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ABSTRACT

Understanding the role of short-interfering RNA (siRNA) in diverse biological pro-
cesses is of current interest and often approached through small RNA sequencing.
However, analysis of these datasets is difficult due to the complexity of biological
RNA processing pathways, which differ between species. Several properties like strand
specificity, length distribution, and distribution of soft-clipped bases are few parameters
known to guide researchers in understanding the role of siRNAs. We present RAPID,
a generic eukaryotic siRNA analysis pipeline, which captures information inherent
in the datasets and automatically produces numerous visualizations as user-friendly
HTML reports, covering multiple categories required for siRNA analysis. RAPID also
facilitates an automated comparison of multiple datasets, with one of the normalization
techniques dedicated for siRNA knockdown analysis, and integrates differential
expression analysis using DESeq2.

Availability and Implementation. RAPID is available under MIT license at https:
//github.com/SchulzLab/RAPID. We recommend using it as a conda environment
available from https://anaconda.org/bioconda/rapid

Subjects Bioinformatics, Computational Biology

Keywords Comparative analysis, SRNA tool, Automated sSRNA analysis, SRNA, Small RNA
analysis, Computational sSRNA analysis, siRNA analysis, siRNA quantification, Eukaryotic SRNA

INTRODUCTION

Widespread availability of small RNA (sRNA) sequencing technologies drives the biological
community in unraveling the pivotal role of SRNA molecules. Micro RNA (miRNA), short
interfering RNA (siRNA), piwi-interacting RNA (piRNA), small nucleolar RNA (snoRNA),
and trans-acting RNA (taRNA) are some members of the sSRNA family. In a wide range of
organisms, these sSRNA molecules play crucial roles in gene regulation (Bossi ¢ Figueroa-
Bossi, 2016). Although miRNAs are the most widely studied SRNA molecules, a growing
interest can be seen in other sSRNA classes, like siRNAs. With improved mechanistic
understanding of siRNA function, siRNAs are increasingly used as therapeutic agents in
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drug discovery (Chavan-Gautam, Shah ¢ Joshi, 2017). Using siRNAs in therapy requires a
solid understanding of siRNA biogenesis, and behavior.

Understanding siRNA biogenesis and function often involves the computation of
various sequence properties like length, strand of origin, and soft-clipped nucleotides of
sRNA molecules. A myriad of available SRNA analysis tools substantiate the complexity in
analyzing SRNA data sets. Existing SRNA analysis tools can be broadly categorized into two
categories based on their function. (i) Tools which are dedicated to predict novel miRNAs,
piRNAs, etc. using diverse computational strategies. This list includes methods such as
Shortstack (Axtell, 2013), miRDeep2 (Friedlinder et al., 2012), iMir (Giurato et al., 2013),
Piano (Wang et al., 2014), etc. (ii) The secondary focus of many sRNA analysis tools is to
annotate, and perform Gene Ontology (GO) enrichment analysis of known, or predicted
sRNAs. Examples include miRTools2 (Wu et al., 2013), iSmart (Panero et al., 2017), and
CPSS (Wan et al., 2017). However, such annotation based tools lack user-flexibility as they
are hardcoded to work only in certain genomes like humans or mouse primarily. This
hampers researchers working with uncommon model organisms. Only very few tools,
like sSRNAtoolbox (Rueda et al., 2015), Qasis (Capece et al., 2015), and ncPRO-Seq (Chen
et al., 2012), do not have a hard-coded genome constraint, but they lack diverse graphical
representation of data. In addition, existing tools are not tailored to compare multiple
samples in a systematic way, properly normalizing sSRNA datasets, thus allowing for an
unbiased analysis. A non-exhaustive list of available SRNA analysis tools, and their abilities
in addressing various properties essential to understand sRNA biogenesis, and mechanisms
are discussed in Table 1. In spite of the diverse availability of SRNA analysis tools, they
have potential mishaps and do not capture all the qualitative, and quantitative properties
(discussed in Tables 1 and 2) while equipping the user with unbiased multi-sample
comparisons.

Hence, we developed a generic sSRNA analysis offline tool: Read Alignment, Analysis,
and Differential PIpeline (RAPID), primarily tailored to investigate eukaryotic siRNAs.
RAPID quantifies the basic alignment statistics with respect to read length, strand bias,
non-templated nucleotides, nucleotide content, sequencing coverage etc. for user-defined
sets of genes or regions of any reference genome. Once basic statistics are computed for
multiple sSRNA datasets, our tool aids the user with versatile functionalities, ranging from
general quantitative analysis to visual comparison of multiple SRNA datasets.

MATERIALS AND METHODS

Figure 1 shows an overview of the various modules of RAPID, which we discuss below.

Basic module

The first of four RAPID modules is rapidStats, which performs sequence (FastQ) alignment,
with or without contaminant removal, using Bowtie2 (Langmead, Salzberg ¢» Langmead,
2013). After alignment, RAPID obtains read statistics such as read length distribution,
soft-clipped nucleotides, strandedness, and nucleotide content. RAPID can skip the
alignment and directly use alignment files (BAM/SAM) as well. To efficiently process,
capture and store the aforementioned statistics, RAPID uses SAMtools (Li et al., 2009),
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Table 1 Comparison of RAPID with other tools is shown. ./, Feature supported; x, Feature not supported; NA, Feature is not in the scope of this tool. For instance,
Knockdown corrected normalization feature is NA for CPSS, because it does not support multiple sample comparison. The full description of the column headers are listed
in Table 2.
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Table 2 Table describing the supporting features of RAPID (Column headers in Table 1).

Supporting feature Description

Contaminant removal Is there an option to remove set of contaminants
(microbial, ribosomal, etc.) from the read files?

Supports other aligners Does the tool support alignment files from other tools,
instead of performing their own alignment?

User-defined gene/region Could the user specify a list of regions to perform
downstream analysis?

Knockdown corrected normalization Does the tool enable multiple-sample comparison by
facilitating normalization techniques specific to SRNA
knockdown studies?

Offline Can the tool be used offline?

Hardcoded genomes Is the tool generic? i.e., Is the tool’s ability somehow limited
to a set of pre-defined genomes?

Quantitative, and Qualitative Plots Does the tool support informative plots to gain
understanding of the analyzed data (MDS=multi-
dimensional scaling, PCA= principal component analysis)

Multi-sample comparison plots Does the tool provide a comprehensive view of multiple
samples (not just differential analysis)? For instance, how
does the read distribution vary across multiple samples in
different genes of interest?

Differential analysis Is the tool equipped with modules to perform pairwise
differential analysis?

Enrichment analysis support Is there any support to perform functional enrichment
within the tool

Interactive interface Does the tool have an interactive interface, or plots?

miRNA or piRNA specific? Is the tool specific to analyze miRNA or piRNA only?

BEDtools (Quinlan ¢ Hall, 2010), and custom Perl, Shell, and R scripts. The statistics
captured by this module serve as input for other modules.

Normalization module for multi-sample comparison

RAPID aims to facilitate an unbiased comparison of genes or regions across multiple
sRNA samples. Other than the sequencing depth itself, SRNA studies pose an additional
challenge during normalization. For instance, to understand RNA interference (RNAi)
mechanisms and how the siRNA homeostasis is maintained, often a gene or siRNA region
is knocked down. One such knockdown strategy is to introduce large amounts of siRNAs,
called primary siRNAs, against the knockdown gene or any siRNA region. Consequentially,
secondary siRNA production is triggered by the primary siRNAs. These primary and
secondary siRNAs, which are also sequenced, can add up to millions of reads in the total
library size.

To our knowledge, there are no normalization methods specialized for knockdown
based small RNA-seq studies. However, many methods have been proposed to normalize
mRNA-seq data, which can be broadly categorized in two classes: (i) total count scaling
(TCS) methods and (ii) methods which utilize quantities like median log-fold change,
among all genes between mRNA-seq experiments. To be able to use the latter methods,
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Figure 1 The Pipeline of our tool RAPID is depicted. Green boxes are executables; blue, and orange
boxes represent input, and output files respectively. The executable RAPID modules are: (i) rapidStats
module performs reference alignment and quantifies the expression of user-defined genes and/or regions.
(ii) rapidNorm facilitates sample (or gene) wise comparison of genes/regions (or samples) after appropri-
ate normalization. (iii) The rapidVis module provides multiple visualizations representing the informa-
tion obtained from rapidStats and rapidNorm. Selective screenshots from the output of our case studies
are shown in the boxes. (iv) rapidDiff is the differential expression analysis module implementing DE-

Seq2.

Full-size Gal DOI: 10.7717/peerj.6710/
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sRNA loci annotation should be available, and should assume that most of the sSRNA loci

between samples are not differentially expressed. In model organisms like Paramecium

tetraurelia, little is known about the localization, and expression variability of endogenous

small RNA loci. Hence, the second class of methods may not be applicable. However, the

disadvantage of TCS methods is that the used normalization factors were shown to be
biased by highly expressed genes in the dataset (Dillies et al., 2013). In case of knockdown
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samples, TCS methods will be heavily biased because of the millions of primary, and
secondary siRNAs associated with the knockdown gene or region.

In mRNA-seq data, a variant of TCS method (Sultan et al., 2008) was introduced, where
normalization is achieved by scaling through a factor that estimates the difference in the
number of reads mapped between samples. We previously proposed a variant of the TCS
method in a knockdown based siRNA study (Gotz et al., 2016). Here, we term this variant
as KnockDown Corrected Scaling (KDCS) method, where we remove from the estimated
total library size, all small RNA reads that map against the knockdown genes, this quantity
is denoted as K below. Assume read count R for a region of interest that we want to
compare between samples. T is the total number of reads mapping to the genome, and
K is the number of small RNA reads mapping to the knockdown gene. We compute the

normalized read count R:

R=r M (1)
T—K

where M is the maximum over all values (T} — K),..., (T, — K};) over all n samples.

RAPID uses the KDCS method, by default. Hence, in the absence of knockdown genes, the

normalization works as the normal TCS method. However, in order to provide flexibility

with the choice of normalization for knockdown free analysis,we have also incorporated

size factor-based normalization from DESeq2 (Love, Huber ¢» Anders, 2014). If an user

can safely assume that most of the genes or regions between samples are not differentially

expressed, in a small RNA based study, then they can use the DESeq2 normalization.

Visualization module

As visualization enables better understanding of data, the rapidVis module of RAPID
automatically generates insightful plots from the output of previous modules. RAPID
makes use of Rmarkdown (http://rmarkdown.rstudio.com) to create easily navigable
HTML reports. This module contains two modes: statistics and comparison mode. The
statistics mode accepts input from the rapidStats output file, and provides various single
category plots detailing on the distribution of read length, strandedness, soft-clipped
nucleotides, and coverage plots for each gene/region analyzed. In addition, this report
also provides combinations of the aforementioned properties. For instance, how does
strandedness differ across different read lengths. Comparison mode accepts the rapidNorm
analysis output file, to equip the user with qualitative reports (Heatmaps, PCA, MDS) of
samples. Further, sample and gene/region wise comparison plots of the properties inherent
in the data. All plots are shown both in normal and log scale such that the user can directly
incorporate them into publications.

Differential analysis module

Differential Expression (DE) analysis is one of the common downstream analysis in
comparative studies. RAPID equips the user with this functionality by incorporating the
DESeq2 package. Upon invoking the rapidDiff module, raw counts are utilized from
the output of the rapidStats module to perform DE analysis, with default parameters of
DESeq2. Results of the DE analysis include intuitive plots (such as MA Plot, Heatmap,
PCA) and the list of DE genes/regions.
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Usage and availability

We strongly recommend using RAPID from https://anaconda.org/bioconda/rapid

as a conda recipe. However, it can also be freely accessed from https://github.com/
SchulzLab/RAPID. A detailed use case based documentation is provided at http://rapid-
doc.readthedocs.io/en/latest/.

Definitions
Here we describe the formula used in the case studies.
Coefficient of variation (CoV): Coefficient of variation is the ratio of standard deviation to
mean of the data set. For a gene or region of interest, 7, with n samples
CoVi= 2, 2)
i

where o;, and p; are the standard deviation, and mean of the gene or region of interest i in
the n samples respectively.

AntiSense Ratio (ASR):

Antisense ratio is the ratio of the number of antisense reads to the total number of reads
in a gene or region. If R, and AS are the total, and antisense read counts of a region of

interest, 7, respectively, antisense ratio is calculated as follows:

AS;
ASR; = —. (3)
R;
DatasSets

We show the application of RAPID, using two different datasets which are briefly described
below.

Paramecium tetraurelia

We used four small RNA sequencing data sets (European Nucleotide Archive (ENA)
accession: PRJEB25903) from the wildtype serotypes (51A, 51B, 51D, and 51H) of
P.tetraurelia. We performed adapter-trimming, merged the replicates, and extracted
reads of length 21-25nt only from each dataset for this analysis. We analyzed only the
rDNA cluster producing 17S, 5.8S, 25S ribosomal RNAs, External Transcribed Spacer
(ETS), Internal Transcribed Spacer 1(ITS1), and Internal Transcribed Spacer 2 (ITS2).
The rDNA cluster sequence can be obtained from GenBank accession: AF149979.1 (Preer
et al., 1999), with the additional annotation of the 5.8S sequence from GenBank accession:
AMO072801.1 (Barth et al., 2006).

In addition, to demonstrate a simple effect of KDCS normalization, we utilized the five
available ICL knockdown data sets from this study (NCBI accession ID: PRJEB13116)
(Gotz et al., 2016). After preprocessing the data as mentioned in the study, we chose four
small RNA regions as examples (these are regions of the ND169 gene, as shown in the
study) to quantify, and compare their SRNA accumulation across samples using RAPID.

Schizosaccharomyces pombe
We explored the 24 h time point datasets of WT, and three different knockdowns of
S.pombe. The respective data sets can be obtained by the accession IDs: GEO: GSE89151;
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GSM2359756—wt_24 h; GSM2359762—ago1D_24 h; GSM2359768—clr4D_24 h;
GSM2359774—dcr1D_24 h. We processed the data as mentioned in the corresponding
download pages, before subjecting them to RAPID. We restricted our analysis to the
sRNA-enriched genes available from their supplement (Jo/ et al., 2016) which can be
accessed from https://bit.ly/2GSLcks. After pre-processing we subjected each GSM dataset
to rapidStats, and compared them using rapidNorm.

RESULTS

We show the application of RAPID on two different datasets, highlighting some features
that can be investigated by doing a standard RAPID analysis.

Comparison of Paramecium tetraurelia serotypes

P. tetraurelia is a unicellular, free-living ciliate commonly found in fresh-water lakes. They
show nuclear dimorphism and have a wide range of phenotypes. One such phenotype that
depends on an epigenetically controlled, mutually exclusive expression of members of a
multigene family is called serotypes (Cheaib et al., 2015). With a dimorphic nucleus and
more than 11 serotypes, P. tetraurelia SRNAs are involved in regulatory mechanisms at the
post-transcriptional, and epigenetic level (Gotz et al., 2016; Cheaib et al., 2015; Carradec et
al,, 2015).

Our first example is an analysis on four sSRNA-seq datasets (ENA: PRJEB25903) from
wildtype serotypes (51A, 51B, 51D, and 51H) of P. tetraurelia. We were interested in SRNAs
produced in the rDNA cluster producing 178, 5.8S, 25S ribosomal RNAs. A simple genomic
visualization of the different components of rDNA cluster regions we quantified can be
seen in Fig. 2. We can observe from the strand-specific read distribution plots in Fig. 2
that the regions, namely External Transcribed Spacer (ETS), Internal Transcribed Spacer
1(ITS1), and Internal Transcribed Spacer 2 (ITS2), which get excised in the processing of
polycistronic pre-rRNA, accumulate 23nt antisense small RNAs. It is known from yeast,
that rRNA maturation involves co-transcriptional endonucleolytic cleavage and highly
concerted trimming events to subsequently process the final rRNAs (Henras et al., 2015).
Our data here suggests that in P. tetraurelia these elimination processes are associated with
antisense siRNAs, possibly produced from RNA-dependent RNA Polymerase activity.

Analysis of our case studies, and their respective figures can be reproduced with the help
of (Data S1).

Normalization case study in Paramecium tetraurelia knockdowns

One of the unique features of RAPID is the KDCS normalization that can correct for
the excess of sSRNAs introduced in knockdown experiments in experimental approaches
utilized in many diverse organisms. To demonstrate the effect of KDCS normalization,
we utilized the ICL knockdown data sets from the study by Gorz ef al. (2016). This study
investigates the molecular mechanisms of different sets of trans-acting RNAi components
in P. tetraurelia. ICL is a gene in P. tetraurelia, which is not involved in the RNAi machinery.
In the original study, as a control, the ICL gene is knocked down by introducing primary
siRNAs against ICL (see ‘Methods’). In our work, we quantified the SRNA read counts
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of four example sSRNA regions (which are in the original study different constructs of the
ND169 gene) from the mentioned datasets. In this setup we expect that all datasets behave
the same, as these are biological replicates of the same system.

As described earlier, very little is known about the localization, and expression variability
of endogenous small RNA loci in P. tetraurelia. Therefore, in these SRNA knockdown
samples, normalization methods, such as DESeq2, may be inappropriate, due to the
assumption that the majority of regions are unchanged. We compared the effect of the
TCS, DESeq2 and KDCS normalization approaches to using no normalization. We used the
coefficient of variation (CoV) to measure the performance of the normalization method
(see Methods; Eq. (2)) as normalization should reduce the variance in read count per
region. A smaller CoV suggests a better performance of the normalization method.

Figure 3 shows the CoV values of the raw, and normalized sRNA read counts, for four
example regions that had been studied by Gorz er al. (2016). We can observe from Fig. 3,
that the KDCS method performs better in all the regions, compared to the generic TCS
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method. It also performs as good or slightly better than the normalization of DESeq2 for
this example. All normalization approaches are better than using no normalization, which
strongly argues for their use. This experiment suggests that our KDCS method is a better
alternative to the TCS method and is applicable when few regions are known.

Analysis of Schizosaccharomyces pombe knockdowns
The fission yeast, or Schizosaccharomyces pombe, is another widely studied unicellular
eukaryotic model organism, where RNAi pathways are prevalent. We explored the time
point datasets of WT, and three different knockdowns of S.pombe from the study by (Joh
et al., 2016). In this study, the authors investigated quiescence associated changes in small
RNA transcriptomes and epigenetic modifications to identify the key players involved
in quiescence. They also examined the role of RNAI proteins, by knocking out three of
them, namely, Agol, Clr4, and Dcrl. One of the key findings was that during quiescence in
S.pombe, a set of sSRNA-enriched genes were identified as crucial elements for the survival
of the organism (Jo/ et al., 2016). We explored these sSRNA-enriched genes using RAPID,
to demonstrate the discovering potential of RAPID.

With a simple RAPID analysis comparing the different knockout samples, it was easy
to screen for interesting properties in the data. We discovered that a subset of these
sRNA-enriched genes have relatively higher antisense ratio (ASR, see ‘Methods’ Eq. (3))
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(x-axis) analyzed. Accumulation of antisense SRNA can be observed in the lower part of the heatmap,
and an increase in antisense SRNA can also be seen in different knockouts compared to wildtype.
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(Fig. 4). This increased ASR was observed in different sets of genes in various knockouts.
The subgroup of genes with higher ASR, could play a cis-regulatory role to silence the
genes. While further investigation is necessary, our RAPID analysis (Fig. 4) suggests
an involvement of different SRNA mechanisms in ensuring the survival of S.pombe in
quiescence.

DISCUSSION

The long list of available sSRNA analysis tools attributes to the complexity, and importance
of sSRNAs in biological studies. However, most available tools only focus on identifying, and
annotating the different classes of SRNA. They fail to characterize and visually represent
the multitude of parameters crucial for understanding the sRNA world.

RAPID is designed to capture the diverse eukaryotic siRNA characteristics innately
found in sSRNA sequencing data sets. Some of the properties captured during the basic
analysis of RAPID include read length, strand bias, non-templated nucleotides, nucleotide
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content, sequencing coverage etc., for user-defined sets of genes (or regions) of any
reference genome. With a separate module for normalization, RAPID simplifies multi-
sample comparison. We have also included an alternative normalization technique, KDCS,
specially designed to aid the comparison of sRNA-based knockdown studies. KDCS
normalization method can also be helpful in correcting for the transcribed small RNAs
from the non-insert RNA locations of a vector. For instance, in RNAI vector constructs,
like L4440 in Caenorhabditis elegans, due to lack of specificity of the termination enzyme,
the non-insert RNA locations will get transcribed (Saskéi et al., 2018). These regions which
contribute unwanted variation can be excluded by specifying them as background in the
RAPID analysis.

RAPID currently addresses many features which are crucial towards the understanding
of siRNA biogenesis, and function. In spite of RAPID’s diverse functionality, there are
a few shortcomings. RAPID depends on user supplied set of contaminants instead of
auto-detecting it from the sequence file. The visualizations provided by RAPID in the
statistics mode do not include sequence level properties, like over represented sequences or
sequence logos, etc. These are interesting additions for future releases. In the comparison
mode of our visualization module, the plots provided are non-exhaustive. For instance,
one might like to compare the nucleotide content, or strand-based distribution of genes
(or regions) across multiple samples, or vice-versa. Such special features can be requested
by users in GitHub, which could be incorporated in further releases.

CONCLUSION

RAPID is an offline, open-source, user-friendly, and automated pipeline designed to
simplify data analysis, tailored to investigate eukaryotic siRNAs. RAPID is not an exhaustive
sRNA analysis or annotation pipeline. With an available set of sSRNA localizations, our
tool can be used to analyze single or multiple sSRNA samples at ease with the aid of
different normalization techniques. The diverse set of visualizations generated by RAPID
will enhance the understanding of any sSRNA-based study. RAPID is available for free
use and can be used over the command line. It is available at the github repository
(https://github.com/SchulzLab/RAPID). A detailed user-tutorial can be accessed from this
repository.
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