A5 Priors of Bayesian linear regression between reaction time, accuracy, and
min/max β-band interaction values

parameter value
ρ Uniform (a = −1, b = 1)

Table A6 Mean reaction time and mean accuracy per subject was predicted based on
min/max β-band interaction values (see Bayesian correlation of min/max β power
interaction values with behavioral measures and Fig. 1).
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Table A7 Priors of Bayesian linear regression between reaction time, accuracy, and
min/max β power

parameter value
αintercept Normal (µ = 0, σ = 1)
βmeanpower Normal(µ = 0, σ = 1)
βE Normal(µ = 0, σ = 1)
βC Normal(µ = 0, σ = 1)
βEC Normal(µ = 0, σ = 1)
σ HalfNormal (σ = 1)

Table A8 Mean reaction time and mean accuracy per subject was predicted based on the
average, E, C and EC min/max β-band values (see Bayesian linear regression of β power
with behavioral measures and Fig. 5).

Table A9 Priors of Bayesian linear regression between reaction time, accuracy and cGC

parameter value
αintercept Normal (µ = 0, σ = 0.5)
βlinks Normal(µ = 0, σ = 0.5)
βlinks∆ Normal(µ = 0, σ = 0.5)
σ HalfNormal (σ = 1)

Table A10 Mean reaction time and mean accuracy per subject were predicted based on
cGC of each significant link of respective significant frequencies in the respective significant
E, C, EC contrast (see Correlation of top-down Granger Causality with behavior and Fig.8).


	Introduction
	Results
	Large-cohort, FEM-based EEG-beamforming for a highly resolved study of neural sources in emotion-cognition interaction
	Emotional interference versus emotional interference inhibition and their relation to statistical contrasts
	Behavioral effects demonstrate an emotion-cognition interaction
	Source-level activity reveals rIFG as a key region for emotion-cognition interaction
	Source-level activity confirms a functional parcellation of rIFG
	Temporal Generalization analysis reveals an emotion-cognition interaction effect in IFG pars triangularis during early cognitive processing
	-band emotion-cognition interaction in IFG pars triangularis is behaviorally relevant
	Integration and segregation of emotional and cognitive information within IFG
	Top-down long-range inter-regional modulation by IFG
	The Top-down Influence from IFG to Precuneus and V2 explains the behavioral interference effect

	Discussion
	Implications for a general theory of emotion-cognition interaction
	Why does resource competition have large behavioral effects when seemingly less resources are needed overall?
	Potential Clinical Implications



	Conclusion
	Methods
	Acknowledgments

	Supplementary Material
	Supplementary information about behavioral effects of emotion-cognition interaction
	Supplementary Results of EEG source reconstruction
	Definition of frequency bands of interest at the sensor level
	Supplementary results of source localization
	Supplementary information on Bayesian priors



