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A B S T R A C T   

Complex peptide natural products exhibit diverse biological functions and a wide range of physico-chemical 
properties. As a result, many peptides have entered the clinics for various applications. Two main routes for 
the biosynthesis of complex peptides have evolved in nature: ribosomally synthesized and post-translationally 
modified peptide (RiPP) biosynthetic pathways and non-ribosomal peptide synthetases (NRPSs). Insights into 
both bioorthogonal peptide biosynthetic strategies led to the establishment of universal principles for each of the 
two routes. These universal rules can be leveraged for the targeted identification of novel peptide biosynthetic 
blueprints in genome sequences and used for the rational engineering of biosynthetic pathways to produce non- 
natural peptides. In this review, we contrast the key principles of both biosynthetic routes and compare the 
different biochemical strategies to install the most frequently encountered peptide modifications. In addition, the 
influence of the fundamentally different biosynthetic principles on past, current and future engineering ap-
proaches is illustrated. Despite the different biosynthetic principles of both peptide biosynthetic routes, the 
arsenal of characterized peptide modifications encountered in RiPP and NRPS systems is largely overlapping. The 
continuous expansion of the biocatalytic toolbox of peptide modifying enzymes for both routes paves the way 
towards the production of complex tailor-made peptides and opens up the possibility to produce NRPS-derived 
peptides using the ribosomal route and vice versa.   

1. Introduction 

Bioactive peptides can be found across all kingdoms of life [1]. 
Textbook knowledge separates the biosynthesis of complex peptide 
natural products (NPs) into ribosomally synthesized peptides and pep-
tides that are produced independently of the classical ribosomal route 
[1–3]. The ribosomal route can be further subdivided into the evolu-
tionary ancient class of cationic and amphiphilic antimicrobial peptides 
(AMPs), mainly involved in primary immune defense of plants and an-
imals [3], and ribosomally synthesized and post-translationally modi-
fied peptides (RiPPs), which are distributed throughout the tree of life 
and show a wide diversity of biological functions [1]. AMPs predomi-
nantly target cell membranes and are usually active against a broad 
range of bacteria [4]. RiPPs, on the other hand, exhibit diverse biolog-
ical functions ranging from antimicrobials (e.g., lantibiotics) [5], 
co-factors (e.g., PQQ) [6], to hormones (e.g., tri- and 

tetraiodothyronine) [7]. RiPP-derived peptides are ribosomally synthe-
sized and then undergo an extensive post-translational modification 
process, before proteolytic cleavage results in the release of the mature 
peptide NP [3,8]. Moreover, five different ribosome-independent routes 
for the production of complex peptide NPs have been described [9]. 
These types differ in their carrier protein or tRNA dependancy, the mode 
of amide bond formation, and their modular or non-modular protein 
architecture (for a comprehensive review see Ref. [9]). Among these, the 
most prominent group of enzymatic machineries for the biosynthesis of 
complex peptides are modular non-ribosomal peptide synthetases 
(NRPSs) which act in an assembly line-like fashion [2,9]. Non-ribosomal 
peptides (NRPs), unlike ribosomally synthesized peptides, are not 
limited to the 20 proteinogenic amino acids (AAs) but harbor a variety of 
naturally occurring, non-proteinogenic AAs in their peptide backbones 
[1,10]. This review focuses on the comparison of multi-modular NRPSs 
and RiPPs. 
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Extensive bioactivity-guided screening efforts have resulted in the 
isolation of numerous highly complex peptide NPs since the beginning of 
the golden age of antibiotics [11]. These efforts have led to the discovery 
of most NP-derived drugs that we are using today. Examples of complex 
peptides of medical relevance include the immunosuppressant cyclo-
sporin (1) (NRP) [12], the antibiotic of last resort vancomycin (2) (NRP) 
[12], the drug candidate for the treatment of cystic fibrosis duramycin 
(3) (RiPP) [13] and the antibiotic nisin (4) (RiPP) (Fig. 1) [5,14]. Some 
of these metabolites were isolated more than half a century before the 
genetic blueprints that govern their biosynthesis were deciphered. As a 
result of the presence of many non-proteinogenic AAs in these peptides 
[12], it was speculated that they originate from a ribosome-independent 
route. It was not until 1988, or 49 years after the initial isolation, that 
the first genes responsible for the biosynthesis of the NRP gramicidin 
were identified [15–17]. It took about a decade to decipher the universal 
principles that govern NRPS biosynthesis [18–20]. Even though the 
biosynthesis of epidermin, which is structurally related to nisin (4), was 
elucidated in 1988 and showed that complex peptide NPs can also be 
biosynthesized via the ribosomal route [21], the historic misconception 
that complex peptides that harbor non-proteinogenic AAs are likely 
NRPS-derived, persists up to this day. Recent examples of RiPP-derived 
peptides that were initially believed to be of NRPS origin include the 
polytheonamides which are extremely cytotoxic 48-mer pore formers. 
Polytheonamides biosynthesis involves a total of 49 post-translational 
modifications resulting in the formation of 28 non-proteinogenic 

amino acids [22,23]. Moreover, the hexapeptide tryptorubin A which 
is characterized by a highly rigid three-dimensional (3-D) shape was 
initially believed to be a NRPS product [24]. Reevaluation of tryptor-
ubin biosynthesis, however, led to the realization that tryptorubin A is 
the first member of a new RiPP family [25]. This misconception can, at 
least in part, be attributed to the better understanding of NRP biosyn-
thesis. Insights into NRP biosynthesis have resulted in the development 
of sophisticated bioinformatic platforms for the identification and 
annotation of NRPS biosynthetic gene clusters (BGCs) in genome se-
quences and the structural prediction of the associated peptides. RiPP 
BGCs that do not belong to the well characterized RiPP families, on the 
other hand, are significantly more challenging to be identified in 
genome sequences. As a result, and even though RiPPs have been the 
fastest growing class of NPs, we are currently not able to chart the full 
RiPP biosynthetic potential encoded in microbial genome sequences. 
While only 22 RiPP families had been reported in 2013 [1], we now 
know more than 40 RiPP families [8]. 

Since the arsenal of AA modifications encountered in RiPP and NRPS 
systems is widely overlapping, it becomes increasingly more difficult to 
assign a peptide to its biosynthetic origin without having access to the 
genome sequence of the producer. On the other hand, the realization 
that both RiPPs and NRPSs use different strategies to introduce a largely 
overlapping arsenal of peptide modifications opens up an entirely new 
avenue: the production of NRPS-derived peptides using the ribosomal 
route and vice versa. 

Fig. 1. Structures of the medically relevant peptides cyclosporin (1) (NRPs), vancomycin (2) (NRPs), duramycin (3) (RiPP), and nisin (4) (RiPP).  
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This review will briefly contrast the key biosynthetic features of 
NRPS and RiPP biosynthesis, describe the biosynthetic origins of the 
most common peptide modifications and highlight the different genome 
mining approaches for the targeted identification of novel RiPP and 
NRPS-derived peptides. We will then showcase the progress, promise 
and obstacles in the engineering of both peptide biosynthetic routes and 
venture a look ahead into the future of engineering peptide biosynthetic 
pathways. 

2. Biosynthesis of complex peptide natural products 

The biosynthetic principles of NRPSs and RiPPs fundamentally differ 
with respect to recognition, activation and condensation of the AA 
building blocks as well as the subsequent modification and maturation 
of the corresponding peptides (Fig. 2). The following section briefly 
introduces and contrasts the biosynthetic principles of NRPS and RiPPs 
pathways. 

2.1. NRPS-derived peptide biosynthesis 

NRPSs can be subdivided into a nonlinear, iterative, or linear type 
[26]. This review focuses on linear NRPSs, which constitute the most 

prominent subclass. Modular, non-iterative NPRSs are large mega 
enzyme complexes that resemble assembly lines. These systems, much 
like assembly lines in manufacturing processes, can be subdivided into 
individual modules. Each module incorporates one building block into 
the nascent oligopeptide chain. The biosynthesis of NRPs is directional 
and starts with the loading of the first AAs at the N-terminal module and 
ends with the release of the peptide at the C-terminal module. The pri-
mary sequence of the resulting oligopeptide results from the selection of 
the incorporated AAs by each module. Facultative enzymatic domains in 
each module modify the AA incorporated by the respective module. This 
correlation between NRPS architecture and the structure of the associ-
ated peptide is referred to as the colinearity rule. 

A module is composed of an adenylation (A) domain, which selects 
and activates an AA, a peptidyl carrier protein (PCP/P), responsible for 
the tethering of the activated AA and the nascent peptide intermediate, 
and a condensation (C) domain that catalyzes peptide bond formation 
[27] (Fig. 2). Similar to other adenylating enzymes like acyl-CoA syn-
thetases and firefly luciferases, A domains catalyze two reactions: an 
initial adenylation of a free AA followed by the transfer of the activated 
AA onto the phosphopantetheinyl arm of a PCP domain [19,28]. Since a 
variety of non-proteinogenic AAs can be selectively activated, these 
domains are the driving force of structural diversity of NRPs [2,10]. 

Fig. 2. Schematic overview of the key principles of NRP and RiPP biosynthesis. (A) NRPS and BGC-encoded tailoring enzymes are ribosomally translated. The NRPS 
assembles the peptide, which is modified on-line (red circle) and released via intramolecular cyclization (purple bond). Posttranslational modifications (brown circle) 
via BGC-encoded enzymes result in the mature peptide. (B) Typical RiPP BGCs harbor genes encoding a precursor peptide, modifying enzymes and a protease. The 
ribosomally biosynthesized precursor peptide is post-translationally modified. The leader peptide (grey balls) serves as a recognition sequence for tailoring enzymes 
that modify the core peptide sequence (colored balls). Once the core peptide is fully modified (purple bond, small red and brown circles) it is released from the leader 
peptide by a protease. A: Adenylation domain; P: Peptidyl carrier protein; C: Condensation domain; T: Thioesterase domain. (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of this article.) 
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Commonly occurring non-proteinogenic AAs in NRPs are frequently 
hydroxylated, methylated or halogenated. In addition, β- or homo-AAs 
are often incorporated [2,10]. These unusual building blocks are 
derived from primary metabolites that are either modified in a 
NRPS-dependent manner or by other gene cluster-encoded enzymes 
(Fig. 2). The NRPS-dependent generation of non-proteinogenic AAs is 
catalyzed by stand-alone NRPSs with the domain architecture A-PCP or 
A-PCP-X (X: variable modification domain). AAs are activated, loaded 
onto these monomodular NRPSs, and presented to trans-acting modi-
fying enzymes [2,10]. The generation of hydroxylated AAs illustrates 
the diversity of building block biosynthesis: AAs can be hydroxylated 
either in an NRPS-dependent (e.g., echinomycin or kutzneride) or in-
dependent (e.g., calcium-dependent antibiotic CDA) fashion [29–31]. 
The corresponding hydroxylation is performed either via cytochrome 
P450-monooxygenases (e.g., echinomycin) or α-ketoglutar-
ate-dependent hydroxylases (e.g., kutzneride or CDA) [29–31]. Simi-
larly, halogenation can also occur on free as well as on NRPS-bound AAs 
[32,33]. Modified AAs can be hydrolytically released and subsequently 
re-activated by an A domain of the core NRPS or aminoacyl transferases 
catalyze the direct transfer of the modified AAs from the PCP of the 
stand-alone NRPS to the corresponding PCP of the core NRPS [2,34] 
(Fig. 2). 

A domains harbor a binding pocket with multiple specificity- 
conferring residues responsible for the selective AA recognition [19]. 
These conserved residues can be used to predict the A domain’s sub-
strate specificity [19,20]. In some cases, A domains are able to recognize 
multiple, structurally related AAs as the specificity-conferring residues 
exhibit nearly identical binding affinities for multiple building blocks [2, 
35]. Consequently, the corresponding NRPS generates a mixture of NRP 
analogs which, based on the so-called screening hypothesis, was 
postulated to function as a means of adaptation to changing environ-
mental challenges [36–38]. Consequently, this biosynthetic promiscuity 
can be regarded as a feature rather than a bug of the system. 

PCP domains belong to the large family of carrier proteins [39]. 
Phosphopantetheinyl transferases catalyze the attachment of a phos-
phopantetheinyl arm to carrier proteins which results in the formation 
of active holo PCP domains [40]. During NRPS biosynthesis, AA building 
blocks and peptide intermediates are covalently attached to the phos-
phopantetheinyl arm of PCP domains via a thioester bond. PCPs are 
responsible for shuttling activated AAs and the growing peptide chain to 
the catalytic centers of the module-encoded domains and trans-acting 
modifying enzymes [40]. Since building blocks and peptidyl in-
termediates are covalently bound to the PCP domains, the NRPS serves 
as a template for the biosynthesis of complex peptides and the biosyn-
thetic principle is therefore also referred to as thiotemplated 
biosynthesis. 

As soon as the PCPs of two adjacent modules are loaded, the C 
domain catalyzes the formation of a peptide bond via nucleophilic 
attack of the C-terminal α-amino residue onto the thioester of the N- 
terminal intermediate. As a result, the growing oligopeptide is elongated 
with one building block, and then transferred onto the C-terminal PCP 
before the elongation process repeats at the next module [41]. In addi-
tion to canonical C domains, several homologues have been described 
which are involved in heterocyclization, epimerization, attachment of 
carboxylic acids or oligopeptide release ([42]; for a comprehensive re-
view see Ref. [43]). 

After the final elongation, the oligopeptide is transferred onto a type 
I thioesterase (TEI) domain via transesterification to form a TE- 
oligopeptide ester. TEI domains catalyze either a water-mediated 
hydrolyzation to release a linear product or an intramolecular attack 
from a hydroxyl or amino group which results in macrolactone or 
macrolactam formation (Fig. 2) [44,45]. 

Insights into the biosynthesis of NRPS-derived peptides have resulted 
in the development of several generations of highly sophisticated bio-
informatic platforms for the identification and annotation of NRPS BGCs 
in genome sequences and the prediction of A domain substrate 

specificities. NRPS BGCs can be identified by hard-coded biosynthetic 
rules as NRPS core genes are composed of different arrangements of 
conserved biosynthetic domains [46–48]. This conservation enables 
domain annotations by profile Hidden Markov Models. The identifica-
tion of specificity-conferring residues in the substrate binding pocket of 
A domains, also referred to as the Stachelhaus code, allows the predic-
tion of the incorporated AA building blocks and thus the prediction of 
the peptide’s primary AA sequence [19,20]. Several algorithms for the 
prediction of A domain substrate specificities have been developed since 
the initial description of the Stachelhaus code which has resulted in 
predictions with an ever-increasing accuracy. This increased accuracy 
can be attributed to the evolution of genome mining algorithms and the 
steady increase in characterized NRPSs that were used to train novel 
genome mining algorithms [46–51]. Despite these advancements in A 
domain substrate specificity predictions, the promiscuity of many A 
domains often impedes the accurate prediction of the primary AA 
sequence. Even though the primary peptide sequence of NRPS-derived 
peptides cannot be predicted with as much confidence as in the case 
of ribosomally synthesized peptides, NRPSs nevertheless belong to the 
NP biosynthetic machineries that can be best studied using current 
genome mining platforms [46,48,50,52]. This advantage over other NP 
classes such as RiPPs can be attributed to its well-studied assembly 
line-like character. Conceptually, new NRP scaffolds are the results of 
novel arrangements of the limited set of NRPS modules with different A 
domains to form new NRPS architectures. Due to this simple biosyn-
thetic principle, the full biochemical space of canonical NRPSs can be 
charted by state-of-the-art bioinformatic platforms. 

2.2. RiPP-derived peptide biosynthesis 

Unlike multi-domain mega synthases that catalyze the biosynthesis 
of complex peptides in an assembly line-like fashion, RiPPs utilize the 
classical ribosomal route for the production of peptide precursors [53]. 
The architecture of a typical RiPP BGC consists of a structural gene 
encoding a precursor peptide, gene(s) involved in peptide modification 
and a protease (Fig. 2). A ribosomally biosynthesized precursor peptide 
generally comprises an N-terminal leader peptide, a C-terminal core 
peptide, and occasionally a C-terminal follower peptide (e.g. bot-
tromycin) [1,8]. In rare cases, N-terminal leader and C-terminal follower 
peptides can be found within the same precursor peptide (e.g., pantocin) 
[54,55]. During ribosomal peptide biosynthesis, aminoacyl-tRNA syn-
thetases have a function similar to A domains in NRPSs. Each 
aminoacyl-tRNA synthetase catalyzes the ATP-dependent activation of 
its dedicated AA to form an aminoacyl-adenylate [10]. The activated AA 
is then transferred to its corresponding tRNA in a transesterification 
reaction, resulting in an aminoacyl-tRNA which is then used in ribo-
somal peptide biosynthesis [10,56]. However, A domains and 
aminoacyl-tRNA synthetases share neither sequence nor structural 
similarities [57]. Following translation by the ribosome, the precursor 
peptides undergo extensive post-translational modifications (PTMs) 
catalyzed by an ever-increasing set of modifying enzymes (Fig. 2). The 
N-terminal leader and C-terminal follower peptides serve as recognition 
sequences for modifying enzymes. In addition, leader/follower peptides 
play a role in guiding PTM enzymes to perform modifications in the 
correct order [1,8]. Once the core peptide is fully modified, it is released 
from the leader and/or follower peptide by proteolytic cleavage (Fig. 2). 
Typically, specific proteases are encoded in RiPP BGCs but more and 
more pathways are reported that utilize ubiquitous cellular proteases for 
the release of the mature RiPP [1,8,25]. Exceptions from this simple 
RiPP biosynthetic principle include the cyanobactins, dikaritins and 
cyclotides BGCs in which multiple core peptides are encoded in one 
large precursor gene [58]. In these cases, the precursor peptide contains 
an N-terminal leader peptide followed by multiple core peptides. Highly 
conserved N- (RSII) and C-terminal (RSIII) recognition sequences flank 
each core peptide. These recognition sequences are required to guide 
proteolytic cleavage and macrocyclization. Depending on the RiPP 
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family, these multiple core peptides can either have the same sequence 
or differ extensively as shown for the highly variable core peptides of the 
cyanobactins [59]. 

Even though RiPPs follow the seemingly simple and universal 

biosynthetic principle outlined above, they are a very inhomogeneous 
subclass of peptide NPs. Thus, each RiPP family bears a unique 
biosynthetic logic [60,61]. This inhomogeneity is reflected in the wide 
range of genome mining platforms developed to chart the biosynthetic 

Fig. 3. The most frequently encountered modifications in NRPs and RiPPs. The color code indicates whether a modification has been described for NRPS-derived 
peptides (blue), RiPPs (green) or was reported for both RiPP and NRPS routes (yellow). Modifications labeled with an asterisk (*) can occur at different positions and 
atoms. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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space of individual families rather than the entire RiPP biosynthetic 
diversity [60]. While precursor peptides and modifying enzymes show a 
high degree of homology within each RiPP family, no core genes or 
domains are conserved between all RiPP families [62,63]. Some RiPP 
families are characterized by conserved precursor genes, others employ 
characteristic tailoring enzymes based on which they can be identified in 
a bait-based approach. These bait-based approaches allow the identifi-
cation of novel members of characterized RiPP families with high con-
fidence [48,50,52,64–67]. Based on the biosynthetic insights from other 
members of the same RiPP family, the precursor sequence and the type 
of post-translational modifications can usually be predicted, yet the 
number and regioselectivity of these modifications are usually not pre-
dictable [68]. To chart the RiPP biosynthetic potential beyond RiPP 
family boundaries, classical homology-based approaches have been 
complemented with several machine learning-based algorithms for the 
targeted identification of novel RiPP families [69–72]. These algorithms 
target putative precursor genes, recognition elements that are conserved 
amongst several RiPP families and tailoring enzymes with homology to 
modifying enzymes of characterized RiPPs [69–72]. While these highly 
sophisticated approaches will likely expand RiPP biosynthetic space 
significantly, there is currently no individual tool available which is 
capable of charting the full biosynthetic space of RiPP-derived NPs [68, 
73]. 

3. Peptide modifications 

In comparison to RiPPs, NRPS-derived peptides are modified at 
different biosynthetic stages. The chemical diversity of NRPs is mainly 
based on adenylation domain substrate specificities, module order, 
composition and the presence of trans-acting enzymes. In rare cases, 
NRPs are modified after the oligopeptide has been released. In contrast, 
only proteinogenic AAs are incorporated into RiPP-derived peptides. 
After translation, the precursor peptide is modified, leading to the 
conversion of proteinogenic AAs into a wide range of non-proteinogenic 
AAs. In addition, some RiPP families are characterized by complex 3-D 
structures. In the following paragraphs differences and similarities of 
modifications in NRPS and RiPP derived peptides are discussed (Fig. 3). 

3.1. Epimerization 

The incorporation of D-configured AAs influences the overall struc-
ture and bioactivity of peptides and prevents degradation by proteases 
[74]. NRPSs introduce ᴅ-AAs via epimerization (E), dual con-
densation/epimerization (CE) and A domains (Fig. 3) [42,75–77]. The 
epimerization via E and CE domains takes place after the incorporation 
of an ʟ-AA. The position of the module-encoded E or CE domains in the 
NRPS assembly line determines which AA is epimerized. The catalytic 
mechanism of E domains is proposed to comprise α-proton abstraction 
via the catalytic glutamate of the E domain followed by racemization 
[42,78]. Interestingly, in CE domains the catalytic glutamate is missing, 
suggesting an alternative mode of epimerization [2,42,78]. Epimeriza-
tion domains are followed by a distinct C domain subtype, the DCL type 
[42]. The stereoselectivity of the DCL domain enables the exclusive 
incorporation of the D-isomer from the racemic mixture generated by the 
E domain [79]. In rare cases, A domains were shown to directly activate 
ᴅ-AAs that are generated via cytoplasmic racemaces [75–77]. 

In contrast to NRPs, direct incorporation of ᴅ-AAs into RiPP scaffolds 
does not occur in nature since ribosomal peptides are restricted to the 19 
proteinogenic L-configured AAs and glycine. Therefore, incorporation of 
ᴅ-AAs requires post-translational epimerization by PTM enzymes. In 
RiPPs, epimerization can occur via a direct or an indirect mechanism 
[8]. Direct epimerization of ʟ-AAs to ᴅ-AAs has been shown to follow a 
radical mechanism catalyzed by radical S-adenosylmethionine (rSAM) 
enzymes. PoyD is the first characterized rSAM epimerase that performs a 
total of 18 epimerizations in an alternating fashion during poly-
theonnamide biosynthesis in a C- to N-directional manner [22,23,80]. 

AA epimerization by PoyD-like enzymes is initiated by reductive 
cleavage of SAM to generate a 5′-deoxyadenosyl radical (5′-dA•) which 
abstracts the Cα H-atom from ʟ-AAs to form a carbon-centered radical. 
The thiolate proton of cysteine in the epimerase is then transferred to the 
radical intermediate leading to the formation of ᴅ-AAs in a radical 
rebound mechanism [81]. In contrast to this radical mechanism, the 
indirect epimerization mechanism requires two enzymatic steps that 
have been reported for some lanthipeptides. Epimerization is initiated 
by dehydration of L-serine to form dehydroalanine (Dha) by the dehy-
dratase LanB. Once Dha is formed, the dehydrogenase LanJ catalyzes the 
diastereoselective hydrogenation to yield D-alanine [82,83]. Moreover, 
BotH-like enzymes, belonging to the subfamily of α/β hydrolase (ABH) 
fold proteins, have been shown to be involved in yet another epimeri-
zation route that converts L-aspartate to D-aspartate during bottromycin 
biosynthesis. The proposed mechanism involves the self-abstraction of 
an α-proton by the carboxylic acid group of the AA side chain followed 
by proton transfer from a water molecule to yield the epimerized AA 
[84]. 

3.2. Heterocyclization 

Thiazolines and (methyl) oxazolines are characteristic for multiple 
NRP and RiPP families (Fig. 3). During NRPs biosynthesis, cyclization 
(Cy) domains, homologues of C domains, catalyze heterocycle formation 
in a bifunctional manner: First, the NRP intermediate is elongated by the 
Cy domain either with cysteine, threonine or serine. Subsequently, Cy 
domains catalyze the nucleophilic attack of the thiol or hydroxy group of 
the AA side chain onto the carbonyl carbon of the amide bond. Subse-
quent dehydration results in (thi/ox-)azoline formation [85]. Thiazo-
line- or oxazoline heterocycles can either be reduced via trans-acting 
reductases to form thiazolidines/oxazolidines or oxidized via cis or 
trans-acting oxygenases to form thiazols/oxazols [86–90]. Cysteine-, 
threonine- or serine-derived heterocycles have also been reported for 
many RiPPs including linear azol(in)e-containing peptides (e.g., 
microcin B17) [91], bottromycin [92], and cyanobactins (e.g., patella-
mide A) [93]. The mechanism underlying thiazole and oxazole forma-
tion requires an enzyme complex that is comprised of one or two 
cyclodehydratase(s) (C/D protein) and a dehydrogenase (B protein). 
First, cysteine, threonine or serine undergo ATP-dependent cyclo-
dehydration catalyzed by the cyclodehydratase to form an azoline het-
erocycle. Then, a flavin-dependent dehydrogenase oxidizes the azoline 
rings to yield azole heterocycles. In some cases, including cyanobactins 
(e.g., trunkamide) and half of known linear azol(in)e-containing pep-
tides (LAPs), C- and D-proteins are fused into one single enzyme [8,94, 
95]. 

3.3. Methylation 

Peptide methylation is a simple way to influence polarity, improve 
proteolytic resistance, facilitate cellular uptake and increase the half-life 
of a peptide, all of which are important parameters for bioavailability 
[96]. In NRPSs, the majority of methylation (M) domains act in cis and 
are directly integrated into a flexible loop of the A domain. M domains 
catalyze mainly N- but also O-, C- or S-methylations in a SAM-dependent 
manner [2,97–99] (Fig. 3). Remarkably, during cyclosporin biosyn-
thesis, methylation is critical for the overall peptide assembly and 
cyclization [100]. In rare cases, methylation takes place after peptide 
release via tailoring enzymes like the stand-alone methyltransferase 
MtfA in glycopeptide biosynthesis [101]. 

Polytheonamide, one of the most densely modified RiPPs, has been 
shown to carry eight N-methylations and seventeen C-methylations. A 
rSAM-dependent methyltransferase, PoyE, is responsible for all N- 
methylations. While the two vitamin B12-dependent C-methyl-
transferases, PoyB/C catalyzes all C-methylations [22,23]. PoyC has 
been shown to catalyzes the homolytic cleavage of SAM to generate 
5′-dA• that abstracts the Cβ H-atom of L-valine residues. The 
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carbon-centered valine radical likely reacts with the methyl radical to 
yield Cβ methyl-valine [80]. Computational studies of polytheonamide 
B revealed that N-methylation stabilizes the unusual β-helix conforma-
tion [102]. Beside N- and C-methylation, a rare S-methylation of 
cysteine residues mediated by a SAM-dependent methyltransferase takes 
place during the biosynthesis of a cryptic proteusin in the sponge sym-
biont "Candidatus Entotheonella factor" (Fig. 3) [103]. Moreover, a 
rSAM-dependent methyltransferase that methylates carboxyl groups has 
been reported during the final step of bottromycin biosynthesis resulting 
in methyl ester formation at the aspartate residue [92]. 

3.4. Macrocyclization 

Macrocyclization is a common feature found in peptide NPs, derived 
from both NRPS and RiPP pathways [104]. Macrocyclization plays a 
crucial role for the biological activity of many compounds and enhances 
peptide stability by protecting from proteolytic digestion [53,105]. 
Furthermore, during NRP biosynthesis, head-to-tail or side-chain-to-tail 
macrocyclizations are essential for peptide release. Here, TEI domains or 
terminal C domains catalyze the intramolecular nucleophilic attack on 
the (thio-)ester which leads to macrolactam or macrolactone formation 
(Fig. 3) [2,45,106,107]. In rare cases, including gramicidin biosynthesis 
the peptide dimerizes upon release [108]. Furthermore, reductase (R) 
domains indirectly catalyze macrocyclizations via a reductive release 
mechanism [109]. R domains reduce the thioester under NAD(P)H 
consumption leading to the release of reactive aldehydes [110,111]. The 
resulting peptide aldehydes undergo further modifications like sponta-
neous intramolecular cyclizations to form an imine/carbinolamine 
[109]. 

Diverse macrocyclizations have been reported from RiPP systems 
ranging from head-to-tail amide formation (e.g., cyanobactin), sulfide 
bond formation (e.g., glycocin), the formation of lactone/lactam rings 
between AA side chains (e.g., microviridins) as well as macrocyclization 
via C–C and C–S bond formation [112] (Fig. 3). Head-to-tail macro-
cyclization is a common PTM found in RiPPs [105]. Several enzymes 
involved in macrocyclization have been experimentally characterized 
including the PatG protease that is involved in patellamide biosynthesis 
[8]. PatG contains a subtilisin-like serine protease domain which rec-
ognizes and cleaves a signal sequence on the precursor peptide. This 
cleavage results in the formation of an acyl-enzyme intermediate, where 
a serine residue of the catalytic triad of the protease is bound to the core 
peptide. In the next step, the acyl-enzyme intermediate is attacked by 
the N-terminal amino group of the peptide to form a macrolactam. This 
mechanism is similar to macrocyclizations catalyzed by TE domains in 
NRPSs that contain the same catalytic triad as the serine protease PatG 
and that likewise mediate macrocyclization via an acyl-enzyme inter-
mediate [104]. Macrocyclization via Michael-type addition is an alter-
native mechanism to construct cyclic structures in RiPPs as shown for 
the formation of lanthionine bridges during lanthipeptide biosynthesis 
[112]. A lanthionine (Lan) bridge is a thioether crosslink between the 
β-carbons of serine/threonine and cysteine [83]. In nisin biosynthesis, 
for instance, it has been shown that Lan and (methyl)Lan formation is a 
two-step process. Lan formation is initiated with the conversion of serine 
and threonine to Dha and dehydrobutyrine (Dhb), respectively, by a 
dehydratase (NisB). Then, a cyclase (NisC) catalyzes the 1,4-nucleo-
philic attack of the cysteine thiol to the β-carbon of the dehydro AAs 
which results in a thioether enolate [83]. The enolate can either be 
protonated to form a lanthionine bridge or attack another Dha to 
generate a labionin crosslink [83]. While the lanthionine motif is unique 
for RiPP-derived peptides and has not been described for NRPs, Dha has 
also been proposed to be an intermediate of the NRPS-derived pyrroli-
zidine biosynthesis. During pyrrolizidine biosynthesis, the exo-
methylene side chain of Dha putatively acts as a nucleophile and attacks 
a carbonyl carbon resulting in cyclization by carbon-carbon bond for-
mation [113,114]. 

Moreover, sactionine linkages, the name defining modifications of 

the sactipeptides, are formed via a radical mechanism that has been 
characterized for subtilosin biosynthesis. The rSAM enzyme AlbA cata-
lyzes the formation of the uniquely defined sactionine thioether cross- 
link between the thiol residue of cysteine and the α-carbon of phenyl-
alanine or threonine. The reaction is initiated by the cleavage of SAM to 
form 5′-dA• which then abstracts a proton of the α-carbon of phenylal-
anine or threonine [115]. The carbon-centered radical then attacks the 
sulfur atom to form the thioether bond [112]. 

3.5. β-amino acids 

The incorporation of β-AAs leads to structural diversity and increases 
proteolytic resistance of peptides [116]. Many NRPs are composed of 
one or multiple β-AAs like β-tyrosine in chondramide [117], β-lysine and 
2,3-diaminopropionate in viomycin [118] or β-alanine in cryptophycins 
([119], for a comprehensive review see Ref. [116]). In NRPS systems, A 
domains recognize and subsequently activate free β-AAs as unusual 
building blocks, derived from a variety of different pathways [116]. In 
contrast, during RiPP biosynthesis β-AAs cannot be directly incorpo-
rated but proteinogenic AAs can be converted into β-AAs [120]. Piel, 
Morinaka and co-workers have recently identified a rSAM-dependent 
mode to convert proteinogenic AAs into α-keto-β-AAs. The reaction in-
volves the unusual radical excision of thyramine and the rejoining of the 
remaining peptide fragments to create an α-keto-β-AA [120]. Moreover, 
the installation of a β-AA has been described for the lanthipeptide OlvA 
(BCSA). In the case of OlvA(BCSA), a SAM-dependent O-methyl-
transferase catalyzes the conversion of aspartate to the β-AA L-iso-
aspartate through methylation, followed by imide formation between 
the carboxyl group of the AA side chain and the amide bond of the 
peptide backbone. Subsequent imide hydrolysis can result in the transfer 
of the peptide backbone to the former aspartate side chain, resulting in 
β-AA formation [121]. 

3.6. Carbon-carbon bond formation 

The introduction of carbon-carbon bonds strongly influences the 
structure and bioactivity of NPs. The bioactivity of vancomycin-like 
NRPs, for instance, depends on the formation of the rigid aglycon 
structure that is crucial for target binding [122–124]. During vanco-
mycin biosynthesis, the peptide scaffold is cyclized by the cytochrome 
P450 oxygenases OxyA, OxyB, and OxyC through the introduction of 
two diaryl ether bridges and a biaryl bond (Fig. 3) [122]. Remarkably, 
the trans-acting oxygenases are recruited by a non-catalytic C 
domain-like domain, called X domain, which is embedded in the NRPS 
assembly line [125]. However, inactivation of the oxygenases has no 
influence on the biosynthesis of the peptide backbone [126]. 

Carbon-carbon bond formation in RiPPs is frequently catalyzed by 
rSAM enzymes (Fig. 3) [127]. The rSAM catalyzed carbon-carbon bond 
formation between non activated carbons of tryptophan and the β-car-
bon of lysine, for instance, has been characterized for darobactin 
biosynthesis [128]. Only recently, a second mode of carbon-carbon bond 
formation has been proposed. Tryptorubin A, a hexapeptide that is 
characterized by an unusual complex 3-D shape features a 
carbon-carbon and two carbon-nitrogen bonds between two AA side 
chains and between one AA side chain and the peptide backbone, 
respectively, that are putatively installed by a single cytochrome P450 in 
an atropospecific fashion [25]. Shortly after the putative tryptorubin 
BGC was identified, similar BGC architectures were reported. The 
bicyclic tetrapeptide, cittilin contains biaryl and aryl-oxygen-aryl ether 
bonds that are installed by the cytochrome P450 enzyme, CitB [129]. 
Similarly, the cytochrome P450 monooxygenase, BytO is responsible for 
the installation of an unusual biaryl bridge between tyrosine and histi-
dine in a short pentapeptide precursor during the biosynthesis of the 
biarylitide tripeptide [130]. 
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3.7. Lipidation/prenylation 

Peptide lipidation increases stability, decreases polarity and can 
enable membrane interactions [131]. During NRPS biosynthesis, 
N-terminal C domains, so-called CStarter domains, catalyze the conden-
sation of carboxylic acids, in the form of fatty acyl-coenzyme A esters, 
with the α-amino group of the first AA (Fig. 3). This N-acylation of NRPs 
is a common feature, connecting NRPSs with fatty acid metabolism [42, 
132]. In addition, diketopiperazines (e.g., cyclomarazine, echinulin, 
notoamide) but also linear peptides (e.g., cyclomarins) are frequently 
lipidated via prenylation with isoprene moieties [133–135] (Fig. 3). In 
contrast to N-acylation, prenyltransferases install prenyl groups at car-
bon or oxygen atoms after peptide release [135,136]. 

Lipidation in RiPPs is rare. Piel and co-workers have recently re-
ported a new family of RiPP-derived lipopeptides, the selidamides 
[137]. Kamptornamide, phaeornamide and nostolysamides are the first 
members of the selidamide family of RiPP-derived lipopeptides that is 
characterized by fatty acyl moieties attached to the side chain of (hy-
droxy)ornithine or lysine, respectively. Heterologous expression studies 
suggest that every peptide of the selidamide family is selectively 
modified by a fatty acid with fixed chain length by members of 
GCN5-related N-acetyltransferase (GNAT)-like family of peptide 
maturases [137]. In the case of the lipolanthine family of RiPPs (e.g., 
microvionin and goadvionin), fatty acids are attached to the N-terminal 
amino group of the peptide backbone by members of the GNAT family 
[138–140]. Since lipolanthines are biosynthesized by hybrid polyketide 
(PK)-RiPP pathways, they will be discussed in the crosstalk section 
below. 

Similarly, N-terminal acetylation of RiPPs has been reported for lasso 
peptides (e.g., albusnodin), the LAP (e.g., goadsporin) and micro-
viridins, which is likewise catalyzed by members of the GNAT super-
family [140–142]. Prenylation is a common modification in cyanobactin 
biosynthesis (Fig. 3). The first characterized prenyltransferase, LynF, has 
been shown to catalyze the head or tail installation of isoprene units 
onto serine, threonine and tyrosine [143]. However, after enzymatic 
O-prenylation via the isoprene’s C3 carbon (head), a non-enzymatic 
Claisen rearrangement results in the transfer of the prenyl group to 
the ortho position while simultaneously inverting the prenyl linkage 
from the C3 (head) to the C1 (tail) carbon of the isoprene unit [143,144]. 
Apart from cyanobactins, the quorum-sensing compound ComX is also 
prenylated. The prenyltransferase ComQ catalyzes the prenylation at the 
indolic C3 position of tryptophan in the core peptide with geranyl 
diphosphate (C10) or farnesyl diphosphate (C15) [145,146]. 

3.8. Further modifications 

NRPs and RiPPs are further modified via the addition, subtraction or 
rearrangement of chemical residues, resulting in peptides with various 
physico-chemical properties and bioactivities [2,147]. 

Halogenated compounds are widespread in nature and are described 
for both NRPs and RiPPs (Fig. 3) [148]. Halogenated NRPs can either be 
generated via incorporation of free halogenated AAs [32] or via halo-
genation of the enzyme-bound oligopeptide through trans-acting halo-
genases ([149], for a comprehensive review see Ref. [147])). 
Halogenations are catalyzed via FADH2-dependent (e.g. kutzneride) 
[32] or non-heme-FeII α-ketoglutarate-dependent halogenases (e.g. 
syringomycin E) [33]. Similar to NRPSs, FADH2-dependent halogenases 
in RiPPs have been shown to catalyze tryptophan chlorination and 
bromination during the biosynthesis of the lanthipeptide NAI-107 and a 
sponge-derived proteusin, respectively [150,151]. 

Vancomycin and teicoplanin are glycosylated NRPs that belong to 
the family of glycopeptide antibiotics [152]. After the peptide is released 
from the NRPS, the glycosyltransferases tGtfA and tGtfB catalyzes the 
glycosylation in a fixed order (Fig. 3) [153]. Glycosylation is described 
for the RiPP families glycocins [154–156], thiopeptides [157], lanthi-
peptides [158] and lasso peptides (Fig. 3) [159]. The lasso peptide 

pseudomycoidin, for instance, is glycosylated at a phosphorylated serine 
residue. Here, the nucleotidyltransferase PsmN is proposed to catalyze 
the installation of mono and/or dihexose residues onto the phosphory-
lated pseudomycoidin [159]. 

Epoxidations are present in NRPs as well as in RiPPs. During the 
biosynthesis of the NRP cyclomarin, an epoxide moiety is installed by a 
cytochrome P450 enzyme after the prenylation of phenylalanine [133]. 
Similarly, cytochrome P450 enzymes catalyze epoxidations as well as 
hydroxylations of RiPPs as shown during the biosynthesis of thio-
strepton and thiopeptide GE2270 [160,161]. 

In rare cases (e.g. gramicidin or szentiamide), NRPs are formylated at 
the N-terminus [162–164]. In contrast to the fatty acid attachment 
mediated by CStarter domains, the formylation reaction of the first AA is 
catalyzed via formyl transferases under consumption of for-
myltetrahydrofolate [42,162–164]. To the best of our knowledge, no 
formylated RiPPs have been reported to date. 

In peptide NPs, peptide bonds can be transformed into thioamides. 
The YcaO homolog TvaH has been proposed to catalyze thioamidation 
during the biosynthesis of thioviridamide, a member of the thioamitide 
RiPP family [165]. 

In addition to the frequently encountered peptide modifications, 
different modes for the formation of non-proteinogenic AAs have been 
described. In NRPS systems, non-proteinogenic AAs are directly incor-
porated, whereas proteinogenic AAs have to be transformed into non- 
proteinogenic AAs after incorporation into the precursor peptide in 
RiPPs. The conversion of arginine into the non-proteinogenic AA orni-
thine by an arginase during landornamide A biosynthesis displays an 
example for this biosynthetic strategy [166]. 

4. Crosstalk to other NP pathways 

The diversity of NRPS- and RiPP-derived peptides is not restricted to 
the incorporation of different AA building blocks or the ever-increasing 
number of characterized tailoring reactions and enzymatic domains. In 
addition, NRPSs as well as RiPPs interact with other pathways to 
generate hybrid NPs. This hybridization takes place in a precursor- 
directed manner via the integration of intermediates or products from 
other pathways. Furthermore, the biosynthetic core enzymes directly 
interact either in a covalent or non-covalent manner. This chapter 
briefly describes different types of hybrids with involvement of NPRSs or 
RiPPs. 

4.1. NRPS 

NRPSs are predestined for hybridization with other pathways as A 
domains are able to recognize a wide variety of substrates beyond the 20 
proteinogenic AAs. Moreover, NRPs are biosynthesized in a thiotem-
plated, assembly line-like fashion, a common mode of biosynthesis that 
NRPSs share with polyketide synthases (PKSs) and fatty acid synthases 
(FASs). 

Since the boundary between the incorporation of unusual building 
blocks and the interaction with further metabolic pathways is fluid, we 
consider any exchange between metabolic pathways as crosstalk 
(Fig. 4). The non-proteinogenic AA dihydroxyphenylglycine, for 
instance, is generated by the type III PKS DpgA and is subsequently 
incorporated into the growing balhimycin NRP, a vancomycin-type 
antibiotic [167,168]. Similarly, during cyclosporin biosynthesis, a PKS 
is involved in the formation of the non-proteinogenic AA 4-(2-bute-
nyl)-4-methyl-threonine [169]. In addition, unusual building blocks, 
derived from primary metabolic pathways like the citrate cycle, are 
often incorporated after further modifications ([170], for a compre-
hensive review see [2]). During the biosynthesis of CDA, for instance, 
α-ketoglutarate is methylated and subsequently transaminated to 
generate 3-methyl glutamate [170]. 

Furthermore, PCP domains, which belong to the carrier protein 
family, play a central role during hybridization of NRPSs with other 
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pathways (Fig. 4). Acyl carrier proteins (ACPs) belong to the same 
protein family and are involved in the biosynthesis of PKs and fatty acids 
[39]. Even though PCPs and ACPs do not share high sequence similar-
ities, their protein structure is conserved and enables highly specific 
interactions with many different enzymes [18,39]. Therefore, it is not 
surprising that NRPSs often hybridize with other thiotemplated enzymes 
like FASs or PKSs. In fungi and bacteria, a number of hybrid 
mega-synthases have been reported that are derived from the fusion of 
NRPSs and PKSs [171–173]. Here, the carrier protein is the connecting 
component between the different pathways [172]. Fungal hybrids are 
frequently composed of N-terminal PKS- and C-terminal NRPS-modules 
(PKS-NRPS-hybrids) and use an ACP as fusion point (e.g. fusarin C or 
equisetin A) (Fig. 4) [172,174,175]. In bacterial mega-synthases, 
responsible for the generation of barnesin A or glidobactin, the organi-
zation is inverted (NRPS-PKS-hybrids) with the PCP serving as con-
necting domain [173,176] (Fig. 4). Additional NRPS-PKS hybrid 
organizations have been reported including PKSs that harbor multiple 
isolated NRPS modules and vice versa. Moreover, NRPSs transiently 
interact with PKS as well as FAS via their ACPs or PCPs (Fig. 4) [177, 
178]. However, carrier proteins are not essential for the connection of 
NRPS and PKS assembly lines. The free-standing C domains in the 
biosynthesis of fabclavines and zeamines, for instance, mediate the 
crosstalk via the condensation of an PKS-derived polyamine with an 
NRPS-bound peptide (Fig. 4) [179,180]. Remarkably, the biosynthesis 
of pyonitrin involves the non-enzymatic condensation of the 
NRPS-derived aeruginaldehyde and aminopyrrolnitrin [181]. 

4.2. RiPPs 

In contrast to NRPSs, RiPP hybrids are rare. This infrequent occur-
rence might be due to the unique RiPP biosynthetic principles that make 
it inherently more difficult to form hybrids. Alternatively, it might be a 
result from a characterization bias meaning that hybrid BGCs might 
have been bioinformatically identified but not experimentally validated. 
Microvionin is the first member of the lipolanthine RiPP family of lan-
thipeptide - fatty acid hybrids. It is composed of a triamino-dicarboxylic 
acid moiety, the so-called avionin residues (Fig. 3), and a bismethylated 
guanidino fatty acid (MGFA) at the N-terminus. The microvionin BGC 
harbors, a total of ten genes in addition to the those that encode enzymes 
responsible for lanthipeptide biosynthesis. As the corresponding pro-
teins are homologues of FAS- or type II PKS-derived enzymes, a FAS/ 
PKS-RiPP hybrid biosynthesis was postulated [138]. In addition, 
genome mining revealed more than 80 lipolanthine BGCs from actino-
bacterial genomes, leading to the classification of four lipolanthine 

subtypes. These BGC subtypes are distinguished by the presence of type I 
or type II PKS-related genes and lanD, which encodes a cysteine decar-
boxylase. Interestingly, the subtype I as well as an additional unique 
cluster harbor genes coding for NRPS-derived domains, indicating a 
putative PKS-NRPS-RiPP hybrid NP [139]. Mining the genome of 
Streptomyces sp. TP-A0584 resulted in the identification of yet another 
member of the lipolanthine family of PK/RiPP hybrids [182]. Goad-
vionin is an octapeptide that contains an avionin moiety and an 
N-terminally attached C32 acyl residue. The corresponding gdv BGC 
comprises a total of 22 genes that include genes involved in lanthipep-
tide biosynthesis, precursor supply, tailoring reactions, as well as type-I 
PKS, FAS, regulatory and transporter genes. Goadvionin is the first 
functionally characterized member of the lipolanthine family. A com-
bination of heterologous expression, gene inactivation, in vivo and in 
vitro studies showed that lysine first undergoes methylation, followed by 
extension by the fatty acid biosynthetic enzymes encoded in the 
pathway. The fatty acid is subsequently transferred to and modified by 
the PKS component before it is loaded onto the avionin-containing 
peptide. In analogy to the selidamides, the PK-RiPP hybridization in-
volves a member of the GNAT superfamily which catalyzes the 
condensation reaction between PK and RiPP moieties [137,182]. 

5. Engineering 

In addition to identifying novel BGCs and characterizing the corre-
sponding products, engineering of NRPS and RiPP pathways is an 
important means to increase structural diversity. Furthermore, dissec-
tion and engineering of individual pathway components opens up the 
possibility to gain deeper biosynthetic insights. Engineering NRPS and 
RiPP pathways require different strategies and techniques due to their 
fundamentally different biosynthesis principles. While NRPS engineer-
ing mainly focuses on manipulating the AA sequence of NRPs, RiPP 
engineering targets the variety of modification processes and their 
applicability to different core peptides. 

5.1. NRPS 

The collinearity between the NRPS architecture and its product is 
predestined for engineering. The first successful attempts to manipulate 
the primary AA sequence of NRPs were described in 1995 [183]. At the 
time, the Marahiel lab was able to swap A-P didomains in the surfactin 
NRPS to obtain non-natural NRPs [183]. In the following years, many 
comparable approaches that relied on multiple domain exchanges were 
published (for a comprehensive review see Ref. [2]) (Fig. 5). In many 

Fig. 4. Crosstalk of NRPSs with other pathways. (A) Precursor-based crosstalk involves the direct incorporation of building blocks that are biosynthesized by other 
pathways. (B) Core enzyme-based crosstalk can be subdivided into covalent (1, 2, 3) and non-covalent interactions (4, 5, 6). KS: Ketosynthase; AT: Acyltransferase; 
ACP: Acyl carrier protein; C: Condensation domain; A: Adenylation domain; P: Peptidyl carrier protein. 
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cases, however, domain exchanges resulted in a decrease in peptide ti-
ters, while the diversity of the resulting NRPs remained limited. Since 
the identification of the A domain binding pocket and the subsequent 
deciphering of the Stachelhaus code, the A domain moved into the focus 
of engineering efforts [19,20]. Single or multiple AAs in the A domain’s 
binding pocket were exchanged to alter its substrate specificity without 
drastic decreases in peptide titers (Fig. 5). However, using such minimal 
invasive approaches, the A domain selectivity only marginally changed 
regarding structure or polarity of the AAs [184]. Following studies re-
ported the incorporation of AA analogs like 3-methyl glutamine or 
O-propargyl-L-tyrosine using site-directed mutagenesis [185,186]. 
Furthermore, using a directed evolution approach, the specificity of an A 
domain was successfully changed from L-phenylalanine to L-alanine. 
During this approach, the non-conserved, specificity-conferring binding 
pocket residues of a promiscuous A domain were engineered via suc-
cessive saturation mutagenesis [187]. Although many examples of suc-
cessful NRPS engineering have been reported, universal principles were 
still lacking. Until 2018, a traditional NRPS module was defined as C-A-P 
(-E) (Fig. 5) [107,163,188]. With the introduction of the so-called ex-
change units (XUs) module boundaries were redefined [163]. Bode and 
co-workers used a conserved motif in the C-A linker as recombination 
site for their engineering efforts, thereby defining A-P-C(E) as a XU 
(Fig. 5) [163]. A shift by one domain to redefine module boundaries was 
also postulated for modular PKSs [189–192]. Using XUs from 
Gram-positive and Gram-negative bacteria, functional NRPSs were 
generated that produced both known and artificial NRPs with only 
moderately reduced titers [163]. Since the XU concept was proposed to 
be limited by the downstream C domain specificity, the Bode lab sub-
sequently refined the engineering strategy and developed the exchange 
unit condensation domain (XUC) concept [163,193]. Here, the fusion 
point is located in a flexible loop within the C domain. Thus, the C 
domain is divided into its N- and C-terminal subdomain, leading to the 
module architecture Csub-A-P-Csub for XUCs (Fig. 5). The advantage of 
this division is that the C domain maintains the original interface with 
the adjacent A domain [193]. Disadvantages are that two XUCs, one 
containing a C and the other containing a CE domain, cannot be com-
bined. Furthermore, XUCs from different genera are not compatible 
[193]. Both limitations were attributed to structural differences of the C 
(E) domains, that prevent functional fusions of the N- and C-terminal 
subdomains [193]. However, the XU and the XUC concept can be 
combined to overcome their respective limitations. Functional NRPSs 
were generated using the different recombination sites of each concept 
[163,193]. Remarkably, both engineering strategies as well as multiple 

others strictly respect C domain specificities [163,193–195]. However, 
recent studies showed that C domains do not harbor binding pocket-like 
structures. Therefore, it was speculated that C domains do not exhibit a 
specificity [196–198]. Furthermore, based on a series of in vitro and in 
vivo experiments, the C-A interface was identified as a 
specificity-conferring structure with an “extended gatekeeping” func-
tion, which influences the A domain specificity [198]. Evolutionary 
analysis also revealed that NRPS diversity is based on recombination 
events restricted to the A(core) domain independent of the C domain 
[196,199,200]. Consequently, A(sub) domain exchanges were reeval-
uated for NRPS engineering. Using this A(sub) domain exchange strategy, 
multiple NRPSs were successfully engineered, yet no universal rules 
have been established to date [196]. Prior to the new focus on A domain 
engineering, comparable results had been obtained in previous studies 
using A(sub) domain swaps (Fig. 5) [35,201,202]. Taken together, these 
results indicate that domain interfaces, in particular of the C-A dido-
main, are more crucial for a functional module than previously ex-
pected. For a better understanding, more structural data is required to 
compare interfaces of NRPSs with low homology and to identify crucial 
structural motifs. 

Cloning strategies for the engineering of NRPSs are complicated 
which can be attributed to the size of the corresponding genes and the 
homology of domains in every module. With the definition of engi-
neering concepts, the investigation of high-throughput cloning and 
recombination strategies was the logical next step to increase NRP 
chemical space. Naturally, the interaction between multiple NRPSs is 
mediated via N- and C-terminal docking or communication-mediating 
domains [203]. These domains can also be introduced into artificially 
split NRPSs without losing catalytic activity [203,204]. Recently, a 
study combined the XU concept to artificially split native single protein 
NRPSs with the introduction of synthetic zippers instead of docking 
domains to simplify the NRPS engineering workflow [205]. The cloning 
of the artificially split NRPS subunits on different plasmids allows the 
efficient recombination of different subunits to generate large peptide 
libraries in vivo [205,206]. In a comparable approach, zinc finger pro-
teins, which bind specifically to 9 base pair DNA motifs, were used to 
modify the gramicidin S NRPS. The NRPS was split into stand-alone 
modules and different zinc fingers were added to each module. In 
combination with a DNA scaffold, containing the binding sites of the 
zinc fingers, a functional DNA-templated assembly line was obtained 
[207]. 

Insights from these combined efforts have increased our under-
standing of how NRPSs can be engineered. Despite these advancements, 

Fig. 5. NRPS module definitions and engineering strategies. (A) Classical and XU/XUC-based definition of module boundaries. (B) NRPS engineering strategies: 1. A 
domain engineering targeting the binding pocket 2. (Multiple) Domain substitutions 3. Exchange unit strategies. Enzymatic domains are color coded according to the 
AA incorporated by the respective module. Red coloring is used to highlight engineered parts. A: Adenylation domain; P: Peptidyl carrier protein; C: Condensation 
domain; T: Thioesterase domain. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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truly universal recombination concepts have yet to be established that 
allow the recombination of any conceivable module architecture beyond 
phylum boundaries. However, the combination of structural insights, 
especially into domain interfaces, evolutionary analysis and time-saving 
high-throughput cloning methods could pave the way towards more 
efficient and universal engineering strategies. 

5.2. RiPPs 

Leader peptide, core peptide, PTM enzymes and proteases are the 
four components of RiPP biosynthesis. The focus of RiPP engineering 
efforts lies on the modification of the core peptide sequence and the 
recombination of PTM enzymes through leader peptide engineering. 

Instead of exchanging modules or domains as it is the case for NRPSs, 
the primary sequence of RiPPs can be altered by changing the gene 
sequence associated with the core peptide [8,208]. The challenge here is 
that the modifying enzymes must still be able to modify the engineered 
core peptide. Many studies targeted the core peptide of various RiPP 
families to generate artificial libraries using site-directed and random 
mutagenesis (Fig. 6A) [209–212]. ProcM, a promiscuous lanthipeptide 
synthetase, has been used for the in vivo production of a precursor 
gene-encoded library of 106 lanthipeptides. Screening the obtained li-
brary resulted in the identification of a HIV p6 protein-human TSG101 
protein interaction inhibitor [213]. This approach is, however, limited 
as not all biosynthetic enzymes exhibit natural substrate promiscuity. 
Therefore, studies focused on the engineering of biosynthetic enzymes to 
expand their substrate promiscuity. Enzyme libraries were generated 

using random mutagenesis and screened for tailoring enzymes with high 
substrate tolerance. For example, a dehydratase mutant library of NisB 
with 105 variants, was generated via error-prone PCR. Subsequent 
high-throughput screening based on cell surface display of the peptide 
products, revealed a NisB variant that showed substrate flexibility 
against non-natural substrates [214]. Moreover, covalent fusion of PTM 
enzymes with their cognate leader peptides has been shown to achieve 
substrate promiscuity and tolerance towards non-natural peptides. 
Microviridin variants were successfully generated using leader peptides 
linked with the two ATP-grasp ligases MvdD and MvdC that were sub-
sequently used to modify core peptide libraries [215]. Although engi-
neering of the core peptides as well as modifying enzymes has been 
shown to increase structural diversity and improve bioactivity of RiPPs, 
the structural variety of the produced peptides is still limited. 

As an alternative to core peptide and PTM enzyme engineering, 
combinatorial approaches for RiPP biosynthesis have been developed. 
Here, PTM enzymes from different pathways are used to modify a single 
core peptide (Fig. 6B). Using this approach, new-to-nature RiPPs were 
generated, combining characteristic features of two or more RiPP 
pathways in one product. Examples include thiazoline-containing, pre-
nylated and macrocyclized derivatives of cyanobactins that have been 
produced in vitro using a set of PTM enzymes from different cyanobactin 
pathways [216]. To further expand the toolset of modifying enzymes 
that can modify a core peptide beyond RiPP family boundaries, leader 
peptide engineering moved into the focus of subsequent studies [1,8]. As 
RiPP systems follow a leader peptide-guided biosynthetic logic, the ex-
change of leader peptides enables the modification of the core peptide 

Fig. 6. Overview of RiPP engineering strategies. (A) Core peptide engineering by site-directed/random mutagenesis to create core peptide libraries. (B) Combi-
natorial biosynthesis to create new-to-nature RiPP products. (1) In vitro production of hybrid RiPPs using enzymes from different RiPP pathways. (2) Leader peptide 
engineering. The combination of two recognition sequences (RS) of PTM enzymes from different RiPP families allows in vivo production of hybrid RiPP products. (3) 
Sortase A (StrA)-mediated leader peptide exchange (LPX) strategy. In vitro production of RiPP hybrids by swapping leader peptides to allow core peptide modifi-
cations by different tailoring enzymes from different RiPP families. 
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via PTM enzymes from different pathways within the same RiPP family 
or beyond family boundaries. The fusion of a class I lantibiotic leader 
peptide with a class II core peptide resulted in the production of a 
chimeric lanthipeptide. The resulting RiPP harbors multiple dehydrated 
serine and/or threonine residues as well as (methyl)lanthionine bridges 
[217]. Based on the observation that many PTM enzymes recognize their 
substrate through specific RS located in the leader/follower peptide 
[218], Mitchell and co-workers further developed the chimeric leader 
peptide strategy. Chimeric leader peptides were generated via fusion of 
RSs from different leader peptides within the same precursor peptide. As 
a consequence, PTM enzymes from different pathways could be used to 
modified the same core peptide (Fig. 6). Using this strategy, thiazoli-
ne− sactipeptide and thiazoline− lanthipeptide hybrid RiPPs were suc-
cessfully produced [219]. However, this approach requires detailed 
knowledge of the specific RSs. As an alternative to the generation of 
chimeric leader peptides, a leader peptide exchange (LPX) strategy was 
developed. In this approach, the leader peptide is enzymatically swap-
ped after each round of modification using a sortase (StrA) [220]. StrA is 
a transpeptidase that catalyzes the cleavage of the peptide bond between 
threonine and glycine in the LPXTG motif. Subsequently, the C-terminal 
threonine residue is linked to the amino group of glycine of the new 
leader peptide (Fig. 6) [221]. The so-called StrA-based LPX technique 
has been used to generate novel RiPP products using PTM enzymes from 
cyanobactin and microviridin pathways. To do so, the leader peptide 
that is recognized by the cyanobactin heterocyclase (LynD) was fused 
with the StrA recognition motif and the microviridin J core peptide 
(MdnA). Following heterocyclization by LynD, the leader peptide was 
exchanged with the leader peptide that is recognized by the ATP-grasp 
ligase MdnC. Modifications by both enzymes resulted in a RiPP that 
harbored two thiazoline and two ω–ester cross-links [220]. 

The realization that both NRPS and RiPP pathways produce complex 
peptide NPs that can harbor largely overlapping AA modifications 
resulted in the hypothesis that NRPS-derived peptides can be bio-
synthesized using synthetic RiPP pathways and vice versa. Particularly, 
the production of NRPs using RiPP pathways has attracted a lot of in-
terest from the scientific community as RiPP primary sequences can be 

altered easily and hence large libraries of structural analogs generated 
for subsequent structure-activity relationship studies or to improve 
physico-chemical properties of peptides. The first steps towards this goal 
were recently taken when a lanthipeptide BGC was designed to produce 
RiPPs that mimic the structure of the NRPS-derived antimicrobial pep-
tide brevicidine. Brevicidine is a cyclic depsipeptide containing N- 
acylated, positively charged non-canonical AA residues in the peptide 
backbone and a lactone ring at the C-terminus. To mimic brevicidine 
using the tailor-made RiPP pathway, ᴅ-AAs were replaced with ʟ-AAs, 
positively charged ornithins replaced with lysine and a methyl-
lanthionine ring was installed to mimic the lactone ring of brevicidine. 
For the formation of the methyllanthionine bridge, the C-terminal AA 
was replaced with cysteine to facilitate ring formation. The designed 
core peptides were fused with nisin leader peptides and co-expressed 
with the genes involved in peptide modification and cleavage. Even 
though the exact brevicidine was not produced using this strategy, the 
structurally similar lanthipeptides showed bioactivity against Gram- 
negative bacteria [222]. This study can serve as a proof-of-principle 
that NRP-like peptides can be obtained from tailor made RiPP BGCs. 
These results open up an entirely new avenue for peptide NPs engi-
neering suggesting that complex peptide NPs can be biosynthesized 
employing the respective bioorthogonal biosynthetic route (Fig. 7). 

6. Conclusion 

NRPSs are large multi-enzyme complexes that biosynthesize NRPs in 
a modular assembly line-like fashion. The chemical diversity encoun-
tered in NRPs is based on the incorporation of a large variety of (un-
usual) amino and carboxylic acids, the presence of module-encoded 
facultative enzymatic domains, on and off-line tailoring reactions cata-
lyzed by trans-acting enzymes and the fusion with other biosynthetic 
pathways. Moreover, novel scaffolds have evolved through recombina-
tion of serial module arrangements from different biosynthetic path-
ways. RiPP BGCs, on the other hand, are small and encode 
monofunctional enzymes. Since RiPP precursor peptides are restricted to 
the set of 20 proteinogenic AAs, the conversion into heavily modified 

Fig. 7. Production of complex peptide NPs using tailor made NRPS or RiPP biosynthetic pathways. NRPS and RiPP BGCs encode biosynthetic enzymes that utilize 
different strategies for the production of peptides with a complex and overlapping spectrum of peptide modifications. This overlapping arsenal of peptide modifi-
cations opens up an entirely new avenue: the production of NRPS-derived peptides using the ribosomal route and vice versa. 
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non-proteinogenic AAs is achieved through an ever-increasing toolbox 
of RiPP modifying enzymes. Despite these fundamentally different 
biosynthetic strategies the arsenal of AA modifications between both 
biosynthetic routes is overlapping. The biochemical strategies that result 
in the same set of modifications, however, can vary extensively. As a 
result of the different biosynthetic strategies, genome-based identifica-
tion and engineering strategies vary. 

Deciphering of universal NRPS biosynthetic principles resulted in the 
development of several generations of highly sophisticated genome min-
ing platforms that can be applied to all families of linear, non-iterative 
NRPS systems. State-of-the-art NRPS genome mining tools predomi-
nantly rely on hard-coded biosynthetic rules. The universal biosynthetic 
principles are applied to annotate the canonical set of module-encoded 
domains. Structures of the associated peptides can be predicted based 
on the A domain’s substrate specificity, and the colinearity principle. 
Since some A domains are promiscuous and can incorporate multiple AAs, 
the accurate peptide sequence can, in many cases, not be predicted with 
high confidence. As a consequence, NRPSs usually produce small libraries 
of related peptides rather than a single NRP. The presence of module- 
encoded facultative enzymatic domains, on the other hand, allows the 
regiospecific prediction of modification reactions. Even though universal 
biosynthetic principles have also been established for RiPP biosynthesis, 
these universal biosynthetic rules cannot be used to chart the full RiPP 
biosynthetic space. RiPP precursor genes and genes encoding character-
istic modifying enzymes for each RiPP family are conserved within a RiPP 
family. Since this conservation is usually restricted to a single family, tools 
have been developed for the annotation of individual RiPP families. The 
majority of these tools relies on the hard-coded, homology-based detec-
tion BGCs of one RiPP family. Machine learning-based approaches, on the 
other side, have shown a lot of promise for the identification of putative 
RiPP BGCs beyond family boundaries. In the case of characterized RiPP 
families, the core peptide sequence can be predicted with high confidence, 
the regioselectivity of the modifying enzymes and the number of modi-
fications introduced by a modifying enzyme, however, is currently not 
predictable. 

The fundamentally different biosynthetic principles between both bio-
rthogonal routes are also reflected in their respective engineering strategies. 
NRPS engineering focuses on the manipulation of specificity-conferring 
components of the assembly line to alter the primary sequence of the 
NRP. The variability of these concepts ranges from minimal invasive 
methods to change the substrate specificity of single A domains to the ex-
change and recombination of module series. Especially the latter approach 
can be transformed into the high-throughput engineering of large numbers 
of NRPS BGCs. Changing the core peptide sequence in RiPPs can be ach-
ieved by simple alterations of three bases in the precursor gene sequence. 
While these simple changes can be used to generate large peptide libraries 
with varying core peptide sequences, modifying enzymes might no longer 
be able to cope with the changed peptide sequence. As a result, the leader 
peptide has been the focus of many engineering approaches. Leader peptide 
swapping, the generation of chimeric leader peptides or the fusion of leader 
peptides are just a few examples of how modifying enzymes from other 
RiPP families were successfully recruited to modify non-natural core pep-
tide sequences. The ever-increasing number of characterized RiPP families 
that coincides with the constant expansion of the toolset of RiPP modifying 
enzymes, is paving the way towards the design of chimeric RiPP BGCs for 
the production of tailor-made peptides, including those that were initially 
reported to be of NRPS origin. 
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[13] Huo L, Ökesli A, Zhao M, van der Donk WA. Insights into the biosynthesis of 
duramycin. Appl Environ Microbiol 2017;83. https://doi.org/10.1128/ 
AEM.02698-16. 

[14] Shin JM, Gwak JW, Kamarajan P, Fenno JC, Rickard AH, Kapila YL. Biomedical 
applications of nisin. J Appl Microbiol 2016;120:1449–65. https://doi.org/ 
10.1111/jam.13033. 

[15] Dubos RJ, Cattaneo C. Studies on a bactericidal agent extracted from a soil 
Bacillus: III. preparation and activity of a protein-free fraction. J Exp Med 1939; 
70:249–56. https://doi.org/10.1084/jem.70.3.249. 

[16] Hotchkiss RD, Dubos RJ. Fractionation of the bactericidal agent from cultures of a 
soil Bacillus. J Biol Chem 1940;132:791–2. 

[17] Krause M, Marahiel MA. Organization of the biosynthesis genes for the peptide 
antibiotic gramicidin S. J Bacteriol 1988;170:4669–74. https://doi.org/10.1128/ 
jb.170.10.4669-4674.1988. 

[18] Marahiel MA, Stachelhaus T, Mootz HD. Modular peptide synthetases involved in 
nonribosomal peptide synthesis. Chem Rev 1997;97:2651–74. https://doi.org/ 
10.1021/cr960029e. 

[19] Stachelhaus T, Mootz HD, Marahiel MA. The specificity-conferring code of 
adenylation domains in nonribosomal peptide synthetases. Chem Biol 1999;6: 
493–505. https://doi.org/10.1016/S1074-5521(99)80082-9. 

[20] Challis GL, Ravel J, Townsend CA. Predictive, structure-based model of amino 
acid recognition by nonribosomal peptide synthetase adenylation domains. Chem 
Biol 2000;7:211–24. https://doi.org/10.1016/s1074-5521(00)00091-0. 
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