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Abstract Changes in the efficacies of synapses are thought to be the neurobiological basis of

learning and memory. The efficacy of a synapse depends on its current number of neurotransmitter

receptors. Recent experiments have shown that these receptors are highly dynamic, moving back

and forth between synapses on time scales of seconds and minutes. This suggests spontaneous

fluctuations in synaptic efficacies and a competition of nearby synapses for available receptors.

Here we propose a mathematical model of this competition of synapses for neurotransmitter

receptors from a local dendritic pool. Using minimal assumptions, the model produces a fast

multiplicative scaling behavior of synapses. Furthermore, the model explains a transient form of

heterosynaptic plasticity and predicts that its amount is inversely related to the size of the local

receptor pool. Overall, our model reveals logistical tradeoffs during the induction of synaptic

plasticity due to the rapid exchange of neurotransmitter receptors between synapses.

DOI: https://doi.org/10.7554/eLife.37836.001

Introduction
Simple mathematical models of Hebbian learning exhibit an unconstrained growth of synaptic effica-

cies. To avoid runaway dynamics, some mechanism for limiting weight growth needs to be present.

There is a long tradition of addressing this problem in neural network models using synaptic normali-

zation rules (von der Malsburg, 1973; Oja, 1982; Miller and MacKay, 1994; Wu and Yamaguchi,

2006; Lazar et al., 2009). Obviously, in order to keep up with the pace of synaptic changes due to

Hebbian plasticity, normalization mechanisms must act sufficiently fast. Slow homeostatic synaptic

scaling mechanisms (Turrigiano et al., 1998) may therefore be ill-suited for ensuring stability

(Wu and Yamaguchi, 2006; Zenke et al., 2013; Chistiakova et al., 2015). A particularly interesting

fast normalization rule scales synapses multiplicatively such that the sum of synaptic weights remains

constant. Attractive features of such a rule, next to its conceptual simplicity, are that the relative

strength of synapses is maintained and that in combination with Hebbian mechanisms it naturally

gives rise to lognormal-like weight distributions as observed experimentally (Song et al., 2005;

Loewenstein et al., 2011; Zheng et al., 2013; Miner and Triesch, 2016). While such normalization

mechanisms are not considered biologically implausible, their link to neurobiological experiments

has been tenuous.

In a recent review, Chistiakova et al. (2015) argue that so-called heterosynaptic plasticity

(Lynch et al., 1977; Bailey et al., 2000; Jedlicka et al., 2015; Antunes and Simoes-de-Souza,

2018) may be a prime candidate for such a fast synaptic normalization scheme. The term ‘heterosy-

naptic’ plasticity is used in contrast to the much more widely studied ‘homosynaptic’ plasticity,

where changes occur in a stimulated synaptic pathway. In contrast, heterosynaptic plasticity refers to

changes in synaptic efficacies that occur in an unstimulated pathway after the stimulation of a neigh-

boring pathway. The most common form of heterosynaptic plasticity has a homeostatic nature: if

synapses in stimulated pathways potentiate, then this is accompanied by a depression of
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unstimulated pathways. Conversely, if synapses in stimulated pathways depress, this is accompanied

by a potentiation of unstimulated pathways. A classic example of this has been observed in interca-

lated neurons of the amygdala (Royer and Paré, 2003).

Interestingly, such homeostatic regulation is also consistent with findings at the ultra-structural

level. The physical size of a synapse, in particular the surface area of the postsynaptic density (PSD),

is commonly used as a proxy for a synapse’s efficacy (Chen et al., 2015; Bartol et al., 2015).

Bourne and Harris (2011) have observed coordinated changes in PSD surface areas of dendritic

spines in the hippocampus after LTP induction. They report that increases in the PSD surface areas

of some synapses or the creation of new synapses are balanced by decreases of PSD surface areas

of other synapses or their complete elimination such that the total amount of PSD surface area stays

approximately constant. Recent findings support the idea that such regulation may occur at the level

of individual dendritic branches (Barnes et al., 2017).

A proxy of synaptic efficacy that is more precise than PSD surface area is the number of AMPA

receptors (AMPARs) inside the PSD. AMPARs are glutamate-gated ion channels responsible for

most fast excitatory transmission in the vertebrate brain. During various forms of plasticity the num-

ber of these receptors at synapses is modified, leading to changes in synaptic efficacies, reviewed

by Chater and Goda (2014). Therefore, a full understanding of synaptic plasticity requires a careful

description of the mechanisms that regulate AMPAR numbers in synapses.

Here we show how the behavior of keeping the sum of synaptic efficacies approximately constant

on short time scales naturally arises from a generic model in which individual synapses compete for a

limited supply of synaptic building blocks such as AMPARs or other protein complexes that are nec-

essary to stabilize AMPARs inside the PSD. We assume that there is a local dendritic store of these

building blocks and that they enter and leave dendritic spines in a stochastic fashion. The model pre-

dicts that the redistribution of synaptic efficacies should act multiplicatively, as is often assumed in

ad hoc normalization models. We also show that this model naturally gives rise to a homeostatic

form of heterosynaptic plasticity, where synapses grow at the expense of other synapses. To this

end, we introduce a model of homosynaptic LTP describing the time course of the incorporation of

new receptors and slots during LTP induction. Finally, we quantify the scale of spontaneous synaptic

efficacy fluctuations due to the fast stochastic exchange of AMPARs between the dendritic pool and

postsynaptic receptor slots. We show that small synapses exhibit relatively stronger efficacy fluctua-

tions, which are further accentuated if the local receptor pool is small. Overall, the model reveals

how the dynamic behavior of neurotransmitter receptors plays an important role in shaping synaptic

plasticity.

Results

Formulation of the model
The architecture of the model is shown in Figure 1. We consider a piece of dendrite with N 2 N syn-

aptic inputs. Each synapse is characterized by two variables. First, each synapse i 2 1; . . . ;N has a

number of slots si 2 R
�0 for neurotransmitter receptors. Second, at any time a certain number of

slots wi 2 R
�0 actually contain a receptor. wi determines the current weight or efficacy of a synapse.

We assume that the PSD cannot hold more functional receptors than there are slots, that is, wi � si.

At biological synapses AMPARs are clustered inside PSDs into nanodomains of about 70 nm that

contain on average 20 receptors (Nair et al., 2013). Interestingly, those postsynaptic nanodomains

are aligned with presynaptic release sites forming so-called nanocolunms. It is noteworthy that

AMPARs have low affinity for glutamate such that receptors outside of nanodomains are unlikely to

participate in synaptic transmission (Liu et al., 1999; Biederer et al., 2017). Next to receptors in the

synapses, the neuron maintains a pool of receptors freely diffusing at the neuron surface and ready

to be stabilized inside nanodomains. The size of this pool is denoted p 2 R
�0. Note that

for mathematical convenience we here consider the si, wi and p to be real numbers that can take

non-integer values. In the stochastic version of the model introduced below these will be natural

numbers.

Receptors can transition from the pool to empty slots in a synapse or detach from such a slot and

return into the pool with rates a 2 R
>0 and b 2 R

>0, respectively. Receptors in the pool are removed

with a rate d 2 R
>0 corresponding to internalization of the receptors from the cell surface
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(endocytosis). To counteract this loss, new receptors are added at a rate g 2 R
>0 and injected into

the pool corresponding to externalization of the receptors to the cell surface (exocytosis). In the limit

of large receptor numbers, the dynamics of the system can be described by the following system of

coupled ordinary nonlinear differential equations:

_wi ¼�bwiþap si�wið Þ; i¼ 1; . . . ;N (1)

_p¼�dpþgþ
i

X

bwi �
i

X

ap si �wið Þ: (2)

In the first equation, �bwi describes the return of receptors from synapse i into the pool. The

term ap si�wið Þ describes the binding of receptors from the pool to empty slots in synapse i, which

is assumed to be proportional to both the number of receptors in the pool and the number of free

slots in the synapse. In the second equation, �dp describes the deletion of receptors from the pool,

g represents the gain of new receptors,
P

i bwi describes the return of receptors from the synapses

into the pool, and finally �
P

i ap si �wið Þ describes the loss of receptors from the pool which bind to

free slots in the synapses. Together, this is a system of Nþ 1 coupled ordinary nonlinear differential

equations. It is nonlinear, because the equations contain product terms of the state variables, in par-

ticular the pwi terms.

The model can be interpreted in different ways. Its generic interpretation is that the ‘receptors’

of the model are AMPA receptor (AMPAR) complexes composed of AMPARs and transmembrane

AMPAR regulatory proteins (TARPs) such as stargazin. The ‘slots’ are postsynaptic density structures

comprising membrane-associated guanylate kinase (MAGUK) proteins such as PSD-95 attached to

the postsynaptic membrane, which stabilize AMPARs in the postsynaptic density (PSD)

(Hafner et al., 2015; Schnell et al., 2002; Sumioka et al., 2010). Inside the synapses PSD-95 pro-

teins are highly packed (roughly 300 molecules per PSD) (Kim and Sheng, 2004) and largely immo-

bile (Sturgill et al., 2009). When a receptor enters a synapse binding to one or more immobile PSD-

95 proteins results in receptor immobilization. In this generic interpretation of the model, the pool

of receptors is the set of AMPARs that diffuse in the plasma membrane and that are captured by the

slots. Addition of receptors to the pool then subsumes (some or all of) the processes that assemble

AMPARs and prepare them for the insertion into slots: assembly of the receptors from the compo-

nent subunits, trafficking, attachment of TARPs, externalization, and potentially phosphorylation.

Removal from the pool similarly subsumes the set of reverse processes. Several variations of this

generic interpretation are possible depending on what exactly we would like to associate with the

‘receptors’ in the model: AMPARs, AMPAR+TARP complexes, AMPAR+TARP complexes that have

Figure 1. Architecture of the model. (A) Sketch of the architecture of the model. Neurotransmitter receptors, e.g.

AMPA receptors, are trafficked through the dendrite and bind to ‘slots’ inside of dendritic spines. The efficacy of a

synapse is assumed to be proportional to the number of receptors attached to its slots. (B) Abstract description of

the stochastic process indicating the rates at which receptors move in and out of slots in the synapses and the

receptor pool in the dendrite. See text for details.

DOI: https://doi.org/10.7554/eLife.37836.002
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already been exocytosed, phosphorylated, etc. Essentially, our model is a two-step model (produc-

tion and insertion), but we leave it open for interpretation, what steps in the full chain of events are

considered the ‘production’ (subsumed in rate g) and which steps are considered the ‘insertion’ (sub-

sumed in rate a).

Evidently, receptor slots themselves must also be stabilized inside the PSD somehow. A second,

maybe somewhat counter-intuitive, interpretation of the model is therefore that it describes the

binding and unbinding of receptor slots to what one might consider a slot for a receptor slot or sim-

ply slot-for-a-slot. In this interpretation of the model, the ‘receptors’ in the description above are

actually the PSD-95 slot proteins and the ‘slots’ are slots-for-a-slot to which the PSD-95 proteins can

attach. The model then describes the trafficking of PSD-95 into and out of the PSD, assuming that

available AMPAR complexes are quickly redistributed among PSD-95 slots (compared to the time

scale of addition and removal of these PSD-95 slots to the PSD). This interpretation may be particu-

larly useful if the supply of PSD-95 is the limiting factor in determining the number of functional

AMPARs bound inside the PSD (Schnell et al., 2002). We leave open the question what exactly the

slots-for-a-slot might be. It is clear however, that PSD-95 molecules can form stable lattices inside

the PSD such that PSD-95 proteins could act as slots for other PSD-95 proteins.

Interestingly, the analysis of the model presented in the following does not depend on which

interpretation is chosen. The only additional assumption we will make is a separation of time scales

between the fast trafficking of the ‘receptors’ into and out of the ‘slots’ and the slow addition and

removal of receptors to the pool. Our main results only depend on this qualitative feature of the

model. For the first generic interpretation of the model the assumption of a separation of time scales

appears justified. If we interpret the receptor pool of the model to comprise AMPARs that have

been exocytosed and diffuse in the cell membrane, then the half-life of an AMPAR in the pool is of

the order of 10 min suggesting d�1 ¼ 10min = ln 2» 14min (Henley and Wilkinson, 2013;

Henley and Wilkinson, 2016). In contrast, the time an AMPAR stays inside the PSD, which we inter-

pret as the time the AMPAR is bound to a slot, appears to be of the order of maybe 30 s

(Ehlers et al., 2007), suggesting b�1 ¼ 30 s= ln 2» 43 s. We summarize these and other parameters

of the model in Table 1. Regarding the second, slots-for-a-slot, interpretation of the model, we note

that the half-life of PSD-95 residing inside the synapse is of the order of 5 h (Sturgill et al., 2009),

implying b�1
» 5 h= ln 2 » 7 h. In contrast, the global half-life of PSD-95 has been estimated to be 3.67

days (Cohen et al., 2013), implying d�1 ¼ 3:67 d= ln 2» 5:30 d. In either case, the assumption of a

separation of time scales appears justified.

Competition for synaptic building blocks induces multiplicative scaling
We begin our analysis by finding the stationary solution of the system of coupled differential equa-

tions defined by Equations 1 and 2. First, it is convenient to introduce the total number of synaptic

slots S �
P

i si and the total number of docked receptors or total synaptic weight W �
P

i wi and

note that its time derivative is _W ¼
P

i _wi. This allows us to rewrite Equation 2 as:

_p¼�dpþgþbW �ap S�Wð Þ : (3)

To find the fixed point solution p¥;w¥i with W¥ ¼
P

i w
¥

i , we set the time derivatives to zero,

Table 1. Standard parameters of the model.

Value Description Reference

b 43 sð Þ�1 unbinding rate from slots Henley and Wilkinson (2013); Henley and Wilkinson (2016)

d 14 minð Þ�1 internalization rate Ehlers et al. (2007)

f 2.67 relative pool size M. Renner, personal communication

F unknown filling fraction set by hand to {0.5, 0.7, 0.9}

g unknown externalization rate set via Equation 12 to achieve desired f

a unknown binding rate to slots set via Equation 13 to achieve desired F

DOI: https://doi.org/10.7554/eLife.37836.003
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that is, we require _wi ¼ 0 8i and _p¼ 0 above. Inserting the first condition into Equation 1 and sum-

ming over i yields:

0¼�bW¥þap¥ S�W¥ð Þ : (4)

Similarly, setting _p¼ 0 in Equation 3 gives:

0¼�dp¥þgþbW¥�ap¥ S�W¥ð Þ : (5)

Adding Equation 4 to Equation 5 then gives the solution for p¥:

p¥ ¼
g

d
: (6)

The simple and intuitive result is therefore that the total number of receptors in the pool in the

steady state is given by the ratio of the externalization rate g and the internalization rate d. Specifi-

cally, the presence of many receptors in the pool requires g� d.

We now solve for the steady state solutions w¥i of the wi by again setting _wi ¼ 0 in Equation 1

and using Equation 6 to give:

w¥i ¼
1

1þ bd

ag

si � Fsi : (7)

Importantly, we find w¥i / si, that is, in the steady state the weights of synapses are proportional

to the numbers of slots they have. The constant of proportionality is a filling fraction and we denote

it by F. Interestingly, the filling fraction F is independent of the number of receptor slots. Figure 2A

plots F as a function of the ratio of the four rate constants bdð Þ= agð Þ. We refer to this quantity as the

removal ratio, because it indicates the rates of the processes that remove receptors from the slots

relative to the rates of the processes that add them to slots. Note that a filling fraction close to one

requires bd� ag.

Summing Equation 7 over i reveals that W¥ ¼ FS, so we can also write:

w¥i ¼
si

S
W¥ ; (8)

where si=S is the relative contribution of synapse i to the total number of slots. Note that if the filling

Figure 2. Synaptic filling fraction. (A) Filling fraction F as a function of the removal ratio bdð Þ= agð Þ. (B) Example

empirical cumulative distribution functions (CDFs) of the numbers of receptors bound in individual synapses for

fixed numbers of slots drawn from a lognormal distribution and three different filling fractions F. The simulated

piece of dendrite has 100 synapses and 100 receptor slots per synapse on average.

DOI: https://doi.org/10.7554/eLife.37836.004
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fraction changes, say, due to an increase in receptor externalization or a change in any of the other

parameters, the relative strength of two synapses in the steady state is unaffected:

w¥i
w¥j

¼
si

sj
¼ const: (9)

Therefore, all synaptic efficacies will be scaled multiplicatively by the same factor.

Thus, the analysis so far reveals a first prediction of the model (compare Table 2, Filling Fraction):

Under basal conditions synapses in the local group have identical filling fractions. A first corollary

from this prediction is that the ratio of two synapses’ efficacies in the steady state is given by the

ratio of their numbers of receptor slots. A second corollary from this prediction is that when one (or

more) of the transition rates changes, all synaptic efficacies are scaled multiplicatively.

To illustrate the effect of multiplicative scaling of synaptic efficacies, we consider a piece of den-

drite with N ¼ 100 afferent synapses. The number of receptor slots si in these synapses are drawn

from a lognormal distribution with mean 1.0 and standard deviation 0.2 and subsequently scaled

such that there are 100 slots per synapse on average. We consider three different filling fractions

F 2 0:5; 0:7; 0:9f g. The empirical cumulative distribution functions (CDFs) of the common (decadic)

logarithms of the wi are shown in Figure 2B. The horizontal shifting of the empirical CDFs illustrates

the multiplicative scaling of the individual synaptic efficacies.

The total number of receptors in the system in the steady state R¥ is given by the sum of the

number of receptors in the pool and the number of receptors attached to slots. Combining the

above results, we find:

R¥ ¼ p¥þW¥ ¼ p¥þFS¼
g

d
þ

1

1þ bd

ag

S : (10)

In particular, the total number of receptors in the steady state depends on the total number of

slots.

In the case of AMPARs, the total number of surface receptors, receptor density, or the number of

slots per synapse still remain unknown. Moreover, it is likely that those numbers will vary depending

on neuron type and developmental state. However, single particle tracking experiments from the

laboratory of Antoine Triller performed on mature hippocampal cultured neurons provide valuable

insights into the proportion of exocytosed receptors immobilized in dendritic spines in this particular

system. Specifically, recent data suggest that 28% of surface AMPARs are immobilized at synapses

while the remaining 72% reside in the pool of extrasynaptic receptors (Marianne Renner, personal

communication). Since mature hippocampal cultured neurons are known to exhibit homeostatic and

long-term plasticity, we decided to use those numbers for our simulations. Thus, we define the rela-

tive pool size f as:

f¼
p¥

W¥
¼
0:72R¥

0:28R¥
»2:67 : (11)

Table 2. Summary of model predictions.

Further predictions are mentioned in the Discussion.

Prediction Explanation

Filling fraction Synapses in a local group have identical filling fractions in the basal state.

Pool Size Manipulation of local pool size scales synapses multiplicatively.

Sensitivity Filling fraction is most sensitive when pool size matches slot numbers.

Heterosynaptic I High pool size and filling fraction reduce heterosynaptic plasticity.

Heterosynaptic II Heterosynaptic plasticity is only transient.

Homosynaptic Pool size and filling fraction modulate homosynaptic plasticity.

Fluctuations Spontaneous efficacy fluctuations are bigger for small synapses.

DOI: https://doi.org/10.7554/eLife.37836.005
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The relative pool size f together with the filling fraction F determine the unknown externalization

rate g and the rate of binding to receptor slots a. Specifically, using W¥ ¼ FS and p¥ ¼ g=d, we find:

g¼ dp¥ ¼ dFSf : (12)

Furthermore, by combining this with the implicit definition of F from Equation 7 we can solve for

a to obtain:

a¼
bd

g

F

1�F
¼

b

fS 1�Fð Þ
: (13)

We can identify the term S 1�Fð Þ as the total number of empty receptor slots in the system. The

intuitive interpretation of the result is therefore that the binding rate a will be big compared to the

unbinding rate b if the number of empty slots and the relative pool size are small. Using the defini-

tion of f we can also rewrite the expression for the total number of receptors as R¥ ¼ 1þfð ÞFS.

The above results fully describe the system after it had sufficient time to reach its equilibrium. On

a shorter time scale, however, the system may transiently assume different quasi-stationary states,

because receptor addition and removal are slow compared to receptor binding and unbinding to

and from slots. In the following, we consider the short-term behavior of the model on time scales

where the total number of receptors is approximately constant. This will allow us to reveal, among

other things, a transient form of heterosynaptic plasticity.

Fast redistribution of receptors between synapses is multiplicative
To study the redistribution of receptors on a fast time scale, we exploit the fact that the processes

of receptor externalization and internalization are slow compared to the attaching and detaching of

receptors to and from slots. For instance, the time that an AMPAR remains in the cell membrane is

of the order of ten minutes while the time it resides inside the PSD is of the order of half a minute. A

reasonable approximation on short times scales is therefore to neglect the production and removal

terms in Equation 2. In this case, the total number of receptors R � W þ p is constant, as can be

seen by removing the �dp and þg terms from Equation 2, and adding Equation 1, summed over all

i, which gives _pþ _W ¼ _R ¼ 0. In the Methods we show that the steady state solution on the fast time

scale is then given by:

W* ¼
1

2
SþRþ �ð Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

4
SþRþ �ð Þ2�RS

r

; (14)

where we have introduced �� b=a as a short hand for the ratio of the rates through which receptors

leave and enter the synaptic slots. We define the corresponding short-term steady-state filling frac-

tion as F* ¼W*=S. Importantly, the short-term filling fraction F* is identical for all synapses. F* can

also be expressed as a function of the steady state pool size p* ¼ R�W* on the fast time scale, lead-

ing to a simple expression for the steady state efficacy w*
i of synapse i on the fast time scale:

w*
i ¼ F*si ¼

p*

p*þ �
si: (15)

In the full model, this solution is assumed only transiently, because receptors can still enter and

leave the system. If the number of receptors were held constant (g¼ 0 and d¼ 0), then F*, p*, and

the w*
i would describe the solution on long time scales.

The finding that the short-term steady-state filling fraction is identical for all synapses is analo-

gous to the solution for the long term filling fraction F derived in Equation 7, which is also the same

for all synapses. This implies a second prediction of the model (compare Table 2, Pool Size): When

the size of the local receptor pool is manipulated, all synaptic efficacies are scaled multiplicatively.

In Figure 3 we show the behavior of F* as a function of � for different combinations of total num-

ber of slots S and total number of receptors R. For high values of � the filling fraction F* always goes

to zero. For � approaching zero, F* achieves a maximum value which depends on whether there are

fewer or more receptors than slots in the system. If there are more receptors than slots then F*

approaches one. If there are fewer receptors than slots then F* approaches the ratio of receptors to
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slots in the system. In general, we find that the maximum short-term filling fraction for � ! 0 is given

by F*
max

¼ min 1;R=Sf g. In particular, a high filling fraction can only be achieved if R > S, that is, there

must be more receptors than slots in the system. On the other hand, F* is most sensitive to changes

in � when R ¼ S. This can be seen by the steep negative slope of the black curves in Figure 3 for

small values of �. In fact, for R ¼ S the derivative diverges, that is, F* reacts extremely sensitively to

changes in � (see Methods for details). We therefore note another prediction (compare Table 2, Sen-

sitivity): On short time scales the filling fraction reacts most sensitively to changes in binding/unbind-

ing rates if the total number of receptors matches the total number of receptor slots.

To illustrate the fast redistribution of receptors, we consider a sudden change in the pool size. In

our generic interpretation of the model, this corresponds to the sudden externalization or internali-

zation of AMPARs. To study the effect of such a manipulation, we discretize the full dynamic equa-

tions using the Euler method and solve them numerically. For illustration, we consider a piece of

dendrite with just three synapses with 40, 60, and 80 slots, whose pool size is changed abruptly (Fig-

ure 4). Parameters are set to achieve a filling fraction of F ¼ 0:9 and a relative pool size f ¼ 2:67.

After 2 min, the number of receptors in the pool is either doubled (solid lines) or set to zero (dotted

lines). In response, all synapses are rapidly scaled up or down multiplicatively. The new equilibrium is

only transient, however. On a slower time scale the system returns to its starting point as the slow

externalization and internalization processes drive the system back to its steady state solution

w¥i ; p
¥.

The fast equilibration process to a transient steady state also naturally gives rise to a homeostatic

form of heterosynaptic plasticity. When, e.g., the number of receptor slots in some synapses is

quickly increased, then receptors are redistributed such that the efficacies of synapses with an

increased number of receptor slots will grow, while the efficacies of other synapses will shrink, as we

discuss in the following.

Competition for receptors induces transient heterosynaptic plasticity
During LTP and LTD, the number of PSD-95 proteins in the synapse, which we assume to form the

slots for AMPARs, is increased and decreased, respectively (Colledge et al., 2003; Lisman and

Raghavachari, 2006; Ehrlich et al., 2007; Meyer et al., 2014). Importantly, these changes in slot

numbers are mirrored by corresponding adjustments of synaptic AMPAR numbers leading to long

Figure 3. Filling fraction F* in the short-term approximation of constant receptor number as a function of the ratio

of transition rates � ¼ b=a for different combinations of R and S. (A) F* for a fixed number of S ¼ 10 000 slots

and three different receptor numbers as a function of �. (B) For fixed number of R ¼ 10 000 receptors and three

different numbers of slots. Note that F* reacts particularly sensitively to changes in � when � is small and when R ¼

S (black curves). In this regime, small changes to, say, the rate of detaching from slots b have a great influence on

the filling fraction. In all cases, the shown solution F* is only transient. Eventually the filling fraction will assume its

steady state value F given by Equation 7.

DOI: https://doi.org/10.7554/eLife.37836.006

Triesch et al. eLife 2018;7:e37836. DOI: https://doi.org/10.7554/eLife.37836 8 of 26

Research article Neuroscience

https://doi.org/10.7554/eLife.37836.006
https://doi.org/10.7554/eLife.37836


lasting changes in synaptic efficacies. This suggests such modifications in AMPAR slot numbers as a

central mechanism for memory storage. Therefore, we now investigate how the addition or removal

of receptor slots in some synapses alters the efficacies of other synapses in the local group. We find

that the model gives rise to a form of heterosynaptic plasticity, since all synapses are competing for

a limited number of receptors inside the extrasynaptic receptor pool.

For illustration purposes we consider a piece of dendrite with four synaptic inputs (Figure 5). At

the beginning of the simulation, the number of slots in the four synapses are 20, 40, 60, and 80. We

start the system in its steady state with a filling fraction F ¼ 0:5 and a relative pool size of f ¼ 2:67.

After 2 min we instantaneously increase the number of slots in the first (blue) and third (red) synapse

by 100%. Subsequently, the system settles into a new (transient) equilibrium (Figure 5A). While w1

and w3 increase, the number of receptors in synapses 2 and 4 slightly decrease, although their num-

bers of slots have not changed. This behavior corresponds to a form of heterosynaptic plasticity

where synapses grow at the expense of other synapses and is due to the approximately constant

Figure 4. Effect of sudden change of the pool size p on synaptic efficacies. (A) After 2 min, the pool size is either

doubled (solid curves) or set to zero (dotted curves). In response, the synaptic efficacies are scaled multiplicatively

as receptors are redistributed through the system. Doubling the receptor pool has a relatively weak effect in this

example, as the system starts with a high filling fraction of 0.9, meaning that 90% of the slots are already filled at

the beginning and there are few empty slots to which the additional receptors can bind. (B) Same as A. but

showing relative change in synaptic efficacies, which is identical for all synapses. (C) Change in pool size. After the

sudden increase or decrease in pool size at 2 min, there is first a rapid relaxation of the pool size followed by a

much slower return towards the original value. (D) Same as B. but for a filling fraction of 1=2. The smaller filling

fraction leads to bigger relative changes of the synaptic efficacies. Parameters used were: b ¼ 1=43 s�1,

d ¼ 1=14 min
�1. The desired relative pool size was set to f ¼ 2:67. The production rate g and attachment rate a

were calculated according to Equation 12 and Equation 13, respectively.

DOI: https://doi.org/10.7554/eLife.37836.007
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number of receptors on a fast time scale. Note that the sum of synaptic efficacies is not perfectly

constant, however. The increase in synaptic efficacies w1 and w3 is bigger than the decrease of syn-

aptic efficacies w2 and w4. The bigger the size of the pool, the stronger is this effect. Close to perfect

balancing of synaptic weights would require p � W. Figure 5B shows the relative changes of effica-

cies of the synapses undergoing homosynaptic LTP (blue curve corresponding to w1 and w3 in A) vs.

heterosynaptic LTD (green curve corresponding to w2 and w4 in A) and the pool (black curve).

What determines the magnitude of the heterosynaptic change? We can calculate this analytically

by using the above short-term approximation F* for constant receptor number. Before plasticity

induction, the synaptic efficacy of a synapse in equilibrium is given by wi ¼ Fsi ¼ si=Sð ÞW . The induc-

tion of homosynaptic plasticity in other synapses changes the total number of available receptor

slots and we denote the new number of slots S0. Shortly after homosynaptic plasticity induction the

synaptic efficacies of a synapse that did not undergo homosynaptic plasticity will be approximately

w*
i ¼ F*si ¼ si=S

0ð ÞW* as receptors are redistributed through the system. Therefore, the relative

Figure 5. Induction of transient heterosynaptic plasticity. (A) Illustration of transient heterosynaptic plasticity. After

2 min, the number of slots in synapses 1 and 3 is increased instantaneously. The system quickly reaches a new

(transient) equilibrium, where the non-stimulated synapses 2 and 4 are slightly weakened. At the same time, the

number of receptors in the pool is reduced. Parameters were: b ¼ 1=43 s�1, d ¼ 1=14 min
�1. The filling fraction was

set to F ¼ 0:5 and the relative pool size was set to f ¼ 2:67. The production rate g and attachment rate a were

calculated according to Equation 12 and Equation 13, respectively. (B) Time course of relative changes in

synaptic efficacies due to homosynaptic and heterosynaptic plasticity for the experiment from A. (C) Approximate

maximum relative change of synaptic efficacy due to heterosynaptic plasticity as a function of the number of

receptor slots after homosynaptic plasticity induction for different filling fractions. (D) Same as C but for a smaller

relative pool size of f ¼ 1:0. See text for details.

DOI: https://doi.org/10.7554/eLife.37836.008
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heterosynaptic change of such a synapse is given by w*
i � wi

� �

=wi ¼ F* � F
� �

=F as long as the total

number of receptors has not changed much.

In Figure 5C we plot this relative change in synaptic efficacy due to heterosynaptic plasticity as a

function of the total number of receptor slots following homosynaptic plasticity induction for differ-

ent filling fractions. The relative pool size is assumed to be f ¼ 2:67. First, we can observe that

reductions in the total number of slots due to homosynaptic LTD cause heterosynaptic LTP. Con-

versely, increases in the total number of slots due to homosynaptic LTP cause heterosynaptic LTD.

Second, the amount of heterosynaptic plasticity depends on the filling fraction prior to plasticity

induction. Specifically, a high filling fraction of 0.9 leads to weaker heterosynaptic plasticity.

Figure 5D shows the analogous solution for the case of a smaller receptor pool. Here we set the

relative pool size to f ¼ 1:0. Everything else is identical to Figure 5C. The scarcely filled pool

strongly amplifies the heterosynaptic plasticity effect. When, e.g., new slots are added in this case,

the synapses can recruit fewer receptors from the small receptor pool and the heterosynaptic effect

on other synapses becomes bigger. A large receptor pool essentially functions as a buffer shielding

synapses from heterosynaptic plasticity. Consistent with C, larger filling fractions again lead to less

heterosynaptic plasticity.

Importantly, these effects are inherently transient. Over a sufficiently long time, the system will

settle into a new (true) equilibrium, where every synapse has the same filling fraction F determined

by the rate constants a;b; g; d as described above. The approach towards this new true equilibrium

can be seen most easily in Figure 5B, where the relative change of synaptic efficacy due to heterosy-

naptic plasticity (green curve) slowly decays towards zero. The new equilibrium will be stable unless

the numbers of slots in the synapses change again. In the particular example of Figure 5A,B, synap-

ses 2 and 4 slowly return to their original efficacies, while synapses 1 and 3 remain permanently

strengthened due to their increased number of slots. This effect might explain the often transient

nature of heterosynaptic plasticity observed in experiments, e.g., Abraham and Goddard (1983).

We therefore note the following additional predictions of the model (compare Table 2, Heterosy-

naptic Plasticity I, II): First, the amount of heterosynaptic plasticity is inversely related to the size of

the local receptor pool and the filling fraction. Second, heterosynaptic plasticity is only transient.

Another mechanism for producing a heterosynaptic effect is changing the transition rates a and b

in a synapse-specific fashion. For example, increasing a for some synapses will attract additional

receptors to these synapses and lead to a heterosynaptic removal of receptors from the remaining

synapses and the receptor pool. A more complete model of homosynaptic LTP that includes a tran-

sient synapse-specific change in a and induces heterosynaptic LTD is discussed next.

Time course of homosynaptic LTP and accompanying heterosynaptic
LTD
The assumption of a sudden increase in slot numbers from the last section is helpful for mathemati-

cal analysis but does not reflect biological reality well. Receptor slots need to be trafficked and inte-

grated into the PSD, which cannot happen instantaneously. In fact, modifications in PSD-95 protein

number after plasticity induction are known to take several minutes (Colledge et al., 2003;

Ehrlich et al., 2007; Meyer et al., 2014). In general, the induction of LTP is a complex process

unfolding across multiple time scales. Here we propose and analyze a more realistic model of homo-

synaptic LTP and the accompanying heterosynaptic LTD. The model incorporates a synapse-specific

transient increase in the insertion rate a of a potentiating synapse and a rapid and pronounced

increase of its number of slots followed by a gradual decay back to a sustained elevated level. Thus,

both the insertion rates ai and the slot numbers si are now considered a function of time. Formally,

in order to do so we replace Equations 1 and 2 by:

_wi tð Þ ¼�bwi tð Þþai tð Þp tð Þ si tð Þ�wi tð Þð Þ; i¼ 1; . . . ;N (16)

_p tð Þ ¼�dp tð Þþgþ
i

X

bwi tð Þ�
i

X

ai tð Þp tð Þ si tð Þ�wi tð Þð Þ; (17)

where we have introduced synapse specific insertion rates ai and made the time dependence of the

various quantities explicit.

Triesch et al. eLife 2018;7:e37836. DOI: https://doi.org/10.7554/eLife.37836 11 of 26

Research article Neuroscience

https://doi.org/10.7554/eLife.37836


We model the transient increase in a as a linear increase to four times the original value within

17 s followed by a linear decrease back to the original value over two minutes. This time course

roughly corresponds to the one reported for calcium calmodulin kinase II (CaMKII) activation by Lee

and colleagues (Lee et al., 2009), essential for LTP induction and maintenance (Malenka et al.,

1989). CaMKII activation leads to the phosphorylation of many synaptic target proteins including the

AMPAR auxiliary protein Stargazin which in turn increases the number of stabilized receptors in the

synapse (Opazo et al., 2010). Thus, we assume here that increased CaMKII activation observed

experimentally drives up the insertion rate a. For the time course of the insertion of receptor slots,

no direct measurements exist to our knowledge. Therefore, we make the simplifying assumption

that the number of slots is related to the change in size of the dendritic spine, which was also mea-

sured by Lee and colleagues (Lee et al., 2009). We model their data as a sigmoidal increase to five

times the original spine volume over the course of two minutes followed by an exponential decay to

two times the original spine volume over the course of around twenty minutes (time constant of

5 min). We model the change in the number of receptor slots to scale with the 2=3 power of the

change in spine volume, assuming scaling with the surface area rather than the volume of the spine.

The filling fraction was set to F ¼ 0:9 and the relative pool size to f ¼ 2:67. The results are shown in

Figure 6.

Figure 6A shows the time course of the relative change of the insertion rate a and the number of

receptor slots of the potentiated synapses. Figure 6B shows the time course of synaptic efficacies.

At around 4 min the number of slots of the stimulated synapses peaks. Thereafter, the number of

slots and the synaptic efficacies of the stimulated synapses decay to their new equilibrium values

and the size of the receptor pool slowly recovers. In this example with a high filling fraction of

F ¼ 0:9 and a relative pool size of f ¼ 2:67 the heterosynaptic effect is very small. This can also be

seen in Figure 6C, which shows the relative changes in the synaptic efficacies and the pool size as a

function of time. As in the previous section, the amount of heterosynaptic plasticity depends on the

filling fraction and the relative size of the receptor pool, however. This is illustrated in Figure 6D,

where we consider a smaller filling fraction of F ¼ 0:5 and a smaller relative pool size of f ¼ 1:0. This

leads to a strong depletion of the receptor pool and a large heterosynaptic depression effect.

To quantify this effect, we systematically vary the relative pool size f and filling fraction F and

observe the peak relative changes in synaptic efficacies during homosynaptic LTP and heterosynaptic

LTD (Figure 6E,F). We find that a small pool size strongly reduces the peak homosynaptic LTP and

greatly increases the peak heterosynaptic LTD. Furthermore, both homosynaptic LTP and heterosy-

naptic LTD tend to be reduced by a high filling fraction. These results are consistent with those from

Figure 5.

In addition to these already noted effects on heterosynaptic plasticity, this implies another predic-

tion of the model regarding homosynaptic plasticity (compare Table 2, Homosynaptic): The amount

of short-term homosynaptic plasticity expression is modulated by the pool size and the filling

fraction.

The changes in efficacies of synapses whose number of receptor slots are unaltered in Figures 4,

5 and 6 are only transient. In the following, we will study the long-term behavior of the model on

the time scale associated with receptor externalization and internalization to determine how long it

takes for the system to reach its (new) stable fixed point given by w¥i and p¥.

Approach to the steady state is governed by externalization and
internalization rates
To study the system’s approach to its long-term steady state we again make use of the separation of

time scales argument. Specifically, we assume that the fast dynamics of receptor exchanges between

the pool and the synapses quickly reaches its equilibrium before the total number of receptors can

change much due to receptor externalization and internalization. For this analysis we return to the

original formulation of the model. Specifically, the change in the total receptor number from Equa-

tion 1 and Equation 2 is approximated by:

_R¼ _pþ _W ¼�dpþg» � dp*þg ; (18)

where we have replaced the current pool size p with its steady state value p* Rð Þ ¼ R�W* Rð Þ for a

constant number of receptors in the system. Using F* Rð Þ �W* Rð Þ=S we arrive at:
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Figure 6. Model of homosynaptic LTP accompanied by heterosynaptic LTD. After 2 min, LTP is induced in

synapses 2 and 3. This entails a transient synapse-specific change in the insertion rate a of these synapses and a

gradual change in their slot numbers. (A) Time course of relative change of receptor insertion rate a and slot

numbers of stimulated synapses undergoing homosynaptic LTP. (B) Time course of synaptic efficacies for a filling

fraction of F ¼ 0:9 and a relative pool size of f ¼ 2:67. Only a very small amount of heterosynaptic LTD can be

observed in unstimulated synapses 1 and 4. (C) Relative change of synaptic efficacies and pool size due to

homosynaptic LTP and heterosynaptic LTD in B as a function of time. (D) Same as C but for a smaller filling

fraction of F ¼ 0:5 and a smaller relative pool size of f ¼ 1:0. Note the smaller transient increase in efficacy of

potentiated synapses (compare peaks of green curves in C and D) and the increased amount of heterosynaptic

LTD (compare troughs of blue curves). (E, F) Maximum amount of homosynaptic LTP (E) and heterosynaptic LTD

(F) as a function of relative pool size f for three different filling fractions.

DOI: https://doi.org/10.7554/eLife.37836.009
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_R¼ gþ dF* Rð ÞS� dR: (19)

For small numbers of receptors in the system, that is, R close to zero, the steady state filling frac-

tion F* Rð Þ will be close to zero so that _R»g. In contrast, for high numbers of receptors and the filling

fraction close to its long-term steady-state value F we find:

1

d
_R»

g

d
þFS�R; (20)

indicating that R will exponentially approach its steady state value of g=dþFS with the time constant

1=d. This behavior is illustrated in Figure 7. The simulated piece of dendrite has a total of 10 000

receptor slots and is initialized with different receptor numbers. We plot the numerical solution of

Equation 19 for different initial numbers of receptors in the system. For low receptor numbers, the

growth rate of R is approximately g (compare dotted line). For a filling fraction close to its final

steady-state value, R exponentially converges to its steady state of g=dþFS with time constant d�1.

Smaller spontaneous synaptic efficacy fluctuations in larger synapses
Our analysis of the differential equation model above is suitable for studying the average behavior

of the system for large numbers of receptors. However, small synapses may only have a few recep-

tors inside them and the effects of stochastic fluctuations may become substantial. To quantify the

size of such fluctuations of bound receptor numbers we have developed a stochastic version of the

model that explicitly simulates the stochastic binding and unbinding, internalization and externaliza-

tion of individual receptors (see Materials and methods). We use the model to study the fluctuations

of synaptic efficacies under basal steady state conditions. This allows us to quantify the size of synap-

tic efficacy fluctuations due to the fast exchange of AMPARs between synapses and the receptor

pool.

For illustration, we consider a local group of 7 synapses with 1, 2, 5, 10, 20, 50, and 100 slots,

respectively. We quantify the size of fluctuations of synaptic efficacies using the coefficient of

Figure 7. Illustration of long-term behavior under the separation of time scales assumption. Parameters were:

b ¼ 1=43 s�1, d ¼ 1=14 min
�1. The desired relative pool size was set to f ¼ 2:67 and the desired filling fraction to

F ¼ 0:9. The production rate g and attachment rate a were calculated according to Equation 12 and

Equation 13, respectively. The steady-state total number of receptors in this example is given by

R¥ ¼ 1þ fð ÞFS ¼ 33 030.

DOI: https://doi.org/10.7554/eLife.37836.010
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variation (CV), which is defined as the standard deviation of the fluctuating number of receptors

bound inside a synapse divided by the time average of the number of receptors bound inside this

synapse. A high CV indicates strong relative fluctuations of the synapse’s efficacy.

Figure 8A shows the numbers of receptors bound in each synapse as a function of time in one

example simulation of 10 min. Parameters are as given in Table 1 with the filling fraction set to

F ¼ 0:5 and the relative pool size set to f ¼ 2:67. Figure 8B shows an example for a much higher fill-

ing fraction of F ¼ 0:9. Fluctuations are greatly attenuated.

Figure 8C plots the logarithm of the CV of the number of receptors as a function of the logarithm

of the average number of receptors per synapse, which is given by the product of the theoretical fill-

ing fraction F and the number of receptor slots si of the synapse i. Data are shown for three different

filling fractions obtained by increasing a, the rate of receptors binding to receptor slots, while set-

ting g to maintain a constant relative pool size of f ¼ 2:67. The linear relationships evident in the

log-log plot indicate a power law scaling. We fit power law functions of the form CV ¼ a Fsð Þb to the

Figure 8. Quantification of spontaneous synaptic efficacy fluctuations due to the fast exchange of receptors

between synapses and the receptor pool. (A) Example simulation of a piece of dendrite with 7 synapses during

10 min of simulated time. The number of receptor slots in each synapse is given in the legend. The relative pool

size was set to f ¼ 2:67 and the filling fraction was set to F ¼ 0:5 by choosing the binding rate to receptor slots a

via Equation 13. (B) Same as A. but for a higher filling fraction of F ¼ 0:9. (C) Size of synaptic efficacy fluctuations

as measured by the coefficient of variation (CV) as a function of the steady state number of receptors in each

synapse, which is given by the product of the filling fraction F and the number of slots si in synapse i. The relative

pool size was set to f ¼ 2:67. Data points represent averages over 10 simulations of 30 min simulated time each.

Lines represent linear fits through the data points in double log space. (D) CV as a function of steady state number

of receptors for different relative pool sizes f achieved by holding the binding rate to receptor slots a fixed and

varying the externalization rate g.

DOI: https://doi.org/10.7554/eLife.37836.011
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data (solid lines). Parameters of the fits are given in Table 3 and indicate slopes of around �1=2, i.e.

the CV declines approximately with one over the square root of the average number of bound

receptors. Specifically, small synapses exhibit substantial fluctuations of their efficacies with CVs of

up to 100%, while fluctuations are greatly attenuated in strong synapses. For different filling frac-

tions, the curves are shifted vertically such that fluctuations are particularly strong for a filling fraction

of 0.5 and are reduced for higher filling fractions.

Figure 8D considers the case where the rates a;b; d are held constant and the externalization

rate g is varied to achieve different relative pool sizes f 2 1:0; 2:67; 5:0f g. Specifically, to achieve a

particular relative pool size f we set:

g¼ d Sf�
b

a

� �

: (21)

The change in g also leads to different filling fractions in the three cases, see Equation 7. The

results in Figure 8D show that an increased pool size will dampen spontaneous fluctuations of syn-

aptic efficacies, while a reduced pool size promotes stronger fluctuations. We again fit power law

functions to the data. Parameters of the fits are given in Table 4. Taken together, these results imply

another prediction of the model (compare Table 2, Fluctuations): Small synapses undergo relatively

larger spontaneous efficacy fluctuations, which are attenuated by a large pool size.

In conclusion, the spontaneous exchange of synaptic building blocks between synapses and den-

dritic pool leads to substantial fluctuations in synaptic efficacies. This finding is reminiscent of the

surprisingly large spontaneous fluctuations in spine sizes in the absence of activity-dependent synap-

tic plasticity observed recently (Dvorkin and Ziv, 2016; Shomar et al., 2017; Ziv and Brenner,

2018).

Discussion
The detailed molecular mechanisms underlying different forms of synaptic plasticity are complex.

Recent years have seen enormous progress in identifying many of the relevant molecules and signal-

ing pathways. This rapid development is in stark contrast to the simplistic and often purely phenom-

enological descriptions of synaptic plasticity used in most neural network models. While highly

simplified mathematical models have been essential for relating synaptic plasticity ‘rules’ to learning

processes at the network level, a full understanding of synaptic plasticity requires the development

of more elaborate models that do justice to the complexities of synaptic plasticity at the molecular

scale (Bhalla, 2011; Bhalla, 2014; Tsodyks et al., 1998; Urakubo et al., 2008). Here we have taken

a step in this direction.

Hebbian learning tends to lead to runaway growth of synaptic efficacies if not counteracted by

competitive or homeostatic mechanisms. To be effective, these compensatory mechanisms must act

fast enough so they can catch up with changes induced by Hebbian learning (Zenke et al., 2013;

Chistiakova et al., 2015). Prominent candidate mechanisms are synaptic normalization and hetero-

synaptic plasticity (Lynch et al., 1977). The idea has a long history. Synapses on the dendritic tree

compete for a limited supply of synaptic building blocks such that when some synapses grow, they

have to do so at the expense of other synapses (von der Malsburg, 1973; Lynch et al., 1977;

Antunes and Simoes-de-Souza, 2018). However, until recently, the lack of knowledge on the nature

Table 3. Fitting results from the stochastic version of the model, cf. Figure 8C.

The externalization rate g and the attachment rate of receptors to slots a are set to obtain different

filling fractions while maintaining a relative pool size of f ¼ 2:67. Parameters b and d are as in Tab. 1.

a and b give the parameters of the power law fits.

F a min
�1

� �

g min
�1

� �

Scale factor a Exponent b

0.5 0.0056 12.1 71.4 �0.52

0.7 0.0093 9.4 55.6 �0.51

0.9 0.0278 6.7 31.8 �0.50

DOI: https://doi.org/10.7554/eLife.37836.012
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and the timescales of the molecular processes taking place at synapses did not allow for realistic

modeling of such a competition for synaptic resources. Here we have presented a concrete model

with a fast normalization of the efficacies of a neuron’s afferent synapses based on this competition

for synaptic resources such as AMPA-type glutamate receptors.

Our model makes several contributions. First, it formalizes the idea of a fast synaptic normaliza-

tion based on a competition for dendritic resources in an abstract and analytically tractable model.

Second, analysis of the model reveals that under the given assumptions, normalization should act

multiplicatively, such that relative strengths of synapses are maintained. Multiplicative normalization

rules have been used in neural network models for a long time but usually in an ad hoc fashion. Our

model supports the idea that a fast multiplicative normalization may in fact be biologically plausible.

Third, the model naturally gives rise to a transient form of homeostatic heterosynaptic plasticity

where synapses grow in efficacy at the expense of other synapses. Fourth, the model quantifies how

the amount of heterosynaptic plasticity depends on the size of the local receptor pool and the filling

fraction of receptor slots. It thereby reveals a fundamental trade-off: the smaller the pool of available

receptors, the more pronounced the heterosynaptic plasticity. In other words, neurons can limit het-

erosynaptic plasticity effects, but this comes at the price of having to maintain a big receptor pool.

Similarly, the model predicts that a larger receptor pool attenuates spontaneous fluctuations in syn-

aptic efficacies, which are particularly strong for small synapses. In the following we discuss how this

prediction and others summarized in Table 2 could be tested.

How to test the model’s predictions
The first prediction of the model is that synapses in a local group have identical filling fractions, see

Equation 7. That is, under basal conditions the same percentage of receptor slots should be filled in

these synapses on average. Testing this prediction requires measuring both the number of receptor

slots and the number of filled receptor slots for a local group of individual synapses. This could be

achieved using a quantitative super resolution approach such as dual-color direct stochastic optical

reconstruction microscopy (dSTORM). For a given dendrite, one would have to quantify the number

of AMPARs and PSD-95 proteins in a local group of synapses under basal conditions. Our prediction

is that the ratio of AMPARs to PSD-95 proteins should be similar in all the synapses. As a corollary,

we predict that the relative efficacies of two synapses from a local group should be identical to their

relative slot numbers. Testing this hypothesis requires measuring the slot numbers and synaptic effi-

cacies of two synapses from a local group. Specifically, the efficacies of a group of synapses could

initially be measured using local glutamate uncaging. Subsequently the number of PSD-95 could be

assessed using dSTORM. This second approach seems rather challenging, however, as one would

have to find in the fixed sample the exact dendrite and specific spines that were stimulated during

live-imaging. A second corollary of the model’s first prediction is that if any of the transition rates

changes, e.g., the rate at which receptors unbind from receptor slots, the filling fractions and synap-

tic efficacies are scaled by the same factor. Testing this prediction can be achieved by interventions

that alter the transition rates. Activation of CaMKII leads to the phosphorylation of the AMPAR auxil-

iary subunit Stargazin increasing its affinity to PSD-95 (Hafner et al., 2015). Thus one could induce a

global activation of CaMKII in the neurons (chemical-LTP), fix the cells immediately after, and per-

form dual-color dSTORM for PSD-95 proteins and AMPARs. When comparing basal state to

Table 4. Fitting results from the stochastic version of the model, cf. Figure 8D.

The attachment rate of receptors to slots is chosen as a ¼ 0:0093min
�1 to obtain a filling fraction of

0:7 for a relative pool size of f ¼ 2:67. Parameters b and d are as in Tab. 1. g is varied to obtain differ-

ent relative pool sizes f and filling fractions F.

Relative pool size f g min
�1

� �

F Scale factor a Exponent b

1.0 2.67 0.20 92.6 �0.54

2.67 25.1 0.7 55.4 �0.51

5.0 56.4 0.84 39.1 �0.50

DOI: https://doi.org/10.7554/eLife.37836.013
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chemical-LTP, the ratio of PSD-95 proteins to AMPARs should decrease by the same factor for all

synapses.

The model’s second prediction can be tested in a similar way. We predict that manipulating the

size of the local receptor pool leads to a multiplicative rescaling of the efficacies of the local group

of synapses. To test this prediction, the size of the local receptor pool has to be altered, e.g., by

triggering externalization of additional receptors. This could be achieved by treating neurons with

TNF-a for instance (Zhao et al., 2010). Subsequently the efficacies of the local group of synapses

have to be monitored. These efficacies should scale by the same factor.

Another prediction of the model is that the amount of heterosynaptic plasticity is inversely related

to the size of the local receptor pool. The most direct way of testing this prediction is to manipulate

the local receptor pool as suggested above while inducing homosynaptic plasticity in a subset of

synapses and measuring the amount of heterosynaptic plasticity in other synapses of the local group.

In fact, this set of experiments could resemble the ones performed by Oh and colleagues but adding

a TNF-a condition (Oh et al., 2015).

The transient nature of heterosynaptic plasticity predicted by the model can be tested more eas-

ily. It merely requires the induction of homosynaptic plasticity in a subset of synapses in the local

group while monitoring the time course of heterosynaptic plasticity in the remaining synapses. Spe-

cifically, the time course of recovery from heterosynaptic plasticity should be close to the internaliza-

tion rate d of AMPARs.

The model’s prediction of an influence of the size of the receptor pool on the expression of

homosynaptic plasticity requires manipulating the size of the local receptor pool and subsequently

inducing homosynaptic plasticity. For example, the peak change in synaptic efficacy during LTP

induction should be bigger when the receptor pool has been increased than when it has been

depleted prior to LTP induction.

Finally, the model predicts that synapses exhibit spontaneous fluctuations in synaptic efficacies

due to the dynamic exchange of receptors with the local receptor pool. It predicts that these fluctua-

tions, as measured by the coefficient of variation (CV), scale approximately as one over the square

root of the synapses’ average efficacies. Testing this prediction can be achieved by repeated

measurements of the synaptic efficacy of single synapses in the absence of any plasticity induction

using glutamate uncaging.

Dendritic morphology and local production
We have assumed that the basal transition rates for receptors attaching and detaching to and from

slots are identical for all synapses and that the receptors are distributed homogeneously inside

the pool. These assumptions are essential for the multiplicative behavior of the model. If, in contrast,

the distribution of receptors across the dendritic tree were very inhomogeneous, this would, all else

being equal, correspond to different pool sizes in different parts of the dendritic tree, leading to dif-

ferent filling fractions across the dendritic tree.

Properly distributing synaptic building blocks across the dendritic tree is a formidable task

(Williams et al., 2016). Specifically, if receptors were only produced at a single site corresponding

to the neuron cell body (or soma) and spreading from this point source according to slow transport

processes then one would expect a high concentration of receptors close to the soma and a low

concentration far away from it. This would, all else being equal, lead to large receptor pools close to

the soma and small receptor pools far away from it. Earnshaw and Bressloff (2008) have presented

such a model. They consider a long dendrite and diffusion of receptors from the soma along this

dendrite leading to a high concentration of receptors close to the soma and a small concentration

far away from it. In contrast, our model considers a local piece of dendrite, where the concentration

of receptors can be assumed to be approximately constant. Therefore, our model does not attempt

to make predictions regarding scaling of synaptic efficacies at the global level of a neuron’s entire

dendritic tree. Earnshaw and Bressloff conclude from their model that ‘it does not appear possible

to obtain a global multiplicative scaling’ of synaptic efficacies just by changing reaction rates. This

conclusion rests on the fact that the distribution of receptors along their simulated dendrite is inho-

mogeneous. Specifically, Earnshaw and Bressloff assume that protein synthesis occurs mostly at the

soma, which leads to an approximately exponential decay of the concentration of receptors towards

the distal end of the dendrite. This assumption failed to be confirmed experimentally and has in fact

been contradicted by Tao–Cheng and colleagues who found a homogeneous distribution of
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AMPARs at the neuron surface along the dendritic arbor of hippocampal cultured neurons (Tao-

Cheng et al., 2011). Earnshaw and Bressloff also cite a study by Adesnik et al. (2005) to support

the idea of an inhomogeneous distribution of AMPARs. They used ANQX (a modified version of

DNQX) known at that time as an AMPAR antagonist (Chambers et al., 2004) to monitor synaptic

AMPAR exchange after specific inactivation of the surface population. They measured a significantly

slower recovery of AMPAR current in dendrites compared to the somatic region. Thus, they con-

cluded that AMPARs are mainly exocytosed at the somatic extracellular membrane and trafficked

distally through lateral diffusion. However, since then DNQX has also been shown to act on kainate

and NMDA receptors. Additionally, DNQX effects on AMPARs appear to depend on the composi-

tion of AMPAR complexes and in particular the type of auxiliary subunits associated with those

receptors (Maclean and Bowie, 2011; Greger et al., 2017). Since the concentration of receptors

between somatic and dendritic membranes appears to be fairly homogeneous, it might be that the

actual composition of the receptors varies between those two compartments. In this case, global

multiplicative scaling is to be expected in the model of Earnshaw and Bressloff as well. Hence, we

believe that our model using minimal assumptions and being restricted to a single dendritic segment

with multiple dendritic spines is in good accordance with the recent literature on AMPAR trafficking.

A uniform distribution of synaptic building blocks across the entire dendritic tree could be facili-

tated by local production of these building blocks across the dendritic tree. Local protein synthesis

may therefore be essential for global multiplicative scaling behavior observed in biological experi-

ments (Turrigiano et al., 1998). More specifically, synthesis of AMPAR subunits happens inside the

cell at the endoplasmic reticulum membrane (ER). This synthesis of proteins seems to occur in a burst

fashion in local ‘hot spots’ distributed across the dendritic tree (Katz et al., 2016). Importantly, how-

ever, newly synthesized receptors are not necessarily immediately trafficked to the cell surface and

in fact a large fraction are distributed across and maintained inside the ER compartment constituting

an intracellular pool of receptors waiting to be exocytosed (Greger et al., 2002). Thus, the distribu-

tion of receptors in the ER may already be more homogeneous than hot spot synthesization would

suggest. Furthermore, once released from the ER into the cytoplasm, fast distribution of receptors

along microtubules could lead to a rather homogeneous distribution inside the cytoplasm, from

where the receptors would be trafficked to the surface. Thus, bursty translation at hotspots inside

the ER may still allow for a homogeneous distribution of receptors at the cell surface. We therefore

predict that local production of synaptic building blocks across the dendritic tree contributes to their

uniform distribution, which in turn might allow global multiplicative scaling behavior and the mainte-

nance of relative strengths of synapses. This could be tested, for example, by specifically blocking

local production of synaptic building blocks, which should make their distribution across the den-

dritic tree less homogeneous and lead to systematic inhomogeneities in synaptic efficacies across

the dendritic tree.

In this context it is also interesting to note that at least one form of heterosynaptic plasticity tends

to be induced locally (De Roo et al., 2008; Losonczy et al., 2008; Li et al., 2016b), that is, at neigh-

boring synapses. Such local action is readily expected in our model if competition for synaptic build-

ing blocks is restricted to a local pool such as a section of a dendritic branch, with comparatively

slow trafficking of building blocks between adjacent pools.

Detailed descriptions of AMPAR trafficking and diffusion
The stochastic version of our model describes individual binding and unbinding events of AMPARs

to receptor slots, but it does not describe in detail the paths taken by individual AMPARs during

their diffusion in the cell membrane. This is a gross simplification, but it facilitates mathematical anal-

ysis. More elaborate models were conceived to describe the movement of individual receptors

inside the dendritic branch and the PSD (Earnshaw and Bressloff, 2006; Czöndör et al., 2012;

Li et al., 2016a). Such models can incorporate, e.g., the detailed spine geometry or effects of pro-

tein crowding.

Control of transition rates
Apart from our experiments on modeling LTP, where we introduced a transient and synapse-specific

increase of the rate at which receptors bind to slots, we have kept all transition rates constant

throughout this paper. In reality, we expect the various transition rates to be flexibly controlled to
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allow for robust and efficient functioning of the neuron, allowing it to cope with various perturba-

tions. Indeed, constructing a model to describe these various regulatory processes will be an impor-

tant challenge for the future. Furthermore, AMPARs can be in different states expected to have

different transition rates. Specifically, AMPAR complexes containing various sets of auxiliary subunits

are very likely to co-exist at the neuron surface (Schwenk et al., 2012). Since only a couple of auxil-

iary subunits have binding domains for PSD-95, multiple types of AMPARs with different a and b

parameters could be considered. These topics are left for future work.

Slot production and removal
In future work, it will also be interesting to consider changes to slot numbers in more detail. We sim-

ulated increases in slot numbers of individual synapses in the context of LTP. Obviously, however,

the building blocks of these ‘slots’ also have to be produced, transported, and inserted into synap-

ses, which could be based on similar mechanisms as we have postulated for receptors. Furthermore,

slots are also degraded and have to be replaced. In fact, the alternative interpretation of our model

discussed in the beginning of the Results section already describes how PSD-95 slots are produced

(or degraded) and bind to (or detach from) slots for these receptor slots (‘slots-for-a-slot’ interpreta-

tion). Future work should aim for a model that more fully describes the interactions of AMPARs (and

other types of receptors), various TARPs such as stargazin, MAGUK proteins such as PSD-95, and

neuroligins as well as their production and trafficking. Along these lines, it will also be interesting to

consider the mechanisms underlying different stages of LTP and LTD in more detail.

Modeling slow homeostatic synaptic scaling
The model could also be extended to capture slow homeostatic synaptic scaling processes

(Turrigiano et al., 1998; Ibata et al., 2008). In the simplest case, a sensor for the average neural

activity of the neuron would drive the production of receptors and/or slots in a homeostatic fashion,

such that if, e.g., the average neural activity falls below a target level or range, then receptor and/or

slot production are increased to drive up excitatory synaptic efficacies. Such a model would naturally

explain the multiplicative behavior of homeostatic synaptic scaling (Turrigiano et al., 1998). Obvi-

ously, the activity sensor could also sense the average activity in a local neighborhood through a dif-

fusive mechanism (Sweeney et al., 2015). Furthermore, instead of homeostatically regulating firing

rates, the amount of afferent drive to the neuron or to the local population could be controlled

(Savin et al., 2009), or even other measures of neural and synaptic activity could be used. Finally,

all these ideas are not mutually exclusive. It seems likely that neurons control both their firing rate

distributions and their amounts of excitatory and inhibitory afferent drive through a combination of

different intrinsic and synaptic plasticity mechanisms on different time scales.

Receptor subunit composition
Finally, not all AMPARs are created equal. Depending on the composition of subunits, AMPARs

have distinct properties in terms of, e.g., calcium permeability and trafficking (see Henley and Wil-

kinson, 2016) for a recent review). A more complete model should incorporate the diversity of

AMPARs (or even other receptor types) and their properties.

Conclusion
In conclusion, our model offers a parsimonious explanation for a transient form of homeostatic heter-

osynaptic plasticity and fast local synaptic normalization, which it predicts to be multiplicative. It

therefore supports the use of such rules in neural network models. The model also reveals a funda-

mental trade-off between the size of the local receptor pool and the amount of heterosynaptic plas-

ticity. This trade-off is akin to a common logistics problem: how much to produce and store of a

particular resource in order to (a) minimize production costs and storage space while (b) limiting the

risk of running out of this resource? Arguably, efficient neural functioning requires solving a plethora

of related logistics problems with respect to production, transport, and storage of various ‘goods’

and supply of the necessary energy for all these processes. We feel that the time is ripe for a con-

certed effort to study individual neurons and the entire nervous system from such a neurologistics

perspective.
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Materials and methods

Simulation software
The simulation software was written in Python and is available at: https://github.com/triesch/synap-

tic-competition (Triesch and Vo, 2018); copy archived at https://github.com/elifesciences-publica-

tions/synaptic-competition).

Differential equations were discretized with the Euler method.

The stochastic version of the model was simulated using the Gillespie algorithm (Gillespie, 1976).

Stochastic reactions were defined for receptors entering or leaving each of the seven synapses and

for being added or removed from the receptor pool. This gave rise to a total of 16 possible ‘reac-

tions’ occurring with different probabilities per unit time depending on the current state of the sys-

tem, that is, how many receptors are bound in each synapse and reside in the pool. Stochastic

simulations were validated against the differential equation model to verify that their average behav-

ior matched that of the differential equation model in different situations.

Calculation of the short-term filling fraction
We exploit the separation of time scales between fast receptor binding and unbinding from slots

and slow externalization and internalization of receptors. On the fast time scale, the processes of

internalization and externalization can be ignored. Removing the corresponding terms in Equation 2,

we again look for the steady state solution by setting the time derivatives of wi and p to zero and

summing over i. This leads to the following quadratic equation for W*, the steady state number of

bound receptors in the short-term approximation (which must not be confused with the long-term

steady state solution W¥ of the full system):

W�2�W� SþRþ
b

a

� �

þRS¼ 0: (22)

We introduce �� b=a as the ratio of the rates through which receptors leave and enter the synap-

tic slots. Using this, the two solutions of Equation 22 are given by:

W*
1;2 ¼

1

2
SþRþ �ð Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

4
SþRþ �ð Þ2�RS

r

: (23)

The ‘+’ solution is not biologically meaningful, since it leads to W* � S or W* � R (see Appendix),

so that the desired steady state solution of the short-term approximation is given by:

W* �W*
2
¼
1

2
SþRþ �ð Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

4
SþRþ �ð Þ2�RS

r

(24)

and the corresponding short-term steady-state filling fraction is F* ¼W*=S. In the full system, this

solution is assumed only transiently, because receptors can still enter and leave the system. If the

number of receptors were held constant, then F* and W* would describe the stable solution on long

time scales.

Sensitive reaction of the short-term filling fraction to changes in
reaction rates when number of receptors matches number of slots
We are interested in how the short-term filling fraction F* changes, when the reaction rates a and b

or their ratio � � b=a change. Formally, we consider the partial derivative of the short-term filling

fraction F* ¼ W*=S with respect to �. Using Equation 24 we find:

qF*

q�
¼
1

S

qW*

q�
¼
1

S

1

2
�

Rþ Sþ �

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

4
Rþ Sþ �ð Þ2�RS

q

2

6

4

3

7

5
: (25)

As can be seen in Figure 3C,D, the most extreme slope is obtained at �¼ 0. There the derivative

simplifies to:
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qF*

q�

�

�

�

�

�¼0

¼
1

2S
1�

Rþ S

R� S

� �

: (26)

For R¼ S the slope diverges, that is, the short term filling fraction reacts extremely sensitively to

small changes in � when � is close to zero.
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Appendix 1
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The ’+’ solution from Equation 23 is not biologically
meaningful.
We show that the ’+’ solution from Equation 23 is not biologically meaningful. To see this,

first note that W1 � W2. Furthermore, any meaningful solution W must fulfill W � R and W � S,

that is, the number of receptors bound to slots cannot be bigger than the total number of

receptors or the total number of slots. If the smaller solution W1 does not meet both criteria,

then the larger W2 cannot meet them either. So we assume in the following that

W1 meets both these criteria so that W1 � min R; Sf g. Our argument uses Vieta’s formulas for

the quadratic Equation 22:

W1þW2 ¼ Rþ Sþ � and W1W2 ¼ RS:

Using the second formula we can write:

RS¼W1W2 �min R;Sf gW2;

from which follows that:

W2 �
RS

min R;Sf g
:

In the case that R > S, this leads to W2 � R. The only biologically meaningful solution to this

is the equality W2 ¼ R. This is the extreme case where all receptors are bound in slots and no

receptors remain in the pool. With Vieta’s second formula we see that in this case W1 ¼ S.

Plugging both results into Vieta’s first formula, we see that this solution requires � ¼ 0, which

in turn requires b ¼ 0. In this case, no receptors would ever leave synapses.

The case R < S leads to W2 � S. The only biologically meaningful solution to this is the

equality W2 ¼ S. This is the extreme case where all slots are filled with receptors. Using Vieta’s

formulas again leads to the uninteresting requirement � ¼ 0 for this solution.

Finally, the case R ¼ S leads to R ¼ S ¼ W1 ¼ W2 and also requires � ¼ 0. In summary, the

‘+’ solution in Equation 23 only admits the extreme solutions W ¼ S or W ¼ R requiring � ¼ 0

(and therefore b ¼ 0), which are not biologically meaningful.
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