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Abstract. Modern societies face the challenge that the time scale of opinion formation is continuously
accelerating in contrast to the time scale of political decision making. With the latter remaining of the
order of the election cycle we examine here the case that the political state of a society is determined by the
continuously evolving values of the electorate. Given this assumption we show that the time lags inherent in
the election cycle will inevitable lead to political instabilities for advanced democracies characterized both
by an accelerating pace of opinion dynamics and by high sensibilities (political correctness) to deviations
from mainstream values. Our result is based on the observation that dynamical systems become generically
unstable whenever time delays become comparable to the time it takes to adapt to the steady state. The
time needed to recover from external shocks grows in addition dramatically close to the transition. Our
estimates for the order of magnitude of the involved time scales indicate that socio-political instabilities
may develop once the aggregate time scale for the evolution of the political values of the electorate falls

below 7-15 months.

1 Introduction

A dynamical system with time delays reacts not only to
its current state, but also to what occurred in the past. It
is well known in this context that time-delayed dynami-
cal systems are prone to instabilities whenever the delay
times become comparable to the time scales needed to
react to current events and perturbations [1,2]. To give an
example from economy, consider just-in-time (JIT) manu-
facturing, for which the time scales regulating the delivery
process are typically of the order of hours [3]. Even small
perturbations in the supply chain would lead to an imme-
diate break down of JIT manufacturing, as a whole, if the
management of the involved companies would need days
or weeks to react to an outage.

The dynamics of democratic political systems shares
certain basic similarities to manufacturing processes like
just-in-time manufacturing, with the political institu-
tions (parliament, government) reacting to shifts in the
demands of the electorate [4]. It has been noticed in par-
ticular that the temporalities of economy and culture
are driven by every faster cycles of innovation, change
and replacement [5], with political time remaining on
the other side high [6]. There is hence an evolving mis-
match of the speed of formal democracy [7] with regard
to the accelerating speed of capital [8], of economic
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decision making, opinion dynamics [9] and of modern life
in general [10].

The ongoing differentiation of societal time scales, with
opinion dynamics accelerating in contrast to institutional
decision making, did manifest itself in several political
developments occurring in 2016/2017. In French politics,
to give an example, electorate values changed so fast that
the “En Marche” movement could raise in essentially a
single year from nowhere to a center role in French poli-
tics [11]. The extended time scale of three or more years,
as presently envisioned, to carry out the 2016 popular vote
in favor of a Brexit [12], is on the other side exemplary for
the prolonged time political institutions need to react to
demands of the electorate. Our aim is here to develop a
framework describing conflicts of temporalities on a basis
that abstracts from specific circumstances. Our approach
is particularly well suited for advanced democracies, i.e.
for societies in an advanced state of acceleration.

Modern democracies are characterized additionally
both by an increasing level of skepticism toward political
institutions [13] and by the ongoing refinement of politi-
cal correctness norms [14,15]. This continuously increasing
sensitivity to deviations from the mainstream normative
order has its equivalent in economics, where companies not
adhering to normative standards of reliability will if find
difficult, in a world dominated by JIT manufacturing, to
build up profitable business relations. Here we show that
fine-tuned political correctness norms are directly related
to the underlying acceleration of societal responses. Fast
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opinion dynamics and a high level of political correctness
are in our model both indicative of political systems close
to a dynamical instability. Fine-tuning a political system
reduces consequently its robustness against perturbations.

2 Model

We denote with D = D(t) and with V = V() aggregate
variables measuring the state of the democracy and of
the values of the electorate, its cultural dimension [16].
The time ¢t will be measured in years. We remain here
on a relative abstract level, noting however that standard
country-specific indicators [17,18] for both democracy and
values may be taken as proxies for D and V. Alterna-
tively one may consider the level of economic development,
instead of the cultural dimension, as the basic variable
interacting with the state of the democracy [19].

A political system is democratic, per definition, when-
ever D(t) is reactive to changes in the values V' (¢) of the
electorate. This relation is captured by

TD%D(t) —V(t—T) - D), (1)

where Tp denotes the time democratic institutions need
to aligns themselves to the demands expressed by the elec-
torate. There is however an additional time scale involved,
the time lag T. Time lags arise on one side from the
circumstance that the electorate has to wait in a repre-
sentative democracy on the average several years before it
can express its views forcefully at election time [6]. Time
lags also occur generically in political decision making. It
will take about three years, if at all, to implement popular
will in the case of the Brexit [20].

The overall process modeled by (1) describes a highly
idealized democracy. We note, however, that the intrica-
cies of real-life political decision making will enhance the
effect here studied.

For the time evolution of the value V' we propose

d
T —
thV(t)

=o(D(t)) -V (1), (2)
which describes a competition between a trend toward
democracy ~ o(D(t)) and an intrinsic decay term of the
democratic values ~ (=V(t)). It has been observed in this
regard that support for democratic values declines steadily
in western societies [21]. If asked, to give an example,
whether it is essential to live in a country that is governed
democratically, over 70% of US-citizens born around 1930
would respond yes, but only about 30% of those born 1980
or later [21]. This downward trend translates in (2) to a
decay time Ty ~ 15-20 years.

The actual shape of the function o(D) entering (2) is
not relevant for the following arguments, as long as it
is monotonically declining and hence reflecting that the
desire to further increases the current amount D(t) of
democratic participation declines with its actual level. A
monotonically declining o(D) incorporates therefore the
notion of diminishing returns, which can be traced back
in turn to the logarithmic discounting performed by the
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Fig. 1. The rescaled Fermi function (3) entering the evolution
(2) of the values V of the electorate. The monotonic decline of
o(D) implies that the desire to further increase the level D of
democratic participation drops with its actual level. The slope
at the inflection point o (1) = 1 is —3/2, viz proportional to the
sensibility parameter 8. The time scale for opinion dynamics is
hence of the order of 27y /3. Alternatively one may interpret
the slope and hence 8 as a proxy for the rigor of political
correctness.

neural circuitry of the brain [22,23]. We have chosen here
for simplicity a rescaled Fermi function,

_ 2
 1+exp(B(D—1))’

o(D) (3)

in physics jargon, for o(D), as illustrated in Figure 1. At
the inflection point D = 1 we have o(D = 1) = 1. The
parameter 3, which would correspond to the inverse tem-
perature in physics, is a sensibility parameter, setting the
slope do/dD = — /2 at the inflection point D = 1.

The evolution equations for D(t) and V(t), equations
(1) and (2), have been defined such that the common fixed
point (D, V) = (1, 1) remains unchanged for all parameter
settings. This implies, that (1) and (2) describe the time
evolution of quantities which are relative and not bare
measures. The steady-state fixed point would evolve on
the other side if D and V had been measured in absolute
terms [17] and not, as done here, relatively. The renormal-
ization of the steady state to (1,1) does hence encompass
the secular backdrop of declining democratic values [21].

3 Simulations results

For the parameters entering the evolution equations for
the state of the democracy and for the values of the elec-
torate, (1) and (2) respectively, we take Tp = 4 years for
the typical adaption time of political actors and Ty = 15
years for the decay time of political values [21]. We start
with an overview of the properties of our model, (1)
together with (2), for which we set the time delay to
T = 4 years. Alternative values for T" will be considered
subsequently together with distinct ways to incorporate
multiple time delays. For the numerical simulations we
discretized the evolution equations (1) and (2), taking one
month (At = 1/12 years) as a basic time step. The such
obtained results do not depend qualitatively on the exact
value of At.


https://epjb.epj.org/

Eur. Phys. J. B (2017) 90: 223

| 5
. 20
2 . _e—® \\K
1.2 g
/ 10y
.
5

e o
™
o

v

Dt

Page 3 of 8
R=10
121
10y
L
- -
=
e || Ty s R S ——— L]
= 1 |
. 1
. 4
starting } .
I 20v
0.8 i
i
|
] ] ]

Dt

Fig. 2. The result of numerically simulating (1) and (2) for T'=4, Tp = 4 and Ty = 15 (years). The system starts (as denoted
by the label “starting”) right after the initial function, defined for ¢ € [—T, 0], ends, with every filled point denoting one year
(decades are red). Note, that trajectories may intersects themselves for dynamical systems with time delays, as it happens for
B = 20. The fixed point (D, V) = (1,1) is stable for 8 < 8. ~ 11.36.

The solution of a time-delayed systems is generi-
cally contingent on the choice of the initial function
(D(t),V(t)), where ¢t € [-T,0] [2,24]. We find, however,
that the system (1) and (2) is robust in the sense that
the long-time state convergences in all cases to the iden-
tical attracting set, which may be either a fixed point or
a limit cycle, even when fully random initial functions are
selected.

In Figure 2 we present typical trajectories for § =
5,10, 20, where the starting function was (D(¢),V(t)) =
(0.8,0.9), with t € [T : 0], together with a random jit-
ter AD = AV = 0.02. The system is stable, as expected,
for small values of 8, with the state (D(¢),V (¢)) of the
system spiraling toward the fixed point (1,1). The over-
all time-scale for the evolution is about two decades, as
consequence of Ty = 15 years.

For an advanced democracy, characterized by a high
sensibility 8 = 20 to deviations from the political stan-
dard, the overall attracting set is a limit cycle with a
period of about 24.5 years and an average deviation

Dp = <\/(D(t) — 1)’ (V(t) - 1)2> ~024, (4)

from the fixed point (1, 1), with the brackets (- --) denot-
ing the time average. In order to decide whether the limit
cycle is far away from the original fixed point, or close,
we may compare above value for D with the functional
dependency of the response function o(D) entering (2),
as illustrated in Figure 1. We observe, that D = 0.8 or
D = 1.2 leads to responses (D) which are exponentially
close to 1 and 0 respectively. This implies, that the limit
cycle observed for 8 = 20 in Figure 2 is close to the max-
imal possible periodic solution supported by (1) and (2).
Even for a very large 8 = 80, to give an example, we find
only a slightly increased Dp = 0.27.

Also shown in Figure 2 is a trajectory for 8 = 10, which
spirals in the end into the fixed point (D, V) = (1,1). The
extraordinary long time scale needed to reach the equi-
librium state, for 8 = 10, is a consequence of the critical

slowing down close to a phase transition, which occurs
here at 8. = 11.36 (see Sect. 5). It may hence be difficult
to distinguish real-world political systems which are sub-
critical, but close to an instability, from systems which are
already unstable.

Our basic presumption is here, that advances in com-
munication and organizational structures lead to a pro-
gressing optimization of our societies which is inevitably
accompanied with a decreasing tolerance of non-standard
behaviors and hence with an increasing 3, as entering (2).
In Figure 3 we present a scenario simulation for a time-
varying (3, which is held constant at § = 5 for the first
ten years, at 5 = 10 for the subsequent twenty years and
at B = 20 thereafter. The system tries initially to reach
the equilibrium state (D, V) = (1, 1), being subcritical for
the first thirty years, with the relaxation toward the fixed
point slowing down dramatically when § — 10 (compare
Fig. 2). Twenty years at S = 10 are not enough to equi-
librate and the final increase to 8 = 20 leads therefore
straightaway to limit-cycle oscillations.

3.1 Diverging recovery times close to the Hopf
bifurcation

Normal forms allow to classify the type of bifurcations
occurring in normal dynamical systems, viz in dynam-
ical systems without time delays [2]. The transition
observed here at . = 11.36 is in this context akin to a
classical supercritical Hopf bifurcation, involving a bifur-
cation from a stable node (fixed point) to a continuously
expanding periodic orbit (stable limit cycle) [25].

In order to corroborate this statement we have evalu-
ated the time dependent distance Dp(t) of the trajectory
from the fixed point, as well as its long time average (4).
It is evident from Figure 4, that the size of the final limit
cycle shrinks continuously when S approaches (. from
above, as expected for a second-order transition.

It is of interest to examine, for subcritical 3 < f., the
time scale T needed to close in to the equilibrium state
(D,V) = (1,1), which is given by the inverse of the largest
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Fig. 3. The result of a numerical experiment, for ' = 4, Tp = 4 and Ty = 15 (years), where 8 = 5 for the first 10 years, 8 = 10
for t € [10,30] and B = 20 thereafter. The evolution is shown for D(t) as a function of time (left) and for (D, V) in state space
(right). While still subcritical for g = 10, the relaxation process slows down dramatically due to the closeness to the phase

transition occurring at 5. ~ 11.36, compare Figure 2.

Lyapunov exponent of the fixed point [26]. In Figure 4 we
present alternatively the results of a numerical experiment
simulating the recovery from an external shock. For a sin-
gle trajectory, with starting conditions as for Figure 2, the
displacement Dp(t) from the steady state has been eval-
uated and fitted by exp(—t/Ty). We notice that the time
needed to recover from the initial displacement becomes
of the order of three decades already for g =~ 7.5, which is
still substantially below the critical 8, ~ 11.36. The sys-
tem is hence very slow to recover from external events
pushing it away from the fixed point.

3.2 Mixture of time delays

With (1) we assumed that the state D(t) tries to align
itself to values the electorate expressed exactly T years
before. A mixture of time delays may contribute in reality.
We consider with

T D(0) = Valt) — DUt 9

the coupling of D(t) to two specific distributions o = 1,2
of lag times,

o 1 [T
Vi(t) = o J, V(t —7)dr, (6)
Va(t) = ;,/Ooo e TV (t — 7)dr, (7)

where Vi (t) and Va(t) correspond respectively to a flat
distribution, with T € [0,27], and to exponentially dis-
counted delay times. The average time delay stays at T
in both cases. We find, as shown in Figure 4, that a flat
distribution, viz V'; in equation (5), induces only relative
minor quantitative changes, with all qualitative features
of the original model (1) remaining untouched. There is
a slight upward renormalization, when using V1, of the
critical sensitivity from (. = 11.36, as obtained for (1), to
B. ~ 13.5.

For exponentially discounted lag times, describing the
common but not exclusive case that past messages are
progressively discounted in the context of political com-
munication [27], we find numerically that §. ~ 23.7, which
is now substantially increased, but otherwise no overall
qualitative changes.

4 Stability analysis

The stability of the fixed point (D,V) = (1,1) can be
examined [28] by linearizing the evolution equations (1)
and (2)

TD%dD(t) = §V(t—T) - 6D(t), (8)
d B
Ty 20V () = =53D(t) = 3V (2), 9)

where 0D = D — 1 and 6V =V — 1. The Ansatz §D(t) =
Dy exp(At) and §V (t) = Vp exp(At) leads to

2V
Voe ™ = Do(1 +TpA), D= 770(1 + Ty \),
and hence to

2
e M = 75(1 + Ty A)(1+Tp)). (10)
The Lyapunov exponent A = X + i)\’ is generically
complex, becoming purely imaginary, with A’ = 0, at the
bifurcation 8 — (.. The real and imaginary components
of (10) then are:

2
cos(\'T) = "5 (1-TvTp(\)?),
2
sin(/\”T) = f(Tv + TD)AH,

c
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Fig. 4. The results of evaluating the Euclidean distance Dr from the fixed point (D, V) = (1,1). For 8 > B, (dashed vertical
line) the time-average Dp, equation (4), of the limit cycle is shown (multiplied by 100). For 8 < 3. the relaxation time T} is
shown (in years). Th, which is also the time needed to recover from external shocks, has been obtained by fitting the time-
dependent Euclidean distance Dp = Dp(t) by exp(—t/Th). The data is for the model with a single time delay 7' =4 (Eq. (1),
left panel) and for the model with a uniform mixture of time delays (Eq. (5), right panel) and otherwise identical parameters.
The respective critical sensitivities are 8. ~ 11.36 (left) and B. ~ 13.5 (right).

or
m o (TD + Tv)>\//
tan(TA\") = ToTy (V)2 — 1 (13)
and
ﬁ2
b= (U @XP) (L (@N?) (1)

where we have used that

(TDTV(/\N)Q _ 1)2 T (TD 4 TV)2()\//)2
= (14 (TpA")*) (L + (Tv A")?).

One solves first (13) for A and then (14) for 8. The corre-
sponding phase diagram is presented in Figure 5 for fixed
Tp = 4 and Ty = 15. The locus of the phase transition
at T =4 is . = 11.4, which differs only marginally from
the one found in the numerical simulation, 5. = 11.36, for
which time had been discretized (using At = 1/12).

4.1 Uniform mixture of time delays

For the case (5) of an uniform mixture of time delays
one replaces exp(—AT) in (10) by [exp(—Ar)dr/(2T),
obtaining

I 2
ﬁ COS(}\HT)dT = E [TVTD(AN)z — 1]7
0 c
1 2T

2
— in(\'7)dr = =—(T Tp)N'
oT |, sin(\'7)dr 5c( v+ Tp)\’,

which results in turn, after carrying out the respective
integrals, in

aTN'
sin(2T\") =

[Ty Tp(N')? — 1],

c

4TN"
Be

With sin(2\”) = 2sin(T'N") cos(T'\") and cos(2T\") =
1 —2sin?(T'\") we then obtain

1 —cos(2T\") =

(Tv + TD))\H.

"
tan(TN") = (Tp + Ty)A

= Tl (VR -1 1

and

BeTp +Tv

SRR (14 (TpX")?) (1 + (Tv\")?).

(16)

Note that the expressions (15) and (13) for the imag-
inary component A’ of the Lyapunov exponents are
identical and, correspondingly, also the right-hand sides
of (16) and (14). For above transformations we used

[1—cos(2T\")]/sin(2T\") = tan(T\")
and that

(4T>\//)2
B2

~ 4tan®*(TN")

1+ tan?(T\)

4sin*(TN') = (L4 (TpX")?) (1 + (Tv \")?)

can be simplified when using (15). The bifurcation line
resulting from (16), which has been included in Figure 5,
runs somewhat parallel to the one obtained via (14) for the
case of a single delay time, closing in for T" < Ty, when
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Fig. 5. The Hopf bifurcation line for the case of a single time delay (full red curve), for a uniform distribution of delay times
(dashed cyan curve) and for exponentially distributed time delays (full blue curve). The attracting state is a limit cycle above the
respective lines (viz in the shaded region for the case of a single time delay), and a fixed point otherwise. The dashed rectangle
indicates the case of a single time delay 7' = 4, and an adaption time scale for V(¢) of Ty = 15. Left: For Tp = 4 and the original
model (1) and (2), respectively (5), for which the bifurcations lines 8. are determined by (14), (16) and (19). Right: For the
adiabatic limit (20), obtained when Tp — 0. In this limit there is no Hopf bifurcation for exponentially discounted time delays.

the actual distribution of lag times becomes unimportant.
For T = 4 we find that S. increases from 3. = 11.4 to
B, = 13.68.

Comparing (13) and (15) one finds, remarkably, that the
imaginary part A” of the Lyapunov exponent is identical
at criticality, albeit at different values of .. This implies,
that the revolution frequencies of the resulting limit cycles
are identical in the respective limits § — (. from above.

4.2 Exponentially discounted time delays

For exponentially discounted delay times (5) we need

12T 1

?/ e T cos(N'T)dr = T TV
0

1 2T T TN!

T/o e T sin(\'1)dr = TH TV

which results respectively in

1 2
TTowe ~ g W=D, 0
1 _ 2Ty +1Tp
1+(TN)? B T (18)
instead of (11) and (12). We then find
vy = Dot Ty + T
ToTyT
T T
B =222V 11 4 (XY (19)

T

for the Hopf bifurcation line. The critical 8. has been
included in Figure 5. For Tp = 4 =T and Ty = 15
the resulting 8. = 24.1 is again marginally larger than

the value, . = 23.7, obtained from corresponding time
discretized numerical simulation.

4.3 Adiabatic limit

We have shown above that our model is robust against
changes in the distribution of time delays. The nature of
the attracting states are also not sensitively dependent on
the ratio of Tp /Ty . It is illustrative, in this context, to
examine the adiabatic limit Tp < Ty of (1) and (2), for
which D(t) follows closely V(¢ — T). In this case one can
substitute D(t) by V(¢ — T) in (2), obtaining

7 Ly =

7 o(V(it—=T)) —V(¢).

(20)

The locus of the bifurcation is determined by (14) in
the limit Tp — 0, or, alternatively, by

2
tan(zT/Ty) = —xz, % =1+2% o=Ty)\,

(21)
when using rescaled variables. . is then dependent only
on the ratio T/Ty, as shown in Figure 5. For the case of
a uniform mixture of time delays (15) and (16) reduce to

e 1
tan(zT/Ty) = —x, %?V =1+

(22)
in the limit Tp — 0. One notices, compare Figure 5, that
there is a substantial quantitative difference in the adia-
batic limit between having a single and a mixture of time
delays.

Interestingly, there is no phase transition in the adia-
batic limit for the case of exponentially discounted time
delays, with (17) having no solution in the limit 7p — 0.
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4.4 Properties of the phase diagram

The phase diagrams presented in Figure 5 have a series of
common features.

— The Hopf bifurcation line is a monotonically decreas-
ing function. For small time delays T one needs a
higher sensibility 5 > . for the instability to occur,
and vice verse.

— There is no minimal time delay T, viz there is a
critical 8. < oo for any T > 0, with

lim

23
T/Tv—> ( )

0BC(T/TV) — 00.

The fixed point is hence stable for all 5 when there
is no time delay, T'= 0.

— There is a lower 3. below which the fixed point is sta-
ble even when T is arbitrary large. In the adiabatic
limit (21) one needs 8. > 2.

— The imaginary part A” of the Lyapunov exponent
needs to be non-zero for (13) and (15) to have a non-
trivial solution. A" is hence finite at the transition,
the tell-sign of a Hopf bifurcation [2]. The revolution
frequency of the limit cycle, which is of the order of
1/|\"|, is hence not critical, varying smoothly above
the transition.

In the vicinity of the transition the sensibility 8 induces a
speed-up of the reactive value dynamics, as evident from
the linearized equations (8) and (9), by a factor 8/2, which
may be identified with a corresponding acceleration of
opinion dynamics. The overall time needed to reach the
fixed point nevertheless diverges as 1/\ ~ 1/|8— S.|. This
phenomenon, known as critical slowing down, is observed
generically in dynamical systems close to a tipping point.
It is observed in a wide range of settings, affecting, e.g.,
the resilience of ecosystems [29] as well as the evolution of
the climate prior to a major shift [30]. The increased time
scales needed to react to disturbances close the instability
are also evident in Figure 4.

5 Discussion

There are two mutually not exclusive routes to describe
the conflict between slow political decision making and
accelerating social dynamics [6,8,10]. In the first view pol-
itics continuously adapts, over the course of T years,
to the current demands of the electorate. Time lags are
absent in this scenario and the system stable for all
parameters. Politics then evolves around a stable state,
with deviations from the fixed point driven exclusively by
external events.

Here we have examined a second possibility, namely
that a certain fraction of political decision making results
from the response to demands the electorate voiced T
years ago. The time delay T" may be either fixed or drawn
from a continuous distribution, as described by equations
(1) and (5) respectively. For both cases we find that
the socio-political system becomes inherently unstable
whenever the electorate responds sensitively to political
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changes. This conclusion, which is robust and independent
of the details of the here used model, results from the fact
that time delays will inherently amplify fluctuations once
their influence becomes substantial.

In our model the sensitivity S of the electorate leads
to typical reaction times 27y /S, as evident form the
linearized evolution equation (9), where Ty is the time
scale for the long-term evolution of basic political val-
ues. In order to obtain estimates for real-world political
communication we considered the case of exponentially
discounted time delays, for which the instability occurs at
Be~24.1 for T =4 and at f. ~ 50.7 for T = 1 (compare
Fig. 5). Socio-political instabilities then start to mani-
fest themselves for T' = 4 when the corresponding times
scale 2Ty /. for the opinion dynamics falls below 30/24.1
years (about 15 months). For a time delay of one year,
T = 1, instabilities develop when the opinion dynamics
takes place on time scale below 30/50.7 years (about 7
months).

Our estimates for the tipping point of political opinion
dynamics, 7-15 months when assuming mean time delays
of the order of 14 years, are for aggregate processes which
include the effects of fast news propagation as well as the
consequences of slowly but continuously changing preset
political beliefs. It is conceivable within out model that
western democracies have seen the unfolding of a slow but
steady long-term acceleration of opinion dynamics, with
the passing of the threshold of 7-15 months contribut-
ing to the recent emergence of political styles disrupting
political conventions considered hitherto as fundamental
[20]. External effects, such as the 2007-08 financial crisis
[31,32], would induce in this view an additional temporary
but sharp rise in (.

An important aspect regards the time needed to recover
from an external disrupting event, such as a global crisis.
Naively one may expect that the accelerating pace of opin-
ion formation observed in advanced democracies would
reduce typical recovery times. The contrary is however the
case. It is well known, as illustrated in Figure 4, that sec-
ond order instabilities lead to critical slowing down in their
proximity and hence to diverging recovery times. As a con-
sequence one observes long-lasting oscillations even below
the actual transition, as illustrated in Figure 2. Analogous
oscillations matching both the period (about 20 years),
and the magnitude (10-15%), have be observed since the
early 1990s in Australian polls studying aggregate value
orientations along the materialism vs. postmaterialism
axis [33]. A substantially larger corpus of data would
however been needed for an eventual validation, or fal-
sification, of the here presented approach. Note that our
framework describes instabilities arising within represen-
tative democracies and not transitions to non-democratic
regimes.

The scope of the work presented here is to point
out a phenomenon of possible key importance for the
understanding of the long-term stability of representative
democracies. The instabilities we find lead to oscillatory
but not to irregular socio-political states. One possibil-
ity to extend our study would however be to consider
time delays varying periodically with the election cycle.
It is to be expected that such kinds of non-constant time
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delays would act as periodic drivings [34], which are in
turn known to induce transitions to chaotic states in non-
linear dynamical systems. We note in this context that
transitions to potentially disrupting states with runaway
opinion growth have been observed [35] in agent based
simulations examining the response of an electorate to
rising levels of immigration.
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social acceleration, Daniel Lambach regarding time delays
in democratic structures and Roser Valenti for reading the
manuscript.
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