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We present a unified formulation of the interaction of electrons with the electromagnetic 
field in heavy ion collisions, based on quantized interacting fields. This reduces the effort in 
treating many-electron systems substantially, as compared with the usual ^-matrix theory. 
Both formalisms are shown to be equivalent. The simplification achieved by our new approach 
is demonstrated in detail for the example of quasi-molecular radiation. 

1. Introduction 

Heavy ion collisions allow to stud}r the behaviour 
of electrons in strong electric and magnetic fields. 
When the ions collide at energies near the Coulomb 
barrier they may come so close that for a short 
time the surrounding electrons feel the potential 
of both nuclei (one speaks of a superheavy quasi-
molecule). For very small distances between the 
nuclei, superheavy quasiatoms are formed with 
charge equal to the sum of projectile and target 
charge. The electrons in this potential more or less 
follow the so-called quasimolecular orbitals (in 
short: MO's). However, the collision evolves rapidly 
and this variation in time causes electron excita-
tions and creation of vacancies which may decay 
by X-ray emission. 

The investigation of vacancy creation processes 
and quasimolecular X-ray spectra is motivated 
by the large electron binding energies occurring in 
the collision of very heavy nuclei. E.g. for the 
charge of the united atom Z U A > 172 the 1 s-level 
is predicted to join the negative energy continuum, 
a process which is of fundamental importance 
because it leads to the decay of the neutral vacuum 
of the electron-positron field. In the so-called over-
critical fields only a charged vacuum state is 
stable [1], 

For the spectroscop3T of such strongly bound 
electron states mainly four experimental methods 
are presently in use: The measurement of the 
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positron spectra, the vacancy-production prob-
ability as function of the impact parameter, the 
delta-electron cross-section and the MO X-ray 
anisotropics. In order to derive valid theoretical 
predictions for these quantities one has to take 
into account the many-body character of the elec-
tronic system. In the present literature it is usual 
to expand the state vector into configurations. 
This leads to a system of coupled channels which 
in the case of many electrons is not solvable with-
out strong restrictions or simplifying assumptions. 
We have therefore attempted to find a different 
formulation avoiding the explicit use of configura-
tions. We will show in this paper that it is possible 
to express all physically relevant quantities in 
terms of single-particle amplitudes. Our new for-
malism is based on the extensive use of field-
operator-techniques. It is equivalent to, but more 
advantageous than, the standard many-body S-
matrix approach. 

Our paper is organized as follows: In Chapter 2 
we put forward the theory of electronic excitations 
and calculate the hole probabilities as a first appli-
cation. The main aim of this wrork, i.e. to develop 
an expression for the quasimolecular radiation 
amplitude and to discuss in detail its application 
to the X-ray anisotropy, is presented in chapter 3. 
The appendices contain a short survey of the S-
matrix formalism and the main steps of the proof 
that the two theories are equivalent. 

2. Field Theoretical Description 

2.1. The field equations 

We start by writing down the Lagrangian for 
the total system of electrons and nuclei. In order 
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to avoid possible complications due to nuclear 
reactions we limit ourselves to scattering processes 
below the Coulomb barrier. We may then treat the 
nuclei as elementary particles of the according field 
operators 0 k*, 0 k ( K = 1,2) creating or annihi-
lating nuclei with mass Mk and charge Zk • Under 
these assumptions the Lagrangian has the form: 

<£ = 0e (i y* 8„ - me) 0e + ^ 
+ \$ßAv){&A*) + 1 {jf,A»} (2.1) 
+ (jß1+ 

Here LN is the nuclear part of the Lagrangian, 
and 0e, Aß are the field operators for the electron 
and photon field, respectively. 

(2.1a) 

is the electronic current operator, jßK (K = 1 ,2) 
the nuclear currents that will be discussed below. 
The symmetrization of the interaction term and 
the antisymmetrization of the electronic current 
(2.1a) guarantee the charge neutrality of the 
vacuum [2]. 

To keep the Lagrangian of the two nuclei, L y , 
as simple as possible we can make further assump-
tions. For heavy ions the spin of the nuclei is very 
small compared to the angular momentum of their 
motion and may be neglected. Their orbit itself 
can be described nonrelativistically, because the 
relative velocity at energies below the Coulomb 
barrier is small (v/c ~ 0.1). Then we have 

K —1,2 

1 

2Mf (V0K*) • (V0K) 

whence it follows by minimal coupling: 

(2.2) 

jßK = ZKe\ 0k* 0K,~OMk[0K V0K* - 0K* V0K] 

ZKe 
Mu 

A 0 K * 0 K (2.2 a) 

The field equations are obtained by variation of 
f d 4 z Se with respect to 0e, 0X*, 02* and Aß 

(i y» dß - me) 0e — "X" {yn 0e, A»} , (2.3) 

2 MK 
(-iV-ZKeA)* + ZKeAo 0K = idt0K, 

(2.4) 

BAß = jf + + (2.5) 

First of all we investigate the solution of the last 
eq. (2.5), which is formally given by 

Aul+> + Aß* + A/ + Aß 2 (2.6) 

with 
OAm(+)(x) = 0 , (2.6 a) 

Af(x) = /d4y Z)R e t (x — y) jße(y), (2.6b) 

K= 1,2 (2.6c) 

where DRet(x — y) is the retarded photon prop-
agator. Aß<+> is the free photon in-field, Aße, AßK 

are the retarded electromagnetic fields produced 
by the electrons and the nuclei, respectively. 

Note that the integrals in (2.6a, b) do not in 
general exist as they stand. In order to ensure 
their existence the currents have to be modified, 
e.g. they must be adiabatically switched on and 
off. This can be done by the substitution [3] 

a > 0 , (2.6d) 

where at the end of all calculations we take the 
limit a 0. 

To solve the first two field equations (2.3), (2.4) 
we neglect the backreaction of the electrons onto 
the nuclear current, which is allowed for heavy 
systems, the selfinteraction of each individual 
nucleus and their interaction with the free radia-
tion field. In this way we can treat the nuclear 
motion independent of the electronic system and 
obtain: 

1 

2 Mi 
(-iV -Z1eA2)t +Z1eA2° 0 l = i et 0i, 

(2.7) 

and a like equation with the indices 1, 2 exchanged. 
It is customary to replace (2.7) by its classical 

analogue i.e. to assume that the nuclei move along 
classical trajectories. The electrons are influenced 
by the nuclear motion via the nuclear currents 
which in this approximation are given by 

jßK = ZKeö(x-RK(t))(l,vK). 

2.2. Solution of the equation for the electron field 

In the following Ave neglect the influence of the 
free electromagnetic in-field Aß(+). This amounts 
to the assumption that there are no incoming 
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photons, i.e. no outside radiation impinging on the 
quasimolecule, and to the neglect of the zeropoint 
fluctuations of the electromagnetic field that are 
responsible, e.g., for the largest part of the Lamb 
shift. We do not, however, neglect electronic brems-
strahlung. Then the field equation for 0e (2.3) 
takes the form: 

d<Z>e = | ( 2 - 8 ) 

with the notation 

d = i y" + {A^ + Af)} - mc. (2.8 a) 

In order to solve this equation we make a Fock 
decomposition of the field operator 0e. 

0 e ( x ) = 2 a n ( t ) X f / n ( x ) (2.9) 
n 

with respect to a complete, orthonormal set of 
single particle wavefunctions {Wn } , to be specified 
below. From the equal time commutation relation 

{0e+(x),0o(x')}t=t' = d(x - x') 

follows immediately 
{an+{t),am{t)} = dnm. (2.10) 

If we assume that for t—>— oo the functions Wn 

go over into the electronic eigenstates of the system, 
the ground state may be constructed by defining 
a Fermi surface such that 

än\F) = 0, n>F, 
an+\F) = 0, n<F, (2.11) 

where 
c t n = lim an(t). (2.11a) 

t-+-oo 

The limiting procedure in (2.11a) is justified by the 
formal trick presented in (2.6d). For the same 
reason the ground state | Fy may be assumed to be 
a slater determinant. We also like to note that in 
a realistic system we deal with an ensemble of 
different pre-ionized atoms that must be described 
by a density matrix. Then the expectation value 
of any operator Ö is given by 

<ö> = 2Wf<F\Ö\F>> 
F 

where Wf is the statistical weight of a pure state 
Equation (2.11) completely specifies the 

boundary condition of the electronic system before 

the collision. Now we insert the expansion (2.9) 
into (2.8) and obtain with the help of (2.6b) and 
(2.1a): 

70 Wn (*) an (tx) + (dWn (x)) an (tx) 
n 

= -ie2yU J d Z ) R e t (x _ y ) 

Imn 
• [an{tx)ai + (ty)am{ty) 

— an(tx)am{ty)ai+(ty) 
+ ai+(ty)am{ty)an{tx) 
-am(ty)al+(ty)an(tx)]. (2.12) 

Up to now we have not specified the basis set {Wn}, 
which can be done in many ways. For instance we 
obtain the time-dependent Hartree-Fock equa-
tions if we neglect the time dependence of the 
operators an, taking an (t) = an, and demand that 
(2.12) is exact for all matrix elements between 
states differing only by single particle excitations: 

e2 
d W n { x ) = —— ye Jd4//£>Ret(a; — y) 

m 
-Wm(y)yuWm(x)Wn(y)), (2.13) 

where 

I ^ f l - Z ) - <213«) m \m<F m>F] 

Let us consider the tilde sum which has, by defini-
tion, the property 

2 = 2 + i ( 2 - 2 ) m Fa < in < F \m < Fo m>Fol 
HF Uh 

= 2 + 2 > ( 2 - 1 3 b ) m m 
where Fo is the Fermi surface of a system of two 
fully ionized atoms. It means that the Hartree-

HF 
Fock sum 2 is the sum over all real occupied states, 

m Uh 
while the remainder, the Uehling sum 2 » describes 

•m 
the effects of vacuum polarization. 

Another possibility to choose the basis is to take 
the solutions of 

dWn^x) — 0 . (2.14) 

Then there remains a rather complicated time 
dependence for the 

a7j's. Since we wish to work 
in the following with this bases we are led to a non-
linear equation which cannot, of course, be solved 
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exactly. A perturbative treatment yields, e.g., in 
first order 

le 
« ( i ) (0 = - - 9 - v J Vy 1 *I (y) v* ^ (y) 

" Imn 

• J d r ( W r { % ) I D R e t { % — y)\ ^n(z)> (2 .14a) 
— 00 
•(2a<°)aW a (0) + ^ a ( 0 ) _ ^ a ( 0 ) ) 5 

where the zeroth order solutions are identical 
with the dra's defining the ground state (2.11). As 
we are interested mainly in the behaviour of the 
inner shells we shall neglect the electron-electron 
interaction, the most important influence of which 
will be an energy shift of the MO's. Then, as an 
immediate consequence, the an ' s are constant in 
time. That this is an adequate procedure has been 
shown by Rihan et al. [4]. Because d is a self-ad-
joint operator, the solutions of (2.14) form a com-
plete and orthonormal basis for all times, if they 
did so at — 0 0 . They are usually obtained by 
first solving the stationary two center Dirac equa-
tion [5]: 

7 ° [Y • P + me + y o Ftc (r, R (,))] ^ (r, R {t)) 
— con (R(t)) cpn (r, R (t)) (2.15) 

where 

FTC (r,R(t)) 
Zi e2 
Ms 

M\ + M 2 

Z2e2 

R e . 

r + 
Mi 

M 1 - r Mo 
Re, 

(2.15a) 

The nuclear electromagnetic field is represented 
in the Coulomb gauge. By the choice of the two 
center Coulomb potential (2.15a) we have fixed 
our coordinate system such that the z-axis coincides 
writh the connection line of the two nuclei. The 
expansion of the Wn 's : 

0 = I^rüHt) cpi (r, R(t))exp { - i ltd' cvi} 

(2.16) 

is inserted into (2.14) and we obtain by projecting 
at every instant of time onto the stationary basis 
(pn a system of coupled equations for the amplitudes 
/>(+). nl ' ( 

biV = ~ 2K])exp{i \ dt' ((oi - (or)} 
l" 

• <<pe I dt - i e y • M 1 + A2) | <pr), (2.17) 

where the index n and the (-f-)-sign characterize 
the boundary condition: 

lim &<+>(*) = <5 nl (2.17a) 

Of course, the operators an depend on the choice 
of the boundary condition. We emphasize this 
by the notation an(+\ Although the use of the two 
center distance R(t) as scattering coordinate allows 
for a simple description of the nuclear motion, one 
must keep in mind that it leads to unphysical 
couplings in the asymptotic regions. Therefore, a 
correct treatment must take into account the 
translation of the electrons Avith the binding nuclei 
[6]. A simply way to include this effect is to rotate 
the basis of stationary states (pi by a suitable 
unitary transformation (the so-called translation 
"factors"). As a result the coupling matrix elements 
in (2.17) are slightly modified. 

2.3. Vacancy creation rates 
As a first application of the theory AAre want to 

calculate the final vacancy probability of an elec-
tronic state k A v i t h k<C F. In order to do so we note 
that the field operator 0 e can be also expanded 
in the basis { W n ^ } of single-particle states A v h i c h 

go over into eigenstates of the ions long after the 
collision. For these states an expansion like (2.16) 
satisfies the boundary conditions 

l im b^\t) = önl. (2.18) 
<->+00 

Equating the two different Fock expansions 

n n 
A\Te obtain a connection betAveen the corresponding 
particle operators: 

m 
The ^-matrix element | is time in-
dependent and can be expressed by the occupation 
amplitudes. To SIIOAV this Ave employ the time 
evolution operator U (t, t') satisfying 

dt U{t,t') = 0 . 

Then 
< n _ ) ( 0 | ^ + ) ( 0 > = Hni<^(T) 

T T-*00 
• e x p { - i J d r ' con} | U+(t, r) S«+>(0> 

T 

= l im < < p n ( r ) e x p { — i J d r ' « „ } | F ^ r ) ) 
T —>CO 

= 6( + ) ( 00) wmn \ / 
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holds. The replacement of the true outgoing wave 
Wn by the stationary solution cpn is justified by the 
adiabatic hypothesis, (2.6d), that the limiting 
procedure oo exists. Therefore we may write 

< - } = Z (2.19) 
i l l 

Then the final hole probability in state K is given 
b y 

The ground state expectation value can be evaluated 
by expressing the operator a(Ä") in terms of 
via (2.19). In case that the a\+ J change Â  ith time, 
everything must be expressed in terms of 
(—oo) — am (see Eq. (2.14a)). Making use of the 
definition of the Heisenberg state | F/, (2.11), we 
obtain finally 

(2-20) 
m > F 

By a comparison with the standard method [7] 
to derive (2.20) we can see the advantage of our 
formalism. A further and more striking example 
for the superiority of the operator formalism and 
the employment of the Heisenberg picture is pro-
vided by the derivation of the quasimolecular 
radiation cross-section. This will be given in the 
next section. 

3. The Quasimolecular Radiation Cross Section 

3.1. Motivation 

One of the effects reflecting the quasimolecular 
binding energies seems to be the MO X-ra}*- aniso-
tropy [8] 

da{& — 90c 
r]{co) =— 

der ({} = 0° ) 
(3.1) der ( $ = 0°) 

where & is the angle between the photon detection 
direction and the beam axis. Whereas it is not 
obvious how to extract information about the large 
binding energy of the 1 s level at the united atom 
limit from the measured MO X-ray spectra (they 
do not seem to exhibit any cut-off at the united 
atom jKa-line due to dynamical broadening), the 
anisotropy is experimentally known to depend 
sensitively on the photon frequency and to peak 
at the binding energy in the united atom [9]. In 
other words, it seems that precisely this quantity 
allows for a spectroscopy of intermediate electronic 

levels. This has been anticipated on the basis of 
simple theoretical models [10—13], and has been 
extensively and convincingly verified in experi-
ments by Wölfli and his collaborators [14]. 

Supposedly, the peak in the anisotropy is caused 
by the strong rotational coupling between the levels 
at close distances reflecting the fact that the elec-
tron cannot follow the swift rotation of the inter-
nuclear axis [15]. This is the so-called slippage-
effect. Müller and Greiner [8] have shown that the 
anisotropy depends critically on the population 
of the various magnetic substates, especially in the 
L-shell of the united atom. Any attempt to cal-
culate the anisotropy ab initio, i.e. without ad hoc 
introducing an alignment, must treat all levels of 
a subshell in the same manner. The simplest case 
allowing for excitation of vacancies and for the 
formation of an alignment is a model including 
the K, L and M shells, where the K and L shells 
are assumed to be initially filled and the M shell 
to be vacant. Working with configurations, we then 
would have to solve a system about 40 000 coupled 
channels (see Eq. (B6) in the appendix). Even if 
this could be circumvented, the usual ^-matrix 
approach would require the summation of a similar 
number of final channels in order to obtain the 
cross-section. We shall see that, with the help of 
the formalism developed in the previous section, 
we are able to calculate the radiation cross-section 
much more easily. 

We start by re-stating the basic equations. 

UAß{x)=jß (x) -~[<t>(x),y»<Z>(x)], (3-2) 

0(x) = 2"»v»i*)> 
u 

dWn{x)= 0. 

(3.3) 

(3.4) 

Here we have suppressed the index e denoting the 
electronic operators. We also have not specified the 
boundary conditions for the wave functions Wn , 
but it will be understood in the following that they 
are of the (-j-)-type, eqs. (2.16 — 17). We further 
remind the reader that with electron-electron cor-
relations neglected the particle operators an, an+ 

are constant in time, i.e. an(t) = an. 
The differential radiation cross-section from 

which we determine the anisotropy (3.1) is given by 
da I der \ „ 

d 3 * 2 / ( M ) . (3.5) 
dQ* dQ, s/SCATT 
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In the classical approximation the scattering cross-
section may be replaced by the Rutherford cross-
section. All we need to know now is the intensity 
I(k, X) of photons with wavevector k and polariza-
tion X. I (k, X) can be expressed as the ground state 
expectation value of the corresponding photon 
number operator, i.e. 

I (k. X) = (F | d(fc^) f d^J* | Fy , (3.6) 

where f and are the creation and annihila-
tion operators of the asymptotic photon field 
(£->-f oo), in analogy with the calculation of the 
hole probabilities at the end of the last section. 

3.2. Solution of the equation for the photon field 

The formal solution of (3.2) is given by a super-
position of the free in-field and the field produced 
by the electrons: 

Aß(x) = Aßl+)(x) 

+ j d * y D * < * ( x - y ) j M . (3.7) 

It involves the boundary condition 
lim^l^rr) = lim A (+\x) (3.7a) 

t—*• — oo t—*• — oo 

because the retarded propagator vanishes inside the 
backward light cone. 

We shall now exploit the freedom inherent in 
the gauge invariance of the electromagnetic field 
by imposing a special condition on Au. As usual 
one shows [16] that the condition 

( 0 / . ^ ) p O 8 . | J f ' > = O 

involving the positive frequency part of A " im-
plies the cancellation of the contribution from 
longitudinal and scalar photons. It is therefore 
sufficient to sum over the transverse polarization 
X = 1,2 in (3.5). Since we are interested in the 
number of photons long after the collision we have 
to investigate the radiation field in the asymptotic 
region t->-f-oo. Therefore we define a free out-
field by 

lim x) — lim Aß(x). 
< -» + oo I-*-1- oo 

We now apply the relation between the retarded 
and advanced propagator 

D K e t (x - y) = Z)Adv(x - y) - A0{x - y), 

Ao being the Schwinger function, and obtain 
= (*) - J d 4 y d o ( * - y)iM (3.8) 

because 7)Adv(x) vanishes inside the forward light 
cone. 

satisfies the free Maxwell equation, since 
*0\xAo(x — y) = 0. Being solutions of the homo-
geneous wave equation, the asymptotic fields 
may be quantized in the standard way and can be 
expanded in terms of photon operators: 

+ 4 t ) t A u ( z ) (3.9) 
with 

= (3.9a) 
and 

1 1 
g M » ( * ) = F 1 / 2 ( 2 f t > ) 1 / > ekXlie (3.9b) 

X counts the polarization, // denotes the four-vector 
index. The basis functions qk)fX obey the ortho-
gonality relation 

i f d3xq%yp(x) 6o?u(a;) = dkk>du> (3.9c) 
v 

with the abbreviation 

A d0B = A (d0B) - (0^4) B. 

Equation (3.8) induces a relation between the 
operators for in- and out-photons which is obtai-
ned by projecting out a specific state qk?ß: 

d f r ^ d W - i h u (3.10) 

with 

hkx = Jd 3xq^/Kx) 

•fio!&*yM*-y)My)- (3.i0a) 

3.3. The radiation intensity 

Again we make the assumption that the initial 
state dees not contain free photons. The Heisen-
berg state of our system is then defined by 

d W \ F } = 0 (3.11) 

for all k, X. Then we obtain from (3.6), (3.10) and 
(3.11) for the intensity: 

I{k,X) = (F\h*lKAF> <3-12) 
The properties of the Schwinger function may be 
utilized to get a simplified expression for hk^: 

hux= i&xqtxrWn*) (3-13) 
By expanding j»(x) in terms of electron creation 
and annihilation operators and using the definition 
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of the Hartree-Fock sum (2.13 b) Ave finally obtain 
HF 

/ ( M ) = 2 H ' ' 2 l ^ u T (3.14) 
m<F 
n>F 

with the amplitudes 
Hn™=-e jdteioJt (3.14a) 

For the details concerning the derivation of (3.13) 
and (3.14) Ave refer to appendix A. 

The practicability of (3.14) becomes obvious if 
Ave try to calculate the anisotropy on the basis of 
the model Avith initially full K- and L-shells and 
empty M-shell discussed at the begin of this chapter. 
It means that the system is restricted now on 
10 electrons and 18 basis states. Then a set of 18 
coupled equations (Eq. (2.17)) has to be solved 
(for 18 boundary conditions) and both double sums 
in (3.14) run only over a small range (n, m ^ l 8 ) . 
On the other hand we have eq. (B6), a system of 
(Jo) coupled configurations (to solve for just as 
many boundary conditions!) and the corresponding 
summation in the cross-section. The reason for the 
great simplification achieved by (3.14) is the use 
of the Heisenberg picture together with the Fock 
representation. The disadvantage of the ^-matrix 
formalism is due to the fact that one gets much 
more information than necessary. First we have to 
determine the amplitude for each channel and then 
to sum over all channels. In the field operator 
approach one calculates only the quantity of inter-
est and nothing more. We conclude this section 
with some remarks about coincidence spectra pro-
duced by simultaneously measuring a quasimole-
cular photon (k, A) and a characteristic K X-ray 
from the single atom. For instance, a radiative 
MO-transition from 2pi/z o to 1 s a creates a vacancy 
in the 2^i/2cr-level which will be transferred into 
the K-shell of the lighter collision partner, Avhere 
it decays radiatively. Therefore we have to calculate 
the expectation value of the product of the number 
operators for quasimolecular photons and final K-
vacancies: 

I(k, A, K) = <JF|dk)+djj>a£>a£>+| F} . 

Utilizing (3.10), (2.19) and neglecting all effects 
from vacuum polarization and the positron states 

we are led to 
/(k, )., K) = 2 bsK{oo)b*K{oo)H%H nm kX (3.15) 

% pi 
rust 
• | aj+ at an+ am as at+ |.F> . 

After evaluation of the matrix element in (3.15) 
we obtain six terms which can be easily computed 
once bni (oo) and are known. We note that a 
more detailed specification of the final state does 
not require more complicated dynamical calcula-
tions, i.e. the simplicity of our treatment remains. 

4. A Schematic Model 

Finally Ave want to investigate the radiation for-
mula (3. 14) Avith respect to the temporal order of 
excitation and radiation. For that purpose Ave con-
sider a one-electron model which enables us to 
compare all results of our approach with the accor-
ding results of the S-matrix formalism, eqs. (B 1), 
(B7) . Suppressing photon quantum numbers the 
radiation intensity can be expressed in the two 
equivalent ways: 

(4.1) 1 = 2 | C n l | 2 = 2 l # « l | 2 

«;- Fo n>F o 

with 

<Pi') f d t e ^ Z b ^ b W ^ l j - q * 
-OO 1,1' 

t 
•exp{i jdt'(coi - o)v)}, (4.2) 
oo 

Hnl ^ Jdf ei(ut 2 bW b[p (tpt \j-q*\ <pr> 

t 
• e x p {i J d f (a>i — (Oy)}, ( 4 . 3 ) 

Avhere b^ are the solutions of (2.17). Since qkX0 — 0 
for transversal photons, (4.3) becomes identical with 
(3.14a) using the notation j——ey. Furthermore, 
Ave assumed the electron to be in the ground state 
(1). Of course, the ,,one"-particle model still suffers 
from possible manybody effects out of the vacuum, 
but Ave shall neglect these contributions in the 
following. 

To study the temporal order of excitant and 
radiative processes we make an ansatz for the 
transition matrix elements 

<9n I Ö* 19?r> = cc.il'6 {t — to), 

<<Pi\j-q*Wi'> = ßw*{t-h). (4.4) 
The öj-coupling shall be so weak that the excita-
tion may be treated perturbatively. Then we obtain 
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in first order 

+ B n i H o - t i ) , (4-5) 
H$ = - {Anl + Bnl)d(h - to), (4.6) 

where 

W=H<% = ßnl 
h 

• exp{ i | dt(con — coi) -+- icoti} , (4.7 a) 
ti 

An\ = 2ßnic*.nexp{i Jdt{(on — co\) 
l>Fo to 

+ i jdt{coi — w i ) 4 - icoh), (4.7b) 
ti 

Bni = 2 ß lie-in exp {i jdt{coi — toi) 
1>F° to 

- f i J dt{con — coi) + icoti} , (4.7 c) 

and -&(t) is the unit step function. Equation (4.5) 
is the analogue to the electron bremsstrahlung 
occuring in presence of an external field: two terms 
contribute in first order which correspond to the 
two possible ways of time-ordering (see Figure 1). 
Such an interpretation is not possible for Hn\ 
because it is not derived from perturbation theory 
in the interaction picture. 

'fiw 

V t i W c 

Fig. 1. The electronic bremsstrahlung in an external field. 

It is, however, crucial that the intensity does not 
depend on the use of cn\ or Hn\. This is shown 
for the general case in appendix B. For our sche-
matic example it is easy to verify the identity by 
explicit calculation. Because of 

0 ( f o - f i ) = l - 0 ( f i - f o ) 

we have 

Neglecting the terms ~ afn we get 

i = I n>F o c»i ' i2 = 2 I W + ' c 
,(1)1 

n>F o 

with 

n > F o 

Inserting (4.7 a, c) we see that Io, given by 
ti 

7 o = 2 ( ( ß m ß n ^ v { i Jd/(co„ — coi)} 
n,l>F0 to 

h 
+ ßnißnexP{— i fdt(con — (Oi)})y.in, 

to 

vanishes since the expression in the brackets is 
symmetric in n, I while ain = — a n i . 

5. Summary and Outlook 

In this article we have discussed the electronic 
and radiative part of a heavy ion collision using a 
quantum field theoretical description. The two basic 
assumptions made are 

(a) the so-called semiclassical approximation, de-
scribing the nuclear current classical^; 

(b) the hypothesis that all interactions may be 
switched on and off adiabatically. 

As an application we investigated the quasimole-
cular radiation in detail, where further assumptions 
are made: The most important of them is the 
neglect of the electron-clectron correlations. Be-
cause of its simplicity the derived formula allows 
for the first time to calculate the anisotropy in-
cluding the many-particle properties of the elec-
tronic system. The numerical evaluation of (3.14) 
is presently carried out for the lead-lead system 
and will be reported somewhere else in the near 
future. 

Appendix A 

The three-dimensional Fourier representation of 
Schwinger''s delta function for vanishing rest mass 
is given by 

Ao{x-y) = 
(2 n)t 

Jd3 k 
, sin [(£)£' (̂ x — ty)] 

0)k' 
exp {»&'•(* — y ) } , 

where we use the notation Making use 
of (3.9b) we have then 

= ql;4c{x){d,xA0{x - y)) 
~ (ö^U/^Mo(* — y) 

f 
(*) c o s [«>*' C'x - ty)] e x P { » * ( * - y)} (2jr)3 

— i(okq\X/xAo{x — y). 
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Therefore hkx consists of two parts 
h k l = m + u n 

with 

h% = jd*xqlXlt(z)fd*y 

' cos [tor {tx — ty)] exp {— i k' (x — y)} j» (y), 
tiki = — fd3^ i Mk q*uM (») 

V 

• Sd*yAo(x-y)j»(y). 
Now we insert (3.9b) into the first part and obtain 

= V i 7 2 "(2 ^ ) 1 / 2 ' ^ e X P ^ 0 J k J 

• c o s [ c o k ( t x - t y ) ] e - ^ j e ( y ) . 

Similarly hffi is given by 
1 1 iojktx 

Fl /2 (2ojfc)1/2 

• jd*yisin[0)k(tx - ty)]e-ikyj»(y). 

Adding the two terms we get 
1 1 

h kX 
F 1 / 2 ( 2w* ) 1 / 2 

exp { - io>k{tx - ty)}e-ikyj»{y) 

and finally Ave obtain (3.13) defining the scalar 
product as: 

n A XPm . 

To derive (3.14) we use (2.1a), (2.9) and (3.14a): 
e 

Kx = — y ' J 

2 Vn (x) y" xFm {%) (an+ am — am a„+) 
n,m 

= 2 HZan+am-lZHK. 
n, m n 

With the notations of (2.13 a, b) we have 
Uh 

n n<Fo n 

Evaluating the matrix elements and splitting the 
I IF 

sum 2 i11 2 + 2 we 
n < F n<Fo n 

I(k 
/ ( H F H H i ' 2 + 2 + 2 2+2 
\ Vn<Fa n I'm< Fo m n~>F 

m<F 
HF] HF 

2 + 2 2 - 2 2 + 2 + 2 ' 1 
n<Fo n \ m<Fo n<.Fo m<Fo m n,m 

<Fo 
. rinn* jrmm nk?. rlkX > 

and then the final result (3.14). As mentioned we 
have worked for the sake of simplicity with the 
( + )-type of an. Of course we are drawn to the 
same results employing the ( —)-type. 

Appendix B 

Here we want to demonstrate the equivalence 
of the formula for I (k, X) obtained from the S-
matrix formulation of time-dependent perturba-
tion theory and the expression for I(k, A) resulting 
from our method. In the derivation of Briggs and 
Dettmann [12] the radiation amplitude is given 
in first order perturbation theory by 

u a= Sdt< 

(BI) 

The wave function is a dynamical solution of 
the many body two center Dirac equation 

2djZ (+) = a? (idi-B)zl+> = 0 (B2) 

with the boundary condition 

lim x[ + )(t)= Hm &i(R(t)) 
t—* — oo t—* — oo 

t 
• exp{— i J dt' coi} . 

The molecular state represents an electron con-
Since the effects of the vacuum polarisation are figuration and is a solution of the stationary two 
expected to be small we shall neglect the Uehling center Dirac equation 
term in the following. Therefore we may write: 

I(k,X) = 2 Hi&H»$(F\a}+aian+am\Fy 
n,m 

l - I ^ r i n r - i ^ r i n r 
n<F n<Fo 
m <Fo vi <F 

+ 2 
n,m<Fo 

H0i = coi0i. (B3) 

is an analogous solution, but with the future 
boundary condition 

lim y}f\t) = lim &f(R(t)) 
t—>• + 00 t—>- + oo 

jmm 
/cA e x p { — i j dt ' co/} . 
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If we expand the dynamical solutions in terms 
of the stationary two center configurations we ob-
tain 

^ ( 0 = 2a<±>0mexp{-; jdt'(om} (B4) 

with 
lim ait} = dr (B5) 

By inserting (B4) into the equation of motion (B2) 
the configuration amplitudes a^fj are seen to fulfill 
a set of coupled differential equations: 

t 
« » » = ~ 1 a ^ l ) e x S ^ ' H c O m ~ CO/)} 

(B6) 

In the following we present the main steps how to 
derive (3.14) from the configuration formalism. We 
concentrate on the intensity given by the square 
of the radiation amplitude summed over all (final) 
states: 

/ ( M ) = 2 > £ l 2 
/ 

/ 
•<x{r)(t)\jql.\x(i+)(t)y. (B7) 

The crucial step of the proof is to replace the wave-
functions with future boundary condition by those 
with past boundary condition. This substitution is 
based on the unitarity of the time evolution 
operator, whence 

/ 
= u ( f , o o ) 2 | 0 / > < < z v | £ / + ( ' . ° o ) 

/ 
= U(t',t) 
= u(t',-oo)2\&fy(0f\u+(t,-oo) 

f 
= I\x{f+)(t')Xx{f+)(t)\. 

/ 

As mentioned the one-to-one correspondence be-
tween the 0 f and %f states is correct for an adia-
batic interaction. Then we find that it is possible 
to write 

with 

/ ( M ) = 2IC~&I2 
/ 

eft = — i J dt eiu>t 

•<tfHt)\j-qlx\A+)U)>-

(B8) 

(B9) 

cfkx itself has no physical interpretation but it 
leads to the same intensity if we sum over a com-
plete set of configurations. 

Regarding a system of fixed electron number N 
Ave can express as a Slater determinant of 
single-particle solutions !f(+) of (B2), Avhich are 
identical to the solutions (2.16): 

• • • n + > < * > 

x\+)(t) = 
1 

(N I)1!* 

denotes the i-th electron in the state j of the 
configuration I. To calculate the transition matrix 
elements 

M = <fi+Ht)\j-qlx\A+Hty> 

we define the following matrices of wave functions: 

(i)u=i (?)>• 
Furthermore Ave use the notation A (nk> for a matrix 
A after the n-th row and k-ih column have been 
eliminated. Employing the expansion of deter-
minants Ave can A v r i t e 

N 
31 

1 

A ' ! n.in 
= 1 

N 
21 F(nk) 

k = 1 
(mk) 

Avhere the multiplication of the tAvo determinants 
involves taking the scalar product of the Avave 
functions. This product can be re-expressed as 

2 1 F 
k 

with 

At this point the meaning of the substitution 
r-fi ! becomes clear. If Ave had worked Avith the 
radiation amplitude cfkX we A v o u l d have formally 
obtained the same result but the matrix element 

Avould not be a Kronecker delta. NOAV it follows for 
r f i 

cfL=-il(-)n+m\^n)\Hfuim 

with 
Ek = Jd« eia* +> (t) \j • q'kx I +> (0> • 

To evaluate the condition {Sü)ici = öflik we in-
vestigate the final configurations systematically, 
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which leads t o three different cases : 

(a) In the first case / is identical t o i . T h e n we 
have | m) | = bmn and therefore 

?L = - i 2 h i t -
mei 

(b) T h e n e x t possibi l i ty involves all conf igurat ions 
/ ( ! ) which differ f r o m i b y one exc i ted electron. 
T h e n | S ^ ^ | is non-zero on ly f o r one pair m 
and n, whence we have (up t o a sign) 

c t r 1 ~ i Hnk™, n i, m e i. 

(c) Since the rank o f S?1 is g iven b y 

rk S" = N - N e x , 

where N e x is the n u m b e r o f exc i ted electrons, 
I 8(mn) I v a n i s h e s f o r all conf igurations with N e x ^ 2 
because o f r k S(lin) <^rkSu < N — 1 . 

Conc luding these results we obta in for the in-
tensity 

/ ( i ) 

wh i ch leads t o (3.14). N o t e that 
HF 

n 

because o f the f ixed n u m b e r o f electrons. 
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